
Service-Oriented Control Architecture for 
Reconfigurable Production Systems 

 
J. Marco Mendes 

Faculty of Engineering - 
University of Porto, Rua Dr. 
Roberto Frias s/n, 4200-465 

Porto, Portugal 
marco.mendes@fe.up.pt 

Paulo Leitão 
Polytechnic Institute of 
Bragança, Quinta Sta 

Apolónia, Apartado 134, 
5301-857 Bragança, Portugal 

pleitao@ipb.pt 

Armando W. Colombo 
Schneider Electric GmbH, 
Steinheimer Str. 117, D-

63500 Seligenstadt, Germany 
armando.colombo@ 

de.schneider-electric.com 

Francisco Restivo 
Faculty of Engineering - 

University of Porto, Rua Dr. 
Roberto Frias s/n, 4200-465 

Porto, Portugal 
fjr@fe.up.pt 

 
Abstract-Evolvable and collaborative production systems are 

becoming an emergent paradigm towards flexibility and 
automatic re-configurability. The reconfiguration of those systems 
requires the existence of distributed and modular control 
components that interact in order to accomplish control activities. 
This paper focuses on service-oriented production systems, which 
behavior is regulated by the coordination of services that are 
provided and required by control components with different 
roles. Internally, these components are independent of the 
implementations, but an internal modular and event based 
structure is presented. Individual control and interaction is 
achieved by using embedded or inter-service control processes for 
which High-Level Petri Nets are proposed. Supporting the 
predefined control, decision support systems are used to provide 
conflict resolution and other decision-making functions. 

I. INTRODUCTION 

Global competition, mass customization-influenced markets 
and rapidly changing customer requirements are forcing major 
changes in the production styles and configuration of 
manufacturing systems. Increasingly, traditional centralized 
and sequential manufacturing planning, scheduling, and control 
mechanisms are being found insufficiently flexible to respond 
to changing production styles and highly dynamic variations in 
product requirements [1]. Currently, to stay in business, a 
manufacturing enterprise should be able to change promptly 
and dynamically its product catalogue and react quickly to 
unexpected disturbances [2]. One of the most significant facts 
in this emergent environment is the need for reconfigurable 
systems, with re-configurability being a key enabler of 
competitiveness by providing the way to achieve rapid and 
adaptive response to change. 
The ever growing needs for more flexible and reconfigurable 

production systems has led to the development and application 
of new production automation and control paradigms. One 
promising approach, which has the potential to surmount the 
technical, organizational and financial limitations inherent to 
the most current approaches, is to consider the production 
entities as a conglomerate of distributed, autonomous, 
intelligent and reusable units, which operate as a set of 
collaborating entities. From a functional point of view, each 
collaborative unit can, at each time, initiate collaborative 
actions and dynamically interact with each other in order to 
achieve both local and global objectives, when they are 

considered within a cross-layer infrastructure like a 
manufacturing enterprise [3]. Based on these principles, 
different approaches have been developed and analyzed to 
cover the requirements of reconfigurable production systems, 
such as Multi-Agent Systems (MAS) [4] and Holonic 
Manufacturing Systems (HMS) [2, 5]. 

Indeed, in spite of some agent and holonic approaches’ 
success, a significant incursion in manufacturing plants in use 
today is still missing [6]. Additionally, some issues remain 
unanswered, namely those related to the standards of 
interaction and interoperability, common ways for resource 
exposition and access, and reconfiguration of the control 
components and integration with the business level. 
The introduction of Service-oriented Architecture (SoA) [7-

8] principles in production systems allows the development of 
distributed, reusable and agile systems, exhibiting more 
powerful reconfiguration mechanisms. In these systems, the 
behavior is regulated by the coordination of services, with each 
participant (such as manufacturing components, intelligent 
decision mechanisms and control devices) providing services 
that represent its functionalities, and that will be requested by 
other components. A major challenge in this type of service-
oriented systems is related to how individual entities may 
interact, coordinating their activities by synchronizing the 
execution of services they provide. The aggregation of single 
services and all the interaction patterns between them is also a 
complex issue. Specifically for service-oriented based 
collaborative automation systems, there is a gap on 
mechanisms and engineering tools that provide interaction 
schemes, protocols and patterns applied for services and 
corresponding providers and requesters. 
This paper addresses the challenge by proposing a modular 

control architecture for service-oriented production systems 
addressing the key requirements of flexibility and re-
configurability. The control architecture is based on service-
oriented principles to achieve distributed, modular, agile and 
interoperable systems, complemented with High-level Petri 
nets for the process control and some concepts of multi-agent 
and decision systems to achieve autonomy and intelligence 
supporting conflict resolution. The combination of service-
oriented and multi-agent systems paradigms allows reconciling 
the principles of autonomy and interoperability. 

ⓒ

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:03 from IEEE Xplore.  Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The paper is organized as follows: first, Section 2 describes 
the principles of service-oriented architectures and their 
adoption in automation. Section 3 introduces the foundations 
of the service-oriented control architecture for reconfigurable 
production systems, including the identification of control 
components and the coordination and synthesis of their 
services. Section 4 describes the modular structure for a 
generic control component of the proposed architecture. 
Finally, Section 5 rounds up the paper with conclusions. 

II. SERVICE-ORIENTED PRODUCTION SYSTEMS 

Service-oriented Architecture (SoA) is the abstract concept 
of a software architecture, where the focus is the offer, search 
and use of services over the network [9], providing a 
communication platform by using open protocols which 
address the interoperability in heterogeneous systems.  

In a service-oriented architecture, services are the primary 
organizing principle [8]. A service is a software module that 
encapsulates the control logic or resource functionality of a 
component that responds to a specific request (Fig. 1). The 
access to a service is described by its interface and the 
requester can thus access the service without bothering with 
the underlining implementation. To discover services, there 
must be a discovery mechanism to locate them, e.g, service 
directory facility, broadcasting announcement messages, etc. 
Services have the following main features [8]: autonomy, 
loosely-coupled, interoperable, composable and reusable. 

 
Fig. 1. Illustration of Service-oriented Architecture concepts. 

In SOA, a pertinent question is about how to interact with 
services and how automated processes can use them [10]. 
Several words are used in the SoA community to describe 
more complex interactions, such as orchestration, 
choreography and composition (see [11]). As a new domain of 
software engineering, services engineering concerns every 
aspect from development, deployment, use, to evolution of 
services, such as analysis, architectures, development 
methodologies, descriptions, testing, development 
environments, management, and applications [12]. 

Standard protocols should handle the basis for these issues 
and thus specify technology rules that should be followed by 
all involved partners to successfully permit the conversation. 
From the technology point of view, Web services are the main 
force to implement these concepts using well established Web 
protocols, but also other types of implementations are possible. 
The use of the SoA paradigm implemented through Web 
services technologies enables the adoption of a unifying 

technology for all levels of the enterprise, from sensors and 
actuators to enterprise business processes [10]. 

In automation domain, the vision of using Service-oriented 
Architectures is to support the life-cycle needs in the context of 
agile and flexible manufacturing, addressing distributed, 
modular and reconfigurable automation systems which 
behavior is regulated by the coordination of services. The 
request for easy reconfigurable manufacturing systems 
composed of standard components that may be remotely 
supported by geographically distributed engineering partners to 
suit changing and unpredictable business [13]. The SIRENA 
Project [6] has contributed to potentate the SoA-based 
automation by providing Web Services at device level through 
the extension of the SoA paradigm into the realm of low-level 
embedded devices, such as sensors and actuators. The 
feasibility of this approach has been demonstrated through a 
proof-of-concept implementation based on the Devices Profile 
for Web Services (DPWS), a device-oriented subset of the 
Web Services protocols. Since then, significant research is 
going on, covering the engineering of such systems, including 
the modeling, semantic description and collaboration. 

III. FOUNDATIONS OF A SERVICE-ORIENTED CONTROL 
ARCHITECTURE 

The demand for production systems that exhibit high degree 
of re-configurability will obviously impose strong 
requirements on the way the systems are designed, installed, 
operated and even re-configured [6]. Being a system which 
requires diversified functionalities based on its nature and 
expected behavior, a structure that holds the components and 
defines the features and interactions has to be defined. 
The essence of the proposed control architecture is the 

convincement that re-configurable production systems can be 
seen as aggregations of components that are (re)used whenever 
necessary, providing and requesting services. The proposed 
architecture is based on the following main foundations: 
− Service-oriented systems, in which the access to the 

resources is via exposable services; 
− High-level Petri nets to support the service process 

description, logical control and analysis; 
− Multi-agent and decision support systems, introducing 

distributed intelligence for collaboration, negotiation and 
direct interaction over the process control when needed. 

The suggested control architecture approach allows 
achieving powerful reconfigurable and evolvable systems. It is 
built upon modular and simple control components, illustrated 
in Fig. 2, each one providing a set of services that represent its 
internal functionalities. The idea behind the control 
components is similar to other approaches, such as holons or 
physical agents: these production entities are parts of a 
heterarchical organization (i.e. that may behave hierarchical 
and/or distributed) and contribute to the overall interest by 
collaborating. This organization is also characterized by its 
aggregation capabilities, i.e., simpler units might be aggregated 
in order to generate more complex structures. 

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:03 from IEEE Xplore.  Restrictions apply.



 
Fig. 2. Main components in a service-oriented control. 

The control of such service-oriented production systems is 
related to the coordination of the distributed components of the 
system, i.e. by describing and managing processes of services 
they provide. All the interaction processes between the 
components are exclusively via the access to services that are 
connected by communication network. 

A. Control Components 
The architecture identifies three types of components that 

participate in the control: Mechatronic Components (MeC), 
Process Control Components (PCC) and Intelligence Support 
Components (ISC). They control their own behavior and can 
be easily combined to form more complex devices to build the 
desired production system in a “Russian doll” manner [6], 
providing different levels of granularity: local control exhibited 
by mechatronic devices, collaboration between components 
and aggregated control to create higher level services based on 
individual ones. The automatic re-configuration appears due to 
the easy re-organization of the components and the services 
they provide, reflected by the modification of the connections 
between the devices presented in the system. 
The MeC component embraces the mechanical, electronic 

and software combination, allowing the local control of the 
physical device. It may have embedded a logic controller (that 
interprets e.g. Petri net process descriptions) to regulate its 
local behavior in cases where the decomposition of atomic 
operations is possible. In this case, it is also necessary to 
synchronize the services provided by the physical devices, 
such as reading inputs, writing outputs or invoking programs. 

A MeC can also have embedded its own intelligence, being 
in this case used the abbreviation SMeC (Smart Mechatronic 
Component). The intelligent mechanisms provide support to 
the logic controller mechanism in case of decisions or conflict 
resolution. A SMeC may also represent composed components, 
in the sense that one component is an aggregation of several 
other ones (as the transport system illustrated in Fig. 2). 

In more complex systems, built upon small mechatronic 
components, it is necessary to have components that provide 
global process coordination mechanisms. Process Control 

Components (PCC), which have their own logic controller, 
provide this kind of mechanisms, acting as clients that are able 
to use services provided by other components. The PCC 
support the complex process flow and interaction of services in 
the system, according to a process model. For this purpose, 
they implement the logic for the workflow-oriented execution 
and sequencing of atomic services, and provide a high-level 
interface for the aggregated process, made of individual ones. 
As an example, a robot can provide a transport service that 
incorporates several operations (such as pick, move and place). 
It may synchronize its activities with its connected neighbors 
and, if necessary, take orders from global control components. 

Additionally to the static predicted control that mainly 
executes a specific process plan, the flexibility and indirection 
can be extended by decision mechanisms. Decision itself can 
be done locally by the component or using specific decision 
components for complex global behavior. For this purpose, the 
architecture considers Intelligence Support Components (ISC), 
that offer special services, e.g. to choose one of several 
available alternative actions. The idea is to have ISC 
components, which incorporate real-time decision capabilities, 
separating the system control layer from the decision-making 
layer. Being a dynamic system, sometimes there are 
unexpected circumstances that a PCC can not handle: 
operation’s delay and canceling, synchronization among 
individual workflows, unexpected situations, unaccomplished 
operations, dynamically adding new operations, etc. In these 
situations, ISC components provide support to solve 
unexpected situations. 

A PCC and an ISC component may be integrated as one 
component, being complementary to each other. In this paper, 
they are handled separately to highlight their roles. 

B. Service Process Description and Control 
In service-oriented production systems, built upon 

mechatronic components that provide and request distributed 
services, the desired production process is achieved by putting 
these control components working together to achieve global 
production objectives. Besides to exhibit individual pluggable 
and communication capabilities and to manifest intelligence to 
support self-organization and adaptation to evolution, a crucial 
challenge is related to how individual services may interact, 
coordinating their activities according to an established 
sequence of services. In fact, coordination and aggregation 
mechanisms may be of crucial importance to the emergent 
behaviors of individual control components. These 
coordination mechanisms must also consider interactions that 
combine the component level with higher-levels of supervision 
to achieve cohesive distributed intelligent control. 

Fig. 3 illustrates the process description and control of 
services to address the execution of a model. In this example, 
different available resources in the system expose their 
services. The process model, representing the high-level 
service, is interpreted by the logic controller of the PCC, which 
is responsible to call the necessary services in the way 
described by the model. 

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:03 from IEEE Xplore.  Restrictions apply.



 
Fig. 3. Description and control in service-oriented production systems.  

In this example the control is hierarchical and coordinated 
by the PCC because there is a requirement to provide an 
aggregate service. However, control can also be done by 
collaboration and coordination between MeC, since they may 
have their own logic controller. The task of the PCC is to 
follow the schema represented by a workflow model, 
synchronizing the associated activities (e.g. requesting the 
described services). In the model is also included a conflict that 
requires a decision to define which path of the process should 
be followed. In this case, an ISC can handle the special 
indirection over the control, by providing the necessary 
decision based on different parameters (e. g. product 
information, actual system status, etc.). 
The process model in Fig. 3 is based on a generic workflow 

diagram, but - as indicated previously - a solution proposed by 
the authors is to use High Level Petri Nets. More details follow 
in section IV. 

C. Connection and Aggregation of Components and Services 
The control architecture proposes a Lego™-based approach: 

grouping elementary and interconnectable components in a 
particular way it is possible to build bigger and more complex 
systems. Thus, the development of modular, re-configurable 
and complex production systems requires the aggregation of 
control components in a dynamic and automatic way.  
The connection between mechatronic devices is a way to 

achieve the union of components. Connections are established 
via the ports of the control models, that can be directly done 
when models are in the same component (e.g. running on a 
PCC) or using the service ports for distributed components 
(e.g. between MeC). The question is if it is simply a matter of 
overlapping port’s logic or if it requires more complex 
“connection logics”. The connection between control 
components must comprehend several rules. In a first balance, 
each model should have a compatible interface to be connected 
to; not only a set of matching operations but also a 
complementary functionality. After that, a connection can only 
be established after a successfully agreement between the 
involved partners. In a more complex scenario it may involve 
some kind of negotiation. The connection itself needs a 

specific “glue” that corresponds to some logic restrictions, 
which are dependent on the type of the connection. This can be 
seen as a protocol for the communication that, beside others, 
establishes a message synchronization pattern for the 
interaction. The direct connection of modules inside the same 
component is more restricted in terms of requirements, but that 
can be handled in a similar way to its distributed counterpart. 

Connections, aggregations and general service usage can be 
quite complex when the procedure should occur automatically. 
Semantically-rich descriptions combined with machine 
reasoning allow the automatic matchmaking of required and 
offered services using logical inference, rather than the hard-
coded one-to-one mappings [14]. This type of matchmaking 
enables utilizing services that did not exist or were not known 
when the requester side was programmed. Automatic 
matchmaking enables the reconfiguration of the system by 
dynamically selecting services without reprogramming the 
integration logic. 

IV. MODULAR STRUCTURE OF CONTROL COMPONENTS 

Each control component of the proposed architecture may be 
implemented independently and differently. The only 
requirement is that it should share its functions as services and 
obey to the protocols of communication and processes. This 
section proposes a modular and event-driven design 
methodology for the control components. 

 
Fig. 4. Modular conceptual structure of a control component. 

A general control component is structured in a puzzle of 
adaptable and reusable modules, as illustrated in Fig. 4. The 
main modules considered here are: Logical Control, Decision 
and Exception Handler, Communication, Device Interface and 
Event Router-Scheduler. These modules are included in the 
control component according to its needs and possibly 
implemented using different technologies depending on the 
host platform. The proposed modules are not strictly necessary 
to deploy the components (except Event Router-Scheduler as a 
backbone for event handling and adaptation of other modules), 
thus it is up to the developer to setup the structure according to 
the components objectives. 

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:03 from IEEE Xplore.  Restrictions apply.



A. Logic Controller Module 
The Logic Controller module regulates the behavior of the 

component (i.e. the physical device if embedded in a MeC or a 
larger system if embedded in a PCC component) by 
coordinating a set of services described by a logical model. 
The Logic Controller module may be integrated in more than 
one component, building a non-hierarchical architecture, which 
means that the supervisory control is really distributed and not 
centrally coordinated. In this case, the processes encapsulated 
by the coordination services have to collaborate with each 
other in order to reach the same level of synchronization as a 
centralized PCC would provide. 
The logic embedded in the control component is dependent 

on the system topology, but should be independent from the 
process plan of each product. The proposed approach to 
develop logic controllers (i.e. design, validation, simulation 
and execution) is to use a kind of High-level Petri nets tailored 
for service-oriented systems [15], taking the advantage of their 
powerful mathematical foundation to represent discrete, 
dynamic, and distributed systems. High-level Petri nets are 
particularly well-suited for systems in which concurrency and 
parallelism, synchronization, resource sharing and mutual 
exclusion are important (see [16]). 

Logic controllers have to interpret and execute the process 
model expressed in HLPN. In real-time execution, enabled 
transition must be detected, services associated with the 
transition must be called and, after that, the process model has 
to be updated to reflect the actual state of the system. Logic 
controllers synchronize and control the whole process until it 
reaches the goal, based on the elaborated model. 

 
Fig. 5. High-level Petri net control and event based interaction inside the 
control component. 

The logic control model is represented by a Petri net model 
according to the behavior of the process. The represented 
transitions are used to model time-consuming activities, such 
as the execution of an operation. These transitions can also be 
exploded (i.e. detailed) allowing the step wise refinement of 
the model, such as the transfer out (right/left) operation that is 

actually a sequence of different steps. Fig. 5 illustrates the 
coordination of a process model that presents two alternative 
outputs for the transfer (right and left). The execution of the 
process model is behind the transfer service that is coordinated 
by the transfer in start/completed operations. 
The designed Petri nets models including the information 

about the system operation (e.g. process plans, resources, 
layout and control laws) will constitute a computational model 
practical for analytical validation, and a simulation model, 
which allows experiments to be performed in the system 
model. This model can be easily analyzed and validated in the 
design phase, and proceeding into the implementation phase 
only after the verification of the correctness of system design. 

B. Communication Module 
The communication among the control components is done 

via the invocation of component's services hosted and provided 
by the communication module. As an example, a conveyor 
may provide the Transfer service to handle the movement of 
pallets. This service may be used by other components, but it 
can also call external services when needed (e.g. to be 
connected to other conveyor it needs to request the Transfer 
service of another conveyor). 

A suitable technological solution to implement the service-
oriented communication module is to use Web technology, and 
most specifically Web services. At its core, Web services 
technology is quite simple and it is designed to move XML 
(eXtended Markup Language) documents between service 
processes using standard Internet protocols. This simplicity 
helps Web services to achieve the primary goal of 
interoperability and also means that it is necessary to add other 
technologies to build complex distributed applications. A 
profile has been specified for adopting Web services at the 
device level known as Device Profile for Web Services 
(DPWS) [9]. 

C. Decision and Exception Handler Module 
The coordination of the services’ execution, depending on 

the flexibility that the system reveals, requires the decision-
making and conflict resolution at runtime, because a system 
logic model does not describe a fixed sequence of actions, but 
rather all possible combinations thereof. For instance, if a 
system is flexible through redundancy of service providers, the 
concrete mapping of services to devices has to be decided at 
runtime. The existence of conflicts does not strictly mean that 
there are design problems in the system, but should be also 
understood as an opportunity of applying decision to a more 
flexible system [1]. Other aspects are the handling of 
undocumented situations by the process model, generating a 
exception to the normal control. 

Considering the Fig. 5, the model presents a decision point 
(marked with a ‘?’) to allow different transfer outputs (in this 
case left and right). This decision is translated into the Petri net 
model as a conflict and requires that someone resolves the 
conflict according to a specific criterion. In the example, the 
information of the pallet that is to be transferred (e.g its 

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:03 from IEEE Xplore.  Restrictions apply.



identification and process description) is considered by the 
Decision and Exception Handler to provide a specific direction 
(left or right) to the control and thus, activating one of the 
corresponding transition. 
The degree of complexity associated to the decision-making 

mechanism can range from simple algorithms to complex 
computational systems, such as multi-agent systems, neural 
networks and genetic algorithms. Agents are technologically 
suitable to provide autonomy and intelligence, supporting 
indirection, control decision and conflict resolution. Their 
support can be extended into the reconfiguration of the system 
by providing new generated possibilities to the behavioral 
model through the use of learning mechanisms. 

D. Device Interface Module 
The Device Interface provides the mechanisms to integrate 

the physical device, such as robots or sensors, within the 
control of the MeC. As local device controllers usually have 
closed architectures it is necessary to develop wrappers to hide 
the details of each device controller and to supply primitives 
that represent the functionality of the physical devices. The 
Device Interface module aims to fulfill this objective, by 
providing mechanisms to support the easy and transparent 
integration of physical devices within control applications. 

E. Event Router-Scheduler Module 
Being the control component constituted from several 

modules that may operate asynchronously and using different 
processes and/or threads, a special module is required to 
connect all modules together and protect data concurrency. For 
this purpose, the heart of the puzzle is the Event Router-
Scheduler module that provides the following main features: 
− Internal event-based mechanisms to pass events from one 

module to another; 
− Prioritized buffers for events in case of high event traffic; 
− Thread management and data protection facilities; 
− General interface to plug-in different type of modules. 
As an example, the request for a transfer out start operation 

received by the Communication module is translated into an 
internal event and routed by the Event Router-Scheduler 
module to the Logic Controller module. After processing the 
logic, a new event is sent to the Device Interface module that 
may put the conveyor's motor output signal ON. 

V. CONCLUSION 

This paper introduces a service-oriented production control 
architecture addressing the requirements of flexibility and re-
configurability. The present work suggests reconfigurable 
production systems build upon the concept of distributed 
control components that combines the features of Service-
oriented Architectures directed to automation and production 
systems. On the other hand, the flexible architecture permits 
the application of different control strategies. As process 
control methodology, HLPN was introduced to design, 
validate, simulate and execute processes. 

Several key points were achieved, namely a stable basis 
describing the environment and role of different components in 
the control architecture. Other details were explained about the 
modular structure of control components, based on different 
functionality modules that are tied together by the central 
Event Router-Scheduler Module. 

As future work, the further specification of behavioral, 
process control and decision mechanisms is required, as well as 
their application to case studies. 

ACKNOWLEDGMENT 

The authors would like to thank the partners of the 
Innovative Production Machines and Systems (I*PROMS) 
Network of Excellence (http://www.iproms.org) and the 
SOCRADES project (http://www.socrades.eu), for their 
support. 

REFERENCES 
[1] J. Mendes, P. Leitão, F. Restivo, A.W. Colombo and A. Bepperling, 

“Engineering of Service-oriented Automation Systems: a Survey”, 
I*PROMS Conference on Innovative Production Machines and Systems, 
2007. 

[2] A.W. Colombo and F. Jammes, “Collaborative Automation and Service-
oriented Architectures in the Industry”, Tutorial at the IEEE International 
Conference on Industrial Electronics, France, 2006. 

[3] M. Wooldridge, “An Introduction to Multi-Agent Systems”, John Wiley 
& Sons, 2002. 

[4] S. Deen. “Agent-based Manufacturing: Advances in the Holonic 
Approach”, Springer Verlag Berlin Heidelberg, 2003. 

[5] P. Leitão and F. Restivo, “ADACOR: A Holonic Architecture for Agile 
and Adaptive Manufacturing Control”, Computers in Industry, 57(2), 
2006, pp. 121-130. 

[6] F. Jammes and H. Smit. Service-oriented Paradigms in Industrial 
Automation. IEEE Transactions on Industrial Informatics, 1(1), 2005, pp. 
62–70. 

[7] E. Marks and M. Bell, “Service-oriented Architecture: A Planning and 
Implementation Guide for Business and Technology”, John Wiley & 
Sons, 2006. 

[8] I. Melzer et al., “Service-orientierte Architecturen mit Web Services”, 2. 
Aufl., Elsevier, Spektrum Akademischer Verlag. 

[9] F. Jammes, H. Smit, J. Lastra and I. Delamer, “Orchestration of Service-
Oriented Manufacturing Processes”, Proceedings of the 10th IEEE 
International Conference on Emerging Technologies and Factory 
Automation, Vol. 1, 2005, pp. 617-624. 

[10] A. Bepperling, J. Mendes, A.W. Colombo, R. Schoop and A. 
Aspragathos, “A Framework for Development and Implementation of 
Web Service-based Intelligent Autonomous Mechatronics Components”, 
Proceedings of the IEEE International Conference on Industrial 
Informatics, 2006, pp. 341-347. 

[11] C. Peltz, “Web Services Orchestration”, Hewlett Packard, Co., 2003. 
[12] M. Aoyama, S. Weerawarana, H. Maruyama, C. Szyperski, K. Sullivan, 

and D. Lea, “Web services engineering: promises and challenges”, 
Proceedings of the 24th International Conference on Software 
Engineering, ACM Press, 2002, pp. 647-648. 

[13] A. Colombo, F. Jammes, H. Smit, R. Harrison, J. Lastra and I. Delamer, 
“Service-oriented architectures for collaborative automation”, 32nd 
Annual Conference of IEEE Industrial Electronics Society, 2005, 6pp. 

[14] I. Delamer and J. Lastra, “Ontology Modeling of Assembly Processes 
and Systems using Semantic Web Services”, Proceedings of the IEEE 
International Conference on Industrial Informatics, 2006, pp. 611–617. 

[15] P. Leitão and A.W. Colombo, “Petri net based Methodology for the 
Development of Collaborative Production Systems”, Proceedings of the 
11th IEEE International Conference on Emerging Technologies and 
Factory Automation, 2006, pp. 819-826. 

[16] A. W. Colombo, “Development and implementation of hierarchical 
control structures of flexible production systems using high-level Petri 
nets”, PhD Thesis, Fertigungstechnik, Erlangen, Nuernberg, 1998. 

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on March 26, 2009 at 07:03 from IEEE Xplore.  Restrictions apply.


