
Evaluating Applications Performance in a Multi-networked Cluster

Albano Alves
ESTiG-IPB

albano@ipb.pt

António Pina
DI-UMinho

pina@uminho.pt

José Exposto
ESTiG-IPB

exp@ipb.pt

José Rufino
ESTiG-IPB

rufino@ipb.pt

Abstract

Traditionally, a cluster is defined as a collection of homoge-
neous nodes interconnected by a single high performance
communication technology. However, in some cases, clus-
ter nodes may be organized into several partitions – sub-
clusters – internally interconnected by one or more selected
SAN technologies. In order to constitute a multi-networked
cluster, sub-clusters must share a common SAN technology
or a bridge facility must be used.
In this paper we show how RoCL – a lightweight user-level
communication library designed to support multi-threading
in a multi-networked environment – manages to exploit
such cluster organization. Performance evaluation results
obtained by using two partitions of Myrinet and Gigabit
SMP nodes demonstrate the usefulness of our approach
both for low-level and high-level operation.

Keywords: cluster computing, SANs, multi-networked
clusters, message-passing, multi-threading, performance.

1 Introduction

Low cost parallel computing is possible by using com-
modity SMP workstations and high performance SANs.
However, researchers haven’t yet proposed a programming
model that easily combines multi-threading and message-
passing to fully exploit such powerful hardware, particu-
larly when multiple SAN technologies are present.

1.1 Multi-networked Clusters

Clusters are usually composed of homogeneous nodes in-
terconnected by one only high performance communica-
tion technology. However, the process of building a com-
putational platform may result in a mix of computation and
communication hardware.
Our platform consists of three main node sets (fig. 1): an
initial set composed by dual Pentium III 733MHz work-
stations interconnected by Myrinet – PIII sub-cluster – a
second one, also interconnected by Myrinet, comprising
Quad Xeon 700MHz workstations – Xeon sub-cluster –
and a last one composed by dual Athlon 1.8GHz worksta-
tions equipped with Gigabit technology (SysKonnect 9821
NICs) – Athlon sub-cluster. Quad workstations had also

been upgraded to include Gigabit. On-board FastEthernet
adapters provide a common communication medium.

Gigabit Ethernet (1 Gbit/s)

...

...

Fast Ethernet (100 Mbits/s) ...

Myrinet (2 Gbits/s)

Dual Athlon 1.8GHz
Quad Xeon

700MHz

Dual PIII 733MHz

Figure 1. Multi-networked SMP cluster.

The goal is to run applications across all cluster nodes
disregarding the communication technology available at
each node. Common approaches, like MPI, use some kind
of protocol stacking (TCP/IP for example) to guarantee
the usability of heterogeneous communication hardware.
However, to fully exploit high performance communica-
tion hardware it is mandatory to use lightweight protocols.
The DECK environment [3], for example, uses low-level
communication APIs to provide a single parallel machine
by interconnecting a Myrinet and a SCI cluster.
The topology in figure 1 highlights three important issues:

� cluster nodes attached to the same high performance
network (Myrinet or Gigabit) must achieve the maxi-
mum performance attainable with that technology;

� cluster nodes attached to both Myrinet and Gigabit
must be able to outperform the performance achiev-
able by using only one of these technologies;

� cluster nodes that don’t share any high performance
technology must be able to exchange messages not
only by using the FastEthernet medium but also by
taking advantage of multi-networked workstations.

1.2 Transient End-points

Traditionally, parallel programming has been used to de-
velop efficient solutions for scientific computational prob-
lems. In this class of problems the programmer typically
exploits cluster resources by creating a fixed number of
communication end-points at start-up.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Highly dynamic parallel applications demand more flexi-
ble platforms because some of their components may en-
ter/leave the system at any time thus requiring mechanisms
to locate related entities at run-time.
A high performance crawling/indexing/querying system,
for example, will be difficult to program using MPI or even
PVM, due to the many component modules that would be
used and the way they would interact each other. For in-
stance, the system may run under multiple users, requiring
advanced communication facilities, and some of its mod-
ules may be started/stopped according to external events.

2 RoCL Fundamentals

RoCL is a communication library that combines Linux
multi-threading capabilities – NPTL[7] – with existing
low-level communication libraries – MVIA[6] and GM[5]
– in order to efficiently exploit SMP nodes and take advan-
tage from Gigabit and Myrinet hardware[1].

2.1 Resources

RoCL introduces the resource concept as the main en-
tity for the modeling of parallel/distributed applications.
Multi-threaded applications register resources which may
be used to address messages, that is, resources are animated
by threads through the exchanging of messages. Multiple
threads may concurrently send and receive messages using
resource identifiers as message origins and destinations.
A global directory service is used to support resource reg-
istering across cluster nodes. Registered resources may be
located using well known attributes.
A RoCL resource is defined by a set of attributes, provided
by the user, and an identifier returned by the directory ser-
vice. An attribute comprises a name and a value. That way,
different kinds of application entities may be registered in
a flexible manner.

2.2 Message-passing

RoCL is an intermediate-level communication library – an
approach already used by Madeleine[4] – that uses low-
level communication ports, available from GM, MVIA or
UDP1, to multiplex messages from several resources in a
multi-threaded environment.
The main goal is to not sacrifice low-level communication
performance while providing a more convenient commu-
nication model. RoCL provides buffer handling primitives
to guarantee zero-copy communication and does not add
any protocol layers to maintain the low-level lightweight
approach[2]. Of course there are scheduling overheads
because of our dispatching mechanism (the use of NPTL
made possible to reduce significantly those overheads) but
this is the price to pay to jump from basic node-to-node
communication to a much flexible addressing scheme.

1RoCL over UDP was developed mainly for test purposes.

Note that the directory is also a fundamental component for
the messaging mechanism since resource identifiers must
be mapped into low-level communication addresses. A
cache is used in order to reduce directory service usage.

3 RoCL Performance

The performance of RoCL applications depends on the op-
eration of the directory service and the interface to the low-
level communication sub-systems.

3.1 Directory Service

RoCL directory service is based on a collection of collabo-
rative servers (one server per cluster node).

3.1.1 Local Operation

RoCL resources are always registered at the local server (at
each cluster node). Resource location also uses that server
to interface the entire global service.
The performance of the directory service in what it con-
cerns local operations basically depends on the IPC mech-
anism, the thread/process scheduling and the search mech-
anism used to access the resource database.

Figure 2. Maximum query rates for local operation.

Figure 2 presents the maximum querying rates possible to
achieve using 1 to 16 clients to query the local server. Each
query comprises two messages – a request and a reply –
each one containing 256 bytes of data. Two scenarios are
presented, corresponding to two different workstations: a
dual Pentium III 733MHz (fig. 2:left) and a dual Athlon
1.8GHz (fig. 2:right). It is important to note that at least
two clients are required to achieve maximum performance
(we are using dual-processor machines) and it is also im-
portant to emphasize that above 16 clients total querying
rates decrease because we are using a single thread server.

3.1.2 Global Operation

Those queries that cannot be satisfied by the local server
require a global search. Servers use the Ethernet medium



to broadcast unresolved queries using UDP.

Figure 3. Maximum rates for global queries (4 nodes).

Figure 3 presents maximum querying rates obtained using
two different sets of workstations – four dual Pentium III
733MHz (left-side graphics) and four dual Athlon 1.8GHz
(right-side graphics) – and two different Ethernet technolo-
gies – FastEthernet (top-side graphics) and Gigabit Ether-
net (bottom-side graphics). The benchmarks were carried
out varying the number of clients per node – 1 to 16 –
and varying the number of queries satisfied by the local
server (not requiring broadcast) – 0% to 75%. Clients gen-
erate queries using total knowledge about the location of
resources in order to force the uniform distribution of the
queries that have to be broadcasted.
As expected, maximum per client query rates (thick bars)
decrease when local servers cannot answer directly. Total
querying rates (thin bars), as we have observed for the lo-
cal operation, drop when we use 16 clients. Surprisingly,
the Athlon sub-cluster could only outperform marginally
the Pentium sub-cluster when FastEthernet was used; we
don’t need high performance nodes to exhaust FastEther-
net. A more surprising conclusion is that Gigabit Ethernet
produces a performance gain of 150% when we use Athlon
nodes but the same is not true for Pentium nodes; we ob-
served a gain lower than 50%. It seems that the impact of
handling broadcast messages produced at a higher rate is
too heavy for Pentium 733MHz nodes.
Figure 4 presents the results obtained using eight nodes –
four Athlons and four Pentiums – connected by FastEth-
ernet (left-side graphic) or Gigabit Ethernet (right-side
graphic). It is important to note that moving from 4 to 8
nodes, using FastEthernet, drops performance about 60%
while using Gigabit Ethernet produces a decrease of only

Figure 4. Maximum rates for global queries (8 nodes).

30% when compared to the performance achieved using
only four Athlon workstations, leading to the conclusion
that FastEthernet does not scale properly.

3.2 Communication

The evaluation of RoCL communication performance took
into account resource locality, multi-thread operation, con-
nectivity and the usage of multiple interfaces per node.

3.2.1 Intra-node Communication

Message-passing between entities in the same node should
exploit intra/inter-process communication techniques.

Figure 5. Intra-node round-trip times.

In RoCL, resources are created inside contexts and a con-
text executes in a single address space. So, the sending of
a message to a resource in the same context corresponds
to a simple memory copy operation and a synchronization
event. The memory copy is avoided if the sender instructs
the library to discard the message buffer after completion.
The sending of a message to a resource in another context
(but in the same node) exploits the loopback facilities pro-
vided by MVIA and UDP2. That way, messages are sent
disregarding the destination node.

2GM will include a loopback facility on a future release.



Figure 5 presents round-trip times for messages exchanged
between resources in the same node. Tests were conducted
using a Pentium III 733MHz workstation.

3.2.2 Concurrent Messaging

One of the most interesting features of RoCL is its suitabil-
ity for the operation in a multi-threaded environment. Be-
cause GM and MVIA are not thread safe, RoCL introduces
the essential synchronization to overcome that limitation.

Figure 6. Simple round-trip times.

Figure 7. Round-trip times for concurrent messaging.

Figures 6 and 7 present round-trip times for messages ex-
changed between 1 (fig. 6) and 2 or 4 (fig. 7) pairs of
resources, using 3 different low-level communication sub-
systems supported by RoCL (GM, MVIA and UDP) and 3
different network interfaces (Myrinet LANai9, SysKonnect
9821 and Intel EtherExpress Pro100). GM and UDP (over
GM) are used to exploit Myrinet, while MVIA and conven-
tional UDP are used to exploit the other technologies.
The results show that doubling or quadrupling the num-
ber of resource pairs engaged on communication does not
cause the same effect on round-trip times. In fact, for long
messages, the average round-trip times obtained using 4
pairs of communicating resources (fig. 7:right) only dou-
ble the values from figure 6. For short messages even better
results were obtained. This means RoCL is able to overlap
communication from multiple simultaneous sources.

3.2.3 Bridging

In section 1.1 it was stated that multi-networked worksta-
tions should be used to interconnect nodes that don’t share
a common high-performance communication technology.
RoCL includes a basic bridging functionality that allows
for a resource in a Myrinet networked node to send mes-
sages to a resource in a Gigabit networked node, and vice-
versa, through an intermediate multi-networked node.

Figure 8. Round-trip times for bridged messages.

Figure 8 presents round-trip times for messages exchanged
between resources from two different nodes: a dual Pen-
tium 733MHz with a Myrinet LANai9 interface and a dual
Athlon 1.8GHz with a SysKonnect 9821 interface. Mes-
sages are routed through a Quad Xeon 700MHz work-
station equipped with both communication technologies.
Round-trip times for messages exchanged through RoCL
over UDP (using the EtherExpress interface available in
the Pentium node and the 3Com 3c905C Tornado interface
available in the Athlon node3) are also presented along with
those of RoCL over GM (using 2 Myrinet nodes) and RoCL
over MVIA (using 2 SysKonnect nodes).
It is important to note that the bridge mechanism is by far
better than the obvious UDP approach.

3.2.4 Aggregation

Multi-networked nodes should be able to take advantage
from multiple communication paths to increase throughput.
Figure 9 presents throughput values obtained by sending
messages from one resource to another one, located on an
second node, using RoCL over GM, RoCL over MVIA
(SysKonnect interfaces) and RoCL over GM/MVIA, which
combines both low-level communication subsystems.
Experimentation proved that sending 3 messages using
MVIA for each 5 messages sent through GM produces the
best results (for messages above 4096 bytes).

3Note that MVIA doesn’t support 3c905C Tornado network interfaces.



Figure 9. Throughput for aggregation schemes.

4 Performance of a RoCL Application

The usefulness and performance of RoCL has been evalu-
ated through case studies run on the cluster depicted in 1.1.

4.1 A Case Study

The case study we here present tries to capture the ba-
sic functioning of a cluster oriented distributed hash tables
platform.

4.1.1 Basic Operation

The distribution of partitions among cluster nodes is a dy-
namic task that may be briefly described as follows:

� the first entity to enter the system takes charge of the
super-partition (the overall interval of hash indexes);

� a subsequent entity takes a random hash index and
asks the owner of the partition containing that index
to give it half of that partition;

� when an entity receives a sub-partition it stores the
identification of the original owner and vice-versa;

� to reach the owner of a specific partition, a request is
sent to a random selected partition owner which for-
wards it, if necessary, according to the information
mentioned in the above item.

To store or retrieve data records, a client needs to reach the
owner of a target partition as illustrated above.

4.1.2 Implementation

We developed two simple programs – a server, that will
run on those cluster nodes that support the distributed hash
table, and a client that may be used at any cluster node.

Server operation. The server starts its operation
by registering itself as a resource with attributes����������	�
���������������������������
��������
� �!�
� "����#

, where
���������

is
the distributed hash table name provided by the user. Next
it will query the directory service to find any resource with
the attributes

���$������	�
��%���������������$��������
�����&���� ���'(��'�)������*#
.

If a resource is found then it will be used as the system en-
try point otherwise the server assumes it owns the super-
partition, registers it and uses it as the entry point.
The entry point is used to request a sub-partition; a message
with a random selected hash index is sent to the entry-point
resource. Each server will acquire several partitions using
one or more entry points.
After requesting a sub-partition the server waits for a reply
message. The origin of that message is used to integrate
the current sub-partition in the entire system (path to the
ascendant partition). For each partition, after registering it,
the server sends a message back to the origin of the reply
to announce the identifier of the new registered partition.
The server creates a thread for each partition to handle four
types of messages (4 different message tags): split mes-
sages, identification messages, store messages and query
messages. A split message may either cause the division of
the partition or it may be routed to another partition, if the
hash index is outside the partition limits. An identification
message is used to integrate a previous splited partition into
the entire system (path to a descendant partition). Store and
query messages (used to store and retrieve data) are routed
just like split messages, towards the right destination.
Administrators may launch servers any time and anywhere
(cluster node) without any synchronization or location con-
cerns. It is also possible to run many servers per node.
The handling of partitions, at each node, is a concur-
rent/parallel task directly supported by the RoCL commu-
nication model.

Client operation. Clients simply address store and query
messages to a random selected entry point (a partition from
a server) and wait for replies.

4.2 Performance Evaluation

In a first stage, we used two different sub-clusters – four
dual Pentium III 733MHz workstations interconnected by
Myrinet (LANai9), Gigabit (SysKonnect) and FastEthernet
(Ether Express) and four dual Athlon 1.8GHz workstations
interconnected by Gigabit (SysKonnect) and FastEthernet
(3Com). At each node a server was launched to manage 32
partitions and 1 to 8 clients were executed to evaluate the
maximum data retrieval rate. Each client query comprises
a message request (16 bytes), that may be routed through
up to 14 partitions, and a reply message (8 kbytes) received
directly from the final partition.
Figure 10 presents the operation rates (number of queries
per second) achieved per client. Naturally, for the same
technology (MVIA or UDP over SysKonnect), clients run-
ning on Athlons achieve the higher operation rate. How-



Figure 10. Operation rates (4 nodes).

ever, using one only client per node and RoCL over GM,
Pentiums reach maximum performance. Note that fewer
clients per node allow for clients using RoCL over UDP to
achieve the same or better performance than clients using
RoCL over MVIA.

Figure 11. Operation rates (8 nodes).

In a second stage, we used an eight node cluster – four
Pentiums and four Athlons interconnected by FastEther-
net (Ether Express and 3Com), Gigabit (SysKonnect) and
through a RoCL bridge (a Quad Xeon 700MHz worksta-
tion). The bridge allows for the operation of the cluster
mixing two distinct networks: Myrinet (for Pentiums) and
Gigabit (for Athlons).
Figure 11 illustrates that the operation rates per client drop
when compared to those obtained using only 4 nodes.
However, total operation rate achieved by clients from all
nodes increase; for MVIA over Gigabit, for example, using
4 nodes, the system reaches 9600 queries per second, while
using 8 nodes it is possible to achieve 16000 queries per
second. This means the system scales satisfactorily.
Another important result is that the bridged operation per-
mits to achieve better results than those obtained using only
MVIA over Gigabit.
Finally, we forced RoCL to use the directory service 50%
of the times in order to map resource identifiers into net-
work addresses, by manipulating the library cache sys-
tem. Figure 12 shows that, for a 4 node cluster, opera-
tion rates drop significantly when we use multiple clients.
This means that the directory constitutes an important bot-

Figure 12. Operation rates (50% cache misses).

tleneck when caches cannot satisfy all mapping requests.

5 Conclusions

The major features and components of RoCL were submit-
ted to exhaust testing. Multiple low-level communication
protocols and high performance communication technolo-
gies were evaluated. Operation of clusters partitioned into
sub-clusters were also examined. Experiments show the
usefulness of RoCL for exploiting a multi-networked clus-
ter, especially in what it concerns to performance.
A simple case study was used to emphasize how RoCL ap-
plications can be developed to dynamically run on a multi-
networked cluster, by means of the resource concept, pre-
serving low-level performance. The experiments allow to
conclude that it is possible to scale applications by using
RoCL to simultaneously exploit two sub-clusters.
In a near future we intend to provide higher level abstrac-
tions over RoCL to facilitate applications development.

References

[1] A. Alves, A. Pina, J. Exposto, and J. Rufino. RoCL:
A Resource oriented Communication Library. In Eu-
roPar’03, 2003.

[2] A. Alves, A. Pina, J. Exposto, and J. Rufino. ToCL:
a thread oriented communication library to interface
VIA and GM low-level protocols. In ICCS’03, 2003.

[3] M. Barreto, R. Ávila, and P. Navaux. The MultiCluster
Model to the Integrated Use of Multiple Workstation
Clusters. In PC-NOW’00, 2000.

[4] L. Bougé, J. Méhaut, and R. Namyst. Madeleine: Effi-
cient and Portable Communication Interface for RPC-
based Multithread Environments. In PACT’98, 1998.

[5] Myricom. The GM Message Passing System, 2000.

[6] National Energy Research Scientific Comp. Center. M-
VIA: A High Performance Modular VIA for Linux.
http://www.nersc.gov/research/FTG/via/index, 2002.

[7] Ulrich Drepper and Ingo Molnar. The Native POSIX
Thread Library for Linux, 2003.


