
Mapping application-level components into hierarchical systems resources

Albano Alves1, António Pina2, José Exposto1 and José Rufino1

1 ESTiG, Instituto Politécnico de Bragança, Apartado 134,5301-857 Bragança, Portugal

{albano, exposto, rufino}@ipb.pt

2 Dep. de Informática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

pina@di.uminho.pt

Abstract

The appropriate organization of application components
and their right mapping into physical resources is funda-
mental to fully exploit cutting edge technologies especially
when hierarchical architectures are used. We present a new
approach to combine application modelling with resource
management. The proposed programming model allows
the mixing of message-passing and global memory facil-
ities and integrates them with the high-level abstractions
provided for specifying and organizing application compo-
nents and resources.

The methodologies and tools we had designed pave the
way to build complex systems through the use of coopera-
tive applications, executed simultaneously, involving multi-
ple users, thus extending the MPMD model.

Key words: Multi-networked cluster, resource management,
multi-paradigm programming, logical-physical mapping.

1 Introduction

Hierarchical architectures, namely clusters of SMP
workstations, are popular platforms for high-performance
computing. These systems exhibit multiple levels of
parallelism that can be exploited to boost applications
performance but, unfortunately, appropriate programming
tools and methodologies are not widely available. Multi-
networked clusters, comprising multiple sub-clusters and
multi-technology nodes (to interconnect sub-clusters), in-
troduce another level of parallelism making application de-
velopment even more difficult.

1.1 Framework

A multi-networked SMP cluster, the platform we fo-
cus our work on, requires the ability to combine multi-

ple low-level technologies and the multithreading program-
ming model. In [2] we have presented our first efforts to
integrate MVIA and GM low-level protocols in a multi-
threading environment.

A high-level programming model combining shared
memory and message-passing, like the one presented in [8],
sounds like the right choice to exploit such a platform. But
hierarchical architectures force the programmer to take spe-
cial care when defining application components. Divide and
conquer techniques like those formerly used by Cilk [3] and
recently adopted by Ibis [9], to run distributed supercomput-
ing applications, may be useful.

Dynamic hierarchical architectures raise another obsta-
cle: applications must be able to discover suitable physical
resources at runtime. Dynamism may result from allow-
ing multiple users to run their parallel applications concur-
rently. Therefore, applications would take advantage from
resource description and allocation facilities, like those pro-
vided by CCS [5].

Some computational challenges can further difficult the
task of using parallel computing; sometimes multiple appli-
cations, eventually from different users, need to cooperate.
This means applications must also be able to describe log-
ical components, in order to discover each other. That is,
the MPMD model must be extended to enclose the multiple
application paradigm.

Here we present a new approach for developing applica-
tions that allows to overcome all these adversities.

1.2 Our approach

Our approach, a restatement of pCoR [7], aims to
accomplish the efficient and convenient organization of
components used in a complex application. We propose
a programming library which provides high-level mech-
anisms for structuring applications and uses RoCL [1],
our intermediate-level communication library, to guarantee

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


"Gigabit"

"FastEthernet"

"Myrinet"

<"CPU",2>

<"RAM",512>

<"CPU",2>

<"RAM",512>

<"CPU",2>

<"RAM",512>

<"CPU",2>

<"RAM",512>

Host.1−D−103

SubCluster.A−D−30

Host.2−D−65
<"RAM",1024>

<"CPU",4>

"Gigabit"

"Myrinet"

Host.3−D−90

Cluster−D−20

SubCluster.B−D−40

Host.5−D−21Host.4−D−45

Figure 1. Entity hierarchy example.

component interoperability without compromising perfor-
mance.

At the moment, we are providing five kinds of entities
for application design:

• domains – used to organize (group) physical resources
available in the cluster as well as software components
represented by other entities;

• operons – used to exploit physical resources at the
cluster node level;

• tasks – code fragments (routines), running concur-
rently, responsible for creating entities and sending
messages;

• blocks – contiguous memory segments that may be
read/written, total or partially, from any local or re-
mote task;

• gathers – allow to reference a set of blocks using a
single identifier therefore creating the notion of global
contiguous memory.

Entities manipulated by applications are organized in a
tree. Each entity has a global/cluster-wide identifier and
some properties. Figure 1 presents a hierarchy describing a
cluster with two sub-clusters and a multi-technology node.

2 Basic concepts

The domain is the main structuring element for applica-
tion design. In fact, tasks and blocks are leaves of the under-
lying tree used to support the hierarchy that represents the
cluster operation, while operons and gathers, which have
not to be leaves, impose important limitations for their sub-
trees.

Basically, the restrictions to the chaining of entities are
the following:

• tasks and blocks are always terminal nodes (leaves);

• the ascendancy chain – the node chain from the node
to the root – of a task or block must contain an operon;

• the ascendancy chain of an operon must contain a do-
main;

• the ascendancy chain of an operon can not contain an-
other operon;

• gathers may only have blocks as descendants.

Furthermore, the domain present in the ascendancy chain
of an operon must have special properties conferring it the
quality of a machine.

2.1 Aliases

In addition to regular ascendant-descendant relationships
present in a tree, it is possible to establish origin-alias rela-
tionships. Thus, an entity may have one or more aliases and
an alias may result from one or more origin entities.

The creation of an alias for a given entity corresponds to
the creation of another entity, of the same kind, at another
point of the tree, and to the storage of the identifier of the
first entity (the origin) in the second entity (the alias). To
create an alias for a given set of entities (all of the same
kind) it is required to store the identifiers of all origin enti-
ties in the alias. Figure 2 presents some examples of origin-
alias relationships, which are represented by dashed arrows.

It is important to note that origin-alias relationships
are transitive, that is,(Y ∈ aliases(X)) ∧ (Z ∈
aliases(Y )) ⇒ (Z ∈ aliases(X)). However, for algo-
rithm simplicity, X 6∈ origins(Z). The origin of an alias
that, by its turn, is an alias is designated by aliased originin
contrast to genuine origins.

Creation of aliases. Origin-alias relationships are set up
by creating new entities that are inserted in the tree. The
insertion of an alias must not misrepresent the regular as-
cendancy chains of a tree, thus, none of the origins of the



DCB

HE F G

A

I

descendants(A) = {B, C, D}
ascendant(F ) = B

aliases(H) = {G, I}
aliases(F ) = {}
aliases(C) = {D, F}
origins(F ) = {D, E}
origins(D) = {C}

Figure 2. Ascendants, descendants, origins
and aliases.

alias can belong to the ascendancy chain of the entity where
the alias is attached. Since the ascendancy chain of an
entity may contain aliases (including the entity itself), the
stated restriction must be applied to the aliasing-ascendancy
chains, that is, all node chains that lead to the tree root, in-
cluding alias entities.

2.2 Properties

The hierarchical organization of entities is an impor-
tant tool to structure the components and resources of a
parallel/distributed system. However, the entity name and
its global identifier may not be enough to support com-
plex discovery operations, required to provide the dynamic
(re)organization of entities. It is essential to have a mecha-
nism to thoroughly describe resources, like the specification
language used in RSD [4].

We provide a straightforward way of enhancing entity
hierarchies by allowing programmers to attach the entities
properties of three kinds:

• qualitative – when a single string is used to point out
the presence of a particular entity characteristic;

• quantitative – when an extra numeric value is used to
quantify the characteristic level (potential);

• descriptive – when an extra byte sequence is used to
improve meaningfulness.

Considering the origin-alias and ascendant-descendant
relationships, the process to obtain the properties of an en-
tity is by collecting the properties directly attached to that
entity (own properties) and the properties obtained through

inheritance, synthesis or sharing. The inheritance mech-
anism ensures that the properties of an entity are passed
along to its descendants while the synthesis corresponds to
the reverse. Property sharing allows for an entity to spread
all its properties to its aliases.

Obtaining properties. Figure 3 shows the way properties
are determined using a simple example. It is important to
note that quantitative properties involve computation aside
from union.

A

CB
{"c", <"b",2>}

{"a", <"b",5>}

{<"b",3>}

D
{["d",0xA03C]}

p(B) = {”c”, 〈”b”, 2〉}
︸ ︷︷ ︸

∪{”a”, 〈”b”, 5〉}
︸ ︷︷ ︸

∪{[”d”, A03C]}
︸ ︷︷ ︸

owned inherited synthesized

p(C) = {〈”b”, 3〉}
︸ ︷︷ ︸

∪{”a”, 〈”b”, 5〉}
︸ ︷︷ ︸

∪ p(B)
︸︷︷︸

=

owned inherited shared

= {”a”, ”c”
︸ ︷︷ ︸

, 〈”b”, 10〉
︸ ︷︷ ︸

, [”d”, A03C]
︸ ︷︷ ︸

}

qualitative quantit. descriptive

Figure 3. Determining entity properties.

The ability to establish entity relationships and individ-
ually attach properties to entities along with the mecha-
nisms of inheritance, synthesis and sharing allows to de-
scribe complex systems efficiently. With respect to figure 1,
for instance, the inheritance plays an important role in alle-
viating the need to specify the communication technology
at each node.

3 Organization of entities

All entities used to support a particular problem solving
environment – application components, users, physical re-
sources, etc – are organized in a single tree.

3.1 Base tree

The creation of entities at runtime expands a base tree,
defined by the cluster administrator, which includes some
domains to characterize the available hardware resources.
The simplest base tree would include the cluster name as the
root domain and the cluster nodes (hosts) as leaf domains.



Cluster−D−20

"Myrinet"

SubCluster.A−D−30

MyCluster−D−5

<"RAM",1024>

<"CPU",4>

"Gigabit"

"Myrinet"

Host.3−D−90

<"CPU",2>

<"RAM",512>

<"CPU",2>

<"RAM",512>

Host.1−D−103 Host.2−D−65

Figure 4. Aggregator domain.

Figure 1 presents an example of a base tree. At each tree
node it is pointed out the entity name, the kind of entity (D -
domain), the entity identifier (assigned by the intermediate-
level communication library) and the list of own properties.

The base entity hierarchy is merely logical. However,
the hardware it represents – the hierarchical architecture– is
concrete. The hierarchy presented in figure 1, for instance,
denotes the multiple levels of parallelism present in the
system – multi-processor, multi-machine and multi-cluster.
It is also evinced that memory access comprises multi-
ple levels – intra-node, inter-node/intra-cluster and inter-
node/inter-cluster.

Since the entities included in the base hierarchy are not
created by a specific task, it was decided that their creator
will be SY S. The names of the properties attached to the
base tree entities can not be used by the programmer when
attaching properties to entities created at runtime.

3.2 Creation of entities

The creation of domains and gathers is relatively simple.
But to create entities of other kinds it is required to check
the aliasing-ascendancy chains to guarantee that the restric-
tions presented in section 2 are preserved. Operons also
obligate to check if at least one of the domains included in
the aliasing-ascendancy chains possesses machine specific
properties. To create an alias it is not required the exis-
tence of an operon in the aliasing-ascendancy chains of a
task or block or to exist a machine domain in the aliasing-
ascendancy chains of an operon.

It is important to highlight that entities are created by
tasks and so it would be useful to obtain the creator of an
entity. Thus, the identifier of the task that called the creation
primitive is stored as a special property of the entity.

The entity ascendant is also stored as a special property,
but the same is not true for descendants. Therefore, to get
the descendants of an entity it is necessary to perform a dis-
tributed operation.

3.3 Aggregator domains

Considering the process of obtaining entity properties,
it would be useful to have an operation that could find or
create a domain ensuring the presence of a first group of
properties at each node of the sub-tree rooted by that do-
main and ensuring that a second group of properties is held
by the totality of the sub-tree nodes. The creation of such
a domain comprises the discovery of domains that partially
fulfil the requirements of the two groups of properties fol-
lowed by the aggregation of those domains by creating an
alias that takes them all as origins.

The operation to create an aggregator domain takes as
arguments two lists of properties –p1 andp2 –, which rep-
resent, respectively, the properties that must be guaranteed
at each node and the properties that may be disperse among
the totality of nodes, and a node –x – from the hierarchy,
where the aggregator domain must be inserted. The identi-
fier returned by the operation concerns to an alias domain
descendant fromx. If the entityx guarantees by itself prop-
ertiesp1 at all descendants and ifp2 is also present, then the
alias is not created and the operation returns the identifierx.

Figure 4 shows an aggregator domain created to guaran-
tee 512MB of RAM at each node and a total of five proces-
sors disperse among nodes1.

4 Laying application components

Application components and physical resources are both
represented by entities organized in a tree. Physical re-
sources are described using domains uniquely, while appli-
cations may use domains, operons, tasks, blocks and gathers
to instantiate components. The appropriate organization of
components and the right mapping into physical resources
allows to fully exploit cutting edge technologies. There-
fore, the programmer must concentrate on two main deci-
sions: which components an application must enclose and
how these components are mapped into base tree domains.

1The presented tree is a fragment of that one presented in figure 1.
Otherwise, the aggregator domain would not make sense.



Determining application components concerns applica-
tion design/modelling, which is a topic outside the scope of
this paper. Rather, we will concentrate on:(1) discovery of
suitable resources for running an application;(2) instantia-
tion of operons and tasks.

Discovering a domain that encloses particular physical
resources is not a problem. In fact, application needs can
be described using a list of properties which can be used
to match a particular base tree domain. In figure 1, for in-
stance, the domainSubCluster.A would satisfy a request for
three processors interconnected by Myrinet. Of course any
ascendant would also satisfy the request, but the library has
the ability to return the most restrict domain. When a single
domain can not provide the suitable resources for running
an application, an aggregator domain can be created.

Cluster−D−20

SubCluster.A−D−30 Host.3−D−90

MyCluster−D−5

MyOpr−O−81

MyTsk−T−34

Host.1−D−103 Host.2−D−65 Opr.1−O−12

Figure 5. Operon and task creation.

The creation of operons and tasks is determinant for the
exploitation of resources. By specifying a domain, the pro-
grammer is defining the host where a particular module
must run. Figure 5 shows the instantiation of an operon
inside an aggregator domain. The system is responsible for
selecting an appropriate machine, starting up the operon and
creating an alias above the specified domain. The program-
mer does not need to concern about machines; the aggrega-
tor domain – a virtual domain that represents the resources
available for the application – will be the entry point for the
application components hierarchy.

Tasks can be created in a similar way; by specifying an
operon the programmer defines explicitly the place to exe-
cute a routine but by defining the domain the programmer
moves the responsibility of finding an operon to the system.
Figure 5 shows the instantiation of a task when operon81
is specified.

5 Message-passing

Messages are always generated by tasks. Thus, the origin
field will always concern to an identifier of a non-alias task,

since aliases are not active entities.

message in transit message to forward delivered message

...D"−1 D*−n...D"−n D*−1

alias non−alias alias or not base−tree entity

T−x

T’−x

...T*−1 T*−n O−x

O’−x

...O*−1 O*−n

a) b) c) d)

D−x

...T’−1 T’−n ...O’−1 O’−n D*−n...D*−1

D"−x

D’−x

...T’−1 T’−n ...O’−1 O’−n D*−n...D*−1

g)

f)

e)

Figure 6. Possible scenarios for message de-
livery.

The destination of a message may be: a task, an alias of
a task, an operon, an alias of an operon, a domain or an alias
of a domain. In is important to note that base tree domains
are not valid destinations for application-level messages.

To send a message to a task, the communication mech-
anism provided by an intermediate-level communication li-
brary is adequate (fig. 6-a)). But, if the destination is an
alias of a task, the message must be forwarded to the origin,
what requires extra functionality. If the alias has multiple
origins, then a message copy is sent to each of them (fig. 6-
b)). Note that origins can be aliased (and not genuine) what
requires successive forwarding.

If the message destination is an operon, then any non-
alias descendant task may compete for accessing the mes-
sage; the operon stores the single message copy and one of
the descendant tasks may access it (fig. 6-c)). If the operon
is an alias, the proceeding is similar to the one presented for
tasks (fig. 6-d)).

When a message is addressed to a domain, a message
copy is forwarded to each of the descendants (tasks, oper-
ons or domains) and, if the domain is an alias, to all origin
domains, excluding base tree domains (fig. 6-f),g)). Any
message addressed to a base tree domain is discarded (fig.
6-e)).



Blk.2−B−77

Opr.2−O−211

B.2−B−7 B.4−B−9B.3−B−8

Gth.2−G−505

Blk.3−B−78

Opr.3−O−212

Blk.4−B−79

Dmn.2−D−104

Dmn.1−D−103

Gth.1−G−504

B.1−B−6 G.2−G−4

Opr.1−O−210

Blk.1−B−76

Figure 7. Block gathering example.

6 Global memory

To accomplish a compromise between the efficient uti-
lization of cluster resources and the convenient program-
ming of applications, some models for the distribution of
data across cluster nodes and for the access to that data
using one-sided communication have been developed, like
global arrays [6].

Block and gather entities are used to create a virtual
global storage.

6.1 Block gathering

A set of blocks can be unified through a gather by cre-
ating an alias, for each of them, above that gather (fig. 7).
The primitive provided for appending a block to a gather,
besides the creation of an alias, checks if the block can be
appended to the target gather and updates the data used to
sequence the various blocks.

A gather may collect blocks that contain the gather
ascendant in their aliasing-ascendancy chains. When a
block is appended to a gather, by default, a new entry
〈start, length, id〉 is created, wherestart stands for the
current size of the global memory (which is set to zero when
the gather is created),length stands for the block size and
id stands for the block identifier. That way, the order by
which blocks are appended to the gather is decisive for their
sequencing.

Optionally, the place the block must occupy in the virtual
global storage may be specified. It is also possible to define
the fraction of the block that must be incorporated into the
gather. In this case, the programmer will be responsible for
filling the whole ”global address space”.

A group of blocks represented by a gather can also be
integrated, at once, into another gather. In this case, it is
mandatory to specify the fraction of the sequence of blocks
that must be integrated, to avoid that the expansion of the

first gather interferes with the positioning of other blocksin
the second one.

6.2 Global memory access

To access the global memory, first of all, a program must
obtain a pointer to a local chunk by providing the gather
identifier and the lower and upper bound that define the de-
sired fragment. Next it is possible to update, total or par-
tially, the local chunk throughget operations, which will
read the required remote blocks. The reverse update is ac-
complished throughput operations.

Note that the provided pointer allows to read and write
local memory which is synchronized with the remote blocks
through explicitget andput primitives that take advantage
of low-level RDMA operations. When the program stops
accessing the global memory fragment, the local pointer
must be freed.

6.2.1 Optimizing access time.

We provide a unique primitive suite to access global mem-
ory, disregarding the real location of blocks; application
components are expected to use global memory fragments
according to localities expressed in the entity hierarchy.
Anyway, some optimizations are achieved at library-level:

• if the fragment comprises a single block from the local
operon or from the local host,get andput are innocu-
ous because data can be accessed directly or through a
shared memory pointer (returned byshmget), respec-
tively;

• if multiple blocks from the local operon or from the
local host are comprised,get andput operations will
read and write data throughmemcpy, using a buffer
(local chunk), rather than using RDMA operations.



7 Conclusions

We had presented a programming model that provides
high-level mechanisms for structuring applications and for
mapping its components into physical resources. Resources
are represented by a tree which is extended at runtime to
include logical application entities. By discovering treedo-
mains that enclose suitable resources and by instantiating
operons and tasks using those entry points, multiple users
can simultaneously map their application components prop-
erly.

The integration of message-passing and global memory
with the high-level mechanisms provided for organizing ap-
plication components allows for an application to exchange
data with other applications. This is particularly useful
when multiple applications from different users must co-
operate.

Currently, these methodologies and tools are being used
to design and put into operation a scalable information
retrieval environment, exploiting multi-networked clusters
with nodes interconnected by Gigabit or Myrinet.

References

[1] A. Alves, A. Pina, J. Exposto, and J. Rufino. RoCL:
A Resource oriented Communication Library. InEuro-
Par 2003, LNCS 2790, pages 969–979. Springer, 2003.

[2] A. Alves, A. Pina, J. Exposto, and J. Rufino. ToCL: a
thread oriented communication library to interface VIA
and GM low-level protocols. InConputational Science
- ICCS 2003, LNCS 2658, pages 1022–1031. Springer,
2003.

[3] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randall, and Y. Zhou. Cilk: An Efficient Multi-
threaded Runtime System. InACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Program-
ming, pages 207–216, 1995.

[4] M. Brune, A. Reinefeld, and J. Varnholt. A Resource
Description Environment for Distributed Computing
Systems. InInternational Symposium on High Perfor-
mance Distributed Computing, pages 279–286, 1999.

[5] A. Keller and A. Reinefeld. CCS Resource Mangement
in Networked HPC Systems. InHeterogeneous Com-
puting Workshop, pages 44–56. IEEE C. Society Press,
1998.

[6] J. Nieplocha, R. Harrison, and I. Foster.Advances in
High Perf. Computing, chapter Explicit Management of
Memory Hierarchy, pages 185–198. Kluwer, 1996.

[7] A. Pina, V. Oliveira, C. Moreira, and A. Alves. pCoR:
a prototype for resource oriented computing. InHPC
2002, pages 251–262. WITpress, 2002.

[8] E. Speight, H. Abdel-Shafi, and J. Bennett. An In-
tegrated Shared-Memory / Message Passing API for
Cluster-Based Multicomputing. InInternational Con-
ference on Parallel and Distributed Computing and
Networks, pages 146–153, 1998.

[9] R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kiel-
mann, and H. E. Bal. Ibis: an Efficient Java-based Grid
Programming Environment. InJoint ACM Java Grande
- ISCOPE 2002, pages 18–27, 2002.


