
Ibero-American Symposium on Computer Graphics - SIACG (2006)
P. Brunet, N. Correia, and G. Baranoski (Editors)

Efficient Conservative Collision Detection for Populated
Virtual Worlds

A. Ramires Fernandes1 and L. Deusdado2

1CCTC, Universidade do Minho, Portugal
2Instituto Politécnico de Bragança, Portugal

Abstract
Large virtual worlds, with considerable level of detail are starting to emerge everywhere, from large areas of
actual cities to archaeological detailed reconstructions of sites. Populating a virtual world adds an extra touch
to the visualization of these worlds, but unfortunately it also brings an extra burden to the system. Several tasks
are required when adding animated characters to a virtual world, such as collision detection, path planning and
other AI algorithms, rendering of dynamic geometry, amongst others. In here a method for efficient and scalable
conservative collision detection is presented, that is able to deal with large scenes and thousands of avatars. This
method does not perform exact collision detection, hence it is conservative. The method is suitable as a basis for
path planning algorithms and other AI algorithms where an avatar is often regarded as ’something’ that can be
bounded by a cylinder, or a box. The algorithm is capable of dealing with arbitrarily complex 3D worlds, and
does not require any a priori knowledge of the geometry.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Virtual RealityAnimation; I.3.5 [Computational Geometry and Object Modeling]: Geometric Algorithms;

1. Introduction

With the advent of more and more powerful shader program-
ming enabled hardware, capable of rendering millions of tri-
angles, large projects are starting to emerge everywhere, vir-
tualizing, with considerable level of detail, large portions of
cities, ancient archaeological sites, or architectural projects
that are yet to be realized.

These 3D worlds becomes more interesting and "realis-
tic" as soon as they are populated with virtual characters,
or avatars. Having these characters inside the 3D world pro-
vides another clue for apprehending the context of the virtual
world, an interesting example is the usage of avatars to pro-
vide a sense of scale.

Visualization of such projects in real time, requires one to
use a set of performance related techniques to achieve inter-
active frame rates. Regardless of how powerful the graphics
hardware becomes, the quest for visual realism (for instance
the inclusion of quasi-global illumination models that work
in real time), means that a large chunk of both CPU and GPU
is required.

In addition to the visualization performance issue, popu-

lated virtual worlds bring yet another burden on the system:
that of collision detection between the avatars and the world,
as well as between the avatars themselves.

Collision detection in populated worlds can be seen in two
different perspectives: exact and conservative collision de-
tection. Imagine an avatar walking on a city garden. Con-
servative collision detection can be used while the avatar is
walking on the garden. When the avatar reaches a newspaper
stand and it reaches for a newspaper or any other item, then
exact collision is required.

In here an efficient method to perform conservative colli-
sion detection between avatars and a 3D world is presented.
The method makes no assumptions on the 3D world, which
can be a ’soup of unrelated polygons as far as modeling is
concerned. The method is able to deal with arbitrarily com-
plex worlds and different avatar sizes without compromising
performance scalability.

The paper is structured as follows: section 2 provides an
overview of previous work in the area, focusing on methods
that are designed and tested with avatars, and the works that
we’re the basis for the method presented in here; section 3

c© The Eurographics Association 2006.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

details the method, namely the preprocessing stage and the
collision detection algorithm; section 4 shows examples of
the application of the method, including the time required for
both pre-processing and collision detection with very large
numbers of avatars. Finally conclusions and future work are
presented in section 5.

2. Background

Collision detection from a geometrical point of view, i.e. be-
tween generic geometrical objects, has been presented based
on different approaches, mostly supported by an hierarchal
structure: bounding boxes [GLM96], sphere trees [Hub93],
BSPs [NAT90], and octrees [Sam90].

As mentioned in the introduction, collision detection can
be considered under two different perspectives: exact and
conservative collision. Exact collision is far more precise,
as the designation points out. The ability to detect collisions
precisely is also far more computationally intensive.

Examples of works that perform exact collision detec-
tion with hierarchical bounding volumes can be seen in
[CMM95], [WLML99] and [RKL∗04]. A different approach
is taken in [VP05] where the avatar casts rays into the envi-
ronment to detect obstructed paths. In [GRLM03] determine
potentically colliding sets with visibility queries and use the
information to perform exact collision detection. Collision
detection is performed in [WS04] based on depth maps taken
from a frustum that encapsulates the movement of the avatar.
Interference detection is the term used in [KP03] where a
method inspired in shadow volumes is described. Yet an-
other related research area is collision detection of an avatar
and its clothes [SK04].

Conservative collision detection is required when an
avatar is moving in a virtual world. In this case two pieces
of information are required: where are the feet of the avatar
standing, and can it move forward without colliding. Colli-
sion in this latter sense takes into account if the avatar is able
to walk over, or jump down an obstacle. Therefore a 2 meter
wall is a collidable object, but a fence 10 cm above ground
is certainly not an obstacle, assuming an avatar with human
proportions.

Under simple worlds, terrain following techniques can
provide the height at which the avatar should be placed, as
long as the graphical primitives that make up the terrain are
clearly identifiable. To obtain collision information works
such as [Ste97] and [TC00] have been proposed previously.
Both deal with worlds that are planar in the sense that for a
particular (X,Z) position there is only a single Y value that is
suitable for the avatar, assuming Y as being the vertical axis.

The work in [Ste97] uses a BSP approach where the world
is decomposed in cells linked along the edges. The method is
dependent on the number of edges, although it can perform
incrementally dividing as the avatar moves into unchartered
areas.

3D space discretization was proposed in [BT95] and
[BT98]. The process involves dividing the world in thin hor-
izontal slices, where each slice contains a grid. For each
slice the geometry contained in the slice is drawn, and the
grid cells without geometry are empty world cells where
the avatar can potentially navigate. The resolution of this
method is determined by the thickness of the slices, and the
grid cell size. When considering a non flat world, for in-
stance with ramps, or non flat terrain, the number of slices
must be very large and grid cell size must be very small to
capture the heights at which the avatar travels. Furthermore
to determine if an avatar can move from point A to point B,
a large number of cells must be tested for emptiness.

In [TC00] a method to automatically extract heights and
collision detection information from an arbitrary 3D world is
proposed. The heights are found by computing a depth map
taken with an orthographic camera, vertically looking down
on the scene. The depth map is rendered and the heights are
then extracted from the depth map. This technique is a very
simple way of discretization of a 3D world for the purpose of
collision detection. Collision detection of an avatar against
the world is performed by checking the grid cells that the
avatar uses in its movement per frame. If all cells are within
reach of an avatar, i.e. if all the cells have the same height,
or if the difference in heights is less than what the avatar can
climb, then there is no collision. Collisions occur when the
avatar tries to access a grid cell that is at a height that is un-
reachable to the avatar because either the avatar can’t climb,
or because the avatar can’t jump, the height difference. This
technique was used in an agent behavior simulator described
in [TLCC01].

However when one considers a world with multi-levels,
for instance a bridge that the avatar could go over or under
it, or a building with many floors, the technique by [TC00]
is only capable of traveling on top of the bridge or the top
of the building, since these are what is rendered on the final
depth map.

Both [BT98] and [TC00] methods were the main inspira-
tion for the method described in here. The goal is to extend
the techniques described above to multi-level 3D scenes, us-
ing height maps, and allowing the avatar to go under the
bridge, and on top of the bridge, or to navigate in the floors
of a building. The multi-level method works with arbitrar-
ily complex worlds, with theoretically unlimited number of
levels, and it scales linearly with the number of avatars.

3. Multi-Level Collision Detection

The method presented in here provides efficient collision de-
tection in multi-level 3D virtual worlds. An example of such
virtual environment can be seen in fig. 1. In this world the
avatar can navigate in both 3 floors, climb the ramps and
other small obstacles. It must detect collisions with the cars,
pillars, and other objects in the scene. It must also not jump
down from a floor.

c© The Eurographics Association 2006.

A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

Figure 1: Simple Multi-Level Virtual World

The goal of the method is to provide an efficient way of
controlling the avatar position, while at the same time pre-
venting collisions with the world objects. It is assumed that
the height of an avatar, avatarHeight, is known.

The method starts by automatically extracting informa-
tion of the 3D world to determine the areas where the avatar
can go and at what height the avatar should be placed when
moving.

This is achieved by slicing the world with horizontal
planes. For each slice, the height at which the slice was
taken, as well as the height map obtained at that slice is
kept. The slicing process takes into consideration the value
of avatarHeight to decide at which height the next slice will
be taken. The slicing process may generate a large number
of slices because it is assumed that no a priori knowledge
of the virtual world is available. However, only a few slices
are actually required for navigation, so the memory footprint
is kept under control. This process is detailed in sub-section
3.2.

This preprocess stage is reasonably fast since the most
computationally intensive operation is rendering the depth
map. Rendering the depth maps does not require shaders,
lighting, and other lighting effects that slow down render-
ing. Furthermore, only for the first slice is the whole scene
rendered. As the height at which the slices are taken de-
creases, less and less geometry is involved, hence the final
slices should be much faster then the initial ones.

When the virtual world is being visualized, after the pre-
processing stage is concluded, the slices are used to deter-
mine two important pieces of information:

· The height at which the feet of the avatar should be placed
· The free space on the areas where the avatar wants to

move to

This process is also very simple from a computational
point of view and it amounts to a few lookups in the slices
that were stored in the preprocessing stage. The simplicity
of the process allows it to perform conservative collision de-
tection with thousands of moving avatars in an arbitrarily

complex virtual world. The runtime step is detailed in sub-
section 3.1.

3.1. Runtime stage: collision detection

Assume that the preprocessing stage has computed two
slices for the virtual world in figure 2. The bold vertical lines
represent the near planes used to render the depth maps, and
the legend to these lines indicates the height at which they
were positioned. In this case the first slice is taken with the
near plane set at Y = 12,6, and the second slice is taken with
Y = 5,9. The boxes with the numbers above each slice line,
represent the pixels in the height map and the numbers indi-
cate the height recorded.

Figure 2: Sliced World with Avatars

An avatar has three parameters: width, height and step.
The first two relate to its dimensions, and the latter indicates
how much the avatar can jump both up and down. Assuming
that an avatar has a step of less than 3 units, then the move-
ment of the avatars is limited to the regions depicted in figure
2, for instance avatar A can only move in region R1.

This information can be extracted from the slices in figure
2. An avatar will read the information of the slice that is
immediately above its head. So avatars A and C will read
the information on the lower slice, and avatar B will read the
information on the upper slice. If avatar B tries to move to
region R1, it will find that it must move from a height of 4
units to a height of 1 unit. Assuming that the avatar’s step is
less than 3 units, the movement would be classified as illegal.
Similarly avatars A and C can’t move to region R2.

The world has been discretized in cells on the X axis (in
the 3D case the discretization would be in the XZ plane). An
avatar stands in one of those cells at a particular height h, this
may be for instance the height of the top of its head. (avatars
A and C would have h = 5.5, and avatar B would have h =
8.5).

When an avatar wants to move to a neighboring cell, the
motion is then decomposed into a vertical motion followed

c© The Eurographics Association 2006.

A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

by an horizontal motion. First it is necessary to check if the
avatar’s step is higher than the height difference between the
current cell and the new cell. Assuming that the avatar step is
smaller than its height, this requires only checking the mag-
nitude of the vertical movement. Assuming that this magni-
tude is not superior to the avatar’s step then it is necessary to
check if there is free space for the avatar to move.

If after the vertical movement the avatar’s head new height
is still below the original slice, then the motion is legal. If the
avatar is moving up and its head is now above the original
slice, then it is necessary to use a new slice, more precisely
the slice above its head after moving up to validate the move-
ment.

Algorithm 1 describes this process in detail.

boolean move(A,B) {
· hA = slice[i][A] + avatarHeight;
· hb = slice[i][B] + avatarHeight;
· if (|hA - hB| < avatarStep) {

· if (hb > sliceHeight[i]) {

· // find the slice above the avatars head after the vertical
movement

· j = i;
· while (hb > sliceHeight[++j]);
· if (slice[i][A] == slice[j][A])

� return(LEGAL);

· else // there is something preventing the vertical move-
ment

� return(ILEGAL);

· else

· return(LEGAL);

· }
· else

· return(ILEGAL);

}

Algorithm 1: Runtime algorithm to evaluate whether an
avatar movement is legal or illegal

Collision detection amongst avatars is also solved using a
similar strategy. An extra bit is kept for each cell that states
its occupancy status. The bit must be checked prior to mov-
ing the avatar to check for avatar-avatar collision.

3.2. Preprocessing stage: slicing the virtual world

This section details the preprocessing stage of the method
and presents several examples that illustrate common situa-
tions.

Initially an axis aligned bounding box of the virtual
world is computed. This process can be performed at al-
most no extra cost when the model is loaded. The max-
imum and minimum values on each axis are stored as

maxX,minX,maxY,minY,maxZ,minZ. An orthographic cam-
era is then placed on top of the world, looking down the Y
axis such that the view frustum includes the full bounding
box. The near plane is set above maxY value recorded, and
the far plane is set bellow minY value (the darkest planes in
fig. 3 represent the near and far planes).

Figure 3: Simple Multi-Level Virtual World

To simplify the presentation of the method, and without
loss of generality, the diagrams will be presented in 2D, rep-
resenting sections in the plane XY from the virtual world,
see figure 4.

Figure 4: 2D Simplification of Virtual World

The near plane is initially placed at an height defined in
eq 1.

hNearPlane = maxY +avatarHeight + resolution (1)

where resolution indicates the maximum vertical error in
the discretization of the virtual world for collision detec-
tion purposes. This error does not influence the ability of
the avatar to keep its feet on the ground, as that information
is stored in the height map. This error implies that the avatar
may have a space over its head that will in the worst case be
the full value of resolution.

The far plane is constant throughout the process and it is
set at an height defined in eq 2.

hFarPlane = minY − resolution (2)

c© The Eurographics Association 2006.

A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

The depth map is then rendered and it is processed in
order to obtain a height map. Assuming an avatar with an
height of 4.5 units, and a resolution of 0.1 units the first slice
would be taken at Y = 12.6. The maximum registered height,
according to figure 4 would be 9 units.

Let max(i) be the maximum height recorded in slice i. The
next slice, slice i+1, is then taken at a height as defined in eq.
3.

nextSliceHeight = max(i)− resolution (3)

The first two slices are depicted in figure 5.

Figure 5: First and second slices

The third slice, according to eq. 3, should be taken at
height Y = 8,8. In fact slices will be taken at intervals de-
fined by the parameter resolution until Y = 5,9, see figure
6.

Figure 6: Slices up to 5.9 units

The maximum value in the last slice, Y=5.9, is 4, and
since the minimum avatar height as been assumed to be 4.5
there is no need to get any more slices. Assuming that res-
olution is set at 0.1, total of 32 slices are computed in the

process, however only two are required to perform collision
detection, namely the first and last ones. All other slices do
not carry any further information relevant to collision detec-
tion.

A slice is used by an avatar to perform collision detection
when it is the closest slice above its head. Hence, consid-
ering a particular slice, if a cell has a recorded height such
that the difference between the height at which the slice was
taken and the height recorded is less than the avatars mini-
mum height, the cell will never be used for testing. This is
the case in the second slice in figure 6, where the recorded
height is actually equal to the slice height. All other values of
the second slice are equal to the corresponding values of the
first slice, therefore the second slice does not carry any new
information and can be dismissed. This reasoning leaves us
with 2 useful slices in figure 6, the one taken at a height of
12,6 units and the one taken at 5,9 units.

The example in figure 7 shows another case where slices
can be dismissed. Consider the three slices present in figure
8. The slice taken at 7,9 units of height can be dismissed
because all its information is present in the first and third
slices. The red crosses in each slice indicate the cells that
will never be used for collision detection because the avatar
will have its head above the slice in that particular position.

Figure 7: Example with stairs

Figure 8: Slices from stairs example

So far two situations where a slice can be dismissed have
been identified. The algorithm to detect this situations and
dismiss the slices is presented in algorithm 2. The algorithm
is called each time a new slice is computed, and checks if the
new slice contains any new relevant information (example

c© The Eurographics Association 2006.

A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

from figure 6). If it does not it dismisses the slice. If the slice
contains new information, then the algorithm checks if the
previous slice should be replaced by the new slice (example
from figure 7).

Let slices be an array of slices taken so far.
Let sliceHeight be an array of the heights the slices we’re taken
Let avatarHeight be the height of the avatar
define INVALID as being below minY
testSlice(i) {
· auxSlice = new Slice()
· countEqual = 0
· countUseless = 0
· for every cell a in slice[i] {

· if (sliceHeight[i] - slice[i][a] < avatarHeight)

· countUseless++

· else if (slice[i][a] == slice[i-1][a]) {

· auxSlice[a] = INVALID
· countEqual++

· }

· }
· if (countEqual + countUseless == number of cells in slice)

· return(DISMISS_CURRENT_SLICE)

· // are there more than two slices?
· if (i > 1) {

· for every cell a in slice[i] {

· if ((auxSlice[a] == INVALID) || (slice[i-2][a] == slice[i-
1][a]) || (sliceHeight[i-1] - slice[i-1][a] < avatarHeight))

� count++;

· }
· if (count == number of cells in slice)

· return(REPLACE_PREVIOUS_SLICE)

· }
· return(KEEP_SLICES);
}

Algorithm 2: function testSlice

In algorithm 3 the full process of slicing is detailed, as-
suming that a bounding box has been computed and Y varies
between maxY and minY.

3.3. Implementation Details

As mentioned before, the method renders a depth map and
then transforms it into a height map. In recent hardware, with
floating point buffers, the scene could be rendered with ap-
propriate shaders to perform these two steps in one go.

Rendering the depth map is conceptually a sound idea to
obtain a height map, however, in practice, some problems
arise. These problems are related to the way graphic primi-
tives are used to model a scene and the Z buffer resolution.

sliceWorld(maxY, minY) {
· sliceHeight[0] = maxY + avatarHeight + resolution
· slice[0] = ComputeSlice(sliceHeight[0])
· max = maximum(slice[0])
· i = 1
· While (max > minY + avatarHeight) {

· sliceHeight[i] = max - resolution
· slice[i] = ComputeSlice(sliceHeight[i])
· max = maximum(slice[i])
· test = testSlice[i]
· if (test == KEEP_SLICES)

· i++

· else if (test == REPLACE_PREVIOUS_SLICE) {

· slice[i-1] = slice[i]
· sliceHeight[i-1] = sliceHeight[i]

· }

· }
}

Algorithm 3: The slicing algorithm

A wall may be commonly modeled using vertical trian-
gles. These triangles are perpendicular to the near and far
planes, and hence have zero projection area. Normally these
polygons are not rendered, and therefore their height is not
recorded in the z-buffer. Consider the 3D scene depicted in
figure 1. When taking a slice below the third level, different
results are obtained if lines are drawn on top of the polygons.
Figure 9 (top) shows the depth map (darker means higher)
obtained when rendering the polygons on the scene using
fill mode, and figure 9 (bottom) shows the depth map when
lines are drawn on top of the polygons (note: these figures
have been contrast enhanced to illustrate more clearly the
differences between them).

Figure 9: Depth Maps (left: fill polygon mode; right:lines
superimposed on top of the polygons)

c© The Eurographics Association 2006.

A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

The differences in figure 9 are in the columns. These are
represented by vertical polygons that are not rendered when
using polygon fill mode. Adding the lines on top of the poly-
gons produces the contours of the columns which is a step in
the right direction. However when converting the depth map
to heights, we realized that there was a mismatch between
the real height and the height map values for the pixels relat-
ing to the columns.

Regarding the z-buffer resolution, this is typically limited
to 24 or 32 bits and its non linear, hence some discrepancies
may appear when reading depths taken with different near
planes. For instance a 3D point measured with different near
planes will probably yield different depths in the Z buffer.
If considering a 24 bit z-buffer, this difference is in general
very small, and can be accounted by using a threshold when
testing numbers for equality.

Resorting to clip planes also allows us to deal with another
Z buffer issue: the Z buffer is not linear, using more preci-
sion for areas near the clip plane that for areas close to the
far plane. When one considers the depth maps for two slices
taken with two different Z-near planes, the depth recorded
values, for the same pixels, may be different in the two slices
due to the non-linearity of the Z buffer. By using a clip plane,
we are able to keep the Z near and Z far planes fixed and vary
only the clip plane, hence guaranteeing that for the same pix-
els, the heights recorded are the same for all slices.

A more relevant issue has to do with the precision of the
height maps, and consequently, the memory required per
slice. If one considers a world where a unit corresponds to a
meter, then a 16-bit height map would allows us to deal with
scenes up to 65.536 meters with a height error of less than
one millimeter. Or if one can be bore tolerant then one could
go up to 655.36 meters with a height error of at most one
centimeter. This is enough for the currently tallest building
in the world: the Taipei Tower 101, with 509 meters.

However an error of one centimeter may be excessive in
some situations. A possible solution is to store height differ-
ences, or depths in the slices, instead of the actual height.
The height at which a slice was taken can use as much
precision as required, and the slice values would store the
depths. In runtime only an extra subtraction would be re-
quired. The method is therefore not limited by precision is-
sues, even considering memory saving features, such as stor-
ing the heights/depths with 16-bit precision.

There may be a negative implication when using limited
precision. This will happen when the actual height/depth
requires more than the available precision. These values
should be considered invalid and extra slices should be
added to guarantee that in every situation where there is an
area that can be navigated by an avatar, there is a slice at an
appropriate height/depth.

If the height variation is small enough so that precision is
not an issue, than one bit can be used to indicate if the cell is

occupied by an avatar, otherwise an array of bits should be
considered for avatar-avatar collision detection.

4. Experiments

Tests have been performed in the garage scene (see figure 1)
to illustrate the concept, and in the powerplant model (model
available at http://www.cs.unc.edu/ geom/Powerplant/) to
show its applicability to very large scenes (by today’s stan-
dards).

The slices taken for the garage scene are shown in figure
11. The processing time required to slice the scene (n slices
were generated) and to eliminate the unnecessary slices was
less than one second.

Figure 10: Slices obtained for the garage scene

Tests were also performed to see the performance in the
collision detection phase. The garage scene took 10 mil-
liseconds to render. The results are presented in table 1. For
reference purposes the time taken to draw an avatar (repre-
sented graphically by a box) is also presented. The number
of avatars tested ranged from 500 to a million avatars. As can
be seen the method scales linearly with the number of avatars
as expected. Also note that the time to move the avatar also
includes deciding a new direction in case of collision, and
testing the new direction. The algorithm to decide a new di-
rection when a collision occurs is simply a random choice of
left or right.

Nr. of Avatars draw avatars move avatars
500 2 2

1000 5 4
1500 7 6
2000 9 8
5000 23 20

10000 48 39
100000 467 395

1000000 4780 3990

Table 1: Performance results for collision detection on the
garage scene (time in milliseconds)

Other scenes were tested for the number of slices, namely

c© The Eurographics Association 2006.

A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

a curch buiding , and the powerplant http://www.cs.
unc.edu/~geom/Powerplant/ from the Walkthru Project
at Stanford University. Table 2 shows the number of slices
taken and kept for each world. All tests assumed a avatar
with the equivalent height of a 1.75 meters, and a resolution
of 10 cm.

Scene taken kept
cube 42 2

garage 86 5
church 159 7

powerplant 835 85

Table 2: Slices

Figure 11: Tested Environments: cube, garage, church and
powerplant (clockwise from top left)

5. Conclusions and Future Work

A method for Multi-Level collision detection for arbitrarily
complex 3D worlds was presented. The method is able to
detect collisions between the avatars and the virtual world,
as well as avatar-avatar collisions, coping with avatars with
different heights.

The tests show that collision detection in complex envi-
ronments in a multi-level 3D world can be performed with
very large number of avatars at interactive rates, and that the
run-time performance is not significantly influenced by the
complexity of the 3D world. A more complex world may
require more slices, and potentially more collision process-
ing time, but the tests show that even when considering very
complex worlds this does not represent a significant penalty
in performance.

Although the memory footprint is perfectly acceptable for
the examples tested in here. The number of slices taken is
kept to a minimum by testing the usefulness of each slice.
Nevertheless some occasions may rise where memory usage

is a concern, hence a future direction is to explore algorithms
that deal with sparse matrices, and evaluate the trade off be-
tween memory consumption and performance. Another pos-
sibility is to evaluate the feasibility of using an out-of-core
algorithm to store and retrieve the matrices. Yet another av-
enue of research that may bear fruits is the exploration of the
information in the slices for real-time path planning.

References

[BT95] BANDI S., THALMANN D.: An adaptive spatial
subdivision of the object space for fast collision detection
of animated rigid bodies. In Computer Graphics Forum
(1995), Post F., Göbel M., (Eds.), vol. 14(3), Blackwell
Publishers, pp. 259–270.

[BT98] BANDI S., THALMANN D.: Space discretiza-
tion for efficient human navigation. In Proceedings of
the Eurographics Conference, Computer Graphics Forum
(1998), vol. 17, pp. 295–270.

[CMM95] COHEN J., M.LIN, M.PONAMGI: I-collide:
An interactive and exact collision detection system for
large-scale environments. In Proceedings of the ACM In-
teractive 3D Graphics Conference (1995), pp. 189–196.

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.:
Obb-tree: A hierarchical structure for rapid interfer-
ence detection. In SIGGRAPH Conference Proceedings
(1996), pp. 171–180.

[GRLM03] GOVINDARAJU N., REDON S., LIN M.,
MANOCHA D.: Cullide: Interactive collision detec-
tion between complex models in large environments us-
ing graphics hardware. In Proceedings of the Eu-
rographics/SIGGRAPH Graphics Hardware Workshop,
2003. (2003).

[Hub93] HUBBARD P. M.: Interactive collision detection.
In Proceedings of IEEE Symposium on Research Frontiers
on Virtual Reality (1993).

[KP03] KNOTT D., PAI D.: Cinder: Collision and inter-
ference detection in real–time using graphics hardware. In
Proc. of Graphics Interface ’03, 2003. (2003).

[NAT90] NAYLOR B., AMANATIDES J., THIBAULT W.:
Merging bsp trees yields polyhedral set operations. In
ACM Computer Graphics (1990), vol. 24(4), pp. 115–
124.

[RKL∗04] REDON S., KIM Y., LIN M., MANOCHA D.,
TEMPLEMAN J.: Interactive and continuous collision de-
tection for avatars in virtual environments. In Proceed-
ings of IEEE International Conference on Virtual Reality
(2004).

[Sam90] SAMET H.: The design and analysis of spatial
data structures.

[SK04] S. KIMMERLE MATTHIEU NESME F. F.: Hierar-
chy accelerated stochastic collision detection. In Vision,
Modeling, and Visualization (2004).

c© The Eurographics Association 2006.

http://www.cs.unc.edu/~geom/Powerplant/

A. Ramires Fernandes & L .Deusdado / Efficient Conservative Collision Detection for Populated Virtual Worlds

[Ste97] STEED A.: Efficient navigation around complex
virtual environments. In VRST (1997), pp. 173–180.

[TC00] TECCHIA F., CHRYSANTHOU Y.: Real-time ren-
dering of densely populated urban environments. In Pro-
ceedings of the Eurographics Workshop on Rendering
Techniques (2000), pp. 83–88.

[TLCC01] TECCHIA F., LOSCOS C., CONROY R.,
CHRYSANTHOU Y.: Agent behaviour simulator (abs):
A platform for urban behaviour development. In Games
Technology 2001(GTEC 2001) (2001).

[VP05] VOSINAKIS S., PANAYIOTOPOULOS T.: A tool
for constructing 3d environments with virtual agents.
Multimedia Tools Applications 25, 2 (2005), 253–279.

[WLML99] WILSON A., LARSEN E., MANOCHA D.,
LIN M. C.: Partitioning and handling massive mod-
els for interactive collision detection. In Proceedings of
the Eurographics Conference, Computer Graphics Forum
(1999), vol. 18(3).

[WS04] WINTER M., STAMMINGER M.: Depth-buffer
based navigation. In Vision, Modeling, and Visualization
Conference Proceedings (VMV) (2004), pp. 271–278.

c© The Eurographics Association 2006.

