
Shortcut Routing for Chord Graphs in the Domus Hash Space

José Rufino1 António Pina2 Albano Alves1 José Exposto1

{rufino,albano,exp }@ipb.pt , 1Polytechnic Institute of Bragança, 5300-854 Bragança, Portugal

pina@di.uminho.pt , 2University of Minho, 4710-057 Braga, Portugal

ABSTRACT

We present and evaluate shortcut routing algorithms for
Chord graphs in the hash space, specifically developed to
accelerate distributed lookups in the Distributed Hash Ta-
bles (DHTs) of the Domus framework. The algorithms ex-
plore our findings about the relation ofexponential andeu-
clidean distances in Chord graphs, in conjunction with the
availability, in each DHT node, of multiple routing tables of
the underlying Chord graph. The outcome are routing deci-
sions capable of achieving average distances as low as 40%
of those offered by Chord’s conventional routing method.
Moreover, the supplemental computational effort to take the
shortcut routing decisions is sufficiently low to make the al-
gorithms useful in a broad set of application scenarios.

KEY WORDS
Distributed Hash Tables, Distributed Lookup, Evaluation.

1. Introduction

Distributed Hash Tables (DHTs) have been widely used
as an effective approach to the distributed storage of data
dictionaries, the distributed lookup of objects or even a
combination of both. A set of 1st generation models [8] es-
sentially targeted Cluster environments for distributed stor-
age purposes; in this models, the need to cope with dynamic
storage needs and to make efficient use of the storage re-
sources, dictated the expansion or contraction of the DHTs,
with base on distributed versions of Dynamic Hashing [5].
Later approaches [18, 2] focused on Peer-to-Peer (P2P) en-
vironments [17], where the DHT paradigm is mainly used
as a scalable solution (in space and time) to the distributed
lookup of objects. Given that Cluster and P2P environ-
ments have almost dual properties (in what concerns scale,
composition, reliability, bandwidth, etc.), using distributed
lookup schemes in the Cluster may seem misplaced. How-
ever, our investigation framework – the Domus architecture
and platform for Cluster-based DHTs [15, 16] –, provides
a good opportunity for the effective use of such schemes:

if many DHTs are deployed in the Cluster, and dynamic
balancing mechanisms are applied, the spacial and tem-
poral complexity of centralized lookup schemes increases
substantially, thus making attractive a distributed approach.

This paper presents the results of the investigation that
allowed Chord graphs [18], as a distributed lookup tool, to
fit Domus specific needs. Our starting point is a different
kind of models used for the partitioning of the hash space
by the DHT nodes. Contrarily to the Consistent Hashing
approach [9], that underlies Chord, our partitioning models
allow DHT nodes to be given subsets of the hash space that
are composed of sparse (non-contiguous) values, thus pre-
venting Chord routing in the node space (the usual case).
The need to operate Chord graphs in the hash space lead
us to develop shortcut routing algorithms that counterbal-
ance the higher routing costs that would result from us-
ing Chord’s conventional routing algorithm in that space.
Moreover, the shortcut algorithms even improve on the con-
ventional routing costs on equivalent Chord graphs in the
node space, and their applicability is not limited to Domus.

The remaining of the paper is organized as follows: sec-
tion 2 makes a brief reference to our partitioning models;
section 3 traces our path towards Chord graphs in the hash
space; section 4 presents the theoretical foundations of the
shortcut algorithms described in section 5; section 6 pro-
vides several evaluation results and section 7 concludes.

2. Previous Work

In a DHT, thepartitioning of the hash space bounds a
certain subset of hashes to each DHT node. More formally:
let N be the dynamic set of nodes supporting a DHT where
the hash space isH = {0, 1, ..., 2L−1} for a certain number
ofL bits1; then,H(n) is the subset ofH specific to the node
n ∈ N , such that

⋂

n∈N H(n) = ⊘ and
⋃

n∈N H(n) = H ;
that is, the hash spaceH is fully divided in mutually exclu-
sive subsets, one per node; the set of the subsets that result
from the partitioning process is referred to as apartition.

1Akin to thesplitlevel concept of Dynamic Hashing schemes [5].

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

`
`

`
`

`
`

`
`

`̀
Hashing

Partitions
Homogeneous Heterogeneous

Static M1 M3
Dynamic M2 M4

Table 1. Domus Partitioning Models.

Domuspartitioning models only define thenumber of
hashes of each subset, not itsidentity (i.e., the hashes them-
selves). The models ensure aperfect distribution2 of the
number of hashes per DHT node, for different kinds of
hashing and partitions (see Table 1.) A detailed descrip-
tion of all the models, refining and expanding previous work
[14], may be found at [13]. In the scope of this paper, only
M2 is relevant, as it was the base model for the simulations.

3. Distributed Lookup for the Domus DHTs

As already stated, our partitioning models only define the
number of hashes per node, allowing many possible ways to
define theidentity (e.g., random, alternate, contiguous, etc.).
Whichever method is used to define the identities, alookup
method is also needed to recover them (that is, a method to
discover which node is responsible for a certain hash). We
thus needed to investigate lookup algorithms suitable to our
partitioning models and target environment (the Cluster).

Using distributed lookup schemes in a Cluster environ-
ment may seem misplaced: they are typical of Peer-to-Peer
(P2P) environments which, contrarily to Clusters, have a
much wider scale, intermittent node composition and lower
bandwidth connections, all factors that claim for the dis-
tribution of the storage and access loads induced by the
lookup process. Domus, however, supports multiple and dy-
namically balanced DHTs; compared to a single and static
DHT, such translates in much more lookup information, fre-
quently updated, making the case for a distributed approach.

Among the possibilities that were investigated, Chord
[18] was found suitable and adaptable to Domus needs.

3.1. Chord Graphs in the Node Space

In Chord, Consistent Hashing [9] is used for parti-
tioning of the circular (modulo#H) hash spaceH =
{0, 1, ..., 2L − 1) of #H = 2L hashes, produced by an
hash functionf of L bits, in #N contiguous subsets,
one for each noden of the DHT3; the left/right limits of
the subsets are simply defined by the hashesf(n) that
result from feeding the hash functionf with each node
identifier n; thus, a noden is responsible for the subset
{f(p) + 1 mod #H, f(p) + 2 mod #H, ..., f(n)}, where

2Theperfect distribution concept is borrowed from theballs-into-bins
models [12], in which form objects (balls) andn servers (bins), the load
of each server won’t surpass(m/n) + 1 nor will be less than(m/n) [3].

3Chord further maps hashes to reals in[0, 1), an extra step not used by
Domus and thus not considered here (without any loss of generality).

p is the node for whichf(p) immediately precedes (mod-
ulo #H) the hashf(n) of node n. Figure 1 comple-
ments this generic description; it depicts a possible par-
tition of the hash spaceH = {0, 1, ..., 7) among nodes
N = {n0, n1, n2}, including the resultingpartition table.

2

1

4

6

35

7

0

suc (n1,0) = n2
suc (n1,1) = n2
suc (n1,2) = n0

routing table of n1

H(n0)={6,7,0}

H(n1)={1,2,3}

H(n2)={4,5}

partition table f (n0) = 0

f (n1) = 3f (n2) = 5

Figure 1. Chord in the Node Space.

In order to avoid the need to replicate the full partition
table, or to query it in a centralized location, Chord extends
the original Consistent Hashing approach, described above,
by building a graphGN , on the node spaceN of the DHT.
Each DHT node will function as a vertex onGN and, as
such, it will store arouting table of O(log#H) size, care-
fully crafted to allow the discover of the hosting node of any
hash inO(log#N) steps. A routing table will haveL =
log2#H entries, with indexesl = 0, 1, ...,L−1; for a node
n, the l’th entry of its routing table will hold the identifier
of the node responsible for the hash(f(n) + 2l) mod #H ;
this node is denoted bysuc(n, l), that is, thel’th successor
of n in GN . Figure 1 also shows the routing table ofn1.

To discover the node responsible for an arbitrary hasht,
starting from noden, requires to: 1) find the largestl such
that [(f(n) + 2l) mod #H] ≤ t (modulo#H); 2) forward
the request to nodesuc(n, l); 3) in each visited node, repeat
steps 1) and 2). This algorithm ensures a maximum distance
of dmax ≈ log2#N , with an average ofdavg ≈

dmax

2
[10].

3.2. Chord Graphs in the Hash Space

Contrarily to the Consistent Hashing approach used by
Chord, our partitioning models don’t ensure contiguous
subsets ofH , for each DHT node4. For that reason, dis-
tributed lookup in Domus, based on Chord, cannot use the

4A possible initial contiguity would be quickly destroyed byDomus
dynamic balancing, that exchanges arbitrary hashes between DHT nodes.

graphGN , built in the node space. Instead, it uses a graph
GH , in the hash space – a graph where the vertexes are all
the possible hashes ofH . In such context, each DHT node
n with a subset of hashesH(n) will host #H(n) routing
tables, one per each hashh ∈ H(n); the tables will also
haveL = log2#H entries, with indexesl = 0, 1, ...,L− 1;
but, for each hashh ∈ H(n), the l’th entry of its rout-
ing table will now identify the hosting node of the hash
suc(h, l) = (h + 2l) mod #H (l’th successor ofh in GH).

Moreover, the routing algorithm presented above forGN

is trivially adaptable toGH . To discover the hosting node
of an hasht, starting from the hosting node of an hashc,
requires: 1) find the largestl such that[(c+2l) mod #H] ≤
t (modulo#H); 2) forward the request to the hosting node
of suc(c, l); 3) in each visited node, repeat steps 1) and 2).

However, using this algorithm, the average distance on
GH (approximated bylog2#H

2
= L

2
) will be higher than on

GN , once#H ≥ #N . On the other hand, because each
DHT node will now host multiple routing tables, there’s a
clear opportunity to enhance Chord’s conventional routing,
with new algorithms that exploit the topological informa-
tion of multiple routing tables, at once, in order to find rout-
ing shortcuts. In order to lower the average distance onGH ,
towards the average distance onGN , those new algorithms
should, at least, prevent the same DHT node to be visited
more than once, along arouting chain, like happens with
the conventional algorithm onGN . Ideally, the new routing
algorithms should even attain smaller average distances.

4. Euclidean and Exponential Distances in GH

The algorithms proposed in the paper explore our find-
ings about theeuclidean and theexponential distances of
vertexes inGH (or, equivalently, of hashes inH). In what
follows, we first introduce the necessary concepts and nota-
tion, and then explore the relations between those distances.

4.1. Base Concepts and Notation

The distanced(x, y), between the vertexesx andy of a
graph is, by definition, the number of edges of the shortest
path betweenx andy. For a Chord graph in the hash space,
GH , d(x, y) may be regarded as anexponential distance:
it is the minimum number of exponential hops of length2l

(with l = 0, 1, ...,L − 1 andL = log2#H) that are neces-
sary, in order to reachy fromx, by hoping in the hash space
H = {0, 1, ..., 2L − 1), left to right, modulo#H = 2L.

Another measure of distance betweenx andy is theeu-
clidean distance, deuc(x, y), as given by Formula 1:

deuc(x, y) =

{

y − x if x ≤ y
2L − (x − y) if y < x

(1)

Accordingly with Formula 1, the euclidean distance be-
tween the vertexesx andy, deuc(x, y), measures the num-
ber of hashes separatingx from y, in the hash spaceH =
{0, 1, ..., 2L − 1), left to right, modulo#H = 2L. The ex-
ponential distance may be easily derived from the euclidean
distance; simply put, the exponential distanced(x, y) is
measured by the number of bits with value1 in the binary
representation of the euclidean distancedeuc(x, y). This is
a well established relationship, as previously noted in [6].

Before proceeding, we also recall some useful concepts:

• x is predecessor of y, in GH , if d(x, y) = 1;

• x is successor of y, in GH , if d(y, x) = 1.

• x is anterior to y, in H , if x < y, modulo#H ;

• x is posterior to y, in H , if x > y, modulo#H ;

It follows that theset of anteriors of a certain hashh,
Ant(h), and each specificanterior, ant(h, l), are given by:

Ant(h) = {ant(h, l) : l = 1, 2, 3, ..., 2L − 1} (2)

ant(h, l) = (h− l) mod 2L : l = 1, 2, 3, ..., 2L − 1 (3)

4.2. Impact of the Minimization of deuc on d

The former concepts are necessary to understand the gist
of our shortcut algorithms. Basically, they explore our find-
ings about the impact of the minimization of the euclidean
distance, on the minimization of the exponential distance.
The relations involved may be found by comparing the
monotony of sequencesS andSeuc, as defined bellow:

• S =< d(Ant(h), h) >: the sequence of exponential
distances, from theanteriors of any hashh, to h;

• Seuc =< deuc(Ant(h), h) >: the sequence of eu-
clidean distances, from theanteriors of any hashh,
to h.

L = 1
S=<1>

Seuc=<1>

L = 2
S=<1 : 1 2>

Seuc=<1 : 2 3>

L = 3
S=<1 : 1 2 : 1 2 2 3>

Seuc=<1 : 2 3 : 4 5 6 7>

L = 4
S=<1 : 1 2 : 1 2 2 3: 1 2 2 3 2 3 3 4>

Seuc=<1 : 2 3 : 4 5 6 7: 8 9 1011 12 13 14 15>

L = 5
S=<1 : 1 2 : 1 2 2 3: 1 2 2 3 2 3 3 4 : 1 . . . >

Seuc=<1 : 2 3 : 4 5 6 7: 8 9 10 11 12 13 14 15: 16 . . . >

Table 2. S and Seuc, for L = 1, 2, 3, 4, 5.

Table 2 shows sequencesS andSeuc, forL = 1, 2, 3, 4, 5;
for eachL, the vertical alignment of the table allows to
properly couple exponential and euclidean distances, mea-
sured from the sameanterior of an arbitrary hashh; the

symbol ”:” separates a group of2l distances, from its right-
side sibling, of2l+1 distances (withl = 0, 1, ...,L− 1).

By definition, Seuc sequences are arithmetic progres-
sions, of ratio 1, with growing monotony. However, as Ta-
ble 2 clearly shows,S sequences have no monotony (they
grow and decay, alternately). This means that ”the mini-
mization of euclidean distance” does not always imply ”the
minimization of exponential distance”. For instance, in
the sectionL = 4 of the Table 2, the euclidean and ex-
ponential distances represented in bold show that we have
deuc(ant(h, 11), h) = 11 < 12 = deuc(ant(h, 12), h),
althoughd(ant(h, 11), h) = 3 > 2 = d(ant(h, 12), h).

Seuc

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

 S
 Slocal

Figure 2. S and Slocal, for L = 5 .

Figure 2 shows a graphical perspective of the section
L = 5 of Table 2; it plots the exponential distances of theS
sequence, as a function of the euclidean distances from the
Seuc sequence (used as the scale for the horizontal axis);
notice that the vertical dotted lines divide the figure in the
same zones of the Table 2 defined using the symbol ”:”.

It may then be observed that: i) whenever the euclidean
distance is a power of 2, the exponential distance equals to a
local minimum of 1, as expected upon the concepts of Sec-
tion 4.1 (in other words, theanterior hash that is at such
euclidean distance from a certain target hashh, is also a
predecessor hash of thath); ii) between a local minimum,
and the next one (from left to right, in the figure), the expo-
nential distance exhibits a growing trend, though with pe-
riodic exceptions; nevertheless, if we plot the sequence of
accumulated averages of the exponential distances between
two local minimums,Slocal, it becomes more evident that,
in probabilistic terms, the closer to a local minimum (from
right to left), the lower will be the exponential distance to
the target hashh; in essence, this is the rational behind the
shortcut routing algorithms, presented in the next section:

for a certain target hashh, try to find local routing tables of
predecessors of h and, in its absence, use the routing tables
of theanterior hashes that are closest to thosepredecessors.

5. Shortcut Routing Algorithms

This section presents the routing algorithms we have in-
vestigated, in conjunction with its auxiliary data structures.

5.1. Routing Trees

In order to perform efficient shortcut routing, the set
of routing tables of each node (a total of#H(n) tables
for a noden, with a table per each hash bound ton) is
kept in a local balanced tree (e.g., an AVL or Red Black
Tree). Basically, the tree holds registers of scheme<hash,
routing table >, indexed and ordered by thehash field.

Special requisites of the problem domain should also be
supported by the tree platform. For instance, the automatic
finding of the closest register in the tree when the initial
target register is absent, facilitates the usage of the routing
tables ofanteriors whenpredecessors are not found. The
tree structure and algorithms must also be compatible with
the circularity of the hash space,H = {0, 1, ..., 2L − 1).

5.2. Conventional Routing (CR)

We now revisit the Conventional Routing (CR) algo-
rithm, later used as a comparison basis. In this regard, we
start by introducing notation for the core set of hashes in-
volved in a distributed lookup: i)t (target) – the hash whose
location (hosting node) is to be found; ii)c (current) – the
hash that was chosen as the next hop inGH , by the previous
routing decision; iii)n (next) – the hash that will be chosen
as the next hop inGH , by the current routing decision.

Algorithm 1: Conventional Routing (CR).

1. compute the successors of the hashc in the graph
GH , and their exponential distance to the hasht

2. definen to be the successor ofc that is closest tot

3. find the routing table ofc in the local routing tree

4. find the hosting node ofn in the routing table ofc

5. if n = t then end (the hosting node ofn also hostst)
else forward the request to the hosting node ofn endif

Making use of the previous notation, Algorithm 1 is an
alternative formulation of the Conventional Routing algo-
rithm introduced in Section 3.2; also, in this new formu-
lation, the algorithm makes explicit use of the routing tree.

5.3. Exhaustive Shortcut Routing (SR-all)

With a single access to the routing tree, the CR algorithm
is the fastest, in the time to take a routing decision. On the
other hand, as we shall see in Section 6, it produces the
largest routing chains, in the number of network hops.

Algorithm 2: Exhaustive Shortcut Routing (SR-all).

1. traverse the routing tree and find the hashb (best)
with the lowest exponential distance to the hasht

2. do Conventional Routing (Algorithm 1), withc = b

Another extreme possibility is to analyze all routing ta-
bles of a routing tree, to make the best possible routing de-
cision, with the available local routing information. Thisis
the gist of the Exhaustive Shortcut Routing (SR-all) algo-
rithm – see Algorithm 2. However, the exhaustive search of
the routing tree may consume too much time. Thus, an in-
termediate solution (as shown in next section) is desirable.

5.4. Euclidean Shortcut Routing (SR-euc)

The Euclidean Shortcut Routing (SR-euc) algorithms
achieve routing decisions almost as good as the optimal de-
cisions of the SR-all algorithm, but with a fraction of its
cost, in the number of accesses to the routing tree. As pre-
viously stated, the SR-euc algorithms exploit the relations
we have found, between the minimization of the euclidean
distance and the minimization of the exponential distance.

Algorithm 3: 1-Euc. Shortcut Routing (SR-euc-1).

1. p← tsearch MinEuclideanDistance(pred(t, 0))

2. if d(p, t) < d(c, t) then b← p else b← c endif

3. do Conventional Routing (Algorithm 1), withc = b

The main difference between the several SR-euc vari-
ants lies in the number of accesses to the routing tree. For
instance, Algorithm 3 (SR-euc-1) involves 1 access (in step
1.), used to find the hashpred(t, 0), that is, the predeces-
sor of the targett, in GH , at the exponential distance of
20; if such predecessor is not found in the routing tree, the
functiontsearch MinEuclideanDistance will return the
anterior hash closest to that predecessor (in euclidean dis-
tance), so that its routing table is used instead; in step 2.,
the local hashp, found in step 1., is compared against the
local hashc, chosen as the next-hop by the previous rout-
ing decision; the comparison will find which one is closest
(in exponential distance) to the targett; in step 3., the lo-
cal hashb, elected in step 2., will feed the Algorithm 1, to
complete the routing decision, by defining the next-hop.

Once there areL predecessors of the targett, in the graph
GH , the SR-euc-1 algorithm may be refined to accommo-

date as much searches as needed, for those predecessors.
Thus, an algorithm SR-euc-2 would also try to find, in the
routing tree, the hashpred(t, 1), at the exponential distance
of 21 to t; similarly, an algorithm SR-euc-3 would also try
to find the hashpred(t, 2), at the exponential distance of22

to t; and so on, for a maximum number ofL searches in the
routing tree, as illustrated by the Algorithm 4 (SR-euc-L).

Algorithm 4: L-Euc. Shortcut Routing (SR-euc-L).

1. b← c

2. for l← 0, 1, ...,L− 1 do

2.1.p← tsearch MinEuclideanDistance(pred(t, l))

2.2 if d(p, t) < d(b, t) then b← p endif

3. do Conventional Routing (Algorithm 1), withc = b

SR-euc-1 and SR-euc-L are thus extreme cases, in a
”family” of algorithms SR-euc-l (for l = 1, 2, 3, ...,L) and,
as such, they were the only ones evaluated from that family.
In this regard, the natural expectation is that SR-euc-L will
ensure shorter routing chains, in comparison to SR-euc-1,
once the later exploits much less local routing information.
On the other hand, the average routing load per routing de-
cision for the SR-euc-1 algorithm is expected to be smaller.

6. Evaluation

This section presents the results of the simulation of the
routing algorithms previously presented. The simulation
was performed in two phases: 1) a setup phase; 2) an evalu-
ation phase. In both phases a platform of Red Black Trees5

that suits the requisites referenced in Section 5.1 was used.
In the setup phase, the partitioning model M2 (refer-

enced in Section 2) was applied, for a different number of
DHT nodes,#N = 1, 2, 3, ..., 1024; more specifically, for
each value of#N , the model M2 was used to define the
overall number of hashes,#H , and the specific number of
hashes per each node,#H(n); then, each node was given a
random subset of#H(n) hashes fromH , thus completing
the partitioning ofH by N ; this process was repeated 10
times, thus leading to 10 different partitions, for each dif-
ferent#N ; as a result,1024× 10 = 10240 partitions were
generated; then, for each partition, it was necessary to de-
fine its set of routing tables, which basically define a graph
GH ; in the end,10240 different graphs were defined.

In the evaluation phase, each one of the10240 graphs
were navigated, using all 4 routing algorithms. For each
graph, and each algorithm,#H2 routing chains were fol-
lowed: every vertex (hash) of the graph was the starting
point of a lookup for all the other vertexes, so that a to-
tal of ≈ 1.57 × 1012 chains were followed. For each

5Seehttp://libredblack.sourceforge.net

chain, a set of metrics was collected. The graphics in
this section show average values for the metrics: for each
#N = 1, 2, 3, ..., 1024, the plotted value is an arithmetic
average of the values collected for each one of 10 graphs
GH ; in turn, the value collected for each graph is an aver-
age of those measured for each of the#H2 routing chains.

The typical effects of the partitioning model M2 are vis-
ible in all charts: M2 implies a saw-shaped exponential in-
crease of#H , as#N increases; this produces a logarithmic
growth of the charts metrics, eventually also saw-shaped.

6.1. Average Distance per Chain (dchain)

Figure 3 plots the experimental averages
dchain[alg, GH], for the vertex distance, when routing with
the algorithmalg ∈ {CR, SR-euc-1, SR-euc-L, SR-all}, in
the hash space, under the conditions of the simulation. It
plots also the theoretical averagedavg[CR, GN] = log2#N

2

for the Conventional Routing algorithm, in the node space.
The relative (%) degree of the optimizations achieved by
the SR algorithms in relation to the CR ones is also given.

A first validation of the simulation results was performed
by verifying that, when using Conventional Routing, the ex-
perimental valuesdchain[CR, GH] almost match the theo-
retical valuesdavg[CR, GH] = log2#H

2
(not plotted), thus

giving us some confidence on the other simulation results.
Also, the kind of algorithmic effort needed to lower

dchain[CR, GH] towardsdavg[CR, GN] (a primary goal of
the shortcut algorithms – see Section 3.2) may be judged by
direct comparison of the respective plots in Figure 3.

Number of DHT Nodes (#N)

128 256 384 512 640 768 896 1024
0

1

2

3

4

5

6

7

d chain [CR , GH]

d avg [CR , GN]

d chain [SR - euc - 1 , GH]

d chain [SR - euc - L , GH]

d chain [SR - all , GH]

30% to 40%

40% to 55%
73%

92%

Figure 3. Average Vertex Distances.

The main results of the simulation are, however,
conveyed by the plots related to the average distances
dchain[SR-euc-1, GH] anddchain[SR-euc-L, GH], attained
using the Euclidean Shortcut Routing algorithms. As may
be observed, not only such algorithms allowed lower values

thandavg[CR, GN] but also, in the specific case of the al-
gorithm SR-euc-L, the average distances measured are very
close todchain[SR-all, GH], the optimal lower bound en-
sured by the Exhaustive Shortcut Routing algorithm; this
means that with as little asL = log2#H searches in the
local routing tree of a DHT node, the routing decision is al-
most as effective as that taken by traversing the entire tree.

However, an important feature of the SR-all algo-
rithm in GH is that it is able to ensure that no DHT
node is visited twice (or more) along a routing chain,
a desirable feature originally exhibited by the CR al-
gorithm in GN (and stated as a complementary goal
of our algorithms – see Section 3.2). Thus, the dis-
tancedchain[SR-all, GH] is purely anexternal distance,
that accounts only forexternal hops, between different
routing tables in different nodes. In turn, SR-euc-1
and SR-euc-L cannot avoid someinternal hops, made be-
tween different routing tables in the same node; however
these internal hops are always consecutive (with no network
access in-between), and its number tends to be rather small.

6.2. CPU Time per Routing Hop (CPUhop)

Another important and complementary perspective of
the routing algorithms is given by their average CPU time
per routing decision or hop,CPUhop, shown in Figure 4.

The values plotted in Figure 4 are in micro-seconds (µs)
and were measured in a Pentium 4 CPU, running at 3GHz.

Number of DHT Nodes (#N)

128 256 384 512 640 768 896 1024
0,0

0,5

1,0

1,5

2,0

CPUhop

[CR]

CPUhop

[SR - euc - 1]

CPUhop

[SR - euc - L]

CPUhop

[SR - all]

Figure 4. Average CPU Times per Hop (µs).

As expected, the ranking of the algorithms by the
CPUhop time is inverse to the ranking by thedchain dis-
tance: in other words, the algorithms that ensure shorter
routing chains are also those that strive more to achieve
so. However, the merits of the algorithms differ in the
two rankings: by consuming≈ 50% of the time of SR-all,
SR-euc-L still manages to achieve similar distances; in turn,

with a penalty of only≈ 20% more in the distances, SR-
euc-1 is able to perform in≈ 45% of the time of SR-euc-L;
finally, an increase of≈ 60% in the execution time, allows
SR-euc-1 to have distances of 30% to 40% of those ensure
by the CR algorithm. These observations show a clear need
for a synthetic metric, that combines the network and com-
putational efforts specific to each algorithm, and allows to
select the best algorithm for a certain application scenario.

Before introducing the final metric, we give an expla-
nation for the saw-shaped pattern of theCPUhop curves:
right after the number of DHT nodes,#N , increases past
a power of 2 boundary, the partitioning model M2 dictates
the doubling of the hash space and, as a consequence, of the
average number of hashes (and thus of routing tables) per
DHT node; the depth of the routing tree of each node thus
increases, and so does the average search effort; however, as
the number of DHT nodes increases towards the next power
of 2, the average number of hashes (and thus routing tables)
per node will decrease, leading to faster tree searches.

6.3. Total Time per Chain (TOTALchain)

A final and synthetic metric is the total average time per
routing chain (or, equivalently, per hash lookup), given by

TOTALchain ≈ CPU chain + NET chain (4)

, whereCPU chain is the average CPU time per chain,
andNET chain is the average Network time per chain.

CPU chain depends on the two metrics already studied:

CPU chain ≈ dchain × CPUhop (5)

In turn,NET chain, is given by the following formula:

NET chain ≈ dext ×NEThop (6)

Thus,NET chain depends on theexternal component of
the distancedchain, denoted bydext, and also on the aver-
age Network time perexternal hop, denoted byNEThop.
As previously established in Section 6.1, theexternal dis-
tance accounts the average number ofexternal hops (i.e.,
between different DHT nodes), along a routing chain.
NEThop is a parameter (and not a measure), used to cap-
ture the effect of different kinds of network technologies.In
this regard, Figure 5.a) and Figure 5.b) plotTOTALchain,
for NEThop = 1µs andNEThop = 10µs, respectively.

Figure 5.a) is representative of a scenario where very
high speed interconnects would be used, like 10Gbps
Myrinet. The minimization of the network lookup hops
is thus less important, once it may be counterbalanced by
quickly dispatching lookup requests; this is why the CR al-
gorithm outperforms the SR-all algorithm; still, algorithms
SR-euc-L and SR-euc-1 manage to be more competitive
than CR, despite their additional computational effort; this

Number of DHT Nodes (#N)

128 256 384 512 640 768 896 1024
0

2

4

6

8

10

TIMEchain

[CR]

TIMEchain

[SR - euc - 1]

TIMEchain

[SR - euc - L]

TIMEchain

[SR - all]

a)

Number of DHT Nodes (#N)

128 256 384 512 640 768 896 1024
0

10

20

30

40

50

60

70

TIMEchain

[CR]

TIMEchain

[SR - euc - 1]

TIMEchain

[SR -euc - L]

TIMEchain

[SR - all]

b)

Figure 5. Total Time per Chain (in µs) for a)

NEThop = 1µs, and for b) NEThop = 10µs.

is because such effort is relatively small (specially for SR-
euc-1), as shown in Figure 4, and the routing chains are
clearly shorter (mainly for SR-euc-L), as Figure 3 showed.

With NEThop = 10µs, Figure 5.b) stands for a scenario
of moderately high speed connections, like 1Gbps Ethernet.
Now, the dominant time is the Network time (NET chain);
thus, all SR algorithms are more attractive than CR, and the
relative separation between the two groups is wider; also,
the increase inNEThop was enough to make SR-all really
competitive, though still outperformed by SR-euc-L.

Further tenfold increases ofNEThop (not charted) also
induce a tenfold increase ofTOTALchain for all algo-
rithms, though with a minor modification in its ranking:
starting fromNEThop = 100µs (typical of 100Mpbs Eth-
ernet), SR-all and SR-euc-L exchange positions, once Net-
work time becomes, effectively, the unique relevant factor.

These results show that our shortcut routing algorithms
are useful in a wide range of network scenarios where DHTs
may be deployed, from Cluster LANs to P2P WANs.

7. Discussion

Often, partitioning and lookup are tightly integrated, like
in Chord [18], but in other approaches, like Dipsea [11] and
ours, they are decoupled, for increased flexibility.

In Chord [18], a Consistent Hashing [9] approach bounds
each DHT node to a contiguous subset of the hash space;
such subset is derived and constrained by the node iden-
tifier (or, more precisely, by the hash of the identifier). In
other approaches, like P-Grid [1] and ours, there isn’t a fixed
bound between a DHT node and its hash subset.

Shortcut routing in Chord graphs was first used in the
CFS [4] distributed file system. In CFS, each physical DHT
node appears as a collection of virtual nodes, each with a
routing table in the underlying Chord graph. However, de-
tails about CFS’s shortcut algorithms are scarce to none.

Godfrey et al. [7] also reference CFS, asserting that rout-
ing shortcuts allowed by virtual nodes may ensure, under
certain conditions, average distances ofO(log#N); this is
in line with our own results (recall Figure 3) that show aver-
age distances of even lower order (though we have not used
virtual nodes, the comparison is possible, once our model
M2 ensured several hashes / routing tables per node).

We only explored the unidirectional variant of Chord
graphs, clockwise oriented. With bidirectional graphs, rout-
ing tables store twice the topological information, once anti-
clockwise edges are also considered. This should allow
even lower average distances. For instance, Ganesan et al.
[6] developedoptimal algorithms for bidirectional Chord
graphs with a power of 2 vertexes (thus in the hash space)
allowing average distances as low asL/3, instead ofL/2.
With unidirectional graphs, but multiple routing tables per
DHT node, we have achieved average distances aroundL/3
for SR-euc-1 and aroundL/4 for SR-euc-L and SR-all.

We conclude by restating the main contribution of the
paper: a set of algorithms that 1) ensure a high degree of ac-
celeration to distributed lookups on DHTs based on Chord
graphs in the hash space, and 2) are applicable to a broad
set of network scenarios, ranging from Cluster to Peer-to-
Peer environments. In the later case, peers that participates
in a Chord-based DHT in the node space, may still use our
shortcut routing algorithms with minor modifications, pro-
vided that peers run a protocol to exchange topological in-
formation (routing tables content), with a minimum set of
neighbors in the Chord graph. A platform that demonstrates
the use of these and other previous contributions may be
found athttp://www.ipb.pt/ ˜ rufino/domus .

References

[1] K. Aberer, A. Datta, and M. Hauswirth. Multifaceted Simul-
taneous Load Balancing in DHT-based P2P systems: A new
game with old balls and bins.Self-* Properties in Complex
Information Systems, Springer LNCS 3460:373–391, 2005.

[2] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, and
I. Stoica. Looking Up Data in P2P Systems.Communica-
tions of the ACM, 46(2):43–48, 2003.

[3] A. Czumaj, C. Riley, and C. Scheideler. Perfectly Balanced
Allocation. In Proceedings of the 7th International Work-
shop on Randomization and Approximation Techniques in
Computer Science (RANDOM ’03), 2003.

[4] F. Dabek, M. Kaashoek, D. Karger, and R. Morris. Wide-
area Cooperative Storage with CFS. InProcs. of the 18th
ACM Symposium on OS Principles (SOSP ’01), 2001.

[5] R. Enbody and H. Du. Dynamic Hashing Schemes.ACM
Computing Surveys, 20(20):85–113, 1988.

[6] P. Ganesan and G. Manku. Optimal Routing in Chord. In
Proceedings of the 15th ACM Symposium on Distributed Al-
gorithms (SODA ’04), pages 169–178, 2004.

[7] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load Balancing in Dynamic Structured P2P Sys-
tems. InProcs. of the 23rd Annual Joint Conf. of the IEEE
Computer and Commun. Societies (INFOCOM ’04), 2004.

[8] V. Hilford, F. Bastani, and B. Cukic. EH* – Extendible
Hashing in a Distributed Environment. InProceedings of
the 21st International Computer Software and Applications
Conference (COMPSAC ’97), 1997.

[9] D. Karger, E. Lehman, F. Leighton, D. Levine, and R. Pan-
igrahy. Consistent Hashing and Random Trees: Distributed
Caching Protocols for relieving Hot Spots on the World
Wide Web. InProceedings of the 29th Annual ACM Sym-
posium on Theory of Computing, pages 654–663, 1997.

[10] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-
Theoretic Analysis of Structured Peer-to-Peer Systems:
Routig Distances and FaultResilience. InProceedings of the
2003 ACM SIGCOMM, 2003.

[11] G. Manku.Dipsea: A Modular Distributed Hash Table. PhD
thesis, Stanford University, 2004.

[12] M. Raab and A. Steger. Balls into Bins — A Simple and
Tight Analysis. InProceedings of the 2nd International
Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM ’98), pages 159–170, 1998.

[13] J. Rufino.Co-Operation of Distributed Hash Tables in Het-
erogeneous Clusters. PhD thesis, Department of Informat-
ics, Engineering School, University of Minho, 2008.

[14] J. Rufino, A. Pina, A. Alves, and J. Exposto. Toward a Dy-
namically Balanced Cluster oriented DHT. InProceedings
of the IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN ’04), 2004.

[15] J. Rufino, A. Pina, A. Alves, and J. Exposto. Domus - An Ar-
chitecture for Cluster-oriented Distributed Hash Tables.In
Proceedings of the 6th International Conferenece on Paral-
lel Processing and Applied Mathematics (PPAM ’05), 2005.

[16] J. Rufino, A. Pina, A. Alves, and J. Exposto. pDomus: a
Prototype for Cluster-oriented Distributed Hash Tables. In
Procs. of the 15th Euromicro Inter. Conf. on Parallel, Dis-
tributed and Network-based Processing (PDP ’07), 2007.

[17] R. Steinmetz and K. Wehrle, editors.Peer-to-Peer Systems
and Applications. Number 3485 in LNCS. Springer, 2005.

[18] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balkr-
ishnan. Chord: A Scalable Peer–to–Peer Lookup Service
for Internet Applications. InProceedings of the 2001 ACM
SIGCOMM, pages 149–160, 2001.

