Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital do IPB

Shortcut Routing for Chord Graphsin the Domus Hash Space

José Rufinb Antonio Pin& Albano Alves José Exposto

{rufino,albano,exp 1@ipb.pt , 'Polytechnic Institute of Bragancga, 5300-854 Bragangaiugal
pina@di.uminho.pt , 2University of Minho, 4710-057 Braga, Portugal

ABSTRACT if many DHTs are deployed in the Cluster, and dynamic
balancing mechanisms are applied, the spacial and tem-
We present and evaluate shortcut routing algorithms for poral complexity of centralized lookup schemes increases
Chord graphs in the hash space, specifically developed tesubstantially, thus making attractive a distributed appho
accelerate distributed lookups in the Distributed Hash Ta-  This paper presents the results of the investigation that
bles (DHTSs) of the Domus framework. The algorithms ex- allowed Chord graphs [18], as a distributed lookup tool, to
plore our findings about the relation efponential andeu- fit Domus specific needs. Our starting point is a different
clidean distances in Chord graphs, in conjunction with the kind of models used for the partitioning of the hash space
availability, in each DHT node, of multiple routing tablels 0 by the DHT nodes. Contrarily to the Consistent Hashing
the underlying Chord graph. The outcome are routing deci- approach [9], that underlies Chord, our partitioning medel
sions capable of achieving average distances as low as 40%llow DHT nodes to be given subsets of the hash space that
of those offered by Chord’s conventional routing method. are composed of sparse (non-contiguous) values, thus pre-
Moreover, the supplemental computational effort to take th venting Chord routing in the node space (the usual case).
shortcut routing decisions is sufficiently low to make the al The need to operate Chord graphs in the hash space lead

gorithms useful in a broad set of application scenarios. us to develop shortcut routing algorithms that counterbal-
ance the higher routing costs that would result from us-
KEY WORDS ing Chord’s conventional routing algorithm in that space.

Distributed Hash Tables, Distributed Lookup, Evaluation. Moreover, the shortcut algorithms even improve on the con-

ventional routing costs on equivalent Chord graphs in the
1. Introduction node space, and their applicability is not limited to Domus.
The remaining of the paper is organized as follows: sec-

Distributed Hash Tables (DHTs) have been widely used tion _2 makes a brief reference to our partitioning models;
as an effective approach to the distributed storage of data>€Ction 3 traces our path towards Chord graphs in the hash
dictionaries, the distributed lookup of objects or even a SPace; section 4 presents the theoretical foundationseof th
combination of both. A set of 1st generation models [8] es- Shortcut algorithms described in section 5; section 6 pro-
sentially targeted Cluster environments for distributeent-s vides several evaluation results and section 7 concludes.
age purposes; in this models, the need to cope with dynamic
storage needs and to make efficient use of the storage re2. Previous Work
sources, dictated the expansion or contraction of the DHTS,
with base on distributed versions of Dynamic Hashing [5]. In a DHT, thepartitioning of the hash space bounds a
Later approaches [18, 2] focused on Peer-to-Peer (P2P) encertain subset of hashes to each DHT node. More formally:
vironments [17], where the DHT paradigm is mainly used |et N be the dynamic set of nodes supporting a DHT where
as a scalable solution (in space and time) to the distributedihe hash space B = {0,1,...,24~1} for a certain number
lookup of objects. Given that Cluster and P2P environ- of £ bits'; then,H (n) is the subset off specific to the node
ments have almost dual properties (in what concerns scaley, ¢ N, such thaf,,y H(n) = @ andU, .y H(n) = H;
composition, reliability, bandwidth, etc.), using distited  that is, the hash spadé is fully divided in mutually exclu-
lookup schemes in the Cluster may seem misplaced. How-sjve subsets, one per node; the set of the subsets that result
ever, our investigation framework — the Domus architecture from the partitioning process is referred to gsaatition.
and platform for Cluster-based DHTs [15, 16] —, provides

a good opportunity for the effective use of such schemes: Akin to thesplitievel concept of Dynamic Hashing schemes [5].
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Partitions Homogeneous| Heterogeneous
Hashing ° ’
Static M1 M3
Dynamic M2 M4

Table 1. Domus Partitioning Models.

Domus partitioning models only define thenumber of
hashes of each subset, notidentity (i.e., the hashes them-
selves). The models ensureperfect distribution? of the
number of hashes per DHT node, for different kinds of
hashing and partitions (see Table 1.) A detailed descrip-
tion of all the models, refining and expanding previous work
[14], may be found at [13]. In the scope of this paper, only
M2 is relevant, as it was the base model for the simulations.

3. Distributed L ookup for the DomusDHTSs

As already stated, our partitioning models only define the
number of hashes per node, allowing many possible ways to
define thadentity (e.g., random, alternate, contiguous, etc.).
Whichever method is used to define the identitiegokup

method is also needed to recover them (that is, a method to

discover which node is responsible for a certain hash). We
thus needed to investigate lookup algorithms suitable to ou
partitioning models and target environment (the Cluster).
Using distributed lookup schemes in a Cluster environ-
ment may seem misplaced: they are typical of Peer-to-Pee
(P2P) environments which, contrarily to Clusters, have a
much wider scale, intermittent node composition and lower
bandwidth connections, all factors that claim for the dis-

p is the node for whicly (p) immediately precedes (mod-

ulo #H) the hashf(n) of noden. Figure 1 comple-

ments this generic description; it depicts a possible par-

tition of the hash spacél = {0,1,...,7) among nodes

N = {ng,n1,n2}, including the resultingartition table.
partition table

H(ny)={6,7,0}

H(n)={1,2,3} ‘
H(ny)={4.5}

routing table of n,;
suc (n;,0) = ny
suc (n;,1)= ny
suc (ﬂ1,2) = Ny

Figure 1. Chord in the Node Space.

In order to avoid the need to replicate the full partition
kable, or to query it in a centralized location, Chord extend
the original Consistent Hashing approach, described above
by building a graptG", on the node spac¥ of the DHT.
Each DHT node will function as a vertex @i and, as

tribution of the storage and access loads induced by thegych, it will store aouting table of O(log#:H) size, care-

lookup process. Domus, however, supports multiple and dy-

namically balanced DHTSs; compared to a single and static
DHT, such translates in much more lookup information, fre-
guently updated, making the case for a distributed approach
Among the possibilities that were investigated, Chord
[18] was found suitable and adaptable to Domus needs.

3.1. Chord Graphs in the Node Space

In Chord, Consistent Hashing [9] is used for parti-
tioning of the circular (modulo#H) hash spaced =
{0,1,...,2° — 1) of #H = 2¢ hashes, produced by an
hash functionf of L bits, in #N contiguous subsets,
one for each node of the DHT®; the left/right limits of
the subsets are simply defined by the hasfies) that
result from feeding the hash functigh with each node
identifier n; thus, a node: is responsible for the subset
{f(p) + 1 mod #H, f(p) + 2mod #H, ..., f(n)}, where

2The perfect distribution concept is borrowed from thiealls-into-bins
models [12], in which form objects balls) andn servers ifins), the load
of each server won't surpags:/n) + 1 nor will be less thar{m /n) [3].

3Chord further maps hashes to realg(inl), an extra step not used by
Domus and thus not considered here (without any loss of ggtygr

fully crafted to allow the discover of the hosting node of any
hash inO(log# N) steps. A routing table will havg =
logo# H entries, with indexes= 0,1, ..., £ — 1; for a node
n, thel'th entry of its routing table will hold the identifier
of the node responsible for the hagh{n) + 2') mod #H;
this node is denoted byuc(n, ), that is, thel’th successor
of nin GV . Figure 1 also shows the routing tablergf

To discover the node responsible for an arbitrary hash
starting from nodes, requires to: 1) find the largessuch
that[(f(n) + 2') mod #H|] < t (modulo#H); 2) forward
the request to nodeuc(n, {); 3) in each visited node, repeat
steps 1) and 2). This algorithm ensures a maximum distance

Of dinaz & log2# N, With an average af,,, &~ %ze= [10].

3.2. Chord Graphs in the Hash Space

Contrarily to the Consistent Hashing approach used by
Chord, our partitioning models don’t ensure contiguous
subsets offf, for each DHT nod& For that reason, dis-
tributed lookup in Domus, based on Chord, cannot use the

4A possible initial contiguity would be quickly destroyed Bomus
dynamic balancing, that exchanges arbitrary hashes betldeld nodes.



graphG", built in the node space. Instead, it uses a graph
G*™, in the hash space — a graph where the vertexes are al
the possible hashes éf. In such context, each DHT node
n with a subset of hashed (n) will host #H (n) routing
tables, one per each hashe H(n); the tables will also
havel = logo# H entries, with indexes= 0,1, ..., £ — 1;
but, for each hasth € H(n), thel'th entry of its rout-
ing table will now identify the hosting node of the hash
suc(h,l) = (h+2') mod #H (I'th successor ok in GH).
Moreover, the routing algorithm presented aboveddr
is trivially adaptable taG¥. To discover the hosting node
of an hasht, starting from the hosting node of an hash
requires: 1) find the largessuch thaf(c+2') mod #H] <
t (modulo# H); 2) forward the request to the hosting node
of suc(c,1); 3) in each visited node, repeat steps 1) and 2).
However, using this algorithm, the average distance on
G* (approximated by?®2# = £ will be higher than on
GYN , once#H > #N. On the other hand, because each
DHT node will now host multiple routing tables, there’s a
clear opportunity to enhance Chord’s conventional royting
with new algorithms that exploit the topological informa-
tion of multiple routing tables, at once, in order to find rout
ing shortcuts. In order to lower the average distanc€8n
towards the average distance @fY, those new algorithms
should, at least, prevent the same DHT node to be visited
more than once, along r@uting chain, like happens with
the conventional algorithm o@? . Ideally, the new routing
algorithms should even attain smaller average distances.

4. Euclidean and Exponential Distancesin G

The algorithms proposed in the paper explore our find-
ings about theeuclidean and theexponential distances of
vertexes inGH (or, equivalently, of hashes iff). In what

follows, we first introduce the necessary concepts and nota-

tion, and then explore the relations between those distance

4.1. Base Concepts and Notation

The distancel(z, y), between the vertexesandy of a
graph is, by definition, the number of edges of the shortest
path between andy. For a Chord graph in the hash space,
GH, d(x,y) may be regarded as amponential distance:
it is the minimum number of exponential hops of length
(withl =0,1,...,L —1andL = logo#H) that are neces-
sary, in order to reachfrom x, by hoping in the hash space
H =1{0,1,...,2° — 1), left to right, modulo## H = 2~.

Another measure of distance betweeandy is theeu-
clidean distance, d....(x, y), as given by Formula 1:

if <y
if y<uz

y—x

deuc(, y) = { 9L _ (x —y)

1)

Accordingly with Formula 1, the euclidean distance be-
tween the vertexes andy, de,.(z,y), measures the num-
ber of hashes separatingfrom y, in the hash spacl =
{0,1,...,2% — 1), left to right, modulo# H = 2*. The ex-
ponential distance may be easily derived from the euclidean
distance; simply put, the exponential distantfe:,y) is
measured by the number of bits with valuén the binary
representation of the euclidean distadgg.(z, y). This is
a well established relationship, as previously noted in [6]

Before proceeding, we also recall some useful concepts:

x is predecessor of y, in G2, if d(x,y) = 1;

x is successor of y, in G, if d(y,z) = 1.

x isanterior toy, in H, if z < y, modulo#H;
x is posterior to y, in H, if z > y, modulo#H;

It follows that theset of anteriors of a certain hasl,
Ant(h), and each specifianterior, ant(h, 1), are given by:

(@)

ant(h,l) = (h—1)mod 2-:1=1,2,3,...2 =1 (3)

Ant(h) = {ant(h,1) : 1 =1,2,3,...,25 — 1}

4.2. Impact of the Minimization of d.,. on d

The former concepts are necessary to understand the gist
of our shortcut algorithms. Basically, they explore our find
ings about the impact of the minimization of the euclidean
distance, on the minimization of the exponential distance.
The relations involved may be found by comparing the
monotony of sequencesandSey. as defined bellow:

e S =< d(Ant(h),h) >: the sequence of exponential
distances, from thanteriors of any hash, to A;

o Seuc =< deud Ant(h),h) >: the sequence of eu-
clidean distances, from thanteriors of any hashn,
to h.

S=<1>
Seu=<1>
S=<1:
Seu=<1:
S=<1:
Seu=<1:
S=<1:
Seu=<1:23:
S=<1:12:
Seu=<1:23:

L=1

12>
23>
12:
23:
12:

1223

456 7>

1223:12 2323 3 &
4567:891011121314 1%
1223:12 2 3 23 3 4: 1..
4567:8910111213141516...

L=3

L=4

. >
>

ot

Table 2. S and Sgy, for £ =1,2,3,4,5.

Table 2 shows sequencg&andSe,g, for £ = 1,2, 3,4, 5;
for each £, the vertical alignment of the table allows to
properly couple exponential and euclidean distances, mea-
sured from the samenterior of an arbitrary hasth; the



symbol ”:” separates a group of distances, from its right-  for a certain target hagh try to find local routing tables of

side sibling, oR2!+! distances (with = 0,1, ..., £ — 1). predecessors of i and, in its absence, use the routing tables
By definition, S.,. sequences are arithmetic progres- of theanterior hashes that are closest to thpsedecessors.

sions, of ratio 1, with growing monotony. However, as Ta-

ble 2 clearly showsS sequences have no monotony (th_ey 5. Shortcut Routing Algorithms

grow and decay, alternately). This means that "the mini-

mization of euclidean distance” does not always imply "the ) ) ) ) )
minimization of exponential distance”. For instance, in IS Section presents the routing algorithms we have in-

the section = 4 of the Table 2, the euclidean and ex- vestigated, in conjunction with its auxiliary data struetst
ponential distances represented in bold show that we have
deud(ant(h,11),h) = 11 < 12 = deydant(h,12),h), 5.1. Routing Trees
althoughd(ant(h,11),h) = 3 > 2 = d(ant(h,12), h).
In order to perform efficient shortcut routing, the set

57 4 of routing tables of each node (a total #fH (n) tables
for a noden, with a table per each hash boundstpis
kept in a local balanced tree (e.g., an AVL or Red Black
Tree). Basically, the tree holds registers of schethesh,
routing table >, indexed and ordered by thesh field.

Special requisites of the problem domain should also be
supported by the tree platform. For instance, the automatic
finding of the closest register in the tree when the initial
target register is absent, facilitates the usage of thengut
tables ofanteriors when predecessors are not found. The
tree structure and algorithms must also be compatible with
the circularity of the hash spacH, = {0, 1, ..., 2% — 1).

e S
—0— SOn:al

S S S T S S S S S N 5.2. Conventional Routing (CR)
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
See We now revisit the Conventional Routing (CR) algo-
rithm, later used as a comparison basis. In this regard, we
start by introducing notation for the core set of hashes in-
volved in a distributed lookup: i) (target) — the hash whose

Figure 2 shows a graphical perspective of the section|gcation (hosting node) is to be found:; ii)(current) — the
L =5 of Table 2; it plots the exponential distances of the  hash that was chosen as the next ho@fh, by the previous
sequence, as a function of the euclidean distances from theouting decision; iii)n (next) — the hash that will be chosen
Seuc S€quence (used as the scale for the horizontal axis)as the next hop i, by the current routing decision.
notice that the vertical dotted lines divide the figure in the
same zones of the Table 2 defined using the symbol ":". Algorithm 1: Conventional Routing (CR).

It may then be observed that: i) whenever the euclidean .
distance is a power of 2, the exponential distance equals to al‘ C(;Impute the_ stccessors of_the hashthe graph
local minimum of 1, as expected upon the concepts of Sec- G™, and their exponential distance to the hash
tion 4.1 (in other words, thanterior hash that is at such 2. definen to be the successor ofthat is closest to
euclidean distance from a certain target haslis also a
predecessor hash of that); ii) between a local minimum, . ) . i
and the next one (from left to right, in the figure), the expo- 4- find the hosting node of in the routing table of
nential distance exhibits a growing trend, though with pe- 5. if n = ¢ then end (the hosting node af also hosts)
riodic exceptions; nevertheless, if we plot the sequence of elseforward the request to the hosting nodexadndif
accumulated averages of the exponential distances between
two local minimums,S;,..;, it becomes more evident that,
in probabilistic terms, the closer to a local minimum (from Making use of the previous notation, Algorithm 1 is an
right to left), the lower will be the exponential distance to alternative formulation of the Conventional Routing algo-
the target hash; in essence, this is the rational behind the rithm introduced in Section 3.2; also, in this new formu-
shortcut routing algorithms, presented in the next section lation, the algorithm makes explicit use of the routing tree

Figure 2. S and Sjocqi, for L=15.

3. find the routing table aof in the local routing tree




5.3. Exhaustive Shortcut Routing (SR-all) date as much searches as needed, for those predecessors.
_ _ . _ Thus, an algorithm SR-euc-2 would also try to find, in the
With a single access to the routing tree, the CR algorithm routing tree, the hasbred(t, 1), at the exponential distance
is the fastest, in the time to take a routing decision. On the ¢ 91 {4 4- similarly, an algorithm SR-euc-3 would also try
other hand, as we shall see in Section 6, it produces they, fing the hashred(t, 2), at the exponential distance ¥
largest routing chains, in the number of network hops. to ¢: and so on, for a maximum number Bfsearches in the
routing tree, as illustrated by the Algorithm 4 (SR-efic-

Algorithm 2; Exhaustive Shortcut Routing (SR-all).

1. traverse the routing tree and find the haghest) Algorithm 4: £-Euc. Shortcut Routing (SR-eut).
with the lowest exponential distance to the hash

1.b—c

2. do Conventional Routing (Algorithm 1), with= b
2.forl—0,1,..,£L—1do

Another extreme possibility is to analyze all routing ta- 2-1.p < tsearch_-MinEuclideanDistance(pred(t, 1))
bles of a routing tree, to make the best possible routing de-2 2if d(p,t) < d(b,t) then b — p endif
cision, with the available local routing information. Tliés
the gist of the Exhaustive Shortcut Routing (SR-all) algo-
rithm — see Algorithm 2. However, the exhaustive search of
the routing tree may consume too much time. Thus, anin- SR-euc-1 and SR-eug-are thus extreme cases, in a
termediate solution (as shown in next section) is desirable "family” of algorithms SR-eud-(for! = 1,2, 3, ..., £) and,
as such, they were the only ones evaluated from that family.
5.4. Euclidean Shortcut Routing (SR-euc) In this regard, the natural expectation is that SR-Eueill
] ) ) ensure shorter routing chains, in comparison to SR-euc-1,
The Euclidean Shortcut Routing (SR-euc) algorithms once the Jater exploits much less local routing information
achieve routing decisions almost as good as the optimal dey, the other hand, the average routing load per routing de-

cisions of the SR-all algorithm, but with a fraction of its  ¢jsjon for the SR-euc-1 algorithm is expected to be smaller.
cost, in the number of accesses to the routing tree. As pre-

viously stated, the SR-euc algorithms exploit the relaion g Evaluation

we have found, between the minimization of the euclidean

distance and the minimization of the exponential distance.  This section presents the results of the simulation of the

i i routing algorithms previously presented. The simulation
Algorithm 3: 1-Euc. Shortcut Routing (SR-euc-1). was performed in two phases: 1) a setup phase; 2) an evalu-

1.p — tsearch_MinEuclideanDistance(pred(t,0)) ation p_hase. In bo_th_ phases a pIatfc_)rm of Red Black Prees

] ) that suits the requisites referenced in Section 5.1 was used
2.ifd(p,t) < d(c,t)thenb — p elseb — c endif In the setup phase, the partitioning model M2 (refer-
3. do Conventional Routing (Algorithm 1), with= b enced in Section 2) was applied, for a different number of
DHT nodes#N = 1,2, 3,...,1024; more specifically, for
each value of£N, the model M2 was used to define the
Ipverall number of hasheg H, and the specific number of
hashes per each nogéH (n); then, each node was given a
random subset oft H (n) hashes fronf, thus completing
the partitioning of H by NV; this process was repeated 10
times, thus leading to 10 different partitions, for each dif
ferent#N; as a result] 024 x 10 = 10240 partitions were
generated; then, for each partition, it was necessary to de-
fine its set of routing tables, which basically define a graph
'G*; in the end,10240 different graphs were defined.

In the evaluation phase, each one of li€40 graphs
were nhavigated, using all 4 routing algorithms. For each
graph, and each algorithrdt 2 routing chains were fol-
lowed: every vertex (hash) of the graph was the starting
point of a lookup for all the other vertexes, so that a to-
tal of ~ 1.57 x 10'2 chains were followed. For each

3. do Conventional Routing (Algorithm 1), with= b

The main difference between the several SR-euc vari-
ants lies in the number of accesses to the routing tree. Fo
instance, Algorithm 3 (SR-euc-1) involves 1 access (in step
1.), used to find the hasbred(t, 0), that is, the predeces-
sor of the target, in G, at the exponential distance of
29; if such predecessor is not found in the routing tree, the
functiontsearch_MinEuclideanDistance will return the
anterior hash closest to that predecessor (in euclidean dis-
tance), so that its routing table is used instead; in step 2.
the local haslp, found in step 1., is compared against the
local hashe, chosen as the next-hop by the previous rout-
ing decision; the comparison will find which one is closest
(in exponential distance) to the targetin step 3., the lo-
cal hashp, elected in step 2., will feed the Algorithm 1, to
complete the routing decision, by defining the next-hop.

Once there aré predecessors of the targein the graph
G*H, the SR-euc-1 algorithm may be refined to accommo-  5Seehttp://libredblack.sourceforge.net




chain, a set of metrics was collected. The graphics in thand,,,[CR, GV] but also, in the specific case of the al-
this section show average values for the metrics: for eachgorithm SR-euc£, the average distances measured are very
#N = 1,2,3,...,1024, the plotted value is an arithmetic close tod..i,[SR-all G¥], the optimal lower bound en-
average of the values collected for each one of 10 graphssured by the Exhaustive Shortcut Routing algorithm; this
GH; in turn, the value collected for each graph is an aver- means that with as little a8 = log,# H searches in the
age of those measured for each of $a82 routing chains. local routing tree of a DHT node, the routing decision is al-
The typical effects of the partitioning model M2 are vis- most as effective as that taken by traversing the entire tree
ible in all charts: M2 implies a saw-shaped exponential in-  However, an important feature of the SR-all algo-
crease of H, as# N increases; this produces a logarithmic rithm in G¥ is that it is able to ensure that no DHT
growth of the charts metrics, eventually also saw-shaped. node is visited twice (or more) along a routing chain,
a desirable feature originally exhibited by the CR al-
gorithm in GV (and stated as a complementary goal
of our algorithms — see Section 3.2). Thus, the dis-
tance d.nqin[SR-all G| is purely anexternal distance,
that accounts only foexternal hops, between different

o ) . routing tables in different nodes. In turn, SR-euc-1
the hash space, under the conditions of the simulation. It /'cp o= cannot avoid sominternal hoos. made be-
plots also the theoretical averagg,,[CR, GV] = lex#N PS,

. : . ) 2 tween different routing tables in the same node; however
for the Conventional Routing algorithm, in the node space. . . .
these internal hops are always consecutive (with no network

o Lo :
The rejative .( %) d_egree 9f the opt|m|zat|on_s ach|ev§d by access in-between), and its number tends to be rather small.
the SR algorithms in relation to the CR ones is also given.

Afirst validation of the simulation results was performed g o CPU Time per Routing Hop (CPUy,,)
by verifying that, when using Conventional Routing, the ex- i

perimental vzilueﬁchm»n[gR, tho] a#mOSt match the theo- Another important and complementary perspective of
retical valuesl,,g[CR, G| = =4== (not plotted), thus  the routing algorithms is given by their average CPU time
giving us some confidence on the other simulation results. per routing decision or ho&; PU 1.,,, Shown in Figure 4.

denain[CR, G| towardsd,,y[CR, G™] (a primary goal of  and were measured in a Pentium 4 CPU, running at 3GHz.
the shortcut algorithms — see Section 3.2) may be judged by

6.1. Average Distance per Chain (dcnain)

Figure 3 plots the experimental averages
denainlalg, G, for the vertex distance, when routing with
the algorithmalg € {CR, SR-euc-1, SR-eu€; SR-all}, in

. . . f . 2,0 q
direct comparison of the respective plots in Figure 3.
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Number of DHT Nodes (#N) Figure 4. Average CPU Times per Hop (us).

As expected, the ranking of the algorithms by the
CPUp,p time is inverse to the ranking by thepqin dis-

The main results of the simulation are, however, tance: in other words, the algorithms that ensure shorter
conveyed by the plots related to the average distancesouting chains are also those that strive more to achieve
denain|[SR-euc-1G*] andd . qin [SR-euc£, G|, attained so. However, the merits of the algorithms differ in the
using the Euclidean Shortcut Routing algorithms. As may two rankings: by consuming 50% of the time of SR-all,
be observed, not only such algorithms allowed lower values SR-euc£ still manages to achieve similar distances; in turn,

Figure 3. Average Vertex Distances.



with a penalty of only=~ 20% more in the distances, SR-
euc-1is able to perform i 45% of the time of SR-eu;
finally, an increase ok 60% in the execution time, allows
SR-euc-1 to have distances of 30% to 40% of those ensure
by the CR algorithm. These observations show a clear neec
for a synthetic metric, that combines the network and com-
putational efforts specific to each algorithm, and allows to
select the best algorithm for a certain application scenari
Before introducing the final metric, we give an expla-
nation for the saw-shaped pattern of #i¢’U,,, curves:
right after the number of DHT node% NV, increases past
a power of 2 boundary, the partitioning model M2 dictates
the doubling of the hash space and, as a consequence, of tr
average number of hashes (and thus of routing tables) pe
DHT node; the depth of the routing tree of each node thus

increases, and so does the average search effort; howgver, &o -

the number of DHT nodes increases towards the next powel
of 2, the average number of hashes (and thus routing tables
per node will decrease, leading to faster tree searches.

6.3. Total Time per Chain (TOTALcpqin)

A final and synthetic metric is the total average time per
routing chain (or, equivalently, per hash lookup), given by

TOTALchain ~ CPUchain + NETchain (4)

, WhereCPU .pq:n IS the average CPU time per chain,
andN ET .,4:n is the average Network time per chain.
CPU .hqin depends on the two metrics already studied:

CPUchain ~ Echain X CPUhop (5)

Inturn, N ET .hain, 1S given by the following formula:

NETchain ~ Eemt X NEThop (6)

Thus,N ET .,4;n depends on thexternal component of
the distancel.;.;», denoted byl..., and also on the aver-
age Network time peexternal hop, denoted by ET'y,,p.

As previously established in Section 6.1, taternal dis-
tance accounts the average numbereasfernal hops (i.e.,
between different DHT nodes), along a routing chain.
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Figure 5. Total Time per Chain (in us) for a)
NET},, = lus, and for b) NET},,, = 10us.

is because such effort is relatively small (specially for SR
euc-1), as shown in Figure 4, and the routing chains are
clearly shorter (mainly for SR-eug), as Figure 3 showed.
With NET',,, = 10us, Figure 5.b) stands for a scenario
of moderately high speed connections, like 1Gbps Ethernet.
Now, the dominant time is the Network ttm&ET ¢, 4in);
thus, all SR algorithms are more attractive than CR, and the

NET},, is a parameter (and not a measure), used to cap-elative separation between the two groups is wider; also,

ture the effect of different kinds of network technologibs.

this regard, Figure 5.a) and Figure 5.b) gIlaDT' AL p4in,

for NET 0p = 1us andN ET 'y, = 10us, respectively.
Figure 5.a) is representative of a scenario where very

high speed interconnects would be used, like 10Gbps

Myrinet. The minimization of the network lookup hops

the increase itV T, was enough to make SR-all really
competitive, though still outperformed by SR-edc-
Further tenfold increases &f ET';,,,, (not charted) also
induce a tenfold increase AfFOT AL pq:, for all algo-
rithms, though with a minor modification in its ranking:
starting fromN ET',,, = 100us (typical of 100Mpbs Eth-

is thus less important, once it may be counterbalanced byernet), SR-all and SR-eug-exchange positions, once Net-

quickly dispatching lookup requests; this is why the CR al-
gorithm outperforms the SR-all algorithm; still, algoritls
SR-euc£ and SR-euc-1 manage to be more competitive
than CR, despite their additional computational efforis th

work time becomes, effectively, the unique relevant factor

These results show that our shortcut routing algorithms
are useful in a wide range of network scenarios where DHTs
may be deployed, from Cluster LANs to P2P WANSs.



7. Discussion

Often, partitioning and lookup are tightly integratedelik
in Chord [18], but in other approaches, like Dipsea [11] and

ours, they are decoupled, for increased flexibility.

In Chord [18], a Consistent Hashing [9] approach bounds
each DHT node to a contiguous subset of the hash space;
such subset is derived and constrained by the node iden-
tifier (or, more precisely, by the hash of the identifier). In
other approaches, like P-Grid [1] and ours, there isn’t affixe

bound between a DHT node and its hash subset.

Shortcut routing in Chord graphs was first used in the
CFS [4] distributed file system. In CFS, each physical DHT
node appears as a collection of virtual nodes, each with a
routing table in the underlying Chord graph. However, de-
tails about CFS’s shortcut algorithms are scarce to none.

Godfrey et al. [7] also reference CFS, asserting that rout-

[2] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, and

I. Stoica. Looking Up Data in P2P System@ommunica-
tions of the ACM, 46(2):43-48, 2003.

[3] A. Czumaj, C. Riley, and C. Scheideler. Perfectly Bakuhc

Allocation. In Proceedings of the 7th International Work-
shop on Randomization and Approximation Techniques in
Computer Science (RANDOM '03), 2003.

F. Dabek, M. Kaashoek, D. Karger, and R. Morris. Wide-
area Cooperative Storage with CFS. Rrocs. of the 18th
ACM Symposium on OSPrinciples (SOSP '01), 2001.

R. Enbody and H. Du. Dynamic Hashing Schemé&<M
Computing Surveys, 20(20):85-113, 1988.

P. Ganesan and G. Manku. Optimal Routing in Chord. In
Proceedings of the 15th ACM Symposium on Distributed Al-
gorithms (SODA ' 04), pages 169-178, 2004.

B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load Balancing in Dynamic Structured P2P Sys-
tems. InProcs. of the 23rd Annual Joint Conf. of the IEEE
Computer and Commun. Societies (INFOCOM ' 04), 2004.

ing shortcuts allowed by virtual nodes may ensure, under [g] V. Hilford, F. Bastani, and B. Cukic. EH* — Extendible

certain conditions, average distancegxtog#N); this is

in line with our own results (recall Figure 3) that show aver-
age distances of even lower order (though we have not used
virtual nodes, the comparison is possible, once our model []

M2 ensured several hashes / routing tables per node).

We only explored the unidirectional variant of Chord
graphs, clockwise oriented. With bidirectional graphsitro
ing tables store twice the topological information, oncé-an
clockwise edges are also considered. This should allow
even lower average distances. For instance, Ganesan et al.
[6] developedoptimal algorithms for bidirectional Chord
graphs with a power of 2 vertexes (thus in the hash space)[11]

allowing average distances as low&g3, instead ofL/2.

With unidirectional graphs, but multiple routing tables pe
DHT node, we have achieved average distances ar8yigd

for SR-euc-1 and aroungl/4 for SR-euc£ and SR-all.

We conclude by restating the main contribution of the [13]
paper: a set of algorithms that 1) ensure a high degree of ac-
celeration to distributed lookups on DHTs based on Chord
graphs in the hash space, and 2) are applicable to a broad14]
set of network scenarios, ranging from Cluster to Peer-to-
Peer environments. In the later case, peers that pareésipat
in a Chord-based DHT in the node space, may still use our [15]
shortcut routing algorithms with minor modifications, pro-
vided that peers run a protocol to exchange topological in-
formation (routing tables content), with a minimum set of
neighborsin the Chord graph. A platform that demonstrates [16]
the use of these and other previous contributions may be

found athttp://www.ipb.pt/ ~rufino/domus
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