
Evaluation Criteria of Software Visualization Systems used for
Program Comprehension

Mario M. Berón
National University of San Luis, UNSL

Ejército de los Andes 950, San Luis, Argentina
mberon@unsl.edu.ar

Daniela da Cruz
University of Minho

Campus de Gualtar, 4715-057, Braga, Portugal
danieladacruz@di.uminho.pt

Maria João Varanda Pereira
Polytechnic Institute of Bragança

Campus de Sta. Apolônia, Apartado 134 - 5301-857, Bragança, Portugal
mjoao@ipb.pt

Pedro Rangel Henriques
University of Minho

Campus de Gualtar, 4715-057, Braga, Portugal
pedrorangelhenriques@gmail.com

Roberto Uzal
National University of San Luis

Ejército de los Andes 950, San Luis, Argentina
ruzal@uolsinectis.com.ar

Abstract
The program understanding task is usually very time and effort consuming. In a traditional way the code is
inspected line by line by the user without any kind of help. But this becomes impossible for larger systems.
Some software systems were created in order to generate automatically explanations, metrics, statistics and
visualizations to describe the syntax and the semantics of programs. This kind of tools are called Program
Comprehension Systems.
One of the most important feature used in this kind of tool is the software visualization. We feel that it would be very
useful to define criteria for evaluating visualization systems that are used for program comprehension. The main
objective of this paper is to present a set of parameters to characterize Program Comprehension-Oriented Software
Visualization Systems. We also propose new parameters to improve the current taxonomies in order to cover the
visualization of the Problem Domain.

Keywords
Program Comprehension, Software Visualization, Problem Domain, Program Domain, System Views, Evaluation
Criteria

1 INTRODUCTION

Program Comprehension (PC) is a discipline of Software
Engineering(SE) aimed at providing models, methods,
techniques and tools, based on specific learning and en-
gineering processes, in order to reach a deep knowledge
about software system. The learning process involves the
study of the Cognitive Science and the relation between
its main concepts with SE. The engineering process in-
cludes the study of areas such as: Software Visualization,
Information Extraction, Information Management for rep-
resenting the system information in one way that empha-
size its main aspects.

A Program Comprehension Tool (PC Tool) is a software
system whose development requires the combination of:
Cognitive Models, Extraction and Management of Infor-

mation, Software Visualization, and Strategies for inter-
connecting several domains. The main claim of this kind
of software systems is to make easier the Program Com-
prehension process.

The Software Visualization subsystem plays an important
role in program understanding, because its duty consists
in showing the information extracted from the system in a
coherent and easy to understand manner.

Nowadays, Software Visualization systems present useful
program views (Program Domain) but they do not contem-
plate another interesting view such as the system output
(Problem Domain) and its relation with the program com-
ponents. This problem gave rise to a new kind of Software
Visualization: the Program Comprehension-Oriented Soft-
ware Visualization Systems (PC-SVS).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153402968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This kind of systems (PC-SVS) has the same character-
istics as the traditional Software Visualization Systems
(SVS) but now they should incorporate special visualiza-
tions oriented for both the Problem and Program Domains
and the relation between them.

This new conceptualization introduces problems with the
current Software Visualization Systems taxonomies be-
cause they do not consider the special kind of visualiza-
tions referred above. Thus, the old taxonomies can not be
used for assessing the quality and usefulness of the subsys-
tem of Software Visualization for PC tools (PC-SVS).

This paper presents a contribution to overcome this draw-
back, by completing the most important taxonomy with
characterizations of the Problem and Program Domains
and the relations between them.

The organization of the paper is as follow. Section 2
presents the current state of the art of the Software Vi-
sualization Taxonomies. Section 3 describes the charac-
teristics absent from all taxonomies. Section 4 expounds
several new criteria for characterizing the Problem Domain
and its relation with the Program Domain. Section 5 con-
cludes the paper and sets forth the main contributions of
the work.

2 TAXONOMIES FOR SOFTWARE VISUALIZA-
TION SYSTEMS

Currently, there are too many SV taxonomies. They have
been defined to overcome the problem of categorizing and
assessing the approaches used by SV tools. Each taxon-
omy emphasizes different SV aspects, for instance specific
software characteristics, human activities, etc.

In this section, an overview of SV taxonomies is presented.
Then, this systematization is used to detect items missing
in all the taxonomies, and to set down a proposal to over-
come them.

Brown in [3] introduces a visualization approach focussed
on animations. He describes his proposal using three main
axes: Content, Transformation and Persistence. The first
is concerned with the way followed for representing the
program. This characteristic is divided in Direct, in which
the source code is directly represented using graphical ar-
tifacts, and Synthetic, in this case a source code abstraction
is graphically depicted. The second refers to the anima-
tion process used in the visualization. It can be Discrete,
a series of snapshots are shown, or Incremental, a smooth
technique is employed to produce the transition between
snapshots. Finally, Persistence is related with the possibil-
ity of holding the process history.

Myers, a pioneer in SV, presents in [4] one simple tax-
onomy with two main axes: The kind of object that the
visualization system attempts to illustrate and The type of
information shown. The first component consists of code,
algorithms or programs, and the second one is concerned
with the static and dynamic information. The combination
of these axes produces the following visualization sorts:

Code-static: visualizations such as flowcharts and the

Seesoft technique [1] use this approach.

Code-dynamic: it is concerned with software animations
and strategies to show the code segment used in one
specific execution.

Data-static: it follows the same approach that for static
code visualizations. The main idea consists in pre-
senting in a suitable way the system data objects and
their values.

Data-dynamic: at the same way that code-dynamic visu-
alizations it consists of animations aimed at showing
the variables and their values at runtime. Further-
more, this topic is concerned with the strategies elab-
oration for depicting how the data changes through
the time.

Algorithm-static: it is interested in generating snapshots
of algorithms.

Algorithm-dynamic: it consists in building algorithms
animations for presenting an integral dynamic view
of each component used at runtime.

Roman and Cox [7] propose to classify the SVS using five
criteria based in the SV model shown in Figure 1.

Figure 1. Roman and Cox model

Scope: this item covers the program aspects to visualize;

Abstraction level: describes the visualization sophistica-
tion degree;

Specification method: explains which are the mecha-
nisms used by the animator for building the visual-
ization;

Interface: expounds the facilities provided by the SV sys-
tem for presenting and manipulating the visualization,
and

Presentation: is concerned with the effectiveness of the
information presentation. In another words, this item
analyzes the SV performance to transmit information.

It is important to remark that each criterion is in detail ex-
plained through several sub-criteria that allow to improve
the understanding of this classification. The reader inter-
ested in this taxonomy can read [7] for more details.



Price et. al. in [6] and [5] present a complete and multi-
dimensional taxonomy of SV. This work describes SV sys-
tem using six characteristics:

Scope: describes the general SV system features. For ex-
ample, if the visualization is made for one example
of for some kind of system, kind of programs, con-
currences, etc. These features are explained by sub-
characteristics mentioned in [6] and [5].

Content: makes references to the information proportion-
ate by the visualization. For example, if it is used to
visualize a program or algorithm, code or data, etc.

Form: characterizes the elements used in the visualiza-
tion. For example, medium, graphical elements, col-
ors, views, etc. One precise information about this
topic is showed in [6] and [5].

Method: is concerned with the strategies used to specify
the visualization. For example, fixed, customizable,
specification style, etc. For more information see [6]
and [5].

Interaction: delineates the techniques used to interact and
control the visualization. For example, navigation,
simplify the information, temporal control mapping,
etc. See [6] and [5] for more details.

Effectiveness: gives the lineaments for assessing the visu-
alization quality. This feature consider the following
criteria: Appropriateness and Clarity, Experimental
Evaluation, Production Use (see [6] and [5]).

Storey et. al. in [11] propose a classification, based in
Price’s taxonomy, but oriented to awareness of human ac-
tivities. In this work, the authors present five main charac-
teristics:

Intent: describes the visualization purpose through: Role,
Time, Cognitive Support.

Information: makes reference to the information sources
used for the tools. This item is presented delineat-
ing the following subcategory: Change Management,
Program Code, Documentation, Informal Communi-
cation, Derived Data.

Presentation: describes how the information is presented
the final user. It has the following divisions: Kinds of
views, Techniques.

Interaction: characterizes the interaction facilities pro-
vided by the tool. It presents the following options:
Batch/Live, Customization, Query Mechanism, View
Navigation.

Effectiveness: explains the likelihood of implementing
the tool. It is concerned with: Status, Cost, Evalu-
ation.

The reader interesting in knowing the full details about
each subcategories must read [11].

3. INCOMPLETENESS OF CURRENT TAX-
ONOMIES

In subsection 2, the main Software Visualization System
(SVS) taxonomies were presented. In general terms, these
taxonomies describe the principal SVS characteristics.
The Program Comprehension process is based on cogni-
tive models and when we want to comprehend a program
we have two domains of knowledge: Program Domain and
Problem Domain. The Program Domain is concerned with
the technological issues like the programming language
(statements, functions, modules) and how is the program
executed to produce an output; while the Problem Domain
is concerned with the effect of the program execution (the
final result produced and the impact at the level of the prob-
lem to be solved).

The major drawback with current taxonomies is that they
are not based on Program Comprehension conception be-
cause they only consider the Program Domain. For this
reason, they lost some substantial aspects that determine
the SVS quality.

Several authors declare that:

PC is simplified if both Problem and Program Do-
main are represented and interconnected.

This sentence is the starting point for affirming that the
current proposals forget some essential characteristics that
a PC-oriented SVS must have. The SV research made in
[2] shows that the SVS taxonomies describe very well the
Program Domain, but not the Problem Domain, neither the
Relation between Problem and Program domain. Ques-
tions as How the Problem Domain can be characterized?,
Which is the best way for describing the relation between
Problem and Program Domains?, Why the Cognitive Fac-
tors are not mentioned in these taxonomies?, Are the SVS
characteristics well organized?, etc. motivated the elabo-
ration of a SVS classification aimed at appropriately char-
acterizing this kind of system.

4. NEW CRITERIA FOR IMPROVING THE ASSESS-
MENT OF PC-SVS

In this section some criteria for filling the gap presented
by the current taxonomies are described. As was shown
in section 3, they are concerned with the visualization of
the Problem Domain and its relation with the Program Do-
main. The following subsections explain each one of them.

4.1 Problem Domain Visualization

Problem Domain is a characteristic absent in all, or almost
all, SVS classifications. This aspect is relevant because
it distinguishes the traditional SVS from the PC-oriented
SVS, with explicit PC concerns. Problem Domain can be
described through the following main categories: Scope,
Specification Method, Kind of Creation, Abstraction Level,
Content, Interface and Cognitive Models. The reader can
observe that most of the criteria above are the same as those
for Program Domain. However, their means are signifi-
cantly different. This affirmation will be sustained in the
following paragraphs.



Scope: is used to specify the Problem Domain character-
istics will be visualized. In this case, it is possible to
distinguish the following categories:

Stimulus/Response: the system is shown as a black
box only its inputs and outpus are detailed. This
task can be made for one example or for all the
system.

Concepts/Relations: approaches such as conceptual
maps described by Novak can be used to repre-
sent the Problem Domain.

Subsystem/Relations: if it is possible to identify
some high level components then the relation
between them is an attractive strategy to visu-
alize the system behavior.

Behavior: refers to the system at execution time.

Specification Method: to specify the Problem Domain is
a hard task. Yet more problematic, to find a spec-
ification easy of linking with the Program Domain
components is a problem unsolved. This criterion is
concerned with the analysis of several approaches to
overcome this problem. The main idea is to assess:

1. The specification readability level.

2. The visualization type in sense that a more con-
ceptual visualization turns smaller the gap be-
tween domains.

3. The standardization level of the specifications in
sense that a standard specification turns easier
the integration with other Software Engineering
Projects.

Having present the topics described above, the fol-
lowing kind of specification have been found:

Ad-hoc: the specification method was created by the
user or there is not method.

Rigorous: approaches with well defined procedures
and notations are in this group. They are not
considered formal because not all the mecha-
nism have a mathematical demonstration. An
example of this category is presented by the
UML diagrams.

Formal: specifications made with formal languages
or mathematical models are suitable to describe
the problem characteristics. Nevertheless, they
have the problem of making difficult the inter-
connection with the program components.

Kind of Creation: makes reference to the strategy used to
create the Problem Domain visualization. It is subdi-
vided in manual, semi-automatic and automatic.

Abstraction Level: expounds the level of detail employed
to show the Problem Domain characteristics. It has
the following subcategories: Direct, Structural, Syn-
thesized.

Interface: it can be characterized through the following
aspects:

Kind of interface: this item refers to the type of ar-
tifacts employed to show the information, they
can be: Textual, Graphical or Hybrid.

Type of interaction: it is concerned with the strat-
egy used to implement the human-computer
interaction. Two interaction sorts are distin-
guished: Classical and Innovative. The first is
associated with the traditional mechanism em-
ployed to simplify the interaction. For exam-
ple: controls through keyboard or mouse, im-
ages, etc. The second is aimed at covering news
interaction proposals.

Vocabulary: the visualization can be based in dif-
ferent vocabularies such as: Textual, Iconic or
Hybrid. The important point is that the lexicon
used must be appropriated for the problem un-
der study and totally interpreted by the user. The
first criterion is application dependent. The sec-
ond allows to analyze if it is correctly defined
studying the mapping between the visual objects
and their means. In this context three kind of
mapping are established:

No mapping: there are not explicit associa-
tion between the visual artifacts and their
means.

Partial Mapping: some visual artifacts have
an explicit means.

Full Mapping: all the artifacts have defined a
mean.

obviously the third kind of mapping is preferred
because diminish the cognitive overhead.

Cognitive Models: in the criteria presented above, it is
important consider other characteristic, frequently
forgotten in the current classifications: Cognitive Fac-
tors. In this context, it was detected that there are
useful criteria to evaluate PC tools [13] [9] [10] [8].
However some aspects are not considered. They are
mentioned below:

CM Components: the CMs are composed by four
main elements: Internal and External Knowl-
edge, Mental Model, Assimilation Process and a
Dangling Unit. Usually these elements are hid-
den in SVS and they are not used to help the
user in the comprehension process. So, impor-
tant conceptual information can be lost. A strat-
egy to represent the internal knowledge must
be used and a complete SVS taxonomy must
consider if the tools contain representations for
these four CM elements.

Learning Strategies: other important criterion is
concerned with the learning strategies implanted
inside SVS. In this ambit, three well-known
approaches must be considered: Top-down,



Bottom-up and Hybrid. They are explained in
[2] and a deeper analysis, from the point of view
of exploration tools, of these criteria can be seen
in [9].

Figure 2 shows how the criteria described above are orga-
nized.

4.2 Visualization of the Interconnection Between
Problem and Program Domains

Another interesting characteristic to visualize is the rela-
tion between both Problem and Program Domains. In this
context, the main claim is concerned with the visualiza-
tion of the program components connected with the spe-
cific output components. In other words, the visualization
must show which are the program elements used to build
each part of the system output. The reader can observe
that some Problem Domain criteria, such as Specification
Method, Kind of Creation, Abstraction Level, etc. can be
used to describe this relation. Nevertheless, there are some
specific properties that deserve some discussion. In first
place, the category Scope needs to be redefined because
the relation is better explained using the following criteria:

Example: makes references to the kind of visualization
that only exhibit a specific example. For instance, to
visualize the functions employed for a particular sys-
tem execution.

Partial: refers to the possibility of showing, for some or
all Problem Domain components, some of the pro-
gram elements related with them or vice versa. For
example, if the program under study builds a graph
then a particular partial visualization could be con-
structed to depict the functions used to build a graph,
nodes and arcs. To be clearer, this kind of visualiza-
tion links each Problem Domain component with the
specific functions used to build it.

Total: the goal of this visualization is to show for all Prob-
lem Domain components all the Program Domain el-
ements used.

Taking as example one system that builds graphs, one
possible result of this kind of visualization is:

• for each graph the functions and data used to
build it.

• for the node and arc the functions and data di-
rectly related with each one of them.

Another interesting characteristic to observe is how the
strategy to interconnect domains gather the relation. In this
context, two kind of approaches can be identified: Alive or
Post Mortem. In [2] two systems are described. The first
one, SVS, follows a strategy that uses the Alive approach.
In the second one, BORS, the relation is established after
the program execution; actually, BORS uses Post Mortem
approach to interconnect both domains. Finally, it is rel-
evant to indicate if the visualization displays: Code, Data
or Both.

Figure 2. Problem Domain Criteria



5 CONCLUSION

The assessment of PC tools is not an easy task, because
several criteria for analyzing each subsystems must be em-
ployed. Particularly, the evaluation of PC-oriented Soft-
ware Visualization subsystem faces some problems be-
cause effective criteria to classify the visualization of Prob-
lem and Program Domains and the relation between them
are missing in the current taxonomies. In this paper, the
problem is overcome through the definition of several cri-
teria for characterizing these important PC-SVS peculiar-
ities. In this context, the Problem Domain is described
using the following criteria: Scope, Specification Method,
Kind of Creation, Abstraction Level, Interface, Cognitive
Models. The interconnection between Problem and Pro-
gram Domains is characterized using the same criteria used
for the Problem Domain but the criterion Scope is rede-
fined in order to explain clearly the relation between both
domains.

This work brings a relevant contribution to the Program
Comprehension area because: i) The combination of the
criteria for evaluating the Program Domain and the criteria
for assessing the Problem Domain and its relation with the
program components make possible to obtain a more real-
istic evaluation of PC-SVS and PC tools; ii) Our criteria
give guidelines for building useful PC-SVS and PC tools.

It is important to remark that the current PC tools do not
have strategies for interconnecting the problem and pro-
gram domains (see [2] for more details). For this reason it
was not possible to use benchmarks in order to compare
systems or approaches. In the context of PCVIA (Pro-
gram Comprehension by Visual Inspection and Animation)
project [12] there is a tool under development, named
PICS, whose goal is to make easier the comprehension of C
programs [2]. PICS has implemented several strategies for
interconnecting the Problem and Program Domains based
on dynamic and static information extracted from the sys-
tem. These strategies help the programmer to only con-
centrate on the system aspect that he wants to study. After
the identification of functions carried out through the tech-
niques of interconnecting domains, the user is encouraged
to inspect the functions reported by the domain intercon-
nection strategies. In order to simplify this task, PICS pro-
vides a set of views automatically generated such as: Func-
tion Graph, Module Graph, Static Information Visualizer,
Function Execution Tree, Source Code Visualizer, Object
Code Visualizer, Runtime Function Visualizer, etc. These
views have navigation functions, they allow the user to ac-
cess to whatever system components. All the PICS’ views
mentioned in the precedent paragraph, and the approaches
used for visualizing the interconnection between the Prob-
lem and Program Domains were designed and are being
implemented to prove that the guidelines presented along
the paper can be effectively used to build and evaluate PC
tools.

References

[1] T. Ball and SG Eick. Software visualization in the
large. Computer, 29(4):33–43, 1996.

[2] Mario Berón, Pedro Rangel Henriques, Maria
J. Varanda Pereira, and Roberto Uzal. Program in-
spection to interconnect behavioral and operational
views for program comprehension. In York Doctoral
Symposium. University of York, UK, Oct 2007.

[3] M. H. Brown. Perspectives on algorithm animation.
In CHI ’88: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 33–
38, New York, NY, USA, 1988. ACM Press.

[4] B. Myers. Taxonomies of Visual Programming and
Program Visualization. Journal of Visual Languages
and Computing, 1(1):97–123, 1990.

[5] B.A. Price, R. Baecker, and I.S. Small. A Principled
Taxonomy of Software Visualization. Journal of Vi-
sual Languages and Computing, 4(3):211–266, 1993.

[6] BA Price, IS Small, and RM Baecker. A taxonomy of
software visualization. System Sciences, 1992. Pro-
ceedings of the Twenty-Fifth Hawaii International
Conference on, 2, 1992.

[7] G. C. Roman and K. C. Cox. A taxonomy of pro-
gram visualization systems. Computer, 26(12):11–
24, 1993.

[8] M.A. Storey. Theories, methods and tools in program
comprehension: past, present and future. Proceed-
ings of the 13th International Workshop on Program
Comprehension, pages 181–191, 2005.

[9] Margaret A. Storey. A Cognitive Framework for De-
scribing and Evaluating Software Exploration Tools.
PhD thesis, Simon Fraser University, 1998.

[10] Margaret-Anne Storey. Theories, tools and research
methods in program comprehension: past, present
and future. Software Quality Control, 14(3):187–208,
2006.

[11] Margaret-Anne D. Storey, Davor Čubranić, and
Daniel M. German. On the use of visualization to
support awareness of human activities in software de-
velopment: a survey and a framework. In SoftVis ’05:
Proceedings of the 2005 ACM symposium on Soft-
ware visualization, pages 193–202, New York, NY,
USA, 2005. ACM Press.

[12] Maria J. Varanda and Pedro Henriques. Program
comprehension by visual inspection and animation.
http://wiki.di.uminho.pt/wiki/bin/view/PCVIA.

[13] Andrew Walenstein. Theory-based analysis of cog-
nitive support in software comprehension tools. In
IWPC ’02: Proceedings of the 10th International
Workshop on Program Comprehension, page 75,
Washington, DC, USA, 2002. IEEE Computer Soci-
ety.


