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Abstract
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astern Portugal (Cvs. Cobranc¸osa, Madural and Verdeal Transmontana) and 27 commercial samples of olive oils with protected deno
f origin (PDO) from the same region and cultivars were evaluated.
�-sitosterol,�5-avenasterol and campesterol were the most representative sterols. Cholesterol, stigmasterol, clerosterol and�7-stigmasteno

ere also found in all samples. All studied samples respected EC Regulation N. 2568, and in all cases total sterols were remark
han the minimum limit set by legislation, ranging from 2003 to 2682 mg/kg.

Results were analysed with the help of several statistical techniques, including reduction of dimensionality by principal compone
ith cross-validation of the number of components, followed by the use of canonical variate predictive biplots for model develop
anonical variate interpolative biplots for approximate classification of monovarietal and PDO olive oils. These biplots proved to
nteresting solution in the present case study, overcoming the problems of interpretation and classification that arise whenev

ultivariate analyses are coupled together.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Clinical studies have demonstrated that dietary intake of
hytosterols as a part of the normal diet, or as a supple-
ent, may help reducing blood cholesterol levels through

he inhibition of its absorption from the small intestine[1,2].
dditionally, it has been suggested that sterols have anti-

nflammatory, antibacterial, antifungal, antiulcerative, anti-
umural activities[3] and antioxidant activity[4]. As sterols
re a major portion of the unsaponifiable components of the
live oils[5], and present a more or less characteristic profile

∗ Corresponding author. Tel.: +351 222078927; fax: +351 222003977.
E-mail address:beatoliv@ff.up.pt (M.B. Oliveira).

and given benefits, they are widely used to check genuin
[6]. Besides, their determination is of major interest du
their health benefits.

The large amounts of olive oil included in the Medit
ranean diet lead to the consumption of high amount
�-sitosterol,�5-avenasterol and campesterol. Besides t
compounds, several other sterols existing in smaller amo
such as cholesterol, brassicasterol, stigmasterol, cleros
sitostanol,�7-stigmastenol and�7-avenasterol can usua
be ingested. The knowledge of the sterol composition is
important in the evaluation of the nutritional value as w
as in the quality control of olive oils, since they can also
used to determine possible frauds. For example, it is now
established that the presence of large quantities of stig
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terol reveal an adulteration with lower priced soybean and/or
cottonseed oils[7].

Olive oil is a traditional product from the Northeast of Por-
tugal (named Tŕas-os-Montes) obeying the European Com-
mission Regulation EC-N.2081/92[8], and can therefore be
labelled as a product with protected designation of origin
(PDO). Four olive tree Cvs. are authorised for the production
of olive oil, Cv. Cobranc¸osa, Cv. Madural, Cv. Verdeal Trans-
montana (which will be referred to as Cv. Verdeal only) and
Cv. Cordovil, but the latter has no commercial expression.
Being known as high quality products, olive oils from this
region attain very high market prices, favouring unfair com-
mercial practices. It is therefore important to use analytical
techniques to ensure the assessment of identity and quality of
olive oils, and to guarantee the proper product classification.

To evaluate product authenticity it is necessary to build
up, test and validate models, against which the characteris-
tics of any new (unseen) products can be compared[9]. Such
a work requires appropriate multivariate statistical tools,
among which principal component analysis and several types
of discriminant analyses[10] occupy a very important posi-
tion. Powerful statistical software packages are now available
that can perform a series of very complicated calculations
in a fast and comfortable way for the user, making it very
easy to apply sophisticated algorithms to almost any kind
of data, with no need for special mathematical background.
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operations; (iv) apply predictive biplots for an easier model
interpretation, and interpolative biplots to obtain models eas-
ier to use on a routine basis.

An effort was made when writing this paper in order to
avoid using an excessive statistical language, and a special
section, at the end of Section3, is presented with a set of
six statistical remarks, with some statistical details and algo-
rithms. Along the text references are made to these statistical
remarks.

2. Materials and methods

2.1. Samples

Monovarietal olive oils (in a total ofN= 51 samples) were
obtained in the laboratory by extraction from olive fruits from
Cvs. Cobranc¸osa (N1 = 18 samples), Madural (N2 = 15 sam-
ples) and Verdeal (N3 = 18 samples), all from the N.E. of
Portugal, following the method described in Pereira et al.
[25]: briefly, olives were collected from identified and care-
fully marked trees, handpicked and processed in a pilot plant,
passing through a mill, a thermo beater and a pulp centrifuge,
after which the oil was separated from the pulp by decanta-
tion, and kept in dark glass bottles, at 4◦C, in the absence of
light.
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herefore, it is now more important to focus studies of
istical analyses on the respective conditions of applica
xpected type of results and how to carry out interpreta
f the statistical outputs. Some good starting points exis

he study of the application of multivariate statistics in
eld of chemometrics[11], and in what concerns the partic

ar case of discrimination and classification, important w
ith reviews and developments are also available[12]. Many

ecent examples of these concerns in relation to olive oil
e found in the literature, in the search for the best chem
r physical parameters or methodologies to use in au

ication and assessment of quality or possible adultera
ecurring to a wide number of statistical techniques[13–19],
nd the need to couple several statistical techniques in

o attain good discrimination and reliable models for cla
cation is now evident[20].

It is also very important to guarantee that the result
odel development are not restricted to investigation,

hat can be used on a daily basis, as a part of the la
ory routine[21–23], mainly recurring to the advantages
redictive and interpolative biplots[24].

The work presented in this paper deals with the ab
entioned topics, aiming to: (i) build up a model for the ch
cterization of three monovarietal olive oils produced f
vs. Cobranc¸osa, Madural and Verdeal, on the basis of t
ain sterol composition; (ii) use the developed model to c

ify several commercial PDO olive oils on the basis of t
terol content; (iii) discuss some statistical methodolo
hat can be used to solve the problem of model building
imultaneously present and explain some useful stati
Samples of commercial PDO olive oils from the sa
egion were randomly purchased in the local market. A
f 27 samples were analysed.

.2. Sterol composition

The sterol composition was determined by GLC/F
apillary column following the method described in NP-E
SO-12228 (1999)[26]. The oil was previously dehydrat
ith anhydrous sodium sulphate and subsequently filt

hrough filter paper. A 250 mg of oil were accurat
eighted, mixed with 1.0 mL of internal standard solut

betulin 1.0 mg/mL), and saponified with an ethan
otassium hydroxide solution; the unsaponifiable frac
as isolated by solid phase extraction on an aluminium o
olumn and the steroid fraction was obtained after T
ith n-hexane/diethyl ether 1:1 (v/v) as developing solv
nd a methanol spray to visualize the band. The trimeth

ylethers were obtained by the addition of 1-methylimidaz
nd N-methyl-N-(trimethylsilyl)-hepta-fluorobutyramid
MSHFBA).

The sterol profile was analyzed with a Chrompack
001 chromatograph (Chrompack, Middelburg, The Ne

ands) equipped with a split–splitless injector, a FID, an
hrompack CP-9050 autosampler. Separation was ach
n a fused silica capillary column DB-5MS (30 m× 0.25 mm

.d., 0.25�m, J & W Scientific, Folsom, CA, USA). Th
emperature of the injector and the detector were s
20◦C. The oven temperature was 250◦C and programme

o increase at a rate of 2◦C/min to 300◦C and then held fo
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12 min. The injected quantity was 1.5�L, at a split ratio 1:50,
using helium as carrier gas at an internal pressure of 100 kPa.

The total sterol content was determined considering
all peaks of sterols eluted between cholesterol and�7-
avenasterol, and individual sterols were expressed as percent-
ages of the total sterol content. Identification was achieved
by comparing the relative retention times from samples with
those obtained with standards. Standards used for iden-
tification were purchased from Sigma (St. Louis, USA)
and included cholestanol, cholesterol, campesterol, stigmas-
terol,�-sitosterol,�-sitostanol and betulin. Clerosterol,�5-
avenasterol and�7-stigmastenol were tentatively identified
by comparison with references[7,27,28]. �-sitostanol and
�5-avenasterol eluted very close and were therefore quanti-
fied as�5-avenasterol. Apparent�-sistosterol, which is an
important quality indicator, was calculated as the sum of�5-
avenasterol, clerosterol and�-sitosterol.

2.3. Statistical analyses

2.3.1. Initial data matrices
The initial data for monovarietal olive oils consisted of a

matrixX with P= 8 columns representing the following vari-
ables (sterols): cholesterol (x1), campesterol (x2), stigmas-
terol (x3), clerosterol (x4), �-sitosterol (x5), �5-avenasterol
(x ), apparent�-sistosterol (x ) and�7-stigmastenol (x ).
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discarded, being left with a reduced set of “a” components,
referred to aspc1 to pca. MANOVA and HotellingT2 tests
were carried out on the reduced set of principal components to
evaluate the significance of the differences between monova-
rietal olive oils. Canonical variates analysis (CVA) was also
carried out based on the reduced matrix of principal compo-
nents, obtaining canonical variates generally referred to ascv.
The resulting combined PCA/CVA model was interpreted in
terms of a predictive biplot, and classification of PDO olive
oils was carried out by mathematical projection of individual
oils, XPDO, on the plane of the canonical variates, and also
recurring to an interpolative CVA biplot.

General algorithms for multivariate analysis[10,30], pro-
cedures for PCA with cross-validation[30], for the construc-
tion of biplots [24] and ways to solve practical problems
[21–23]were carried out according to published hand-books
and papers. However, at the end of Section3 of this paper,
main steps and algorithms used to solve the present case study
are described with some detail.

2.3.4. Software and algorithms
All analysis were produced in special Programs written

by the authors in the Genstat language[31]. All graphs were
created in the Statistica for Windows statistical package[32]
after conversion of the Genstat ASCII outputs to Statistica
files.
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otationxp [p= 1. . .P] is used to refer to any unspecifi
terol. MatrixX hadN= 51 rows representing the indivi
al olive oils analysed. The oils belonged toG= 3 groups
v. Cobranc¸osa, Cv. Madural and Cv. Verdeal. In the pres
ork allxp variables were standardized to mean zero and
ariance, in order to attribute to each sterol the same re
mportance. Another matrix was considered,XPDO, with the
ame number of columns relative to the same sterols, bu
ows relative toN= 27 PDO olive oils.

.3.2. Pre-treatments and univariate analysis
To visualize sterol compositions, the mean and minim

nd maximum values for each group were calculated
he standardized variables and plotted, obtaining stan
zed means and dispersion bars for each monovarietal
il. ANOVA and student’st-tests relative to a sterolxp were
alculated by conventional methods, the former leadin
he calculation of an observedF value (Fobs), the latter to
he calculation of an observedt value (tobs). Observed value
ere compared to criticalF andt values corresponding to t
= 0.01 significance level, referred toF� = 0.01 and t� = 0.01

espectively.

.3.3. Multivariate analyses
Principal components analysis (PCA) of initial standa

zed data was carried out using the NIPALS algorithm
nable the cross-validation of the number of compon
ased on the so-called leave-one-out strategy, as rela

he original Wold’s method[9,29]. The components with n
nterest (those showing a decreased prediction ability)
. Results

The monovarietal oils reported in this work were obtai
rom Cvs. Cobranc¸osa, Madural and Verdeal, and each
hese cultivars is considered a group. Therefore, the t
monovarietal oils” and “groups” are used with the sa
eaning. All oils belonging to one cultivar are within-gro
bservations, and differences between these oils are w
roup differences. On the other hand, observed differe
etween oil types, i.e., differences between the mean
alues of oils from each cultivar, are called the between-g
ifferences.

.1. Checking conformity with legislation

The sterol composition of 51 monovarietal olive o
rom three cultivars (group means, standard deviations
oefficients of variation) and of 27 commercial PDO o
ils (minimum, median and maximum values) is sho

n Table 1. It is seen that�-sitosterol,�5-avenasterol an
ampesterol are the most important sterols, with choles
tigmasterol, clerosterol and�7-stigmastenol being prese

n all samples but in lower amounts. Regarding the aut
icity indices established by the current legislation[33],
ll samples respect the established limits: cholestero
ampesterol percentages were below the established
f 0.5% and 4.0%, respectively; the percentages of stig

erol were lower than those of campesterol and the app
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�-sitosterol content was higher than the legal minimum of
93% in all olive oils analyzed. Besides, in all cases (data not
shown), total sterols were remarkably higher than the mini-
mum limit set by legislation (1000 mg/kg), ranging from 2003
to 2682 mg/kg. This is undoubtedly a good characteristic of
olive oils due to the great benefits of these compounds for
health, as referred before.

3.2. Univariate analysis

Fig. 1 shows means, extreme values and dispersion bars
for each monovarietal oil after standardization of all sterol
values to mean zero and unit variance, so that they can all
be displayed in the same graph, enabling a helpful visual-
ization of apparent differences and/or similarities between
groups. Minimum and maximum initial values for each group
are indicated in the graph, to help relating standardized to
initial values. According to this figure, it seems that some
differences between oil groups may exist, although definite
conclusions cannot be drawn due to the existence of appar-
ently high within-groups variations and to the absence of any
means of relating individual observations from one sterol to
the other.

Since differences in the composition of monovarietal oils
seem evident, ANOVAs were carried out for all sterols (sta-
tisticalRemark 2), and results are presented inTable 2. Each
A
s this
p l
i ular
s
v -
i t
d

d pos-
s H
h hat
c
o he
t . A
t e

T
C

S

C 271
C .477
S .560
C 796
� .797
� .576
A 168
� .022
ν

S
F

NOVA carried out for each sterol evaluates the H0 hypothe-
is “all oils have the same composition in what concerns
articular sterol”, against the alternative H1 “at least one oi

s different from the others in what concerns this partic
terol”. With the exception of apparent�-sistosterol, allFobs
alues were higher than the criticalFα=0.01 values, indicat
ng that for all the other sterols H0 is false, and significan
ifferences between oils were found.

Following significant ANOVAs, student’st-tests for the
ifference between two means were carried out for all
ible different pairs of groups, in order to evaluate the0
ypothesis “both olive oils have the same composition in w
oncerns this particular sterol”, against the alternative H1 “the
ils have different composition in terms of this sterol”. T

ests were done for all different pairs and for all sterols
obs value higher than the criticaltα=0.01 indicates that th

able 2
ondensed ANOVA results for all sterols under analysis

terols SStotal SSbetween SSwithin S2
between S2

within Fobs

holesterol 0.761 0.158 0.603 0.079 0.013 6.
ampesterol 6.446 5.162 1.284 2.581 0.027 96
tigmasterol 5.404 3.226 2.178 1.613 0.045 35
lerosterol 0.216 0.086 0.130 0.043 0.003 15.
-Sitosterol 203.563 39.603 163.960 19.802 3.416 5
5-Avenasterol 192.871 36.363 156.509 18.181 3.261 5
p. �-sitosterol 3.624 0.025 3.599 0.013 0.075 0.
7-Stigmastenol 0.612 0.359 0.253 0.180 0.005 34

50 2 48

S: sums of squares;S2: mean square;Fobs: observed F value;

[ν1=2;ν1=48;α=0.01] ≈ 5.08;ν: degrees of freedom;α: significance level.
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Fig. 1. Standardized sterol composition of the three monovarietal olive oils based on median and extreme values. Minimum and maximum values for each
sterol are presented in the bottom and top of the graph, respectively.

alternative hypothesis may be true.Table 3shows that Cv.
Madural is very different from the others, mainly in Campes-
terol, Stigmasterol and�7-Stigmastenol contents, as judged
by the magnitude oftobs values, and less in other sterols,
while Cv. Cobranc¸osa and Cv. Verdeal are different in all
but apparent�-sistosterol, although the differences seem less
pronounced. These results are in agreement withFig. 1.

3.3. The need for data simplification

Following conclusions from univariate analysis, it could
seem that given the significant differences observed, a mul-
tivariate model describing the main characteristics of the
monovarietal oils studied could be built up with no diffi-
culty. Just like in a common ANOVA where one compares

the between-group differences (bi) to the within-group dif-
ferences (wi) as anFobs= bi /wi (or Fobs= bwi

−1bi) for a
given sterolxi (statisticalRemark 2), in a multivariate sit-
uation one has to compare the differences between group
means (monovarietal oils) taken over all sterols (enclosed in
a matrixB), with the pooled differences between individual
oils and respective group means, also taken over all sterols
(enclosed in a matrixW). The desired multivariate compar-
ison is achieved by multiplyingB by the inverse ofW, i.e.,
calculatingW−1B, and the analogy with the univariate case
is evident. However, the necessary inversion of matrixW
puts serious problems that must be taken into consideration
mainly in two situations:

(1) If the sterols are highly correlated (collinear), if one or
more variables are determined as combinations of other

Table 3
tobs andtα=0.01 values to evaluate the significance of the observed differences between oils in relation to each sterol

Sterol Cobranc¸osa/Maduralt[ν=31;α=0.01]≈ 2.453 Cobranc¸osa/Verdealt[ν=34;α=0.01]≈ 2.441 Madural/Verdealt[ν=31;α=0.01]≈ 2.453

Cholesterol 2.22 3.61a 0.57
Campesterol 15.27a 3.45a 10.06a

Stigmasterol 8.31a 3.00a 5.49a

Clerosterol 0.44 5.79a 4.50a

�-Sitosterol 1.19 5.13a 2.85a

�5-Avenasterol 1.27 4.46a 2.82a

Ap. �-sitosterol 0.45 0.53 0.13
�7 a 3a a

nificant
-Stigmastenol 8.26 3.1
a Two oils and one sterol for which differences were found to be sig
5.24

.
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variables (as it is the case with apparent�-sitosterol), or if
there are groups with very low variance,W becomes ill-
conditioned and cannot be inverted (statisticalRemark
1, point b). As a consequence, applying some types of
multivariate analysis based on the within-groups varia-
tions directly to the initial data (e.g., canonical variates
analysis for model building, development of discriminant
functions for classification, etc.) cannot be done.

(2) In other circumstances matrix inversion is possible, but
the inversion ofW necessary to obtain matrixW−1

always overwhelms the importance of the less informa-
tive variables or structures, and the resulting models will
then lack good classification properties[12] (statistical
Remark 1, point a).

As a consequence of the above-mentioned problems, for
classification purposes, a data simplification must be carried
out, for which two major routes are available:

(1) If calculation ofW−1 is not possible, PCA can be used
as the data simplification method. Using PCA, the ini-
tial variables (xi) are not deleted, but are substituted
by an (usually) equal number of principal components
(pcs), ordered by decreasing order of importance. As
a component is a set of correlated variables, collinear-
ity problems are overcome by this methodology. It is
expected that important information coming from all
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simple approach may be useful: since principal components
are uncorrelated, eachpc represents an important aspect of
the available information, also called a data structure. There-
fore, in simple terms, PCA can be viewed as a test of the
hypothesis H0 “there are no special structures present in the
data, all variations observed being random”, against the alter-
native H1 “there is at least one important data structure”.
The total number of important structures is best evaluated by
cross-validation, which can be formulated in terms of the fol-
lowing question: “how many components must be retained
in order to model new, unseen data with the greatest pos-
sible accuracy?” This means that one is looking for the set
of information that guarantees the best classification abil-
ity of the model, and that using less or more components
than the cross-validated ones will impoverish the capacity
of the model to deal with new samples, which is an impor-
tant point in classification problems. As a matter of fact, the
cross-validation is a balance between those components that
can be used to carry out a parsimonious description of the
data (using e.g., Mardia et al.s concepts[10]) and that simul-
taneously display good prediction ability (using the Wold’s
concepts[9,29]).

Three components (three structures) were found to be
important by cross-validation, the main results being shown
in Table 4and Fig. 2a and b. These figures present clas-
sical plots ofpc versuspc (Fig. 2a) andpc versuspc
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variables are modelled in the firstpcs, while errors an
spurious information is accommodated in the lastpcs.
Cross-validation of the number of components, is
recommended method to indicate how many compon
must be retained to guarantee good model predicta
[29]. In this way, data is simplified to the most import
data structures.

2) In situations where the calculation ofW−1 is possible
some types of discriminant analysis (DA), e.g., stand
forward-selection or backward-elimination stepwise
can be a good choice for the selection of the most disc
inant variables, removing from the data all the varia
that do not contribute to discrimination or proper cla
fication[10,30]. This was used, e.g., to solve a prob
similar to the present case study, relative to the cla
cation of vegetable oils based on their fatty acid cont
[23]. Thus, in this way, data is simplified to the m
discriminant variables.

.4. Principal components analysis

In the present case study, due to collinearity probl
high correlations between different sterols) increased b
nclusion of a variable (apparent�-sitosterol) calculated a

combination of other sterols,W was ill-conditioned, it
eterminant was null, andW−1B could not be calculate
s a consequence, methods based onW−1B could not be
pplied directly, and a PCA was applied to the original
statisticalRemark 3). There are many possible ways to f
ulate hypothesis testing in PCA[10], but the following
1 2 1 3
Fig. 2b), with pc1 always represented as a horizontal
ndpc2 andpc3 represented as vertical lines. In the ov
ll, these two figures show around 80% of the total avail

nformation. Olive oils from Cvs. Cobranc¸osa and Verdea
verlap in relation topc1 andpc3, seeming different in rela
ion topc2, although with some degree of overlapping ex
hese two oils look very different from Cv. Madural oils
ider variation is observed for the latter, visible over all th
omponents. These results are in general agreement w
nivariate approaches. ObservingTable 4, which presents th
elationships between sterols and the first threepcs, either in
he form of PCA eigenvectors or correlations, it is evid
hat the majority of the information of sterols (around 80
s condensed in the three first principal components. It is
een that many sterols are related to more than onepc, which
akes it difficult to attribute a meaning to each data st

ure. This problem is sometimes overcome by factor rota
34], but such a technique was not used in this work s
t corresponds to a return to a few of the original varia
oosing the benefits of the data modulation effect carried
y PCA.

Nevertheless, through PCA data could be compre
rom eight sterols to three components, keeping the ma
f the initial information organized in a set of threepcs.

.5. MANOVA and Hotelling T2

After data compression to principal components,
mportant information is conveyed to other analysis in
rganized way. Now, the between- to within-groups va
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Table 4
General results from principal components analysis: matrixLa of important eigenvectors and�a, of the respective eigen values (absolute and relative), and
percentage of information explained by each component

Sterols First three PCA eignevectors and correlations Information inpc1 +pc2 +pc3

Eigenvectors Correlations

l1 l2 l3 λ
1/2
1 l1 λ

1/2
2 l2 λ

1/2
3 l3

Cholesterol −0.002 −0.472 0.372 −0.002 −0.702 0.463 0.707
Campesterol 0.453 −0.401 0.064 0.736 −0.598 0.081 0.906
Stigmasterol −0.423 0.328 0.261 −0.685 0.491 0.317 0.811
Clerosterol −0.307 −0.182 −0.381 −0.503 −0.285 −0.452 0.539
�-Sitosterol 0.450 0.416 0.081 0.728 0.620 0.097 0.924
�5-Avenasterol −0.445 −0.391 −0.168 −0.721 −0.583 −0.203 0.901
Ap. �-Sitosterol 0.049 0.221 −0.708 0.077 0.323 −0.871 0.869
�7-Stigmastenol −0.341 0.316 0.326 −0.551 0.482 0.398 0.694
Eigen values (λ) 2.627 2.237 1.496 2.627 2.237 1.496 Sum = 6.351
Eigen values (%) 32.8 27.9 18.7 32.8 27.9 18.7 79.38

tions can be calculated based on these principal components,
and all analyses based on a matrix of between- to within-
groups distances (any type ofW−1B) are now possible, the
difference being the fact that instead of the initial sterols, one
is now dealing withpcs (data structures). Two such cases,
MANOVA and Hotelling T2 tests [10,29], which are the
multivariate equivalents of ANOVA and student’st-tests, are
presented in this section, with the respective hypothesis test-
ing formulated in terms of the data structures defined by PCA.

MANOVA uses functions of theλ values (eigen values
of W−1B) to test the H0 hypothesis “there are no significant
differences in the composition of the three monovarietal oils”,
against the alternative H1 “there is at least one monovarietal
oil different from the others in at least one data structure”.
The commonλ functions (seeTable 5for details) are:

(i) The Rao’sR, based on the Wilks’ lambda statistic, which
is based on the product of unexplained variances. The
lower the amount of unexplained information, the lower
the Wilks’ lambda is, and the higher and more significant
the Rao’sR tends to be.

(ii) The Pillai’sV, based on the Pillai–Bartlett trace, which is
based on the sum of explained variances. The higher the
amount of explained information, the higher the trace is,
and the higher and more significant the Pillai’sV tends
to be.

(iii) The η2
mult that is based on the canonical correlations,

which are based on the explained variances. The higher
the amount of explained information, the higher the
canonical correlations are, reflecting a higher degree of
association of the data units.

c; v = Ve
Fig. 2. Plot of principal components. Symbols are: c = Cobran¸osa
 rdeal; m = Madural (a) Plot ofpc1 vs.pc2. (b) Plot ofpc1 vs.pc3.
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Table 5
Summary of multivariate measures and test statistics

Canonical variates dimensionvq Eigen valueλq % variance χ2
obs χ2

α=0.001 ν (1− λq)−1 λq(1 +λq)−1 Canonical correlationsηq

1 303.1 0.6564 118.2 22.46 6 0.110 0.890 0.943
2 105.3 0.2282 14.51 13.82 2 0.734 0.266 0.515
Wilks’lambda =� (1− λq)−1 0.0809 – –
Pillai–Bartlett trace =�[λq(1 +λq)−1] – 1.156 –
η2

mult – – 0.578

Multivariate test Value ApproximateFobs Degrees of freedom α

�1 �2

Rao’sR 5.7× 10−7 38.59 6 92 <0.001
Pillai’s V 2.969 21.44 6 94 <0.001

(iv) The Bartlett test, which is a direct transformation of the
eigen values and follows aχ2 distribution, indicating if
the magnitude of theλ value is significantly different
from zero.

In Table 5, it is seen that both eigen values are signif-
icantly different from zero (significantχ2

obs values) that
the unexplained variances tend to zero while the explained
variances tend to two, making Rao’sR and Pillai’s V
significant (as seen by the significantFobs values), and that
the η2

mult shows that 57.8% of the total variation may be
attributed to group membership. But with all these multi-
variate measures we can only conclude that “at least one oil
is different from the others in relation to at least one data
structure”.

In face of this significant MANOVA, one may wonder
which are the different groups. The HotellingT2 test is equiv-
alent to a student’st-test in univariate analysis and through
complicated algorithms evaluates the H0 hypothesis “both
monovarietal oils are equal”, against the alternative H1 “the
two oils are different in at least one data structure”. This
means that the test must be ran for all different pairs of oils.
Table 6shows the values of theT2 statistics and the corre-
spondingFobsvalues, as well as the criticalFα=0.001values. It
is seen that all oils are different from each other. One should
therefore conclude that “the compositions of the three olive
o

nd
H ist,
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t

3.6. PCA/CVA biplots

CVA can be stated in terms of the H0 hypothesis “groups
cannot be separated in the multivariate space”, against the
alternative H1 “differences between groups are significant in
at least one space dimension”[10]. It can therefore be seen as
a test for dimensionality, with the advantage that differences
along space dimensions can be easily plotted and “visually”
evaluated, and explained in terms of the underlying parame-
ters.

Being a statistical method based on a matrixW−1B of
between- to within-groups distances, CVA suffers from the
mathematical problems discussed above. However, being
carried out after data compression, using solely principal
componentspc1, pc2 andpc3 as the starting point, which
as discussed before are conveying the important information
(with the best prediction ability) in an organized way, doing
a CVA presents no problems (statisticalRemark 4), but inter-
pretation of the main outputs is increasingly difficult. It is
important to emphasize that interpretation of a CVA is never
straightforward, since CVA loadings are not restricted to lie
within definite boundaries, as happens e.g. with PCA. This
problem is increased in the present case because the previ-
ous PCA forces the canonical variates to be interpreted in
terms ofpcs, and ifpcs are reverted to the original sterols,
uncertainty towards interpretation always increases.
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ils differ in at least one data structure”.
The conclusions that can be drawn from MANOVA a

otelling T2 tests, although showing that differences ex
ay be faced as poor results, since no justification fo
bserved differences is provided, and further analysis

herefore necessary.

able 6
otellingT2 tests for the difference between oils from two cultivars

Cobranc¸osa

obranc¸osa 0.00
adural Fobs= 127.83;ν1 = 3; ν2 = 29
erdeal Fobs= 31.83;ν1 = 3; ν2 = 32

pper triangle: distances between group means (δ) and correspondingT2 st
nd respective degrees of freedom (ν1 andν2).
The biplots discussed below are a good way to overc
hese problems. It is reminded that the way biplot axes
roduced[24] and methods for overcoming practical pr

ems have already been discussed[21–23]. The importan
oint here is that PCA and CVA can be coupled togethe

Madural Verdeal

δ = 50.10;T2 = 409.9 δ = 11.27;T2 = 101.5
0.00 δ = 21.26;T2 = 174.0
Fobs= 54.25;ν1 = 3; ν2 = 29 0.00

. Lower triangle: observedF values (Fobs) corresponding to theT2 statistics
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Fig. 3. Predictive biplot constructed on the plane ofcv1 vs.cv2, after a com-
bined PCA/CVA. Symbols are: c and closed triangles = Cv. Cobranc¸osa;
v and closed circles = Cv. Verdeal; m and closed squares = Cv. Madu-
ral. Open squares are group means. Points over axes are the scale
markers. Scale values for the markers are shown in italic. Biplot axes
are: Aven =�5-avenasterol;�7-Stig =�7-stigmastenol; Stig = stigmasterol;
Camp = campesterol; B-sit =�-sitosterol. The axes for�5-avenasterol and
�-sitosterol overlapped, the scale for the former is shown on the right, for the
latter on the left. Arrows indicate the projection of Madural group average
over biplot axes to determine its initial values.

the construction of predictive biplots, which enables the inter-
pretation of final results in terms of the original sterols, while
interpolative biplots are a good way to classify new obser-
vations comparing favourably with discriminant functions,
the appropriate mathematics being presented in statistical
Remarks 5 and 6.

3.7. Predictive PCA/CVA biplot

Fig. 3shows the plot of canonical variatescv1 versuscv2.
Reminding that in this case there are only two canonical vari-
ates (equal to the number of groups minus 1), 100% of the
information conveyed by the principal components, which
correspond to roughly 80% of the original information, is
shown in this figure. It is seen that Cv. Madural oils (on the
right side of the graph) are different from the other two oils,
and that with this solution Cvs. Cobranc¸osa and Verdeal olive
oils (the former towards the left, the latter in the centre of the
graph) are not overlapping, which is a synonym of a good
discrimination.

The results from CVA are conventionally shown in graphs
very similar to the one presented inFig. 2 for PCA, with
horizontal and vertical axes representingcv1 andcv2, respec-
tively. However, as CVA was based on the PCA results, each
canonical variate would have to be interpreted in terms of
p me.

To overcome this problem a predictive biplot was constructed
(statisticalRemark 5). Axes representing the initial sterols,
called biplot axes, equipped with appropriate scales for mea-
surement, were drawn in the figure. Drawing orthogonal
projections from any point of interest to an axis represent-
ing a sterol determines the initial (percentage) level of the
sterol in that point. For example, drawing orthogonal lines
from the group mean of Cv. Madural to the sterol axes, as indi-
cated inFig. 3, the following approximate composition is read
from the graph:∼8.7% �5-avenasterol,∼2.52% campes-
terol, ∼0.27%�7-stigmastenol and∼1.39% stigmasterol.
Comparing these values with the ones presented inTable 1,
it becomes obvious that the approximations are really very
good. It is also seen that the model describing the differences
between monovarietal olive oils can be based directly in terms
of sterols and respective initial values, which is a very simple
and straightforward process.

Therefore, it is seen that campesterol,�7-stigmastenol
and stigmasterol are the main responsible for the observed
differences between oils from different cultivars, in agree-
ment with previous conclusions. It is also seen that these
sterols are correlated (running in similar directions).�5-
avenasterol and�-sitosterol, assuming a vertical position
in the graph, are mainly necessary to describe differences
within-groups. The axes for these two sterols are overlapped
(although running in opposite directions), reflecting a very
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t
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igh negative correlation, the relationship between cor
ion and collinearity being here quite evident.

.8. Interpolative PCA/CVA biplot

Once the model is defined, if one is interested in carr
ut an approximate classification of new samples, then
riminant functions are usually employed. The problem
hese functions is that they do not apply when new sam
re expected to be blends, i.e., mixtures of the previo
efined groups, as it happens in this case study with the
7 PDO olive oils. An approximate classification can be d
ith interpolative biplots (statisticalRemark 6), as shown in
ig. 4. In relation to the predictive biplot, the interpolat
iplot axes will assume different directions, and the m
itude of the scale intervals will also be changed, bec

nterpolation is doing exactly the inverse of prediction.
bserve the importance and uses of this type of biplots

ndividual monovarietal oils were removed (in order to p
uce a clearer graph) leaving only the markers represe

he group means. The scale values for stigmasterol ar
hown in the graph for clarity reasons, but can be ded
rom Fig. 3. Also, a set of three theoretical standard mixtu
f the three cultivars were calculated and used for va

ion purposes. These were s1 (30% c16 + 70% m7), s2
16, 30% m7) and s3 (63% c16, 27% m7 and 10% v8).
amples used for calculation, i.e., samples c1, m2 and v
dentified inFig. 5and inTable 7.

The PDO olive oils were projected mathematically in
lot, and two interpolations are done “by hand” for dem
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Fig. 4. Interpolative biplot constructed on the plane ofcv1 vs. cv2, after a
combined PCA/CVA. In relation toFig. 3, individual monovarietal oils were
removed and the PDO olive oils were added as open circles, all other features
remaining the same. Broken lines and arrows indicate the way vector sums
are done for interpolations.

stration purposes. One example is PDO olive oil N. 15
with the following main sterol composition: 3.86% campes-
terol, 0.67% stigmasterol, 83.09%�-sitosterol, 10.89%�5-
avenasterol and 0.21%�7-stigmastenol. Now, marking these

F
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s ayed in
T

values over the respective axes, one forms the vertices of a
geometric figure, and these vertices are linked to form the fig-
ure (broken lines inFig. 4). A vector is drawn from the origin
(where all axes meet) to the centre of the figure, and is then
multiplied by the number of sterols (which in this case is four,
because the stigmasterol level falls in the centre of the axes
not contributing to interpolation). The apex of the last, resul-
tant vector is the desired sample interpolation, which is seen
to be very accurate. Another example applied to the mean
of monovarietal Madural oils (whose values are presented in
Table 1) is also shown in the figure. Another very accurate
interpolation is obtained, and in this case the composition in
terms of five sterols was used. An interesting point to recall
is that collinearity, which is a problem if no data simplifica-
tion is applied, is crucial for an accurate interpolation of the
existing data, or any new observations.

Theoretical samples s1, s2 and s3, calculated on the basis
of samples c16, m7 and v8, were projected in thecv1 versus
cv2 plane, in the same way as it was done for PDO olive
oils, and the results are shown inFig. 5(and not inFig. 4for
clarity purposes). The positions of samples s1 and s2 show
that a mixture of two oils lies in a straight line in between the
two original oils (c16 and m7), in a position that reflects the
percentage incorporation of individual oils. Adding a third
oil in the mixture (as in s3) will displace the sample point
towards the third component of the mixture, also reflecting the
i and,
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ig. 5. Interpolative biplot constructed on the plane ofcv1 vs. cv2, after a
ombined PCA/CVA, for the evaluation of the of the method’s interpola
bility. The PDO olive oils are shown as grey open circles, monova
live oils c16, m7 and v8 are shown as closed circles, as well as theo
amples s1, s2 and s3. The compositions of these samples are displ

able 7. Dotted lines uniting samples are discussed in the text. 4 the
ncorporation percentage. Interpolation of sample s1 by h
n the basis of four sterols, demonstrates that the interpo
iplots can be faced as very precise.

These interpolative biplots are more flexible than the c
ification functions, since the position of new sample
elation to group means can be visualized. It is seen
everal PDO oils are mainly produced with Cv. Cobranc¸osa
hile others are showing increasing incorporations of
adural. This conclusion comes from the observation
DO olive oils are clustered around the Cv. Cobranc¸osa group
ean, and some are displaced towards the Cv. Madural,

nterpolated to a position somewhere along a line linking
v. Cobranc¸osa and Cv. Madural group means. Follow
onclusions from the last paragraph, as no PDO oils app
he Cv. Verdeal group mean, we conclude that this cultiv
sed in minor amounts.

.9. Statistical remarks

To our knowledge there is no software available in
arket for the automatic construction of predictive and in
olative biplots (which need interactive graphical facilitie
nd in many situations, existing software does not pro
satisfactory, automatic answer when several multiva

nalysis are coupled together. Consequently, the follo
tatistical remarks are provided as a starting point for t
nterested in writing their own algorithms.Remarks 1 an

are presented to help clarifying some points discuss
his paper. These two remarks, together withRemarks 3 an
, show the main steps for PCA and CVA, introducing
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Table 7
Sterol percentage composition of samples used for evaluation of the model’s interpolative ability

Sterol Initial sample values of unblended olive oils 30% c16 + 70% m7 70% c16 + 30% m7 63% c16 + 27% m7 + 10% v8

c16 m7 v8 s1 s2 s3

Cholesterol 0.520 0.550 0.230 0.541 0.529 0.499
Campesterol 3.040 2.630 3.040 2.753 2.917 2.929
Stigmasterol 0.600 1.470 1.090 1.209 0.861 0.884
Clerosterol 1.000 0.920 0.810 0.944 0.976 0.959
�-Sitosterol 86.470 83.010 88.720 84.048 85.432 85.761
�5-Avenasterol 8.250 11.150 5.950 10.280 9.120 8.803
Ap �-Sitosterol 95.730 95.080 95.470 95.275 95.535 95.529
�7-Stigmastenol 0.110 0.270 0.160 0.222 0.158 0.158

Cobranc¸osa c16, Madural m7 and Verdeal v8 are observed values, and samples s1, s2 and s3 were calculated as mixtures of the observed samples.

notation necessary to followRemarks 5 and 6on predictive
and interpolative biplots. The complete algorithms, written
in the Genstat language, can be supplied to interested readers
on request.

Remark 1. The majority of multivariate analyses that can
be used to compare groups of observations use matrixW−1B
which compares the differences between group means (in
matrixB) with the pooled differences between individual oils
and respective group means (enclosed in matrixW). For this
reasonB may be called the hypothesis matrix, whileW is
called the error matrix. To calculateW−1, one first calcu-
lates the spectral decompositionW =V�Vt, whereV is the
matrix of eigenvectors,vq [q= 1. . .Q], and� is the diago-
nal matrix of eigen values ordered by decreasing magnitude
(λ1 ≥ λ2 ≥ · · · ≥λQ), with Q equating to the number of vari-
ables or the number of groups minus 1, whatever is minimum.
W can then be expressed asW =V[λ1,λ2,. . .,λP]Vt, empha-
sizing the weighting role of the eigen values. Then, for matrix
inversion, it suffices to calculateW−1 =V�−1Vt. If matrix
W−1/2BW−1/2is used instead ofW−1B due to the advantage
of being symmetric,W−1/2 is calculated asV�−1/2Vt. Two
very important facts arise in relation to these matrix inver-
sions, which are emphasized in the following pointsa and
b:
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Remark 2. The elements of the main diagonal of matrix
W−1/2BW−1/2, which equal the number of variables, if
weighted by the respective degrees of freedom are the val-
uesFobs = bi/wi = w−1

i × bi used in ANOVA applied to
any variablexi . This fact also highlights the nature of matrix
W−1/2BW−1/2 (orW−1B).

Remark 3. PCA uses the total variation in matrixX, cal-
culated asT =XtX, and through its spectral decomposition
obtainsT =L�L , whereL is a matrix whose columns are
the eigenvectorslr and � is a diagonal matrix with eigen
valuesλr [r = 1. . .R], with R= min(P,N−1), so that in many
practical situations R = P. Keeping only the first “a” impor-
tant dimensions as found by cross-validation, i.e., reducing
L to La, then,XL a =Ya, with Ya representing the matrix
whose columns are the most important principal components
(pc1,pc2,. . .,pca).

Remark 4. CVA based on principal components was car-
ried out starting with matrixYa, calculating the between-
and within-groups variations as matricesB andW, followed
by calculation of the symmetric matrixW−1/2BW−1/2 and
its spectral decomposition asW−1/2BW−1/2 =U�Ut, and
obtaining normalized latent vectors asV =(N− G)1/2W−1U;
Then, CVA yields (i) canonical variatescvq [q= 1. . .Q] as
the columns of̄Z = ȲaV, (ii) projects the individual mono-
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Point a. It happens that in�−1 we are considering th
nverse of the eigen values, so that the order of their m
itudes isλ−1

1 ≤ λ−1
2 ≤ · · · ≤ λ−1

Q . If W−1 is expresse

sW−1 =V[(1/λ1),(1/λ2),. . .,(1/λP)]V′, it becomes immed
tely evident that the smaller an eigen value is, the hi

he influence it gets inW−1B. As a consequence, if the la
igenvectors and values are not deleted, the models inc
ate irrelevant information, becoming unstable and lac
ood classification properties, as discussed in detail
here[12].
Point b. In situations where collinearity is a problem,W

ecomes ill-conditioned, with a null determinant, the
igen values are null and some of the productsvq(λq

−1)vq
t

annot be calculated since they correspond to a divisio
ero. In these situationsW cannot be inverted, and statist
ased onW−1B simply cannot be applied.
arietal oils in the canonical dimensions, yielding varia
vq as the columns ofZ =YaV, and (iii) projects PDO oliv
ils in the canonical dimensions ascvPDO as the columns o
PDO=XPDOLaV.

emark5. The way biplot axes are produced[24] and meth
ds for overcoming practical problems have already
iscussed[21–23]. The important point here is the way
ouple both analysis and still be relating results to orig
ariables, which can be briefly described as follows.

Each predictive biplot axis is projected in the plot of co
ined PCA/CVAρ dimensions as

(�p − 1x̄p)s−1
p ] [et

p(La)(V−1
ρ )

t
]

et
p(La)(V−1

ρ )
t
(V−1

ρ )(La)tep]
−1
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An example of a vector� with four markers for�5-
avenasterol is� = [3,6,9,12], as it can be easily checked in
Figs. 3 and 4. Therefore, the unit vector is1= [1,1,1,1]. Vec-
tor ep indicates the position of the variable in the original
matrix: as�5-avenasterol was the sixth out of eight vari-
ables in the original data matrix, vector ise= [0,0,0,0,0,1,0,0],
i.e., with zeros everywhere except a 1 in thesixth position.
[(µp − 1x̄p)s−1

p ] is the standardization of the scale values
by the respective variable’s average and standard devia-
tion, respectivelyxp andsp. [et

p(La)(V−1
ρ )

t
] is the projection

of scale values through PCA to CVA planes, respectively
through matricesLa andVρ. The last part of the equation,

[et
p(La)(V−1

r )
t
(V−1

ρ )(La)tep]
−1

, is an adjustment factor nec-
essary for the correct back-projection from any sample point
to a variable’s axis. Projection of� originates points in the
biplot graphs (named scale markers), which when joined by
a straight line originate the variable’s axis.

Remark 6. To construct an interpolative biplot a simpler
equation is necessary, since it suffices to delete the right hand
side part the equation for prediction seen above, and to sub-
stituteLa(V−1

ρ )
t

by LaVρ (and it is seen that prediction is
just the multiplication of scale values by the transpose of
the inverse of the interpolation matrix). As consequence, the
interpolative biplot axes will assume different directions, and
t . The
fi

[

4

f the
p ible
t is of
a ietal
o del
d with
n eful-
n work
a ssi-
fi cial
m aim
t

this
w n of
m f a
c ata,
d lassi-
fi iable
t vari-
a very
u its

main structures, enabling the posterior application of mul-
tivariate discriminant techniques, like MANOVA, Hotelling
T2 tests and canonical variates analysis; (iii) the application
of a PCA followed by a CVA enabled to take into consider-
ation only the sterols that were important for discrimination
of monovarietal olive oils, as well as the exclusion of vari-
ables that, like apparent�-sitosterol, although important in
a legislation point of view, create problems in the statistical
analysis of results; (iv) the construction of predictive biplots
enabled relating directly the final analyses’ outputs to initial
variables and respective units of measurement, overcoming
problems that arise when different multivariate analysis are
coupled together; (v) the interpolative biplots demonstrated
a great accuracy, enabling to carry out classifications of PDO
olive oils using a model defined for monovarietal oils, thus
proving to be more flexible than conventional discriminant
functions.
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. Conclusions

In general terms it can be concluded that the aims o
resent work were fully achieved, since: (i) it was poss
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