
Program Comprehension for Domain-Specific
Languages?

Maria João Varanda Pereira1, Marjan Mernik2, Daniela da Cruz3, and Pedro
Rangel Henriques3

1 Polytechnic Institute of Bragança
Campus de Sta. Apolónia, Apartado 134 - 5301-857, Bragança, Portugal

mjoao@ipb.pt
2 University of Maribor

Faculty of Electrical Engineering and Computer Science
Smetanova ul. 17, 2000 Maribor, Slovenia

marjan.mernik@uni-mb.si
3 University of Minho - Department of Computer Science,

Campus de Gualtar, 4715-057, Braga, Portugal
{danieladacruz,prh}@di.uminho.pt

Abstract. In the past, we have been looking for program comprehen-
sion tools that are able to interconnect operational and behavioral views,
aiming at aiding the software analyst to relate problem and program do-
mains in order to reach a full understanding of software systems.
In this paper we are concerned with Program Comprehension issues ap-
plied to Domain Specific Languages (DSLs). We are now willing to un-
derstand how techniques and tools for the comprehension of traditional
programming languages fit in the understanding of DSLs. Being the lan-
guage tailored for the description of problems in a specific domain, we
believe that specific visualizations (at a higher abstraction level, closer
to the problem level) could and should be defined to enhance the com-
prehension of the descriptions in that particular domain.

KEYWORDS: program understanding, problem comprehension, DSLs.

1 Introduction

Domain-specific languages (DSLs) [1] are languages tailored to specific applica-
tion domain and offer to users more appropriate notations and abstractions. By
definition, DSLs are more expressive and are easier to use than general-purpose
languages (GPLs) for the domain in question, with corresponding gains in pro-
ductivity and reduced maintenance costs. Some specific goals of DSLs such as:

– to make programming more accessible to end-users,
? This work is supported by the grant for Slovenia-Portugal Cooperation in Science and

Technology, SLO-P-11/01-04: Program Comprehension for Domain-Specific Lan-
guages.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153402818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


– to improve correctness of the written programs, and
– to improve the program developing time.

seems to follow implicitly from the DSL definition. But, were these claims re-
ally proved in practice? All the above claims have common denominator in the
assertion that DSL programs are easier to comprehend.

Therefore, in the project Program Comprehension for DSLs we have the
following objectives:

– to measure how easier is to understand programs written in DSLs,
– to understand if existing program comprehension approaches and techniques

or even tools are applicable to DSLs, and
– to allow the enhancement of DSL program comprehension by enabling user-

centric visualization

Program Comprehension (PC) [2, 3] is a hard cognitive task that involves
the construction of a mental model of the program, trying to reconstruct the
thoughts of the original programmer. This process becomes easier when con-
crete representations are automatically produced, revealing different aspects of
the program structure and behavior. Hence, program visualization and program
animations are important aids in accomplishing that task.

We discuss in the paper how this generic assertion—that is the basis for PC
in the context of traditional programming languages—can be more adequately
exploited in the context of DSLs.

The paper is organized as follows. In Section 2, cognitive dimensions frame-
work is briefly discussed and applied to DSLs. Existing techniques and approaches
for program comprehension are briefly introduced in the Section 3, where we also
discuss their reuse to build specific tools to help in the understanding of DSL
programs. A description of user-centric visualization (the concept and a possi-
ble realization) follows in the Section 4. Finally, two examples that illustrate
our user-centric visualization idea are included in the Section 5. The paper is
concluded in the Section 6.

2 Understanding DSL Programs

Cognitive Theory provides some guidelines how to measure human’s ability to
program. Cognitive dimensions framework [4] provides cognitively-relevant as-
pects which can be used to determine how easy is to learn the language, devel-
oping a program, evolve a program, and comprehend a program. These cognitive
dimensions are:

– Closeness of mapping - languages should be task-specific,
– Viscosity - revisions should be painless,
– Hidden dependencies - the consequences of changes should be clear,
– Hard mental operations - no enigmatic is allowed,
– Imposed guess-ahead - no premature commitment,
– Secondary notation - allow to encompass additional information,



– Visibility - search trails should be short,
– Consistency - user expectations should not be broken,
– Diffusiness - language should not be too verbose,
– Error-proneness - notation should inherently catch mistakes avoiding errors,
– Progressive evaluation - get immediate feedback,
– Role expressiveness - see the relations among components clearly,
– Abstraction gradient - as simple as possible, but not simpler.

This cognitive dimensions framework has been used to assess the usability of
visual programming languages [4–6], while no such study exists for DSLs. Below
are some speculations which still need to be proved. This is one of the main goals
of the proposed project.

Closeness of mapping refers to how wide is the semantic gap between the
problem and solution space. It was shown in the study [7] that plenty of low-
level primitives, which are often purely syntactical, is one of the biggest cognitive
barriers for end-user programmers. In this regard DSLs should outperformed
GPLs. On the other hand, experienced programmer comprehends program not
just as a series of statements, but as a structure of components working together.
In other words, programmer needs to understand operations, data structures as
well as program structure. Therefore, it is important to study if end-users have
a problems with composing components together in the DSL programs. They
might understand primitives well, but have difficulties putting pieces together.

Viscosity refers to how much effort is needed to perform small changes. It is
somehow surprisingly that visual programming languages have high viscosity and
opposite is true for textual languages. This is due to spatial relationships in visual
languages where even small change require to rearrange several components.
Since, many DSLs are textual we expect that they will perform well on this
dimension, too.

Hidden dependencies refer to interaction and dependencies among program
components (short and long-range) that are not immediately visible. Changing
one part might have undesirable effect on the other parts of the program. Tex-
tual languages often suffer from severe hidden dependencies problems (e.g., side
effects, aliasing, ...). An open question is: can hidden dependencies be avoided in
DSLs by proper DSL design?

Hard mental operations refers to points in the program where programmer
need to think hard to understand it or even needs additional tools. Another open
questions deserving further investigation is: can DSL be free of such hard mental
operations?

Imposed guess-ahead refers to the situation where programmers are forced to
make a decision before they have the information they need. This often happened
when there are a lot of internal dependencies, when constraints on the ordering
exist, or when inappropriate notation is used. Textual languages typically suffer
from this problem on structure level, while visual languages on layout level.

Secondary notations refers to the ability that programmers can use other
mechanisms (e.g., grouping, positioning, commenting) to convey other important
information about the code (e.g., which part belong together, or are most likely



to be changed in the next version, or which part is thoroughly tested). Some
studies [4] show that textual languages allow a substantial amount of secondary
notation, while in visual languages are rather deficient.

Visibility refers to code which can be directly accessible without additional
cognitive work. The simple measure would be the number of steps to make to
given component visible. Textual languages usually have better visibility than
visual languages. This is true if programs are relatively short. However, it is
necessary to research if this is the case for DSLs.

Consistency refers to ability to infer the rest of the language from current
incomplete knowledge of the language. This much depends on proper language
design rather than on differences among GPLs and DSLs. Anyway, DSL has fewer
concepts and such language property might be easier to achieve.

Diffusiness refers to number of symbols which are needed to express the
meaning. By definition, DSLs are using existing domain notation which should
be at appropriate level of verbosity.

Error proneness refers to ability of a language to induce ’careless mistakes’.
GPLs, due to their extension and intrinsic complexity are usually error-prone.
We conjecture that this problem can be overcome in the context of DSLs due
to the narrow domain they are designed for; usually a DSL is much smaller and
simpler, so mistakes are harder to happen. This intuition also requires a deep
study to be proved.

Progressive evaluation refers to ability to test incomplete program. No general
statement can be made about this ability concerning DSLs as it depends com-
pletely on the domain and mainly on the philosophy underlying the language
design. So we can say that this is another open item for further investigation.

Role expressiveness refers to ability to see how each component of a program
relates to the whole. Again, we expect that high role expressiveness can be more
easily achieved in DSLs due to domain specifics and shorter programs.

Abstraction gradient refers to minimum and maximum level of abstraction.
DSLs might suffer from the problem that raising abstraction level to the point
where end-users are not able to handle since hidden dependency might be bigger.

Some of these cognitive dimensions (e.g., hidden dependencies, hard mental
operations, secondary notation, visibility, role expressiveness) can be enhanced
by DSL program visualization and program comprehension tools. This topic is
discussed in the rest of the paper.

3 Program Comprehension for DSL Programs

The second objective of the work under discussion is to identify the precise needs
in terms of information and visualization to comprehend DSL programs, in order
to know if the existing approaches and techniques for the comprehension of GLP
programs can be reused. Of course, this investigation will led the development of
aiding tools. Just as happens with program understanding tools, the tools for
Domain Specific Program Comprehension (DSPCTools) have to extract



and display static or dynamic data about a program to help the analyst to
understand its structure and behavior.

In the context of the research here described, the first task will be to identify
information that would be useful for comprehension and that must be extracted
from the source program. this stage is specific and should be worked out since
the beginning.

Then, we need to search for suitable approaches (methods and techniques)
to extract, and store that information. According to our background on program
comprehension, we think that existing PC techniques can be used for DSLs.

We have some experience with two different approaches: on one hand, we de-
veloped an animator that does not modify the source program and uses abstract
interpretation techniques, aiming at an easy and systematic adaptation to cope
with different programming languages; on the other hand, in the development
of other PC tools we have applied a technique called program instrumentation
that modifies the source code (inserting inspector functions) to be able to collect
dynamic information at runtime.

In the first case, the source program is not compiled and so: variables are not
converted into memory locations; algebraic operations are not transformed into
register operations involving value-transfers among memory addresses; control
flow into jumps to code addresses; and input/output into read/write operations
on files. Instead of that, we work with abstractions of program concerns—like
assignment, algebraic operations, conditions to control the execution flow, in-
put/output, etc.); then we interpret those abstractions (no assembly code is ex-
ecuted).

Concerning the second approach, we have expertise in weaving inspectors in
the source program to catch and record the functions that are actually called
during execution and their concrete parameters (or in a Web context, the pro-
gram units that are interpreted by the server, or the links really visited).

The development of both approaches—abstract interpretation and code ins-
trumentation—completely rely on traditional grammar-oriented techniques for
compiler writing and implementation. We use Translation Grammars or Attribute
Grammars to specify the tools, and resort to Compiler Generators to automatically
produce the code of the desired processors. As DSLs processing is also completely
supported on grammars technology we sustain the statement above that PC
techniques are reusable in that specific context.

Techniques to visualize and navigate over the information so far collected—
which constitutes the third step in this work—may also be inherited from generic
PC approaches. That intuition comes directly from the evidence above referred—
the same internal representation is usable for both contexts.

What should then be tuned specifically for each domain are the visual rep-
resentations to be employed by the visualizers in order to make the perception
easier and clearer. When conceiving visual representations to display the static
or dynamic data extracted from programs written in GLPs, it is impossible to
chose icons or drawings too expressive for the sake of generality; moreover and
given the so broad range of application areas, it is fairly difficult to find system-



atic and generic ways to graphically represent adequately the problem domain.
On the other way around, we hope that, working with DSLs, we can take total
profit of the inherent speciality, to look for expressive and adequate visual
representations for each domain.

Concerning the implementation of such strategy, we think that we can rely
upon the approach followed in Alma [8]—a system for program visualization and
animation that deals easily with different programming languages and allows
the construction of the most appropriate visualizations for each domain. The
purpose of this tool is to help the programmer to inspect data and control flow
for a given program (static view of the algorithm realized by the program —
visualization), and to understand its behavior (dynamic view of the algorithm
— animation).

The core of such tool is language independent; it is similar to a compiler’s
Back-End (BE) that takes as input an abstract representation—as intermediate
representation, between the FE and the BE, we use a Decorated Abstract Syn-
tax Tree (DAST)—and implements the visualizer and the animator components
in a systematic way. This is achieved by means of two rule bases, one for the
visualization of tree nodes, and another for tree rewriting.

To process a concrete programming language, Alma is specialized providing
a dedicated Front-End (FE) that converts the input programs into that internal
abstract representation.

Concerning the characteristics of each particular domain specific Language,
we are aware that we need to study as many cases as possible to understand if the
specific language concepts and constructions require the definition and inclusion
in our internal representation of new abstraction, or even the adaptation of their
operational semantics. However for all the cases worked out until know, we could
survive with the abstractions provided by the original DAST.

In next section, we are going to explain how to apply ALMA’s approach in
the implementation of an user-centric program comprehension tool.

4 User-centric Program Comprehension Tools

As told above, there are many different DSLs (focused on different targets and
following different styles). DSLs can have a more procedural (imperative) style or
follow a more declarative one. In the procedural case, those languages describe
data and operations over data; we can consider them very similar to the general
purpose programming languages. The declarative DSLs usually describe high
level specifications, data or activity models, etc.; in this case, it makes no sense
at all to analyze the descriptions written in that DSL from an operational point
of view, because typically they do not have an execution model associated.

It means that the direct influence of the language itself in the comprehension
process needs further investigation. In this section we will discuss how to explore
the domain specific property to enhance the visual representation to be used by
comprehension tools.



As previously stated, we believe that the semantic gap between the prob-
lem and the program domains is much smaller in DSLs context. The program
and the problem comprehension can be achieved easily because it is easier to
visualize a conceptual mapping between both. At the problem domain level, the
visualizations deeply depend on that domain. The big challenge in this direction
relies precisely on the fact that a DSL have special characteristics that implies a
deeper study about the kind of visualizations that are more appropriate for each
case.

So, it would be also useful to construct visualization tools where end-users,
not language designer or developer, can easily specify their own visualization—
problem and person specific.

In this section we propose something that can be done in this direction; to
be concrete, we will now take into account our visualization/animation system
Alma, above referred. We plan to build a graphical editor two fold: On one
hand it will provide to the end-user the chance to associate to each node of the
DAST a geometric figure (a square, circle, etc), or an image. One the other hand
we provide to the end-user the chance to associate to each node an external
(end-user defined) drawing function. This will permit to build specific drawings
parameterized to fit well in each particular DSL. The external function will be
called using the attributes available in the DAST nodes to tune the picture to
each concrete situation, as will be illustrated in the next Section for the Robot
example (see 5.1)—a parameterized external function is necessary to show the
Robot movements in the room.

We can include that functionality, keeping the tree visualizer engine generic
and unchanged; also the animator system, based on a tree rewriting engine, will
be kept unchanged.

This proposal does not seem to be difficult to implement and will grant
to the visualizer/animator system, customized to a concrete DSL, an effective
improvement and a better quality as an aiding tool to understand specification-
s/programs written in that specific language. We strongly believe that this idea
would be an actual contribution in this field.

5 Some Examples of DSPC enhancement

In this section, and aiming to illustrate the ideas proposed, we introduce two
DSLs and some show the visualizations that should be generated by the respective
DSPCTools.

5.1 Controlling a Robot, a first example of DSL

In this section we take, as an example, a program that controls the movements
of a cleaning robot. Let us assume that Roby is a small robot whose mission is
to clean a rectangular area; a grid is used for quick referencing the robot position
(line 0 is the top, and column 0 is the leftmost). Roby can move straight-ahead



up, down, right and left, a given number of steps (one step corresponds to one
grid square).

To control Roby, we use a simple language that basically allows us to choose
the direction and length of each straight movement to, sequentially, compose
its activity. The program below is written in that robot control language; after
setting the start position as the left upper corner (the square with coordinates
0,0), we define its cleaning path as 3 steps down, 7 steps right, 2 steps up, and
4 more steps left, before stopping:

xi= 0

yi= 0

DOWN 3

RIGHT 7

UP 2

LEFT 4

Aiming to make a clear distinction between the abstraction levels of the opera-
tional and behavioral views, and willing to clarify how each one contributes for
the program understanding, the purpose of this example is to produce from the
same input program two different views.

Fig. 1. Robot Operational Animation

Fig. 1 is a screen-shot obtained after the execution of the last statement in
the program; it corresponds to the the complete animation scenario, exhibiting
the final state. This is an operational view.

Other possible animation is shown in Fig. 2; notice that in this case only
the last visualization is shown (the path, or the intermediate robot positions
are kept). This last one is more abstract and shows the effect produced by the
program over the robot.

To produce this behavioral view, the visualization doesn’t show, any more,
variables and operations; instead, they are now concerned with the display of
the external objects controlled by the program.



Fig. 2. Robot Animation

The interesting, and maybe difficult, point is to understand what are the
relevant attributes. In this example, it is clear that what we need to draw the
robot in each cleaning position is its coordinates.

The robot example is a typical case where it is more useful to inspect the ob-
ject evolution (behavioral view) than the program behind it (operational view).
However both play an important role in program comprehension process. In our
opinion, the visualization of these two views make possible the relationship be-
tween the two different domains and follows Brooks theory [2] of a complete
mental representation of a program.

5.2 FDL - Feature Description Language

As a second example, we chose FDL, a Feature Description Language introduced
in [9] aiming at the description of objects in knowledge domains. The following
sentence is an example of a FDL description:

car: all(carBody,Transmission,Engine,HorsePower, pullsTrailer?)

Transmission: one_of (automatic, manual)

Engine: more_of (electric, gasoline )

HorsePower: one_of (lowPower, mediumPower, highPower)

The specification above describes a car in terms of its parts. A car is composed
by other features. Each of these features can be atomic or composite. This DSL
has a set of operators: all,one of,more of and ? for optional features. This FDL
specification will be translated to an internal representation. Then, a set of vi-
sualization rules will be applied in order to generate dual views.

Fig. 3 shows the operational view. This kind of view can be constructed using
visualization rules associated to lower level nodes of the DAST.
The behavioral view is shown the Fig. 4. Here we use a visualization rule asso-
ciated with the root of the syntax tree. The main idea is to represent the object
defined by the specification visualizing its behavior and checking the attribute
values in the identifier table. In this case, a FDL diagram can be generated
emphasizing the relationship between entities.



Fig. 3. FDL operational view

Fig. 4. FDL diagram



6 Conclusion

In this paper we have introduced the three main directions of our new bilateral
(Portugal/Slovenia) project for joint research.

We started the paper discussing the definition of Domain Specific Language
(DSL), and analyzing its actual impact. We showed that this concept implies that
a DSL program should be more natural and clearer than the equivalent solution
(to solve the same problem) expressed in a General Purpose Language (GPL).
This perspective leads directly to our first concern in this project: to understand
and measure how easy is to understand programs written in DSLs; this task,
similar to the usability assessment, is not simple but it should be done. We will
do that study under controlled and non-controlled programming environments,
using direct observation, and questionnaires to measure the user comprehension
of DSL and GPL descriptions (this requires the preparation, application and
analysis of appropriate inquiries).

After that, we remembered the three main components of a program com-
prehension tool, and we have affirmed that standard approaches to deal of GPLs
could be reused for DSLs. Our second goal in this project is precisely concerned
with proving the statement above.

The third direction of our research will focus in the enhancement of DSL
program comprehension tools, by enabling user-centric visualization. We made
a concrete proposal to improve the program understanding tool Alma, a visual-
ization/animation system, with extra functionality to allow the user to specify
for each particular DSL the visual representation he wants to apply .

References

1. Mernik, M., Heering, J., Sloane, T.: When and how to develop domain-specific
languages. ACM Computing Surveys 37(4) (2005) 316 – 344

2. Brooks, R.: Using a behavioral theory of program comprehension in software engi-
neering. In: ICSE ’78: Proceedings of the 3rd international conference on Software
engineering, Piscataway, NJ, USA, IEEE Press (1978) 196–201

3. Storey, M.A.: Theories, methods and tools in program comprehension: Past
”

present and future. In: 13th International Workshop on Program Comprehension
(IPWC’05). (2005)

4. Green, T., M.Petre: Usability analysis of visual programming environments: a ’cog-
nitive dimensions’ framework. Journal of Visual Languages and Computing 7(2)
(1996) 131–174

5. Yang, S., Burnett, M., DeKoven, E., Zloof, M.: Representation design benchmarks: a
design-time aid for vpl navigable static representations. Journal of Visual Languages
and Computing 8(5/6) (1997) 563–599

6. Burnett, M.: Visual programming. Encyclopedia of Electrical and Electronics En-
gineering (1999)

7. Lewis, C., Olson, G.: Can principles of cognition lower the barriers to programming?
In: 2nd workshop on Empirical Studies of Programmers. (1987)



8. da Cruz, D., Henriques, P.R., Pereira, M.J.V.: Constructing program animations
using a pattern-based approach. ComSIS – Computer Science an Information Sys-
tems Journal, Special Issue on Advances in Programming Languages 4(2) (Dec 2007)
97–114 ISSN: 1820-0214.

9. van Deursen, A., Klint, P.: Domain-specific language design requires feature de-
scriptions (2002)


