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Abstract

In this paper, we present a model for a cluster oriented Dis-
tributed Hash Table (DHT). It introducessoftware nodes,
virtual nodesandpartitions as high level entities that, in
conjunction with the definition of a certain number of in-
variants, provide for the balancement of a DHT across a set
of heterogeneous cluster nodes. The model has the follow-
ing major features:a) the share of the hash table handled by
each cluster node is a function of itsenrollment levelin the
DHT; b) the enrollment level of a cluster node in the DHT
may change dynamically;c) cluster nodes are allowed to
dynamically join or leave the DHT. A preliminary evalua-
tion proved that the quality of the balancement of partitions
of the hash table across the cluster, measured by the stan-
dard deviation with relation to the ideal average, surpass
the one achieved by using another well known approach.

1 Introduction

Certain classes of applications often need to deal with very
large amounts of data. As such, conventional, centralized
data structures are no longer adequate, once a single ma-
chine may not be able to accommodate all the required data.
One solution to this problem is to distribute the data across
the nodes of a cluster. The distribution of data may provide
for significant improvements in the data access throughput,
derived from parallel and concurrent accesses to the data.

Complex, dynamical applications may also require
the existence at the same time of several Distributed Data
Structures (DDSs), each one dedicated to a specific domain
of applicability. If we use a cluster to manage such com-
plexity, we will finish having every node of a cluster run-
ning multiple applications, supported by several DDSs.

In this context, an issue often disregarded when devel-
oping cluster oriented DDSs is the possible heterogeneity
of the cluster nodes. Another issue is related to the dy-
namism of applications running in a cluster, where nodes
may be dedicated to several different tasks, with variable
demands during its lifetime.

In this paper, we present a model for a cluster ori-
ented Distributed Hash Table (DHT). The major features of
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our approach are:a) the share of the hash table handled by
each cluster node depends on the node’s capabilities and on
the amount of resources bound to the DHT;b) each clus-
ter node is allowed to dynamically change the amount of
resources engaged in the DHT;c) cluster nodes may dy-
namically join or leave the DHT.

In what follows, section 2 characterizes the problem,
section 3 introduces our model, section 4 describes the as-
signment of partitions to cluster nodes, section 5 presents
a preliminary evaluation of the model, section 6 provides
a comparison with related work, section 7 discusses some
assumptions and limitations and section 8 concludes.

2 Characterization of the problem

The dynamic balancement of a hash table across a set of
cluster nodes is a complex problem, once it comprises
many different and interrelated issues. As such, we chose
to concentrate our efforts in a small (yet relevant) subset of
those issues, and then establish a systematic pathway for
the search of solutions. This view is conveyed by Table 1.

problem diversity of usage policy access pattern and
class cluster nodes of cluster nodes storage utilization

none some exclusive shared uniform diverse

1 × × ×

2 × × ×

3 × × ×

4 × × ×

5 × × ×

6 × × ×

7 × × ×

8 × × ×

Table 1: Characterization of the DHT balancing problem.

Table 1 classifies our dynamic balancing problem ac-
cordingly with:a) the diversity of cluster nodes enrolled in
the DHT;b) the usage policy of those cluster nodes;c) the
access pattern to data and the storage utilization.

Typically, the diversity of nodes in a cluster is low:
clusters are more often made of homogeneous nodes,
which makes their administration easier. There are, how-
ever, valid reasons for a cluster to have some heterogeneity:
a) economical factors may dictate the coexistence of ma-
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chines from different hardware generations;b) some tasks
may require more specialized nodes.

In a cluster, nodes may run a single user task at a time,
or they may run several concurrent user tasks. To maximize
the cluster usage ratio and minimize the response time of
tasks, a shared usage policy may be desirable over an ex-
clusive one. However, a shared policy requires more so-
phisticated mechanisms to globally balance the load in face
of several user tasks, each one with specific requirements.

Finally, in a DHT, the access pattern to data records
and the storage consumed by each record are not neces-
sarily uniform: there may be situations where some data
records are more popular; it is also possible that some data
records consume much more/less storage space than the av-
erage. These situations may be transient or permanent. In
the later case, imbalances may arise if such “anomalies”
are not evenly spread.

In Table 1, each problem class requires a solution with
a different complexity level. In general, higher level classes
require more complex solutions. The model we present in
this paper deals with both classes 1 and 2, and paves the
way for the investigation of the remaining problem classes.

3 The basic model

In our model, a DHT is organized as a set ofsoftware nodes
(or simplysnodes), which are software instances that man-
age subsets of the hash table.

Although problem classes 1 and 2 prevent cluster
nodes to support more than one DHT at a time, we have in-
corporated in the model some of the mechanisms that will
be necessary to do so. Specifically, the naming convention
for snodes is compatible with a cluster node hosting sev-
eral snodes, each one relative to a different DHT: a snode
is uniquely identified in the cluster by a 32 bit integer.

Figure 1 shows the internal organization of a snode.

...

snode s

vnode 1

...

vnode v

partition distribution record

partition 1

...

partition p

user datalimits

Figure 1: Anatomy of a typical snode.

3.1 Vnodes

Each snode may host severalvirtual nodes(or simply vn-
odes), which are sets ofpartitionsof the DHT. The quantity

of vnodes per snode may vary dynamically. This feature al-
lows for the definition of theenrollment levelof a snode as
the number of vnodes it hosts at a specific time.

The idea behind the definition of vnodes comes from
a) the need to distribute the hash table accordingly with the
capabilities (CPU power, main memory, disk storage and
network bandwidth) of each cluster node andb) the need to
support the dynamic adjustment of the amount of resources
that each cluster node dedicates to the DHT.

If nodes are homogeneous (both at the hardware and
operating system level), we may define the enrollment level
of each node in a DHT by the percentage/amount of re-
sources bound to the DHT.

If nodes are heterogeneous, the definition of the en-
rollment level should be complemented by taking into ac-
count the relative capabilities of each node. One way to as-
sess them is to execute a benchmark, on one node of each
kind, before running the DHT. The benchmark tool selected
should be oriented to the way in which data records are go-
ing to be locally stored (e.g., in main memory and/or in the
file system, in a database, etc.).

Every vnode is a local snode entity, named by an inte-
ger which corresponds to the sequence order of its creation
(e.g., vnodev-1 was created before vnodev). In the global
context of the cluster, in order to identify a specific vnode,
we use a canonical/fully qualified name, that follows the
formatsnode id.vnode id. With respect to Figure 1, the
canonical name of vnodev is s.v.

3.2 Partitions

A partition is a contiguous subset of the range of the hash
function, with specific left and rightlimits. There may be
user databound to each partition: user data with a specific
key is bound to a partition if by feeding the hash function
with the key the outcome is an hash index that belongs to
the partition.

A partition is named, in the local context of its vnode,
by an integer which corresponds to the order in which the
partition was created (e.g., partitionp-1was created before
partitionp). In the global context of the cluster, a partition
is named using a canonical/fully qualified name, following
the generic formatsnode id.vnode id.partition id.
In Figure 1,s.v.p is the canonical name of partitionp.

3.3 Partition Distribution Record

Every snode hosts a copy of a globalpartition distribution
record (PDR) which is a table used to dynamically reg-
istry the number of partitions of each one of the vnodes
created across all the nodes of the cluster enrolled in a spe-
cific DHT. Every entrance of the table follows the format
(snode id.vnode id, nparts).

The PDR table is used during the creation/deletion of
vnodes, to assist on the process of deciding which vnodes



will loose/gain partitions, with the objective of keeping the
hash table balanced across all the vnodes.

3.4 Invariants

Let h be a hash function of rangeRh = {i ∈ N0 : 0 ≤
i < 2Bh}, whereBh is the (fixed) number of bits of any
hash indexi. Also, letPmin be a (fixed) power of 2. In our
model, the following invariants must hold:

1. Rh is fully divided in mutually exclusive (non–
overlapping) partitions;

2. the overall number of partitions,P , is always a power
of 2;

3. every partition has the same sizeS = 2Bh/P ;

4. for any vnodev, its number of partitions,Pv, is
bounded:Pmin ≤ Pv ≤ Pmax andPmax = 2.Pmin;

5. when the overall number of vnodes,V , is a power of
2, any vnode will havePmin partitions.

4 Assignment of partitions to vnodes

The main objective of the model is to perfectly balance the
distribution of the partitions of a DHT, that conforms to the
defined invariants, across all the nodes of the cluster en-
rolled in the DHT. As so, it provides fora) coarse–grain
balancing, by letting snodes increase or decrease its num-
ber of vnodes, and forb) fine–grain balancing, by letting
the number of partitions bound to each vnode to fluctuate.
This approach is effective only during the creation or dele-
tion of vnodes.

The creation/deletion of vnodes are synchronization
points (or barriers) that have to be supported by a synchro-
nization protocol that minimizes the underlying communi-
cation overhead. This paper does not address that issue.

Also, due to space constraints we only present the
mechanism for the creation of vnodes. Details about the
deletion of vnodes may be found in [1].

4.1 Quality of the assignment

We useσ(Pv , P v), the standard deviation of all values of
Pv from the (ideal) averageP v, to measure the quality of
the assignment of partitions to vnodes.

By taking this approach, the assignment of partitions
to vnodes should minimizeσ(Pv , P v). To achieve this ob-
jective, it is necessary to carefully select the vnodes that
will handover partitions (and in what number) whenever a
new vnode is created, or which vnodes will receive parti-
tions (and in what number) from a deleted vnode.

4.2 Creation of a single vnode

A snode starts the creation of a vnode by issuing acreation
requestto the totality of the snodes of the DHT. The re-
quest will be completed only when a consensus about the
contents of the PDR in all snodes is attained and all the
necessary transfer of partitions have been performed.

4.2.1 Reassignment of partitions

There is a common algorithm executed by all snodes to
handle the creation of a new vnode that acts as follows.

First, a new pair(snode id.vnode id, nparts)

is inserted in the (local) PDR table; the 1st field identifies
the new vnode using its canonical name and thenparts

field is initially set to zero. Second, the value ofσ(Pv , P v)
is computed. Third, the entrances of the PDR table are
sorted by thenparts field to find the vnode (thevictim vn-
ode) having the greater number of partitions. Fourth, when
the value ofσ(Pv , P v) may decrease by moving one par-
tition from the victim vnode to the new vnode, avictim
partition belonging to the victim vnode is chosen and its
transfer to the new vnode is scheduled. The third and fourth
steps are repeated untilσ(Pv, P v) no longer decreases by
removing partitions from the victim vnode.

At the third step, if more than one vnode may be
elected as a victim, the correspondent entries in the PDR
are resorted using thesnode id component of the vnode
identifiers, to find the one that has the minimum value for
snode id. Afterward, if several entries having the same
minimum value forsnode id still exist, those entries are
further reordered by thevnode id component of the vnode
identifiers. The victim vnode will then be the one with the
minimum value forvnode id.

For instance, after the third step, the original PDR in
Table 2.a) will result on the PDR presented in Table 2.b),
leading to the selection ofa.1 as the victim vnode.

snodeid.vnodeid nparts snodeid.vnodeid nparts
a.1 12 a.1 12
a.2 8 a.3 12
b.1 10 b.3 12
a.3 12 b.1 10
b.2 10 b.2 10
b.3 12 a.2 8

a) PDR unsorted b) PDR sorted

Table 2: The same PDR, a) unsorted and then b) sorted.

To select the victim partition, the convention is to
choose the one (pertaining to the victim vnode parti-
tion set) having the greater value currently used in the
partition id component of its canonical name. That
value belongs to the range{Pmin + 1, ..., Pmax}. The
reason for this resides on the need to conform to invariant
4, which states that a vnode must have at leastPmin parti-
tions; one way to ensure that the invariant is respected is to
handover partitions only outside the range{P1, ...,Pmin}.



For instance, if the vnodea.1 has partitionsa.1.1,
a.1.2, a.1.3 anda.1.4 (andPmin = 2), it will first
handovera.1.4 and subsequentlya.1.3.

The identification of the victim partition will change
to reflect its new snode and vnode hosts, as well as the cre-
ation order relative to the other partitions of the new vnode.

For instance, ifa.2.3 becomes the 6th partition of
vnodeb.5, the partition would be renamed tob.5.6.

The reassignment algorithm is deterministic and is ex-
ecuted by all snodes enrolled in a DHT. Thus, it is possible
to identify, at each snode,a) the vnodes that will loose par-
titions, b) the partitions that will be transfered andc) its
future name in the newly created vnodes.

4.3 Creation of several vnodes

As a result of the consecutive creation of vnodes, the num-
ber of partitions contained at each vnode evolves following
a pattern imposed by the invariants of the model and by the
use of the reassignment algorithm, previously presented.

To conform to invariant 5, whenV (the overall num-
ber of vnodes) is a power of 2, all vnodes must havePmin

partitions, ensuring thatRh is perfectly balanced across all
the vnodes. In this situation, when a new vnode is created,
some of the older vnodes will have to handover some of
its partitions, accordingly to the assignment algorithm. Be-
cause invariant 4 does not allowPv < Pmin, all the older
vnodes need to binary split their own partitions, doubling
its number toPv = Pmax, which is the maximum number
of partitions per vnode allowed by the invariant.

As more vnodes are created, the number of partitions
of the existing vnodes will decrease towardPmin. At some
moment, the overall number of vnodes,V , will double,
reaching the next power of 2. At that point, for any vn-
odev, the number of partitions will be exactlyPv = Pmin

andRh will be again perfectly balanced across all vnodes.

4.3.1 Example

Table 3 shows the evolution of the number of partitions
of each vnode, and which partition transfers take place,
in a scenario where 4 vnodes are consecutively created,
with Pmin = 4. We choose to locate all vnodes in the
same snode and so it suffices to name vnodes only by the
vnode id component of the canonical name. The values
of Pv enclosed in a circle relate to victim vnodes. Par-
tition transfers are denoted byold canonical name →
new canonical name.

When vnode1 is created,V = 1 (which is a power
of 2), and soP = P1 = Pmin = 4 equal sized, non-
overlapping, partitions ofRh (1.1, ..., 1.4); the PDR is
initially set to{(1,4)}.

When vnode2 is created, vnode1 must hand it over
some partitions; first, however, invariant 4 mandates that
vnode 1 binary splits its partitions, after whichP1 =
Pmax = 8 partitions (1.1, ..., 1.8); then, the PDR is up-

creation event P1 P2 P3 P4 partition transfer
vnode 1 4

8 0
➆ 1 1.8→ 2.1

vnode 2 ➅ 2 1.7→ 2.2
➄ 3 1.6→ 2.3
➃ 4 1.5→ 2.4
8 8 0
➆ 8 1 1.8→ 3.1

vnode 3 7 ➆ 2 2.8→ 3.2
➅ 7 3 1.7→ 3.3
6 ➅ 4 2.7→ 3.4
➄ 6 5 1.6→ 3.5
5 6 5 0
5 ➄ 5 1 2.6→ 4.1

vnode 4 ➃ 5 5 2 1.5→ 4.2
4 ➃ 5 3 2.5→ 4.3
4 4 ➃ 4 3.5→ 4.4

Table 3: Assignment of partitions when creating 4 vnodes.

dated to{(1,8);(2,0)} and the assignment algorithm is
applied, making vnode1 to transfer 4 partitions to vnode
2 (1.8 → 2.1, ..., 1.5 → 2.4); the choice of the victim
partitions and their renaming follow the conventions previ-
ously established; the PDR becomes{(1,4);(2,4)}.

When vnode3 is created, it will receive partitions
from vnode1 and/or vnode2; becauseP1 = P2 = Pmin =
4, invariant 4 mandates that both vnodes1 and2 binary
split their partitions, after whichP1 = P2 = Pmax = 8
partitions (1.1, ..., 1.8, 2.1, ..., 2.8); then, the PDR is
updated to{(1,8);(2,8);(3,0)} and the reassignment
of partitions takes place as shown (1.8→ 3.1, ...,1.6→
3.5); the PDR becomes{(1,5);(2,6);(3,5)}.

Finally, when vnode4 is created, there are enough
partitions for it, among the other vnodes, without the
need for any partition split; the PDR is updated to
{(1,5);(2,6);(3,5);(4,0)} and partitions are reas-
signed (2.6 → 4.1, ...,3.5 → 4.4); in the end, the PDR
becomes{(1,4);(2,4);(3,4);(4,4)}; onceV = 4
(a power of 2), a new point of perfect equilibrium (where
Pv = Pmin, for any vnodev) is reached.

5 Evaluation

We now present results from a preliminary evaluation of
the algorithm used by our model to assign partitions to vn-
odes, under the following conditions:a) the overall number
of vnodes,V , grows from 1 to 1024;b) there is only one
vnode per snode;c) the minimum number of partitions per
vnode,Pmin, is set to 32. We present two graphics per
each parameter evaluated. The second graphic zooms the
first and the zoom level varies as convenient.

5.1 Average number of partitions per vnode

Figure 2 shows the evolution of the average number of par-
titions per vnode,P v = P/V , whereP is the overall num-
ber of partitions andV is the overall number of vnodes.
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Figure 2: Evolution ofP v

As a consequence of invariant 4,Pmin ≤ P v ≤
Pmax. To understand the way in whichP v evolves, we
recall thatP doubles every timeV grows and the previous
value ofV was a power of 2 (only this way it is possible to
ensure a minimum ofPmin partitions per vnode, in accor-
dance with invariant 4).

WhenV = 1 (a power of 2),P = Pmin = 32 and
P v = 32/1 = 32; then, whenV increases to2, we leave
a power of 2 behind and soP doubles to64, meaning that
P v = 64/2 = 32; whenV increases toV = 3, we also
leave a power of 2 behind and soP doubles to128, mean-
ing that P v = 128/3 = 42.6(6); when V increases to
V = 4, we do not leave a power of 2 behind and soP
remains128, meaning thatP v = 128/4 = 32; whenV
increases toV = 5, we leave a power of 2 behind and soP
doubles to256, meaning thatP v = 256/5 = 51.2.

The evolution pattern above repeats, making the max-
imum value ofP v to converge towardPmax. To under-
stand why this happens, supposeV ′ is a power of 2; the
creation of one more vnode makes all previous vnodes
to double their number of partitions toPmax; as such,
P v = P/V = (V ′.Pmax)/(V ′ + 1), which turns closer
to Pmax asV ′ increases.

5.2 Quality of the partition assignment

The quality of the partition assignment is measured by the
standard deviationσ(Pv, P v). This value depends not only
on the actual number of vnodes,V , but also on the min-

imum number of partitions per vnode,Pmin, constant for
the lifetime of the DHT.

In order to also assess the influence ofPmin on the
quality of the partition assignment, we madePmin assume
several values and computedσ(Pv , P v) accordingly. How-
ever, we choose to plot (in percentage) therelativestandard
deviation,σ(Pv, P v) = σ(Pv, P v)/P v, once this metric
makes comparisons easier.

We expected the quality of the partition distribution
to improve, by increasingPmin (always trough powers of
2): higher values forPmin translate in more, smaller par-
titions per vnode; this allows for a more fine grained par-
tition distribution, thus with smaller deviations of eachPv

from the ideal averageP v. The reverse should also hold:
if Pmin decreases, there will be less, bigger partitions and
so deviations from the average should grow. The predicted
behavior may be observed in Figure 3, wherePmin varies
through the values{16, 32, 64}.
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Figure 3: Evolution ofσ(Pv, P v).

More precisely: doublingPmin makes the maximum
value ofσ(Pv, P v) to halve; halvingPmin makes the max-
imum value ofσ(Pv, P v) to double. With regard to each
curve, the minimum is reached wheneverV is a power of
2, meaning each node has exactlyPmin partitions; adding
more vnodes, untilV doubles, makesσ(Pv, P v) to grow,
following an oscillatory pattern, which becomes more reg-
ular with more nodes.



5.3 Number of victim vnodes

Figure 4 shows the evolution ofVt, the number of victim
vnodes (vnodes that will transfer at least one partition to a
new vnode).
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Figure 4: Evolution ofVt

It may be observed that the evolution ofVt has 3 dif-
ferent stages. In the 1st stage,V ≤ Pmin, meaning there
are less vnodes than the minimum number of partitions per
vnode, and so every vnode will contribute with partitions
to a new vnode; in general, in this stageVt ≈ V , except for
a small number of cases.

In the 2nd stage,Pmin < V ≤ Pmax; onceV >
Pmin, only a subset of vnodes will loose partitions to a new
vnode;Vt oscillates around an average of31.25 ≈ Pmin.

The 3rd stage begins whenV > Pmax; from there
on, Vt will decrease from a maximum value, nearPmax,
to a minimum value, nearPmin; this variation is cyclic: it
begins afterV becomes the successor of a power of 2 and
ends whenV reaches the next power of 2.

We thus conclude thatVt scales linear withV when
V ≤ Pmin, andVt remains approximately bounded be-
tweenPmax andPmin whenV > Pmin. Thus, we may
say that in the 1st stageVt is of orderO(V ) with relation to
V and that in the remaining scenariosVt is of orderO(1)
with relation toV .

Figure 5 presents a complementary perspective about
the evolution ofVt, by plotting Vt/V (in percentage),
which is the fraction of the number of vnodes that will
transfer partitions, from the overall number of vnodes. As

expected,Vt/V diminishes exponentially, with an approx-
imate minimum bound ofPmin/V and an approximate
maximum bound ofPmax/V .
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Figure 5: Evolution ofVt/V

5.4 Average number of partitions transfered

Figure 6 plotsP t, the average number of partitions trans-
fered by each victim vnode to a new vnode.

The evolution ofP t goes trough the same 3 different
stages of the evolution ofVt. In the 1st stage (V ≤ Pmin),
P t has a maximum value ofPmin that takes place with
V = 2: when the 2nd vnode is created, the 1st vnode binary
splits its partitions, doubling its number fromPmin = 32 to
Pmax = 64; it then transfersP t = 32 partitions to the 2nd
vnode and both vnodes end up withPmin = 32 partitions.
Then,P t decreases toward a minimum value of 1,03 when
the 32nd vnode joins the DHT (and, accordingly with Fig-
ure 4.a),Vt(32) = 31 vnodes transfer at least one partition
to the new vnode).

In the 2nd stage (Pmin < V ≤ Pmax), P t oscillates
between a minimum of 1 and a maximum near 2; onceV ≤
Pmax, many vnodes must transfer more than one partition.

In the 3rd stage (V > Pmax), we recall thatVt is typ-
ically greater than in the previous stages and so the victim
vnodes seldom need to transfer more than one partition.

We finally conclude thatP t quickly stabilizes around
a maximum of 2 and a minimum of 1 and may be referred
to as being of orderO(1) with relation toV .
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Figure 6: Evolution ofP t

5.5 Total number of partitions transfered

Figure 7 showsPt = Vt.P t, the total number of partitions
transfered by all victim vnodes to a new vnode.

As expected,Pmin < Pt < Pmax (for V > 1). Thus,
Pt evolves with orderO(1), with relation toV . It may
also be observed thatPt evolves close toP v, in accordance
with the small values ofσ(Pv, P v) presented in Figure 3
for Pmin = 32.

6 Related Work

In this section we demonstrate the potential of our model by
comparing its balancing capabilities with those of the well
known Consistent Hashing (CH) approach. This approach
was used both in the context of Web Caching [2] and in the
context of Chord [3], a design for a P2P [4] lookup scheme.

In CH, the hash table is divided into partitions and
each (computational) node hosts a certain number of virtual
nodes. The hash table is distributed across the nodes by
assigning one partition per virtual node. For the balancing
to be effective, each node must host at leastk.log2N virtual
nodes, if the expected maximum number of nodes isN [5].

CH uses partitions that have random sizes and virtual
nodes that doesn’t fit our own definition. For these reasons
we cannot measure the quality of its partition assignment
using theσ(Pv , P v) metric. Thus, we introduceQn, the
quota ofRh handled by each noden, calculated by dividing
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Figure 7: Evolution ofPt.

the sum of the ranges of all partitions hosted at that node,
by2Bh . We may then useσ(Qn, Qn), which is the standard
deviation ofQn with relation to the (ideal) averageQ

n
, to

compare the balancement of a DHT when using the two
different approaches.

In general, ifXi andYi represent two series of num-
bers, such thatYi = c.Xi, for anyi, with c constant, then
σ(Yi, Y i) = c.σ(Xi, X i) and σ(Yi, Y i) = σ(Xi, Xi).
In our model, if we consider the special case where there
is a sole virtual node per cluster noden, then Qn =
(Pn.S)/2BH = c.Pn. In this context, it is possible to reuse
the values shown by Figure 3 to compare our model with
CH, becauseσ(Qn, Q

n
) = σ(Pv, P v).

In Figure 8 we present the results of the comparison
by showing the evolution ofσ(Qn, Qn) for the two ap-
proaches as the number of nodes enrolled in the DHT grows
from 1 to 1024. To deal with the random nature of its parti-
tioning policy, the values for CH reflect an average of 100
simulations. Because the number of partitions per node is
fixed in CH, but varies in our model, fromPmin = 32 to
Pmax = 64, we have considered in CH both the scenarios
for 32 and 64 partitions per node.

The analysis of Figure 8 confirms a significant im-
provement of the quality of the distribution of our model
when compared with CH. We further may conclude that
the quality of the distribution on CH increases when the
number of partitions per node also increases. The same
conclusion applies to our model, as it was already observed
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in Figure 3.

7 Discussion

We now discuss some of the assumptions and constraints of
the model, along with issues that remain to be investigated.

The first assumption is that the hash functionh uni-
formly maps its input in its range, restricting the choice of
the hash function to the one that best suits the data type and
size of the input keys (see [6, 7] for some related work).

The model also assumes that, although commodity
clusters are not immune to failures, that context of utiliza-
tion is stable, in contrast with other application scenarios
for DHTs (e.g., P2P environments). This gives good rea-
sons for not incorporate in the model fault tolerance mech-
anisms.

The model contemplates two levels of balancing: the
first, supported by vnodes, provides for coarse–grain bal-
ancing; the other one, based on the assignment of partitions
to vnodes, provides for fine–grain balancing. We have only
discussed the mechanisms used for the (re)assignment of
partitions, that is, to achieve fine–grain balancing. Thus,
it remains to be investigated the algorithms and metrics to
assist on the assignment of vnodes to snodes.

To ensure that the PDR state is globally synchronized,
the creation and the deletion of vnodes need to be global se-
rialized events, thus limiting the degree of dynamism. This
problem calls for the investigation of alternatives for dis-
tributed balancing (which may result on the diminishing of
the quality of the assignment of partitions to vnodes).

No lookup method is specified, in order to locate the
partition where a hash index belongs. However, to avoid
the typical problems derived from centralized approaches,
a distributed lookup scheme seems to be the most appropri-
ate. When taking this approach, each snode should main-
tain a bounded amount of information about the location
of partitions and the lookup process should need to visit a
bounded number of snodes.

There are several alternatives for distributed lookup,
including the ones offered by P2P oriented DHTs [8]. The
same overlay network assumed by those approaches could
be used to define neighborhoods for distributed balancing.

8 Conclusions

The main contribution of this paper is the definition of a
model that paves the way for dynamically balanced, cluster
oriented Distributed Hash Tables.

A preliminary set of tests allowed to study the evolu-
tion of some parameters and to demonstrate that the model
responds as expected. Experience also proved that the bal-
ancing mechanism produces results that make the model
competitive with another well known design for a DHT.

Finally, we point out some of the important issues that
remain to be investigated and which will be the focus of our
future work:a) mechanisms for coarse–level balancing;b)
a scalable distributed scheme for the balancing of the hash
table;c) a compatible scalable lookup scheme;d) solutions
for the other problem classes, above class 2.
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