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The paper presents a grammatical approach to software development. It supports formal

software specification using attribute grammars, from which a rapid prototype can be

generated, as well as the incremental software development. Domain concepts and rela-

tionships among them have to be identified from a problem statement and represented

as a context-free grammar. The obtained context-free grammar describes the syntax of a

domain-specific language whose semantics is the same as the functionality of the system

under implementation. The semantics of this language is then described using attribute

grammars from which a compiler is automatically generated. The execution of a partic-

ular program written in that domain-specific language corresponds to the execution of

a prototype of the system on a particular use case.

1 Introduction

One of the well known properties of software sys-
tems is that they are subject to frequent changes.
A software developer needs to build a software
system in such a manner that he can easily adapt
it to the user’s changeable requirements. Cur-
rent object-oriented design techniques [7] [8] are
well suited for such design supporting changes.
However, any changes during the software life cy-
cle are costly. Therefore, it is very important
that the user is involved in the software devel-
opment process from the very beginning and that
the software system is delivered to the user before
his requirements have the opportunity to change.
Rapid prototyping enables the software developer
to build executable prototypes and to involve the
user in an iterative build-execute-modify loop un-
til his requirements are validated. The prototype

is then used to build the final version of the soft-
ware system through the use of the architecture
included in the prototype or it is simply thrown
away [21]. In the latter case the prototype is used
to clarify the user’s needs until reaching a stable
and convenient model for the given problem.

The proposed approach, i.e. software develop-
ment with grammatical approach, rests on the suc-
cess reached by attribute grammars in the speci-
fication of language semantics [12] [6] [16] and in
the systematic implementation of language pro-
cessing tools [9] [10].

In the paper the grammatical approach to prob-
lem solving supported by an attribute grammar
developed and written in an object-oriented style
(OOAG - object-oriented attribute grammar) is
proposed. One of the benefits of the proposed
approach is that it enables rapid prototyping and
the validation of the user’s requirements in a prag-
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matic way. The idea is to translate the OOAG
obtained in the specification phase into the con-
crete syntax of a compiler generator in order to
create a simulator for that problem. We can then
write scenarios (in the domain-specific language
[17] [22] [24] defined by that OOAG) describing
different uses of the system, and use the gener-
ated simulator to process those scenarios comput-
ing the desired results.

The organization of the paper is as follows. In
Section 2 related work is discussed. The software
development with grammatical approach is pre-
sented in detail in Section 3 followed by an exam-
ple in the Section 4. A synthesis and concluding
remarks are presented in Section 5.

2 Related Work

The grammatical approach to problem solving
(software development) can be seen as an ex-
tension (e.g. as in [15]) of object-oriented de-
sign methods [20] [7] [8] where a problem domain
model is developed from use cases and class dia-
gram. However, their main goal is to develop good
software models. Our goal is to develop rapid
prototypes and early validation of user’s require-
ments.
Our work is closely related to the Grammar-
Oriented Object Design (GOOD) [2] [14], where
all valid object interaction sequences of the clus-
ter of objects are identified. Then a meta-model
is constructed and represented as a context-free
grammar. Therefore, a context-free grammar rep-
resents the set of all possible interactions (col-
laborations) of objects in a particular cluster in
order to fulfill the domain goals. When a gram-
mar is interpreted at a run-time a cluster will dy-
namically bind the collaborators to the collabo-
rations. Hence, GOOD facilitates the creation of
dynamically configurable components, which en-
capsulates volatile business rules. The rationale
behind this is that creating and representing a
model of solutions is more extensible, simpler and
more scalable than just creating the single solu-
tion. Possible solutions are modeled with a meta-
model and represented as a context-free grammar.
If this grammar is available to the ”users” at run-
time, then they are able to customize the system
behavior. Since the interaction of objects is ob-
tained from use case diagrams that describe the

functionality of a system, the author called such
a grammar a use case grammar. In other words,
use cases are described with a domain-specific lan-
guage. In the domain analysis the key abstrac-
tions are identified and classified as interactions
among subsystems that may be realized as soft-
ware components. The author in his work dis-
tinguishes two types of meta-models: the static
(class diagram) and the dynamic (valid object in-
teraction sequences) meta-model. The latter is
described with a context-free grammar. Our ap-
proach differs from [2] [14] since they are using a
context-free grammar to describe behavior of the
objects (methods), while in our case the structure
of a class (attributes) is described. An example
of a production rule in [2] [14] using the EBNF is:

ShoppingCartOperation ::=

{AddItem | DeleteItem |

SaveShoppingCart} CheckOut

Our approach has different goals and advan-
tages. However, it can be seen as complemen-
tary to the GOOD approach. Combining both ap-
proaches to describe the behavior and the struc-
ture with a domain-specific language, is under in-
vestigation.

The grammatical approach to software devel-
opment is also related to the rapid prototyping
research (e.g. [4]). In [4] Two-Level Grammars
(TLG) were proposed as an object-oriented re-
quirement specification language. Successive re-
finement steps starting with natural language lead
to more detailed specifications that can be trans-
lated to VDM++, which in turn is translated
to Java, yielding a rapid prototype of a system.
With this approach it is possible to obtain the
rapid prototype of a system from natural language
specifications. Their Specification Development
Environment (SDE) has natural language pars-
ing capabilities and can classify words into nouns
(objects/class) and verbs (operations) and their
relationships. This initial analysis of requirement
documents provides the basis for further refine-
ment with an attempt to classify the domains
(classes) to which functions (operations) belong.
In more complex cases a rapid prototype is not
completely automatically derived since a sufficient
degree of interaction with a user is required to en-
sure a correct interpretation.
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Resolving the semantical gap between use case
diagram and class diagram is also presented in
[19]. From the use case diagram agents state ma-
chines and values added invariants are derived.
The term agent is used to represent an actor col-
laborating with the system through specific use
case. Both techniques are collectively used in iter-
ative converting algorithm, which builds the OCL
specification and class diagram. The OCL spec-
ification (define a set of preconditions, postcon-
ditions and actor invariants) are further used to
check the correctness of the model.

3 The Grammatical Approach

To achieve a good understanding of the user’s
world we need to understand the application do-
main. In other words, we need to identify con-
cepts and their relationships in the problem do-
main. For this purpose object-oriented design
(OOD) employs use case diagrams (UCDs) and
conceptual class diagrams (CCDs) [7] which we
will take as a starting point for our approach.

The use case diagram [5][1] describes the func-
tionality of the system and its interaction with an
environment. The use case diagrams form founda-
tions for further modelling of developing system.
They are also helpful for generating system test
cases.

While use case diagrams are narrative descrip-
tions of specific tasks, the conceptual class dia-
gram captures concepts and relationships between
them. Guidelines for developing the conceptual
class diagram can be found in [20]. To develop
the conceptual class diagram one can apply iter-
atively the following steps:

– identification of potential classes (look for
nouns in the description of the problem),

– elimination of unnecessary (eg. redundant,
irrelevant) classes,

– identification of potential associations (any
dependency between two classes is an associ-
ation),

– elimination of unnecessary associations,

– identification of attributes (attributes are
properties of individual objects),

– elimination of unnecessary attributes,

– refining with inheritance.

From the use case diagram and from the con-
ceptual class diagram a design model is obtained
which should be robust with respect to changes
of the user’s requirements.

Conceptual Class
Diagram

Context-free Grammar

Attribute Grammar

Compiler = Rapid Prototype

Result = Behaviour
of the System
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Figure 1: High-level view of the grammatical ap-
proach

To identify concepts and their relationships in
the problem domain our grammatical approach is
not limited to object-oriented design. Also other
approaches, such as entity-relation diagrams and
data-flow diagrams, which show the flow of work
and the relationship between activities and deliv-
erables, can be applied. However, OOD [3] [8] is
now almost the-facto standard for software sys-
tem design, and on account of that, it was also
our choice.

Our approach (described in Fig. 1) is based on
the following steps:

– describe the syntax of the problem (the struc-
ture of the classes that characterise problem
domain), deriving the context-free grammar
from the conceptual class diagram,

– describe the semantics of the problem (the
meaning of the classes in problem domain),
associating attributes to every concept de-
rived from the use cases and operational di-
agrams,

– generate a rapid prototype of the system, us-
ing a compiler generator and the attribute
grammar obtained in the two previous steps.

The steps above will be detailed in the next
subsections.
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Description Class diagram element Grammar

attribute

Class A
A (non-terminal)

instance
variable (terminal)

Class

Class BClass AAssociation A → B

Class BClass ANavigability A → B

Generalization

Class B

Class A

Class C

A → B | C

Class BClass A

A → B
(¬∃X ∈ N,X ⇒ B)

∧X 6= A

Composition

Class BClass AAggregation A → B

Table 1: From a conceptual class diagram to a context-free grammar

3.1 Deriving a context-free grammar

from a conceptual class diagram

The role of non-terminals in a context-free gram-
mar is two fold. First, at higher abstraction level
non-terminals are used to describe different con-
cepts in the programming language (e.g. an ex-
pression or a declaration in a general-purpose pro-
gramming language). On the other hand, at a
more concrete level, non-terminals and terminals
are used to describe the structure of a concept
(e.g. an expression consists on two operands sep-
arated by an operator symbol, or a variable dec-
laration consists of a variable type and a variable
name). Therefore, both the concepts and rela-
tionships between them, belonging to the specific
problem domain, are captured in a context-free
grammar. But, this is also true for the concep-
tual class diagram which describes concepts in
a problem domain and their relationships. It is
clear that both formalisms can be used for the
same purpose and that some rough transforma-
tion from a conceptual class diagram to a context-
free grammar and vice versa should exist. The
transformation from a conceptual class diagram
to a context-free grammar is depicted in table 1
and table 2. In general, classes are mapped to

non-terminal symbols and instance variables are
mapped to terminal symbols.

Transformation table shows how to derive a
context-free grammar from a conceptual class di-
agram. A class and a non-terminal are basic
concepts in a conceptual class diagram and in a
context-free grammar. The mapping here is self-
evident. A conceptual class diagram contains in-
stance variables, which define the state of a class
instance. Instance variables are represented in a
context-free grammar as terminal symbols. In
general, a class diagram consists also of opera-
tions, which will be identified when the seman-
tics of context-free grammar is going to be de-
fined. Associations represent the interaction be-
tween classes and have to be included in a context-
free grammar. The navigability association can
be shown with the production A → B, where the
non-terminal A gets information about attributes
of the non-terminal B. Association has multiplic-
ity. Describing multiplicity with grammar pro-
ductions is straightforward as shown in table 2.
For generalization we propose the production A
→ B | C. The non-terminal A can be implemented
either with the non-terminal B or non-terminal C.
The composition and aggregation are shown as
the navigability association. In the composition
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Cardinality Class diagram element Grammar

Multiplicity
exactly one

Class BClass A
1 A → B

Optional
multiplicity

Class BClass A
0..1 A → B | ε

Class BClass A
0..*

A → MoreB
MoreB → MoreB B| ε

Multiplicity [0..m]

Class BClass A
1..*

A → MoreB
MoreB → MoreB B | B

Multiplicity many

Table 2: Association multiplicity

the non-terminal B can appear in other produc-
tions. On the other hand, in the aggregation the
non-terminal B is reachable only from the non-
terminal A.
Classes can collaborate with more than just one
class. For example, a class A associates with
classes B, C and D. In our approach, this collab-
oration is described with context-free grammar
production A → B C D. The sequence of non-
terminals on right side of the production should
be in natural order and depends on collaboration
of entities in a given problem domain.

3.2 Describing the semantics of each

concept

To describe the semantics or the meaning of a
concept an attribute grammar is used. Attribute
grammars [12] [6] [16] are natural extensions of
context-free grammars and as such very well sup-
port our approach which is based on context-free
grammars. The syntax and semantics of each
symbol is specified in a module; modularity is, on
one hand, inherent to the class concept in OOD,
and, on the other hand, it is implicit to gram-
mars (based on the locality associated with sym-
bols and productions). The first part of a module
is the declaration of its attributes, divided in two
subsets, the inherited (context dependent) and
the synthesized (computed locally). The func-
tions to be used to evaluate each attribute are
then defined, in the context of each production.
Also the contextual conditions, if any, that ex-
press the data constraints are defined in the con-

text of each production. This step is intellectu-
ally most demanding; therefore some additional
supporting techniques based on the use cases (di-
agrams and scenarios) should be used; namely we
suggest the use of the operational diagram that is
infered from the referred scenarios.

The result of this step is a complete attribute
grammar specification for a given problem.

3.3 Generating the rapid prototype of

a system

To generate the rapid prototype of a system
our compiler-generator LISA [18] has been used.
The LISA system automatically generates a com-
piler or an interpreter and other language-based
tools—such as language-knowledgeable editor, in-
spectors, and animators [10]—from an attribute
grammar specification. One of LISA’s most im-
portant feature is that it supports incremental
development of specifications, which is especially
important in particular tasks of the software de-
velopment described in this paper.

4 An Example: Video Store

The Video Store (VS) case study is one of the ba-
sic examples of the refactoring [7][23]. The case
study represents a prototype program for cus-
tomer charges at a video store. The program cal-
culates the charge, which depends on how long
a movie is rented and on the type of the movie.
There are three kinds of movies: regular, children
and new releases.
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The problem specification: After the analy-
sis of the problem stated above, the discovering of
the main functionalities is to be done and present
them as use case diagram.

Figure 2: Use case diagram

For the case study of the Video Store we iden-
tify three main services represented with use cases
Add movie, Add customer and Rent (Fig. 2). To
specify their functionalities, the sequence of ac-
tions has to be defined. Therefore, scenarios for
use cases are written (description follows below).

Scenario for Add movie use case:

1. Request for a movie title.

2. Request for a movie type.

3. Insert the movie in movie database.

Use case end.

ALT 3a: Movie title already contained

in movie database.

Inserting skipped. Use case end.

Scenario for Add customer use case:

1. Request for a customer name.

2. Insert the customer in customer

database. Use case end.

ALT 2a: Customer already contained in the

customer database. Inserting skipped.

Use case end.

Scenario for Rent use case:

1. Request the name of the customer.

2. Request the titles of rented movies.

3. Insert the list of rented movies in

customer’s database.

4. Calculate the charge for rental

service. Use case end.

ALT 1a: Name not in the customer

database. Insert new customer. Use

Add customer.

ALT 2a: Movie title unknown.

Go to step 2.

The Conceptual Class Diagram: The use
case diagram (Fig. 2) is crucial to find the ba-
sic entities and to derive the conceptual class dia-
gram. There are no specific rules to support this
derivation, but you can find many guidelines in
[11][13].

The structure of the problem domain can be
defined in terms of classes and relationships as
depicted in the conceptual class diagram in figure
3.

As shown on figure 3, the VideoStore is identi-
fied as the main concept. The two other impor-
tant concepts in the management of the Video-
Store are: Customer, and Movie. Movie asso-
ciates with class Price which describes the type
of a movie. Generalization class Price is further
implemented with classes New, Child, and Reg.
The data for each rental are kept in class Rental.

The Structure: Remember that, in our ap-
proach, a problem concept is denoted by a gram-
mar symbol. The context-free grammar below
formalizes the problem syntax in the sense that
it specifies the structure of the problem domain,
relating the concepts among them. The following
context-free grammar is obtained using transfor-
mations described in Section 3. To be able to read
context-free grammar see the transformation ta-
ble 1 and table 2.

VIDEO_STORE -> MOVIES CUSTOMERS

MOVIES -> MOVIES MOVIE

| &

MOVIE -> title PRICE

CUSTOMERS -> CUSTOMERS CUSTOMER

| &

CUSTOMER -> name RENTALS

RENTALS -> RENTALS RENTAL

| &

RENTAL -> daysRented MOVIE

PRICE -> new | child | reg

To follow the transformations from table 1 ab-
stract class Price defines non-terminal PRICE
and its subclasses (Fig. 3) define non-terminals
in the production

PRICE -> NEW | CHILD | REG
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Figure 3: Conceptual Class Diagram for Video Store

Unfortunately, this subclasses have no terminals
and represent the last classes in every traverse
through the conceptual class diagram. Described
classes are named final classes. Each non-terminal
of final class can be replaced with terminal in pro-
ductions (see the above context-free grammar).

It may happen, that deriving context-free
grammar from a conceptual class diagram
through transformations in table 1 does not show
an optimal grammar. Such grammar can have
useless non-terminals, which can be reduced. Try
to imagine the video store example as stated
above, except the rental service changes a bit.
Now, the rental length for all movies of one cus-
tomer is the same (in our example the rental
length is defined separately for each movie).

CUSTOMER -> name daysRented RENTALS

RENTALS -> RENTALS RENTAL

| &

RENTAL -> MOVIE

MOVIE -> title PRICE

...

In the partial context-free grammar we have use-
less production for non-terminal MOVIE. The
production, that have just one non-terminal and
no terminal on right side, can be rearranged or
even removed (e.g. obtaining just the context-free
grammar production RENTAL -> title PRICE).

Removing the non-terminal from the context-
free grammar brings the question, if class is rea-
sonable in the conceptual class diagram at all. We

believe that, if there is no other association with
this conceptual class, the class can be removed.
Looking from this prospective, building context-
free grammar can help in evolving the optimized
conceptual class diagram.

Semantics (1. phase): Capturing semantics
of the domain is the most demanding part of the
approach, therefore an auxiliary (supporting) di-
agram is proposed.

The semantic constructs in attribute grammar
are determinated in Section 3.2. The starting
point for finding them the use case diagram is
used. Use case diagram is further described with
scenarios, which define the interaction between an
actor and evolving system. Parsing the scenar-
ios can bring most of the semantic information
needed for writing attribute grammar. To sup-
port the derivation of semantic information from
scenarios, the operational diagram (Fig. 4) has
been used.

Each collaboration of an actor and use case di-
agram is introduced with operational diagram. In
the diagram actor shows up twice. First appear-
ance on the left represents an actor before using
the system and on the right represents an actor
after collaboration with the system. In the middle
the name of influenced use case is noted.

Both actors are supported with semantical in-
formation, which we get with parsing scenarios
of involved use case. Left actor possesses infor-
mation that the actor needs to collaborate with
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Add movie

[NOT (movie title IN movie list)]

- movie list

- movie  title

- movie type

- movie list

Add customer

[NOT (customer name IN customer list)]

- customer list

- customer name
- customer list

Rent

[(movie title IN movie list) AND

(customer name IN customer list)]

- customer name

- customer list

- rental list (days

rented, movie title)

- customer list

- movie list

- income

Figure 4: The operational diagram

Operational diagram Non-terminal Side Terminal I(x) S(x)

movie list Movies left,right no inMS outMS

movie title Movie left yes title

movie type Price left yes type

customer list Customers left,right no inCS outCS

customer name Customer left yes name

days rented Rental left yes daysRented

income Rental right no income

Table 3: Attributes mapping to nonterminals

the system. On the right we write information
that actor synthesize in collaboration with the use
case.

Information represent semantics of the sys-
tem and will be further represented as inherited
and synthesized attributes in attribute grammar.
Still, the open question is to which non-terminals
attributes are associated. Explanation follows
later in the paper.

The operational diagram brought some im-
portant information about attributes and con-
textual conditions. The next task is to asso-
ciate attributes from operational diagram to non-
terminals in context-free grammar. The table
3 shows the partial attribute mapping to non-
terminals. In the first column the attribute names
that appeared in operational diagram are written.
The next column represent the name of the non-
terminal to which attribute should be associated.
The column Side and column Terminal are cru-

cial to determinate, whether attribute should be
inherited or synthesized. The Side column rep-
resents the side where attribute in operational
diagram appears. If attribute appears on both
sides, attribute should be inherited, as well as
synthesized. If it appears on left side of opera-
tional diagram and is represented as terminal in
context-free grammar, the attribute should be de-
fined as synthesized. If attributes appears on the
left side and no terminal can be found in context-
free grammar, the attribute should be inherited.
The last case is, when an attribute appears only
on the right side of the operational diagram. This
attribute is synthesized.

The right side attributes from operational di-
agrams are important to find information that
should be present in starting non-terminal Video-
Store. In the case study of Video Store, three
distinct attributes are defined in operational di-
agram: customer list, movie list and income.
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Attribute Starting non-terminal

outCS Video Store

outMS Video Store

income Video Store

Table 4: Attributes in starting non-terminal
Video Store

Therefore all three attributes are synthesized in
starting non-terminal (Table 4). The table 5
shows attribute carrying between non-terminals
in attribute grammar. In the table attributes
that must be carried to other non-terminals are
showed. To construct this mapping table the do-
main must be understood well. Each attribute,
synthesized or inherited must be considered sep-
arately. The main point is to define where should
each attribute be carried and with what purpose.

Attribute Other nonterminals

inMS
Customers,

Customer, Rentals

name Rentals

inCS Rentals, Customer

outCS
Customer,
Rentals

type Movie

title Rental

income
Rentals,

Customers, Customer

Table 5: Attributes in other nonterminals

The alternatives in use case scenarios are basics
to find the contextual conditions. The contextual
conditions are inserted between square brackets
(see Fig. 4) where basic boolean operator can
be used. Contextual conditions noted on opera-
tional diagrams must be also associated to pro-
ductions of attribute grammar. Their appear-
ance in productions is closely connected to the
attributes which define the contextual conditions.
Contextual conditions are further implemented
with functions which evaluates attributes. The
identification of functions are further described in
the next semantical phase.

Semantics (2. phase): After detailed seman-
tic description of the problem domain, we can

write specifications in attribute grammar. The
only semantic part left, is to define function for
attribute evaluation. The specifications are bro-
ken into separate non-terminal descriptions.

The first production is VIDEO STORE →
MOVIES CUSTOMERS. The non-terminal de-
fines element of entity MOVIES and CUS-
TOMERS. To keep video store information we de-
fine two attributes for each entity. Both attributes
are of type TAB, which is a mapping function.

TABM = FF(string, (string, int))

TABC = FF(string, (string, int, TABR))

NonTerm VIDEO_STORE:

Inh: {}

Syn: {outMS: TABM, outCS: TABC,

income: int}

mkVideoStore(VIDEO_STORE ->

MOVIES CUSTOMERS):

VIDEO_STORE.outMS = MOVIES.outMS

MOVIES.inMS = {}

VIDEO_STORE.outCS = CUSTOMERS.outCS

CUSTOMERS.inCS = {}

CUSTOMERS.inMS = MOVIES.outMS

VIDEO_STORE.income = CUSTOMERS.income

For collecting the elements of entity Movie, we
use non-terminals MOVIES and MOVIE (see Sec-
tion 3). The semantic of the non-terminal is de-
scribed with attributes inMS and outMS, where
first attribute inMS is inherited and outMS syn-
thesized. The function insert() adds an element of
pair (name, type) to movie table. If the movie is
already in the collection, the element is not added
in the collection of movies. This is represented
with contextual condition (CC).

NonTerm MOVIES:

Inh: {inMS: TABM}

Syn: {outMS: TABM}

mkMovies(MOVIES -> MOVIES MOVIE):

MOVIES/1.inMS = MOVIES/0.inMS

MOVIES/0.outMS =

insert(MOVIES/1.outMS,

new Movie(MOVIE.title,

MOVIE.type))

CC: (NOT(MOVIE.title IN

MOVIES/1.outMS))

emptyMovies(MOVIES -> &):
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MOVIES.outMS = MOVIES.inMS

Semantic constructs of non-terminal MOVIE are
shown below. The symbol MOVIE is semantically
described with two attributes that represent basic
data of the Movie entity.

NonTerm MOVIE:

Inh: {}

Syn: {title: String, type: Price}

getMovie(MOVIE -> title PRICE):

MOVIE.title = title.lexval

MOVIE.type = PRICE.type

The entity Customer follows the same principle
as shown at the non-terminal MOVIES. The mul-
tiplicity 0..m brings the use of the non-terminals
CUSTOMERS and CUSTOMER.

NonTerm CUSTOMERS:

Inh: {inCS: TABC, inMS: TABM}

Syn: {outCS: TABC, income: int}

mkCustomers(CUSTOMERS ->

CUSTOMERS CUSTOMER):

CUSTOMERS/1.inCS =

CUSTOMERS/0.inCS

CUSTOMERS/0.outCS =

CUSTOMER.outCS

CUSTOMER.inMS =

CUSTOMERS/0.inMS

CUSTOMERS/1.inMS =

CUSTOMERS/0.inMS

CUSTOMER.inCS =

CUSTOMERS/1.outCS;

CUSTOMERS/0.income =

CUSTOMERS/1.income +

CUSTOMER.income

CC: (NOT(CUSTOMER.name IN

CUSTOMERS/1.outCS))

emptyCustomers(CUSTOMERS -> &):

CUSTOMERS.outCS = CUSTOMERS.inCS;

CUSTOMER.income = 0.0

Semantics constructs of non-terminal CUS-
TOMER consist of attributes name (String type),
inCS (inherited enumeration of Customers),
outCS (synthesized enumeration of Customers)
and outMS (synthesized enumeration of Movies).

NonTerm CUSTOMER:

Inh: {inCS: TABC, inMS: TABM}

Syn: {name: String, outCS: TABC,

income: int}

getCustomer(CUSTOMER ->

name RENTALS):

CUSTOMER.name = name.lexval

RENTALS.name = CUSTOMER.name

CUSTOMER.outCS = RENTALS.outCS

RENTALS.inCS = insert(

CUSTOMER.inCS,

new Customer(CUSTOMER.name))

RENTALS.inMS = CUSTOMER.inMS

CUSTOMER.income = RENTALS.income

To define rental items, the non-terminal
RENTALS holds three distinct inherited at-
tributes: inMS, inCS and name. To keep the
final value after mapping rentals to specific
customer, the synthesized attribute outCS is
used. To support the rental charging service, a
synthesized attribute income is applied.

TABR = FF(string, (MOVIE, int))

NonTerm RENTALS:

Inh: {inMS: TABM, inCS: TABC,

name: String}

Syn: {outCS: TABC, income: int}

mkRentals(RENTALS -> RENTALS RENTAL):

RENTALS/1.inCS = RENTALS/0.inCS

RENTALS/1.inMS = RENTALS/0.inMS

RENTALS/1.name = RENTALS/0.name

RENTALS/0.outCS =

addRental(RENTALS/1.outCS,

getCustomer(RENTALS/1.outCS,

RENTALS/0.name),

new Rental(getMovie(RENTALS/0.inMS,

RENTAL.title),

RENTAL.daysRented))

RENTALS/0.income = RENTALS/1.income +

getCharge(getMovie(RENTALS/0.inMS,

RENTAL.title),

RENTAL.daysRented)

CC: ((RENTAL.title IN RENTALS/0.inMS)

AND (RENTALS.name IN

RENTALS/0.inCS))

emptyRentals(RENTALS -> &):

RENTALS.outCS = RENTALS.inCS

RENTALS.income = 0.0
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As shown above, for mapping the rental items to
customer, the function addRentals is defined. The
mapping process is prevented if rented movie is
not present in inherited attribute inMS and also
if customer is not present in inherited attribute
inCS. This is shown above with contextual condi-
tion.

The semantic of non-terminal RENTAL is spec-
ified using the values returned by the scanner.
Therefore, attributes title (inherited from non-
terminal MOVIE) and daysRented are used.

NonTerm RENTAL:

Inh: {}

Syn: {title: String,

daysRented: int}

getRental(RENTAL -> daysRented MOVIE):

RENTAL.title = MOVIE.title

RENTAL.daysRented =

atoi (daysRented.lexval)

The non-terminal PRICE represents class Price
from the conceptual class diagram. This is an ab-
stract class which defines three subclasses, classes
Reg, Child and New (non-terminals REG, CHILD
and NEW) in the conceptual class diagram. Be-
cause of the final class rule (see Section 4), non-
terminals are replaced with terminals.

NonTerm PRICE:

Inh: {}

Syn: {type: Price}

getPriceNew(PRICE -> new):

PRICE.type = new New()

getPriceReg(PRICE -> reg):

PRICE.type = new Reg()

getPriceChild(PRICE -> child):

PRICE.type = new Child()

As described in above specifications, attribute
evaluation is derived through semantic functions.
Functions open the next question. Can this func-
tions help to derive information to obtain meth-
ods in class diagram (fig. 5). In that case, the
part of prototype could be reused in developing
the complete system. This part of our approach
is under investigation.

Conceptual Class
Diagram

Context-free Grammar

Attribute Grammar

Compiler = Rapid Prototype

Result = Behaviour
of the System

D
o

m
a

in
-S

p
e

c
if

ic
L

a
n

g
u

a
g

e

DSL Program =
Use Case

Use case diagram

Operational diagram

Class Diagram

Figure 5: Developing class methods from func-
tions

The rapid prototype: The attribute grammar
specified in the previous step is then written using
our compiler generator system LISA. The inher-
ent modularity of attribute grammars enables it-
erative design of prototype. Therefore, more func-
tionalities of a system can be implemented.

A part of these specifications is shown below.
Note the straightforward translation from above
specifications to LISA. Notice that, the contex-
tual conditions are not shown below. They are
implemented with functions which appear in the
LISA method part.

language VIDEO_STORE {

lexicon {

daysRented [0-9]+
reserved new | reg | child

name [A-Z][A-Za-z0-9_]*
title [a-z][a-z0-9_]*
ignore [\ \0x0A\0x0D\0x09]+

}

attributes
Hashtable *.outMS,*.inMS;

Hashtable *.outCS,*.inCS;

Price *.type;

String *.name;

String *.title;

int *.daysRented;

rule Store {

VIDEO_STORE ::= MOVIES CUSTOMERS

compute {

VIDEO_STORE.outMS = MOVIES.outMS;

MOVIES.inMS = new Hashtable();

VIDEO_STORE.outCS =

CUSTOMERS.outCS;

CUSTOMERS.inCS = new Hashtable();

CUSTOMERS.inMS = MOVIES.outMS;

VIDEO_STORE.income =

CUSTOMERS.income;

};

}
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rule Movies {

MOVIES ::= MOVIES MOVIE compute {

MOVIES[1].inMS = MOVIES[0].inMS;
MOVIES[0].outMS = insert(

MOVIES[1].outMS,
new Movie(MOVIE.title,

MOVIE.type));

}

| epsilon compute {

MOVIES.outMS = MOVIES.inMS;

};

}

rule Movie {

MOVIE ::= #title PRICE compute {

MOVIE.title = #title.value();

MOVIE.type = PRICE.type;

};

}

rule Customers {

CUSTOMERS ::= CUSTOMERS CUSTOMER

compute {

CUSTOMERS[1].inCS =

CUSTOMERS[0].inCS;
CUSTOMERS[0].outCS =

CUSTOMER.outCS;

CUSTOMER.inMS =

CUSTOMERS[0].inMS;
CUSTOMERS[1].inMS =

CUSTOMERS[0].inMS;
CUSTOMER.inCS =

CUSTOMERS[1].outCS;
CUSTOMERS[0].income =

CUSTOMERS[1].income +

CUSTOMER.income;

}

| epsilon compute {

CUSTOMERS.outCS = CUSTOMERS.inCS;

CUSTOMERS.income = 0.0;
};

}

rule Customer {

CUSTOMER ::= #name RENTALS compute {

CUSTOMER.name = #name.value();

RENTALS.name = CUSTOMER.name;

CUSTOMER.outCS = RENTALS.outCS;

RENTALS.inCS =

insert(CUSTOMER.inCS,

new Customer(CUSTOMER.name));

RENTALS.inMS = CUSTOMER.inMS;

CUSTOMER.income = RENTALS.income;

};

}

rule Rentals {

RENTALS ::= RENTALS RENTAL compute {

RENTALS[1].inCS = RENTALS[0].inCS;
RENTALS[1].inMS = RENTALS[0].inMS;
RENTALS[1].name = RENTALS[0].name;

RENTALS[0].outCS = addRental(

RENTALS[1].outCS, getCustomer(

RENTALS[1].outCS,

RENTALS[0].name),

new Rental( getMovie(

RENTALS[0].inMS, RENTAL.title),

RENTAL.daysRented));

RENTALS[0].income =

RENTALS[1].income +

getCharge ( getMovie(

RENTALS[0].inMS, RENTAL.title),

RENTAL.daysRented);

}

| epsilon compute {

RENTALS.outCS = RENTALS.inCS;

RENTALS.income = 0.0;

};

}

rule Rental {

RENTAL ::= #daysRented MOVIE compute {

RENTAL.title = MOVIE.title;

RENTAL.daysRented = Integer.

valueOf( #daysRented.value())

.intValue();

};

}

rule Price {

PRICE ::= new compute {

PRICE.type = new New();

}

| reg compute {

PRICE.type = new Reg();

}

| child compute {

PRICE.type = new Child();

};

}

... // method part

} // Language

One of the possible scenarios is now described
with the following program:

jurassic_park child

road_trip reg

the_ring new

Andy 3 jurassic_park child 2 road_trip reg

Mary 3 the_ring new

The meaning of the above program is the fol-
lowing movie table (attribute outMS), customer
table (attribute outCS) and money income (at-
tribute income).
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outMS:{

jurassic_park={Jurassic_park, child},

road_trip={road_trip, reg},

the_ring={the_ring, new}}

outCS:{Mary=(Mary,{the_ring=(

(the_ring,new),3)},3.5),

Andy=(Andy,{road_trip=(

(road_trip,reg),3)},

jurassic_park=(

(jurassic_park,child),2)},

4.5)}

income:8.0

Note that for the same scenario the following Java
program has to be executed, which is much more
verbose and less intuitive for the end-user:

public static void main(String[] args){

double income = 0.0;
Movie m1 = new Movie(

"jurassic_park", Movie.CHILDRENS);

Movie m2 = new Movie(

"road_trip", Movie.REGULAR);

Movie m3 = new Movie(

"the_ring", Movie.NEW_RELEASE);

Customer c1 = new Customer("Andy");

Customer c2 = new Customer("Mary");

Rental r1 = new Rental(m1, 3);
Rental r2 = new Rental(m2, 2);
Rental r3 = new Rental(m3, 3);
c1.addRental(r1);
c1.addRental(r2);
c2.addRental(r3);
income += c1.evaluateCharge();

income += c2.evaluateCharge();

}

5 Conclusion

In the paper our approach to developing a formal
specification for a given problem using a comple-
mentary syntax/semantics approach is described.
Not least, our approach can be also seen as a for-
mal approach to program construction with all
benefits of formal approaches. The proposed ap-
proach can be also applied if the user’s require-
ments are not well defined; more symbols or at-
tributes (attribute rules or constraints) can be
easily added in a later phase (when the user comes
up with new requirements/functionalities), and
a new prototype will be immediately generated.
The essence of our approach is the development

of a domain-specific language that describes the
user interaction with a system or the functionality
of a system. While executing programs written in
a specified domain-specific language the function-
ality of a system and user’s requirements can be
validated. The starting point of our approach is
the identification of concepts in the problem do-
main. Here, well known techniques from object-
oriented design, such as use case diagrams and
conceptual class diagrams, are used. However,
our approach can be used also with data-flow dia-
grams and entity-relation diagrams. In that case
just new transformation rules have to be defined,
similar to those presented in table 1 and table 2.

In our future work we would like to investi-
gate the possibility to obtain a domain-specific
language only from a use case diagram which
describes the functionality of a system. It is
well known that use case diagrams and class dia-
grams represent different views on a given prob-
lem and that there is no direct transformation
between those two techniques. Has such context-
free grammar some valuable information for con-
structing a conceptual class diagram? Is it pos-
sible that a context-free grammar of a domain-
specific language, derived from use case diagram,
describes the class diagram for a given problem?
Such findings might have some impact on current
object-oriented design. Hence, our future work is
to explore this connection.
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