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Abstract

Many tools can be automatically derived from formal language definitions, such as compil-
ers/interpreters, editors, analyzers, visualizers/animators, etc. Some examples of language-
based tools generated automatically by theLISA system are described in the paper. In
addition the specification of an algorithm animator and program visualizer,Alma, gener-
ated from an extendedLISA input-grammar is discussed;LISA principles and code are
reused inAlma implementation.

1 Introduction

The advantages of formal specification of programming language semantics are
well known. First, the meaning of a program is precisely and unambiguously de-
fined; second, it offers a unique possibility for automatic generation of compilers
or interpreters. Both these factors contribute to the improvement of programming
language design and development. The programming languages that have been de-
signed with one of the various formal methods have a better syntax and semantics,
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HENRIQUES et al

less exceptions and are easier to learn. Moreover, from formal language defini-
tions many other language-based tools can be automatically generated, such as:
pretty printers, syntax-directed editors, type checkers, dataflow analyzers, partial
evaluators, debuggers, profilers, test case generators, visualizers, animators, docu-
mentation generators, etc. For a more complete list see [HK00]. In most of these
cases the core language definitions have to be augmented with the tool-specific in-
formation. In other cases, just a part of formal language definitions is enough for
automatic tool generation or implicit information must be extracted from the formal
language definition in order to automatically generate a tool.
The goal of the paper is twofold. On one hand we discuss some of the tools in this
last case, like editors to help in writing sentences of the language and various in-
spectors (such as automata visualizers, syntax tree visualizers, semantic evaluator
animators) that are helpful for a better understanding of the language analysis pro-
cess. Those examples have all been incorporated in the compiler generator system
LISA [MLA Ž00]. On the other hand we present some extensions to the language
definitions in a manner to make automatic generation of an algorithm animator and
program visualizer possible.
Program visualizers/animators are very useful tools for deeper and clearer under-
standing of algorithms. As such, they are very valuable for programmers and stu-
dents. Currently, algorithm animators and program visualizers are strongly lan-
guage and algorithm-oriented, and they are not developed in a systematic or auto-
matic way. In this paper we aim to show that animators could be also automatically
generated from extended language definitions. We will briefly propose a specific
solution for the development of such a tool, theAlma system, discussing its archi-
tecture and its implementation. The system has a front-end specific for each lan-
guage and a generic back-end, and uses a decorated abstract syntax tree (DAST) as
the intermediate representation between them. In the implementation of theAlma
system the language development systemLISA is used twice. It generates the front-
end for each new language, and some parts of it (Java classes) are reused to build
the back-end.
The organization of the paper is as follows. In section 2 related work is described.
Language-based tools that are automatically generated by theLISA system are de-
scribed in section 3. The design and implementation of theAlma system are de-
scribed in section 4. A synthesis and concluding remarks are presented in section
5.

2 Related Work

The development of the first compilers in the late fifties without adequate tools was
a very complicated and time consuming task. For instance, the implementation
of the compiler for the programming language FORTRAN took about 18 human
years. Later on, formal methods, such as operational semantics, attribute gram-
mars, denotational semantics, action semantics, algebraic semantics, and abstract
state machines, were developed. They made the implementation of programming
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languages easier and finally contributed to the automatic generation of compil-
ers/interpreters. Many tools have been built in the past years, based on the different
formal methods and processing different parts of language specification, such as:
scanner generators, parser generators and compiler generators. The automatic gen-
eration of a complete compiler was the primary goal of such systems. However,
researchers soon recognized the possibility that many other language-based tools
could be generated from formal language specifications. Therefore, many tools
not only automatically generate a compiler but also complete language-based en-
vironments. Such automatically generated language-based environments include
editors, type checkers, debuggers, various analyzers, etc. For example, the FNC-2
[JP97] is an attribute grammar system that generates a scanner/parser, an incre-
mental attribute evaluator, a pretty printer, a dependency graph visualizer, etc. The
CENTAUR system [BCD+89] is a generic interactive environment which produces
a language specific environment from formal specifications written in Natural Se-
mantics, a kind of operational semantics. The generated environment includes a
scanner/parser, a pretty printer, a syntax-directed editor, a type checker, an in-
terpreter and other graphic tools. The SmartTools system [ACD+01], a succes-
sor of the CENTAUR system, is a development environment generator that pro-
vides a compiler/interpreter, a structured editor and other XML related tools. The
ASF+SDF environment [vdBvDH+01] generates a scanner/parser, a pretty printer,
a syntax-directed editor, a type checker, an interpreter, a debugger, etc, from al-
gebraic specifications. In the Gem-Mex system [AKP97] the formal language
is specified with abstract state machines. The generated environment includes
a scanner/parser, a type checker, an interpreter, a debugger, etc. The LRC sys-
tem [SK98] from high-order attribute grammar specifications generates incremen-
tal scanner/parser and attribute evaluators, syntax-directed editor, multiple views
of the abstract semantic tree (unparsing windows), windows-based interfaces, etc.
From the above description of various well known compiler/interpreter generators
can be noticed that editors, pretty printers, and type checkers are almost standard
tools in such automatically generated environments. To our knowledge none of the
existing compiler generators automatically generate visualizers and animators for
programs written in a newly specified language.
Searching for tools that produce some kind of animation in order to explain the
semantics underlying a given program (to help the programmers reasoning about
it), we found several interesting animators and visualization systems —for in-
stance: BALSA [BS84]; TANGO [Sta90]; JCAT [BNR97]; ZSTEP [LF95]; JE-
LIOT [HPS+97]; PAVANE [RCWP92] or LENS [MS93]. However, most of the
well known animation systems are not general purpose. They just animate a spe-
cific algorithm (allowing or not the choice of some configuration parameters) or,
if they accept a larger set of algorithms, the programs must be written in a spe-
cific language. Usually in that case, the programmer shall use special data types or
procedures (visual annotations) on the source code, which means that, the source
program must be modified in order to be animated. The animators described in the
literature are not constructed automatically from language specifications.
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3 Tools from language definitions

LISA is a compiler-compiler, or a system that generates automatically a com-
piler/interpreter from attribute grammar based language specifications. The syn-
tax and semantics ofLISA specifications and its special features (“templates” and
“multiple attribute grammar inheritance”) are described in more detail in [MLEŽ00].
The use ofLISA in generating compilers for real programming languages (e.g.
PLM, AspectCOOL and COOL, SODL) are reported in [MLAŽ98], [ALM Ž01],
[MNA +01].
To illustrateLISA style, the specification of a toy language—Simple Expression
Language with Assignments,SELA—is given below. From these descriptions
LISA automatically generates aSELA compiler/interpreter.
language SELA f

lexicon
f

Number [0-9]+
Identifier [a-z]+
Operator \+ | :=
ignore [\0x09\0x0A\0x0D\ ]+

g
attributes Hashtable *.inEnv, *.outEnv;

int *.val;

rule Start
f START ::= STMTS compute

f STMTS.inEnv = new Hashtable();
START.outEnv = STMTS.outEnv;

g;
g

rule Statements
f STMTS ::= STMT STMTS compute

f STMT.inEnv = STMTS[0].inEnv;
STMTS[1].inEnv = STMT.outEnv;
STMTS[0].outEnv = STMTS[1].outEnv;

g
| STMT compute

f STMT.inEnv = STMTS[0].inEnv;
STMTS[0].outEnv = STMT.outEnv;

g;
g

rule Statement
f STMT ::= #Identifier \:= EXPR compute

f EXPR.inEnv = STMT.inEnv;
STMT.outEnv = put(STMT.inEnv,
#Identifier.value(), EXPR.val);

g;
g

rule Expression
f EXPR ::= EXPR + EXPR compute

f EXPR[2].inEnv = EXPR[0].inEnv;
EXPR[1].inEnv = EXPR[0].inEnv;
EXPR[0].val = EXPR[1].val + EXPR[2].val;

g;
g

rule Term1
f EXPR ::= #Number compute

f EXPR.val = Integer.valueOf(
#Number.value()).intValue();

g;
g

rule Term2
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Generated tool Formal specifications Fixed part Variable part

Lexer regular definitions algorithm which interprets action table action table:
State� �! State

Parser (LR) BNF algorithm which interprets action table
and goto table

action table:
State� T ! Action

goto table: State � (T [ N) !

State

Evaluator Attribute Grammars (AG) tree walk algorithm semantic functions

Language knowl-
edgeable editor

regular definitions (extracted from AG) matching algorithm action table:
State� �! State

Structure editor BNF (extracted from AG) incremental parsing algorithm same as parser

FSA visualiza-
tion

regular definitions (extracted from AG) FSA layout algorithm same as lexer

Syntax tree visu-
alization

BNF (extracted from AG) syntax tree layout algorithm syntax tree

Dependency
graph visualiza-
tion

extracted from AG DG layout algorithm dependency graph

Semantic evalua-
tor animation

extracted from AG semantic tree layout algorithm decorated syntax tree & semantic func-
tions

Program vi-
sualization
and animation
(ALMA)

additional formal specifications visual and rewrite rules & visualization,
rewriting and animation algorithm

decorated abstract tree (DAST)

Table 1
Fixed and variable parts ofLISA generated language-based tools

f EXPR ::= #Identifier compute
f EXPR.val = ((Integer)EXPR.inEnv.get(

#Identifier.value())).intValue();
g;

g
method Environment

f
import java.util.*;
public Hashtable put(Hashtable env, String name, int val)

f
env = (Hashtable)env.clone();
env.put(name, new Integer(val));
return env;

g
g

g

Besides that,LISA derives other tools. In the following subsections three fami-
lies of such tools are described:editorsto help the final users in the creation and
maintenance of the sentences of the specified language, i.e., thesource texts(or
source programs) that he wants to process (compile/interpret);inspectorsthat are
useful to understand the behaviour or debug the generated language processor it-
self (compiler/interpreter); andvisualizers/animators, similar to inspectors, useful
to understand the meaning of the source program that is being processed.
Automatic generation is possible whenever a tool can be built from a fixed part and
a variable part; and also the variable part, language dependent, has to be system-
atically derivable from the language specifications. That part has a well defined
internal representation that can be traversed by the algorithms of the fixed part. Ta-
ble 1 summarizes those parts for some of the language-based tools generated by
the LISA system. It is not the aim of this paper to describe all those algorithms,
except the most interesting ones for program visualizations and animations. They
are described in detail in section 4.
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Fig. 1. Language knowledgeable editor

3.1 Editors

Two different LISA generated language oriented editors, that is editors that are
sensitive to the language syntax, are described in this section.

3.1.1 Language Knowledgeable Editors
LISA generates a language knowledgeable editor, which is a compromise between
text editors and syntax-directed editors, from formal language specifications.
The LISA generated language knowledgeable editor is aware of the regular defi-
nitions of the language lexicon (see table 1). Therefore, it can color the different
parts of a program (comments, operators, reserved words, etc.) to enhance under-
standability and readability of programs. In Figure 1 operators inSELA programs
are recognized while editing and displaying in a different colour.

3.1.2 Syntax-directed Editors
Syntax-directed editors are editors which are aware of the language syntax of edited
programs. They help users to write syntactically correct programs before they are
actually compiled, exhibiting that structure and/or inserting directly the keywords
at the right places (the user only has to fulfill the variable parts of his text). A
Structure Editor is a kind of syntax-directed editor, where the syntax structure of
written programs are explicitly seen while editing the program (see Figures 2 and
3).

3.2 Inspectors for Language Processors

Three differentLISA generated inspectors are introduced in this subsection.

3.2.1 Finite State Automaton Visualization
With the help of visual representation of directed graphs it becomes clear how
complex automata can be specified with simple regular expressions and how some
simple automata require a complex regular expression (like comments in C). It is
also possible to determine the conflicts in specifications and resolve them. In Figure
4 a finite state automaton of theSELA language is presented.
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Fig. 2. Structure editor

Fig. 3. Syntax tree view

Fig. 4. FSA view
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Fig. 5. Dependency graph view

3.2.2 Syntax Tree Visualization
The basic understanding of a compiler is based on the understanding of the parsing
procedure. This tool is a graphical browser for the syntax tree built by theLISA
generated compiler after parsing a given source program. With this kind of visu-
alizations it is possible to measure the impact of different grammar specifications
and parsing techniques on the shape and size of the tree, and assess their effect on
compiler implementation; in that way it is possible to design a better syntax and
thereby an easier and understandable semantics.
Figure 3 illustrates the output of this tool: a part of the syntax tree selected by the
user while editing a program.

3.2.3 Dependency Graph Visualization
As attribute grammars are specified on the declarative level, the order of attribute
evaluation is determined by the compiler construction tool. But that sequence is
also important for humans to understand the actual evaluation order, once again to
help language designers to improve their grammars.
Even more relevant is the detection of cycles on a grammar; if the attribute depen-
dencies induce indirect cycles, they can be easily discovered with the aid of visual
representations.
In Figure 5 an augmented dependency graph, drawn by theLISA generated tool for
the 5thSELA production, is presented.

3.2.4 Semantic Evaluator Animation
In attribute grammars a set of attributes carrying semantic information is associated
with each nonterminal. For example, attributesinEnv andval are associated with
nonterminalEXPR (seeSELA language specifications). In the evaluation process
the value of these attributes has to be computed. The semantic analysis is better
understood by animating the visits to the nodes of the semantic tree, and the eval-
uation of attributes in these nodes; Figure 6 shows a snap-shot of the animation
process. Therefore, the animation of the evaluation process is also very helpful in
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Fig. 6. Semantic Evaluation view

the debugging process. Users can also control the execution by single-stepping and
setting the breakpoints.

3.3 Program Visualization and Animation

Another instance of tools that can be derived from formal language specification
are program visualizers/animators. The purpose of such a family of tools is to
help the programmer to inspect the data and control flow of a source program—
static view of the algorithms realized by the program (visualization) —and to un-
derstand its behaviour—dynamic view of the algorithms’ execution (animation).
Such a tool can be obtained by the specialization of a generic visualizer/animator
(a language-independent back-end) providing an extension to theLISA attribute
grammar that specifies the language to be analyzed. The AG extension just de-
fines the way the input sentence should be converted into the animator’s internal
representation (DAST)—see Figure 7.
Below is an example of such an extension for theSELA language, introduced in
the previous subsections.

import "AlmaLib.lisa";
language AlmaSELA extends SELA, AlmaBase f

rule extends Start
f

START ::= STMTS compute
f ALMA_ROOT<START,STMTS>

ALMA_TAB<START,STMTS>
g;

g
rule extends Statements

f STMTS ::= STMT STMTS compute
f ALMA_STATS<STMTS, STMT, STMTS[1]>
g
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Attribute
Grammar

using templates

Compiler

source text

Animation
DAST construction

+
At. Grammar

Code

Alma Base

attributes
methods

template definitions

Animator

AlmaLib

extends

extends

Fig. 7. Animator generation fromLISA specification

| STMT compute
f ALMA_IDENT<STMTS, STMT>
g;

g
rule extends Statement

f STMT ::= #Identifier := EXPR compute
f

ALMA_ASSIGN<STMT,ALMA_VAR(#Identifier), EXPR>
g;

g
rule extends Expression

f EXPR ::= EXPR + EXPR compute
f

ALMA_OPER<EXPR[0],EXPR[1], EXPR[2], "+">
g;

g
rule extends Term1

f EXPR ::= #Number compute
f

ALMA_CONST<EXPR,#Number>
g;

g
rule extends Term2

f EXPR ::= #Identifier compute
f

ALMA_VAR<EXPR,#Identifier>
g;

g
g

The extension shown above illustrates the use oftemplates, andmultiple attribute
grammar inheritancethat are both standardLISA features. It is used to specify the
attribute evaluation related to theDAST construction; it assumes the syntax and
semantics specified inSELA attribute grammar and adds new computing statements
just to build the internal representation used byAlma. To write in a clear and
concise way those statements, we use templates. Each template is specified as:

template<attributes X_in,Y_in>
compute ALMA_ROOT
{ X_in.dast=new Alma.CRoot(Y_in.tree);
}

The methodCRoot is one of pre-defined methods inherited fromAlmaBase and is used
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Fig. 8. Visualization generated by the animator

to construct theDAST nodes. From this specification we generate a parser and a translator
that converts each input text into an abstract representation used by the animator, common
to all different source languages. That processor, we call it the animator’sfront-end, is the
language dependent component of the tool. In this case, its fixed part is more complex than
in the cases studied in previous subsections 3.1 and 3.2: it is not just a standard algorithm
(we use three language independent algorithms), but it requires also two standard data
structures (a visual rule base, and a rewriting rule base). So, taking a source program in
SELA:

a:=2+2+5
b:=a+3+a
c:=a+b+6

these algorithms can generate a visualization like the one that can be seen in Figure 8.
Take the picture as an example because the final layout (drawings used) can be modified
by theAlma designer. Drawing procedures called by the visualizing rules can easily be
changed. The system, to be discussed in the next section has a front-end specific for each
language and a generic back-end, and uses a decorated abstract syntax tree (DAST) for the
intermediate representation between them. A general overview ofAlma’s specifications
and structures, and its relation to aLISA generated compiler is provided in Figure 7.

4 Alma Implementation

The Alma system was designed to become a new generic tool for program visualization
and animation based on the internal representation of the input program in order to avoid
any kind of annotation of the source code (with visual types or statements), and to be able
to cope with different programming languages.

4.1 Alma Architecture

To comply with the requirements above, we conceived the architecture shown in Figure 9.
In Alma we also use aDAST as an internal representation for the meaning of the program
we intend to visualize; in that way, we isolate all the source language dependencies in
the front-end, while keeping the generic animation engine in theback-end. The DAST
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Standard Alma
Java Classes

Animator

source
program

LISA
Attribute Grammar

Specification

LISA

Compiler

Visualizer

Rewriter

Animation

front-end back-end

VRB

RRB

DAST

Fig. 9. Architecture of Alma system

is specified by an abstract grammar independent of the concrete source language. It is
not possible to include here that grammar to formalize the type (structure, and attributes)
of DAST nodes; for more details we suggest the reading of [VH01]. In some sense we
can say that the abstract grammar models a virtual machine. So the DAST is intended to
represent the program state in each moment, and not to reflect directly the source language
syntax. In this way we rewrite the DAST to describe different program states, simulating its
execution; notice that we deal with a semantic transformation process, not only a syntactic
rewrite.
A Tree Walk Visualizer, traversing the tree, creates visual representations of nodes, gluing
figures in order to get the program image on that moment. Then the DAST is rewritten (to
obtain the next internal state), and redrawn, generating a set of images that will constitute
the animation of the program.

4.1.1 Visualization in Alma
The visualization is achieved applying visualizing rules (VR) to DAST subtrees; those
rules define a mapping between trees and figures. When the partial figures corresponding
to the nodes of a given tree are assembled together, we obtain a visual representation for
the respective program.

Visualizing Rules
The VRB (Visualizing Rule Base) is a mapping that associates with each attributed tree,
defined by a grammar rule (or production), a set of pairs

VRB: DAST 7! set (cond � dp)

where each pair has a matching condition, cond, and a procedure, dp, which defines the
tree visual representation. Each cond is a predicate, over attribute values associated with
tree nodes, that constrains the use of the drawing procedure (dp), i.e., cond restricts the
visualizing rule applicability.
The written form of each visualizing rule is as follows:

vis_rule(ProdId)= <tree-pattern>,
(condition),
{drawing procedure}
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<tree-pattern> = <root, child_1, ..., child_n>

In this template, condition is a boolean expression (by default, evaluates to
true) and drawing procedure is a sequence of one or more calls to elementary
drawing procedures.
A visualizing rule can be applied to all the trees that are instances of the production
ProdId. A tree-pattern is specified using variables to represent each node. At
least, each node has the attributes value, name and type that will be used on
the rule specification, either to formulate the condition, or to pass to the drawing
procedures as parameters.
Notice that, although each VRB associates to a production a set of pairs, its written
form, introduced above, only describes one pair, for the sake of simplicity; so it
can happen to have more than one rule for the same production. To illustrate the
idea suppose that in Alma’s abstract grammar a relational operation, rel oper,
is defined by the 13th production:
p13: rel_oper : exp exp

where exp is defined as:
p14: exp : CONST
p15: exp : VAR
p16: exp : oper

To build a visual representation for that relational operation we need to distinguish
two cases: the first occurs when the value of operand expressions is unknown (the
value attributes are not yet instantiated); the second occurs when the value of the
operands is known (that means that the expressions have been evaluated). So, dif-
ferent semantic cases of production p13 will be represented by different figures, as
shown in the example of figure 10 where we assume that the first expression (left
operand) is a variable and the second expression (right operand) is a constant: the
drawing on the top describes the first case, and the drawing below the second one.
The visualizing rules to specify that mapping are written below.

opr.name

a.name

opr.name

a.name

a.value c.value

Fig. 10. Visualization of a relational operation

vis_rule(p13) =
<opr,a,c>,
((a.value=NULL) AND (c.value=NULL) AND
(a.type=VAR) AND (c.type=CONST)),
{drawRect(a.name),drawRect(),put(opr.name),
put(’?’)}

vis_rule(p13) =
<opr,a,c>,
((a.value!=NULL) AND (c.value!=NULL) AND
(a.type=VAR) AND (c.type=CONST)),
{drawRect(a.name,a.value),drawRect(c.value),
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put(opr.name),put(’?’)}

Visualization Algorithm
The visualization algorithm traverses the tree applying the visualizing rules to the
sub-trees rooted in each node according to a bottom-up approach (post-fix traver-
sal). Using the production identifier of the root node, it obtains the set of possible
representations; then a drawing procedure is selected depending on the constraint
condition that is true.
The algorithm is presented below.

visualize(tree){
If not(empty(tree))

then forall t in children(tree) do visualize(t);
rules <- VRB[prodId(tree)]; found <- false;
While (not(empty(rules)) and not(found))

do r <- choice(rules);
rules <- rules - r;
found <- match(tree,r)

If (found) then draw(tree,r); }

4.1.2 Animation in Alma
Each rewriting rule (RR) specifies a state transition in the process of program ex-
ecution; the results of applying the rule is a new DAST obtained by a semantic
(may be also a syntactic) change of a sub-tree. This systematic rewriting of the
original DAST is interleaved with a sequence of visualizations producing an ani-
mation. A main function synchronizes the rewriting process with the visualization
in a parameterized way, allowing for different views of the same source program.

Rewriting Rules
The RRB (Rewriting Rule Base) is a mapping that associates a set of tuples with
each tree.

RRB: DAST 7! set(cond � newtree � atribsEval)

where each tuple has a matching condition, cond, a tree, newtree, which defines
syntactic transformations, and an attribute evaluation procedure, atribsEval,
which defines the changes in the attribute values (semantic modifications).
The written form of each rewriting rule is as follows:

rule(ProdId)= <tree-pattern>,
(condition),
<NewProdId: newtree>,
{attribute evaluation}

<tree-pattern> = <root, child_1, ..., child_n>
<newtree> = <root, child_1, ..., child_n>

In this template, condition is a boolean expression (by default, evaluates to
true) and attribute evaluation is a set of statements that defines the new
attribute values (by default, evaluates to skip).
A rewriting rule can be applied to all the trees that are instances of the production
ProdId. A tree-pattern associates variables to nodes in order to be used in
the other fields of the rule specification: the matching condition, the new tree and

90



HENRIQUES et al

the attribute evaluation. When a variable appears in both the tree-pattern (we
call the left side of the RR) and the newtree (so called right side of the RR), it
means that all the information contained in that node, including its attributes will
not be modified, i.e. the node is kept in the transformation as it is.
Notice that, although each RRB associates to a production a set of tuples, its writ-
ten form, introduced above, only describes one tuple. So, it can happen to have
more than one rule for the same production. For instance, consider the following
productions, belonging to Alma’s abstract grammar, to define a conditional state-
ment:

p8: IF : cond actions actions
p9: | cond actions

The DAST will be modified using the following rules:
rule(p8) = <if,op,a,b>,

(op.value=true),
<p9:if,op,a>,
{ }

rule(p8) = <if,op,a,b>,
(op.value=false),
<p9:if,op,b>,
{ }

Rewriting Algorithm
The rewriting algorithm is also a tree-walker that traverses the tree until a rewrit-
ing rule can be applied, or no more rules match the tree nodes (in that case, the
transformation process stops). For each node, the algorithm determines the set of
possible RR using its production identifier (ProdId) and evaluating the contextual
condition associated with those rules. The DAST will be modified removing the
node that matches the left side of the selected RR and replacing it by the new tree
defined by the right side of that RR. This transformation can be just a semantic
modification (only attribute values change), but it can also be a syntactic modifica-
tion, (some nodes disappear or are replaced).
The rewriting algorithm follows:

DAST rewrite(tree){
If not(empty(tree)) then rules <- RRB[prodId(tree)];
found <- false;
While (not(empty(rules)) and not(found))

do r <- choice(rules);
rules <- rules - r;
found <- match(tree,r)

If (found)
then tree <- change(tree,r)
else a <- nextchild(tree)

While (not(empty(a)) and not(rewritten(a)))
do a <- nextchild(tree)

If not(empty(a)) then tree <- rebuild(tree,a,rewrite(a))
return(tree) }

Animation Algorithm
The main function defines the animation process, calling the visualizing and the
rewriting processes repeatedly. The simplest way consists in redrawing the tree af-
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ter each rewriting, but the sequence of images obtained can be very long and may
not be the most interesting. So the grain of the tree redrawing is controlled by a
function, called below shownow(), that after each tree’s syntactic-semantic trans-
formation decides if it is necessary to visualize it again; the decision is made taking
into account the internal state of the animator (that reflects the state of program
execution) and the value of user-defined parameters.
The animation algorithm, that is the core of Alma’s back-end, is as follows:

animator(tree){
visualize(tree);
Do rewrite(tree);

If shownow() then visualize(tree);
until (tree==rewrite(tree)) }

When no more rules can be applied, the output and input of the rewrite function are
the same.

4.2 Reusing LISA in Alma implementation

LISA itself, and the generated compilers, are implemented, in the programming
language Java, following an object-oriented approach—see Figure 11 to get a gen-
eral picture of LISA architecture integrated with all its generated tools. So it was
very easy to identify and understand the data structures and functions used by LISA
system and tools to process a given attribute grammar specification or a source
programs—they are properly encapsulated in classes, as attributes and methods.
So the coding of data structures and algorithms needed to implement Alma became
straightforward, due to the reuse of some of the referred classes.
A global view of Alma implementation is provided in Figure 12. To build the
DAST—that is the output of Alma’s front-end (generated by LISA), and the input
of Alma’s back-end—the developer of the AG specification shall call some specific
methods (provided in Alma’s standard library) to create a new tree node for each
symbol of the DAST abstract language and to collect the trees associated with its
children. To implement those methods, we just reused the Java classes CTreeN-
ode, CSyntaxTree, CParseSymbol, used by LISA to create its internal tree
representations.
As an immediate consequence, all the facilities provided in the LISA environment
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to manipulate those trees became available to process the DAST.
Those classes were reused once again to build the maps VRB and RRB necessary
for the implementation of the back-end (visualization and animation) algorithms,
as described in subsections 4.1.1 and 4.1.2—remember that every (visualizing or
rewriting) rule in both maps is defined in terms of tree-patterns.
The back-end itself is another Java class, specially developed for that purpose, that
reuses the data structures and implements directly the algorithms shown in the pre-
vious subsections. To code that class, we kept the OO approach followed in LISA
development.
To code the main class of Alma, it should contain the necessary methods to call and
synchronize the animator’s front-end and back-end functions, we simply reused and
adapted the standard Java class, Compile.java, made available in LISA library
as the main class for its generated compilers.

5 Conclusion

Many applications today are written in well-understood domains. One trend in
programming is to provide software tools designed specifically to handle the de-
velopment of such domain-specific applications in order to greatly simplify their
construction. These tools take a high-level description of the specific task and gen-
erate a complete application.
One such well established domain is compiler construction, because there is a long
tradition of producing compilers by hand, and because the underlying theory (sup-
porting all the analysis phases, and even code generation and optimization pro-
cesses) is well understood. At present, there exist many generators which automat-
ically produce compilers or interpreters from programming language specifications.
As shown in this paper, not just standard compilers/interpreters can be generated
automatically. Formal language specifications contain a lot of information from
which many language-based tools, such as editors, type checkers, debuggers, visu-
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alizers, animators, can be generated. Sometimes the implicit information is enough,
but in some other cases some extra data must be added. Concrete examples of
both types, produced by the generator system LISA, were introduced and discussed
along the article. We do not intend to discuss in this paper the actual performance
of LISA, because our aim is to enhance the capabilities of the attribute grammar
specifications; however our experiments allow us to say that execution time of the
generated tools is completely acceptable when compared with similar programs.
The benefits of this approach to software development are many fold. On one hand,
the developer just writes formal descriptions that are more concise and clear—
they are faster to produce and easier to understand and maintain, because they are
shorter; it is well known that thousands of lines of complex code are automatically
obtained from a grammar definition written in just some dozens of lines. On the
other hand, different tools can be obtained from the same specification, which is
obviously a major advantage. Last but not least, a very good and optimal code
(developed by experts in language processing methods and algorithms) is reused in
the automatic generation process.
Discussing in detail the architecture and implementation of one particular tool, the
program visualizer/animator Alma, we also proved that: (1) a grammatical ap-
proach to software engineering, supported by generators, is a nice way to develop
applications (we systematically created a general animator instead of an algorithm
or language dependent one); and (2) a modular, object-oriented, way of program-
ming is valuable for effective reuse of the code (we used some LISA classes in
Alma), saving in fact development time and effort.
Some front-end were implemented in order to tune the internal representation to be
used by Alma. By now we are working on the back-end classes to implement the
visualization and animation algorithms, and we expect some experimental results
in the near future.
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