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Abstract 

In the context of Alma (a system for program visual­
ization and algorithm animation), we use an internal 
representation-based on the concept of an attributed 
abstract syntax tree decorated with attribute values, a 
DAST -to associate (static) figures to grammar rules 
(productions) and to step over program dynamics exe­
cuting state changes in order to perform its animation. 
We do not rely upon any source program annotations 
(visual/animation statements, or parameters), neither 
on any special visual data types. 
On account of such principle, the approach becomes 
source language independent. It means that we can ap­
ply the same visualizer and animator, that is the Alma 's 
back-end, to different programming languages; all that 
we need is different front-ends to parse each program 
into the OAST we use. 
In this paper we discuss Alma design goal.s and archi­
tecture, and we present the two mappings that associate 
to productions figures and rewriting rules to systemati­
cally draw a visual representation (exhibiting data and 
control flow) of a given source program and to animate 
its execution. 

1. Introduction 

An algorithm animation is a dynamic visualization of 
the main abstradions of that algorithm. The anima­
tion is a natural way to represent behaviour and its 
purpose is to show the concepts involved in a program 
and how they evolve during execution. 
The visual representation used in an animation helps 
on algorithm/program understanding. Program visu­
alization belongs to a lower level of abstraction and 
algorithm visualization is at a higher level of abstrac-
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tion. The Visual Programming is a new way to specify 
programs which turns this task easier to perform. The 
software visualization intends to turn programs easier 
to understand. 
The Alma system aims at being a new program visual­
ization system, based on the internal representation of 
each source program. This system avoids any kind of 
annotation of the source code with visual types or s­
tatements, and receives (as input) programs written on 
several kinds of languages. This is possible because the 
visualization is not based on the source program but 
on its universal internal representation. So, the system 
knows the grammar of the source text, and then the 
visualization is generated automatically. 
In this paper we discuss Alma principles, and we 
present the two mappings that associate to productions 
figures and rewriting rules to systematically draw a vi­
sual representation (exhibiting data and control flow) 
of a given source program and to animate its execution. 

The paper is divided into this introduction and sev­
en more sections. The motivation for the work here 
discussed is presented in section 2, where we give an 
overview of the area of algorithm animation system­
s. Then we introduce Alma system, our approach to 
program visualization and algorithm animation, in sec­
tion 3; the underlying principles and the architecture 
chosen to implement them are discussed. The way we 
specify and build the visual representation of programs 
is presented along section 4, while similar considera­
tions about animation are dealt with in section 5. In 
section 6 we discuss an example of animation; using a 
Pascal program as input and introducing some rules, 
we show the visualization that will be produced. Some 
case studies are presented in section 7. Here we talk 
about the implementation of two front-end's, mapping 
two different languages on the AI m a internal represen­
tation. As usual the paper ends with a synthesis, some 
words about the present state of Alma development and 
future work (section 8). 
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2. Algorithm Animation: 
and tools 

approaches 

To support our proposal, we started studying as much 
visualization and animation systems as possible. This 
section is devoted to the review of algorithm animation 
systems developed and published so far. 
We are mainly concerned with the different ways 
the programmer has to specify the animation, the 
various approaches to implement the process, and the 
generality of those systems; with that in mind we have 
looked for a classification of animation systems. 
With that approach, we are able to compare our 
proposal against classes of existing animators, instead 
of doing that for each specific one. 

2.1. Approaches to the Specification of the Anima­
tion 

At a first glance over Animation Systems, we under­
stood that several approaches were used in their imple­
mentation. Some of those approaches are based on: li­
braries of visualization functions; animation direct ma­
nipulation; algorithm annotation; self-animated data 
types; animation specific languages; and program se­
mantics annotation. 
The very first systems used libraries with visualization 
functions in order to insert (visual) function calls in 
the source program to produce the desired visualiza­
tion. The animation process wa.s not automatic neither 
systematic, and the visualization wa.s generated in real 
time during program execution. 
There are other systems where the visualization is to­
tally controlled by the user. The user defines the map­
ping between variables and statements of the source 
program and their visual representation. Then the sys­
tem applies that finite function to the program dur­
ing its execution displaying all the generated drawings. 
LENS [MS93] uses this technique to construct anima­
tions. 
Other systems focus on the definition of the most in­
teresting points of the program to be visualized. For 
that purpose, the user annotates those points with vi­
sualizing procedures. In those cases, the animation is 
explicitly specified in the source code. BALSA [BS84] 
is a notable example of this kind of systems. 
After them, some systems {like JELIOT [HPS+97]) 
were proposed with the goal of avoiding a full annota­
tion of the source program; instead, special data types 
are used. Those data types are then translated by the 
system into animations procedures that produce the 

desired visualization. 
Another family of systems (for very specific domains) 
require that the source text is written on a system de­
pendent language whose syntax and semantics is spe­
cially defined for that purpose. Some examples are: 
JCAT [BNR97]; VIP [MM88]; ZSTEP [LF95]. 
We also found systems that use declarative visualiza­
tion. Declarative visualization is a technique which 
provides the animator with the ability to construct 
complex visual representations for programs by defin­
ing abstract mathematical mappings from program s­
tates to graphical objects. This approach is used in 
PAVANE [CkCJ92], PROVIDE [Moh88], ALADDIN 
[HHR89] and ANIMUS [Dui98]. 
More recently, a new approach was introduced, defend­
ing a semantic directed annotation in opposition to 
the traditional structure oriented {algorithmic) annota­
tion. The idea is to formalize the program semantics, 
and associate animation functions to concepts whose 
meaning is so far specified. The CENTAUR system 
[Ber91] uses this new approach. 

2.2. Animation Systems 

Searching for tools that use some kind of animation 
to explain an underlying reasoning, is an easy task 
because there are lots of program animators accessible 
via WWW; we also found many reports and articles 
devoted to this subject. As told above, we made 
some effort to classify all the applications related to 
algorithm animation and program visualization. As a 
start point, we looked for existing criteria. 
Stasko in [SDBP97] proposed a classification for 
software visualization systems, defining six evaluation 
parameters: scope (specifies the range of programs 
that the animator is able to take as input for visu­
alization); content (defines the subset of program 
information that is visualized); form (specifies the 
characteristics of the output produced by the ani­
mator); method (defines how the visualization is 
specified); interaction (defines how the user interacts 
and controls the animator); and effectiveness (con­
cerning how the system presents the information to 
the user). 
This classification criteria can be used on visualization 
systems which are ·language oriented: use specific 
source language, specific annotation language or 
specific data types. However we felt the need for a 
broader criteria that could couple with a larger set 
of systems. The classification system that we looked 
for should be more concerned with methodological 
parameters (as identified in the beginning of that 
section) and not so closed to technical perspectives. 
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In that sense, we arrived to a set of five types of 
visualisation/animation systems, as follows. 
Most of the well known animators are not general 
purpose; instead they only work with a specific 
algorithm. Many applications in that family allow 
some interaction with the user (we classified them 
as Type II); while the rest just show the animation 
without any interaction with the user, Who is limited 
to watch the explanation in a completely passive way 
(this group is classified as Type I). 
The animation systems that came up along the last ten 
years, tend to be much more generic (applicable to a 
larger set of algorithms) while providing an interactive 
environment. Systems like BALSA [BS84J (the first 
in this class); TANGO [Sta90]; JCAT [BNR97]; VIP 
[MM88]; ZSTEP [LF95]; JELIOT [HPS+97]; PAVANE 
[CkCJ92] ; LENS [MS93] (already mentioned along 
the last section) belong to that class, that we call 
Type Ill, but use different approaches to generate 
the visualizations. The first three systems use al­
gorithm annotations; the next two use a specific 
source language and automatic algorithm annOtation; 
JELIOT uses special data types and precompilation; 
and, at last, LENS uses direct manipulation of the 
visualization. 
Some programming environments, also source lan­
guage dependant, provide important functionality 
for program visualizations. Examples of that are: 
PECAN [Rei85] which provides multiple views of the 
program syntax, semantics and execution, GARDEN 
[Rei87] and FIELD [Rei90]. In our opinion, those 
systems also should be classified as Type Ill. 
We. also found some compiler and programming 
environment generators that provide means to visu­
alize some steps of the generation process or even 
include some visual debugging capabilities in' the code 
produced, or can generate environments with visual 
outputs. We decided to consider those generators -as 
LRC [Sar99], CENTAUR [Ber91J and LISA [MLAZOOJ, 
for mstance - in the family of animator systems, 
classifying them as Type IV. 
At last, there are some environments -like AGG 
[MRRT99], CPN [Jen96], and FORMS3 [CBC96J­
for visual programming that simulate the behaviour of 
the system specified by those programs. We classified 
them as Type V. 
Nowadays, there are systems that use special data 
types, automatic annotation, automatic generation of 
animations and other modern techniques that must be 
~tudied under the characterization system above. So, 
It would be useful to add new parameters to Stasko's 
classification proposal\ such as: degree of automation 
of the visualization construction; number of views 

Figure 1. Architecture of Alma system 

that can be created from the same program; degree 
of independence between the source language and 
animation system; degree of the source text alteration 
required by the animation process. 

3 Architecture of Alma 

Convinced about the importance of program visualiza­
tion and algorithm animation and after reviewing the 
existing systems, we decided to design and develop a 
new visualization environment, Alma, obeying the fol­
lowing design goals: 

• build an integrated and easy to use environment; 

• avoid the need for any kind of change in the source 
code; 

• allow the selection of different views of the same 
program 

• create a system as generic as possible in order to 
be used by different source languages. 

To comply with the requirements above, and based on 
our background on compiler specification and imple­
mentation, we conceived the architecture shown in fig­
ure 1. The architecture proposed follows the compil­
ers implementation method called semantics directed 
translation, by opposition to the older and well known 
syntax directed translation. That implementation mod­
el is influenced by the use of an attribute grammar to 
specify (formally) the syntax and semantics of a lan­
guage. According to that model, the meaning of the 
source program (to process) is explicitly represented by 
a syntax tree decorated with attribute values, DAST, 
and a clear separation between the compiler's front­
end-responsible for program analysis, and tree build­
ing and decoration~and the compiler's back-end-in 
charged of the translation-is maintained. 
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In Alma we also use a OAST as an interuaJ represen­
tation for the meaning of the program (we intend to 
visualize), and we isolate all the source language de­
pendencies in the front-end, while keeping the generic 
animation engine in the back-end. 

This allows us to concentrate on both tasks-meaning 
recognition and representation, and visualization­
separately, but most important, the approach gives 
generality to our system. 

The DAST is specified by an abstract grammar inde­
pendent of the concrete source language. In some sense 
we can say that the abstract grammar models a virtu­
al machine. So the DAST is intended to represent the 
program state in each moment, and not to reflect di­
rectly the source language syntax. In this way we will 
rewrite the DAST to describe different program states, 
simulating its execution; notice that we deal with a 
semantic transformation process, not only a syntactic 
rewrite. 
Each node has a production identifier (Prod!d) that is 
its key; a symbol identifier; a set of pairs (name, value) 
which represents the attributes associated with the 
symbol labelling that node; and a set of subtrees that 
are its children-the tree rooted in that node is equiv­
alent to the grammar derivation rule Prod!d. 
A Tree Walker Visualizer, crossing the tree, creates vi­
sual representations of nodes, gluing figures in order 
to get the program image on that moment. Then the 
DAST is rewritten, and after that the process will be 
repeated generating a set of images (that representS the 
animation of the program). 

4. Visualization in Alma 

The visualization is achieved applying visualizing rules 
(VR) to DAST subtrees; the specification of those rules 
defines the mapping between trees and figures. Gluing 
those partial figures creates a visual representation for 
the program. 

4.1. Visualizing Rules 

The VRB {Visualizing Rule Base) is a mapping that 
associates with each attributed tree, defined by a gram­
mar rule {or production), a set of pairs. 

VRB: DAST >-+ set ( cond x dp) 

where each pair has a matching condition, cond, and a 
procedure, dp, which defines the tree visual represen­
tation. Each cond is a predicate, over attribute values 
associated with tree nodes, that constrains the use of 

the drawing procedure {dp), i.e., cond restricts the vi­
sualizing rule applicability. 
The written form of each visualizing rule is as follows: 

vis_rule(Prod!d)= <tree-pattern>, 
(condition), 
{drawing procedure} 

<tree-pattern>= <root, child_l, ... , child_n> 

In this specification, condition is a boolean expression 
(by default, evaluates to true) and drawing procedure 
is a sequence of one or more calls to elementary draw­
ing procedures. 
A visualizing rule can be applied to all the trees that 
are instances of the production Prodld. A tree-pattern 
is specified using variables to represent each node. At 
least, each node has the attributes value, name and 
type that will be used on the rule specification, either 
to formulate the condition, or to pass to the drawing 
procedures as parameters. 
Notice that, although each VR associates to a produc­
tion a set of pairs, its written form, introduced above, 
only describes one pair, for the sake of simplicity; so it 
can happen to have more than one rule for the same 
production. 
To illustrate the idea suppose that in Alma 's abstract 
grammar a relational operation, r·eLoper, is defined 
by the 13th production: 

p13: rel_oper : exp exp 

where exp is defined as: 

p14: exp CONST 
p16: exp VAR 
p16: exp oper 

To build a visual representation for that relational op­
eration we need to distinguish two cases: the first oc­
curs when the value of operand expressions is unknown 
(the value attributes are not yet instantiated); the sec­
ond occurs when the value of the operands is known 
(that means that the expressions have been evaluated). 
So, different semantic cases of production p13 will be 
represented by different figures, as shown in the exam­
ple of figure 2 where we assume that the first expression 
(left operand) is a variable and the second expression 
{right operand) is a constant: the drawing on the top 
describes the first case, and the drawing below the sec­
ond one. The visualizing rules to specify that mapping 
are written below. 

vis_rule(p13) • 
<opr,a,c>, 
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({a.value=NULL) AND (c.value~NULL) AND 
(a.type=VAR) AND (c.type=CONST)), 

{drawRect(a.name),drawRect(),put(opr.name), 
put('?')} 
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Figure 2. Visualization of a relational opera· 
tion 

vis_rule(p13) ~ 

<opr,a,c>, 
((a.value!=NULL) AND (c.value!=NULL) AND 
(a.type=VAR) AND (c.type=CONST)), 

{dravRect(a.name,a.value),dravRect(c.value), 
put(opr.name),put('?')} 

4.2. Visualization Algorithm 

The visualization algorithm traverses the tree apply­
ing the visualizing rules to the sub-trees rooted in 
eacl! node according to a bottom-up approach (post­
fix traversal). Using the production identifier of the 
root node, it obtains the set of possible representation­
s; then a drawing procedure is selected depending on 
the constraint condition that is true. 
The proposed algorithm is presented below. 

visualize(tree){ 

} 

If not(empty(tree)) 
then forall t in children(tree) 

do visualize(t); 
rules<- VRB[prodid(tree)]; 
found <- false; 
while not(empty(rules)) and not(found) 

do r <- choice(rules); 
rules <- rules - r; 
found <- match(tree,r) 

If (found) then draw(tree,r); 

5. Animation in Alma 

Each rewriting rule (RR) specifies a state transition 
in the process of program execution; the results 
of applying the rule is a new DAST obtained by a 
semantic (may be also a syntactic) change of a sub-tree. 

This systematic rewriting of the original DAST is inter­
leaved with a sequence of visualizations producing an 
animation. A main function synchronizes the rewriting 

process with the visualization in a parameterized way, 
allowing for different views of the same source program. 

5.1. Rewriting Rules 

The RRB (Rewriting Rule Base) is a mapping that 
associates with each tree a set of tuples. 

RRB: DAST >-+ set( cond x newtree x atribsEval) 

where each tuple has a matching condition, cond, a 
tree, newtree, which defines syntactic transformation­
s and an attribute evaluation procedure, atribsEval, 
which defines the changes in the attribute values (se­
mantic modifications). 
The written form of each rewriting rule is as follows: 

rule(Prodid)= <tree-pattern>, 
(condition), 
<NewProdid: newtree>, 
{attributes evaluation} 

<tree-pattern>= <root, child_l, ...• child_n> 
<newtree> =<root, child_l, ...• child_n> 

In this specification, condition is a boolean expres­
sion (by default, evaluates to true) and attributes 
evaluation is a set of statements that defines the new 
attribute values {by default, evaluates to skip). 
A rewriting rule can be applied to all the trees that 
are instances of the production Prodld. The new tree 
is also a production belonging to the same abstract 
grammar, so it will be specified by the new production 
identifier. 
A tree-pattern associates variables to nodes in or­
der to be used in the other fields of the rule specifi­
cation: the matching condition, the new tree and the 
attribute evaluation. When a variable appears in both 
the tree-pattern (we call the left side of the RR) and 
the newtree {the so called right side of the RR), it 
means that all the information contained in that node, 
including its attributes will not be modified, i.e. the 
node is kept in the transformation as it is. 
Notice that, although each RRB associates to a pro­
duction a set of tuples, its written form, introduced 
above, only desrribes one tuple. So, it can happen to 
have more than one rule for the same production. 
For instance, consider the following productions, be­
longing to Alma's abstract grammar, to define a condi­
tional statement: 

p8: 
p9: 

IF cond actions actions 
cond actions 

The DAST will be modified using the following rules: 
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rule(p8) = <if,op.a.b>, 
(op.value=true). 



Figure 3. Conditional Statement Rewriting 
Rules 

<p9:if,op,a>, 
{ } 

rule(p8) <if,op,a,b>, 
(op.value=false), 
<p9:if,op,b>, 
{ } 

The graphical representation of these two RRs is shown 
in figure 3. The THEN and ELSE nodes represent the 
actions blocks. 

5.2. Rewriting Algorithm 

The rewriting process traverses the tree until a rewrit­
ing rule can be applied, or no more rules match the tree 
nodes (in that cMe, the transformation process stops). 
For each node, the algorithm determines the set of pos­
sible RR using its production identifier (Prodid) and 
evaluating the contextual condition Msociated with 
those rules. The DAST will be modified removing the 
node that matches the left side of the selected RR and 
replacing it by the new tree defined by the right side 
of that RR. This transformation can be just a seman­
tic modification (only attribute values change), but it 
can also be a syntactic modification, (some nodes dis­
appear or are replaced). 
The rewriting algorithm follows: 

OAST revrite(tree){ 
If not(empty(tree)) then 

rules<- RRB[prodld(tree)]; 
found <- false; 
vhile not(empty(rules)) and not(found) 
do r <- choice(rules); 

rules <- rules - r; 

} 

found <- match(tree,r) 
If (found) 

then tree <- change(tree,r) 
else a <- nextchild(tree) 

while not(empty(a)) and not(revritten(a)) 
do a <- nextchild(tree) 
If not(empty(a)) 
then tree <- rebuild(tree,a,revrite(a)) 

return(tree) 

bool revritten(t){ return(t != revrite(t))} 

DAST rebuild(t,a,b){ t.a <- b; return( t ) } 

DAST change(tree,<<maptree>,<cond>, 

} 

<nevtree>,<eval>>){ 
instantiate(maptree,tree) 
build(nevtree,maptree) 
evaluate(newtree,eval) 
return(newtree) 

5.3. Animation Algorithm 

The main function defines the animation process, call­
ing the visualizing and the rewriting processes repeat­
edly. The simplest way consists in redrawing the tree 
after each rewriting, but the sequence of images ob­
tained can be very long and may be not the most inter­
esting. So the grain of the tree redrawing is contro1led 
by a function, called bellow shownow (), that after each 
tree syntactic-semantic transformation decides if it is 
necessary to visualize it againi the decision is made 
taking into account the internal state of the animator 
(that reflects the state of program execution) and the 
value of user-defined parameters. 
The animation algorithm, that is the core of Aim a's 
back-end, is as follows: 

animator(tree){ 
visualize(tree); 

} 

Do rewrite(tree); 
If shownowO 
then visualize(tree); 

until (tree==revrite(tree)) 

When no more rules can be applied, the output and 
input of the rewrite function are the same. 

6. An example 

To illustrate Aim a system and the visualization and an­
imation processes (mappings and algorithms) discussed 
in the previous subsections, consider the following ex­
tract of a Pascal program: 
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read(a); 
read(b); 
if(a>b) then a:=a-b 

else vrite(b/2) 

Consider also the productions of Alma 's internal ab­
stract granunar bellow (we only show the subset that 
will be used in the example above): 

pi: 
p2: 
p3: 
p4: 
p5: 
p6: 
p7: 
p8: 
p9: 
p10: 
p11: 
p12: 
p13: 
p14: 
p15: 
p16: 
p17: 
p18: 
p19: 
p20: 
p21: 

statements 

stat 

IF 

WHILE 
cond 
actions 
rel_oper 
exp 

oper 
ASSIGN 
READ 
WRITE 

stat statements 
stat 
IF 
WHILE 
ASSIGN 
READ 
WRITE 
cond actions actions 
cond actions 
cond actions 
rel_oper 
statements 
exp exp 
CONST 
VAR 
oper 
exp exp 
VAR exp 
VAR 
VAR 
oper 

Applying the visualization algorithm and the VRB 
with visualizing rules like the following: 

vis_rule(p17) = 
<op,a,b>. 
((a.value=NULL) AND (b.value=NULL) AND 
(a.type=VAR) AND (b.type=VAR)), 

{dravRect(a.name),dravRect(b.name), 
right_arrov(op.name)} 

vis_rule(p17) = 
<op,a,b>. 
((a.value!=NULL) AND (b.value!=NULL) AND 
(a.type=VAR) AND (b.type=VAR)), 

{dravRect(a.name,a.value),dravRect(b.name, 
b.value),right_arrow(op.name)} 

to the DAST obtained from the given Pascal program 
and abstract grammar, and then rewriting the DAST 
using the proposed algorithm and a RRB containing 
rewriting rules as 

rule(p17) = <opi,a,b>, 
( ) . 
<p17:op2,a,b>, 
{op2.value=op1.name(a.value,b.value)} 

rule(p18) = <at,al,b>, 
( ) . 
<p18:at,a2,b>, 
{a2.name=a1.name; 

a2.value=b.value} 

we obtain an animation of that program; some of the 
tree pictures belonging to the animation can be seen in 

. figure 4. 
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Figure 4. 5 Steps of the Animation of a Pascal 
Program. 
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7 Cases Studies 

As a first case study, we chose a classical, but very short 
and simple, programming language that allows integer 
variables declaration and includes atribution and in­
put/output statements (with integer expressions). 
After the complete definition of Aim a's internal ah­
stract language (in the previous section we shown just 
a part of its grammar), we developed a front-end for 
it. Of course, as it is a procedural language, we did not 
find problems to map that language into the interme­
diate representation. 
As a second case study, we have created a front-end for 
a domain specific language called Timed State Charts 
[AB96J, [Var96J (TSC for short). Instead of a classi­
cal programming language, TSC is a specification lan­
guage used to describe the behaviour of dynamic sys­
tems based on transition state machines. 
The lesson learned from that experiment was that we 
could express the translation of TSC into Alma's inter­
mediate representation without any problems. So, a 
source text in TSC will be translated into a OAST as a 
classical imperative language! 

8. Conclusion 

In this paper we discussed how to build a generic visu­
alization mapping that associates figures to tree nodes 
in order to create a visual representation for a program. 
We also presented another mapping associating seman­
tic rewriting rules to tree nodes to simulate program 
execution by state transitions. At last, we proposed 
a general way of combining both mappings and algo­
rithlllii to animate a program, without need for extra 
annotation or use of visual data types. 
At moment the architecture of the system is defined 
according to the design goals derived from the review 
of existing animators; the rewriting and drawing algo­
rithms are created; and we have specified (in textual 
and graphic forms) both rules bases for procedural and 
alike languages. 
To proceed into the implementation we decided to rely 
upon LISA tool. LISA system is a generic and inter­
active environment for programming language devel­
opment. From a formal specification (attribute gram­
mar) of a particular programming language, LISA pro­
duces a language specific environment that includes 
a language-oriented editor, a compiler/interpreter and 
other graphic debugging tools. 
This generator receives an attribute grammar, and pro­
duces an internal representation from which generates 
a scanner, a parser and an attribute evaluator that are 

the components of a new compiler for the language de­
scribed by the input grammar. 
At a first step we used LISA to create (generate auto­
matically) the front-end's of Alma for 2 different lan­
guages, a classical imperative language and another one 
based on temporal state machines to specify dynamic 
systems. For each case, we tested the generation of the 
OAST for different source programs of the two ellected 
languages. 
The next step (at moment, under development) will be 
the reuse of LISA to implement Alma 's back-end, the 
module that must recognize the internal representation 
created by LISA generated front-end's and produce the 
animation. 
As USA, and the generated compilers, are implement­
ed in Java following an object-oriented approach, it 
was not difficult to find and understand the structures 
and functions used to process the given attribute gram­
mar and the specific source programs. So the coding 
of structures and algorithms needed to implement the 
back-end seems to be straight forward. 

8.1. Future Developments 

In the near future we intend to conclude the imple­
mentation of the back-end. We are advised that we 
will have two major tasks to perform: add a large 
number of rewriting rules and visualization rules to the 
back-end in order to cover the procedural semantics 
(logical and functional semantics later); study the 
generation of several views for the same program, 
controlling the level of detail for each visualization. 
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