
Visualization/ Animation of Programs based on Abstract
Representations and Formal Mappings

Maria Joao Varanda Pereira •
Polithecnic Institute of Bragan~a - Portugal

mjoao@ipb.pt

Pedro Range! Henriques
University of Minho - Portugal

prh@di.uminho.pt

Abstract

In the context of Alma (a system for program visual­
ization and algorithm animation), we use an internal
representation-based on the concept of an attributed
abstract syntax tree decorated with attribute values, a
DAST -to associate (static) figures to grammar rules
(productions) and to step over program dynamics exe­
cuting state changes in order to perform its animation.
We do not rely upon any source program annotations
(visual/animation statements, or parameters), neither
on any special visual data types.
On account of such principle, the approach becomes
source language independent. It means that we can ap­
ply the same visualizer and animator, that is the Alma 's
back-end, to different programming languages; all that
we need is different front-ends to parse each program
into the OAST we use.
In this paper we discuss Alma design goal.s and archi­
tecture, and we present the two mappings that associate
to productions figures and rewriting rules to systemati­
cally draw a visual representation (exhibiting data and
control flow) of a given source program and to animate
its execution.

1. Introduction

An algorithm animation is a dynamic visualization of
the main abstradions of that algorithm. The anima­
tion is a natural way to represent behaviour and its
purpose is to show the concepts involved in a program
and how they evolve during execution.
The visual representation used in an animation helps
on algorithm/program understanding. Program visu­
alization belongs to a lower level of abstraction and
algorithm visualization is at a higher level of abstrac-

•The work of M. Joao is partially support by the Portuguese
program PRODEP, acc-1o 5.2 da medida 5- doutoramentos

().7695-0474-4101 $10.00©2001 IEEE

tion. The Visual Programming is a new way to specify
programs which turns this task easier to perform. The
software visualization intends to turn programs easier
to understand.
The Alma system aims at being a new program visual­
ization system, based on the internal representation of
each source program. This system avoids any kind of
annotation of the source code with visual types or s­
tatements, and receives (as input) programs written on
several kinds of languages. This is possible because the
visualization is not based on the source program but
on its universal internal representation. So, the system
knows the grammar of the source text, and then the
visualization is generated automatically.
In this paper we discuss Alma principles, and we
present the two mappings that associate to productions
figures and rewriting rules to systematically draw a vi­
sual representation (exhibiting data and control flow)
of a given source program and to animate its execution.

The paper is divided into this introduction and sev­
en more sections. The motivation for the work here
discussed is presented in section 2, where we give an
overview of the area of algorithm animation system­
s. Then we introduce Alma system, our approach to
program visualization and algorithm animation, in sec­
tion 3; the underlying principles and the architecture
chosen to implement them are discussed. The way we
specify and build the visual representation of programs
is presented along section 4, while similar considera­
tions about animation are dealt with in section 5. In
section 6 we discuss an example of animation; using a
Pascal program as input and introducing some rules,
we show the visualization that will be produced. Some
case studies are presented in section 7. Here we talk
about the implementation of two front-end's, mapping
two different languages on the AI m a internal represen­
tation. As usual the paper ends with a synthesis, some
words about the present state of Alma development and
future work (section 8).

373

2. Algorithm Animation:
and tools

approaches

To support our proposal, we started studying as much
visualization and animation systems as possible. This
section is devoted to the review of algorithm animation
systems developed and published so far.
We are mainly concerned with the different ways
the programmer has to specify the animation, the
various approaches to implement the process, and the
generality of those systems; with that in mind we have
looked for a classification of animation systems.
With that approach, we are able to compare our
proposal against classes of existing animators, instead
of doing that for each specific one.

2.1. Approaches to the Specification of the Anima­
tion

At a first glance over Animation Systems, we under­
stood that several approaches were used in their imple­
mentation. Some of those approaches are based on: li­
braries of visualization functions; animation direct ma­
nipulation; algorithm annotation; self-animated data
types; animation specific languages; and program se­
mantics annotation.
The very first systems used libraries with visualization
functions in order to insert (visual) function calls in
the source program to produce the desired visualiza­
tion. The animation process wa.s not automatic neither
systematic, and the visualization wa.s generated in real
time during program execution.
There are other systems where the visualization is to­
tally controlled by the user. The user defines the map­
ping between variables and statements of the source
program and their visual representation. Then the sys­
tem applies that finite function to the program dur­
ing its execution displaying all the generated drawings.
LENS [MS93] uses this technique to construct anima­
tions.
Other systems focus on the definition of the most in­
teresting points of the program to be visualized. For
that purpose, the user annotates those points with vi­
sualizing procedures. In those cases, the animation is
explicitly specified in the source code. BALSA [BS84]
is a notable example of this kind of systems.
After them, some systems {like JELIOT [HPS+97])
were proposed with the goal of avoiding a full annota­
tion of the source program; instead, special data types
are used. Those data types are then translated by the
system into animations procedures that produce the

desired visualization.
Another family of systems (for very specific domains)
require that the source text is written on a system de­
pendent language whose syntax and semantics is spe­
cially defined for that purpose. Some examples are:
JCAT [BNR97]; VIP [MM88]; ZSTEP [LF95].
We also found systems that use declarative visualiza­
tion. Declarative visualization is a technique which
provides the animator with the ability to construct
complex visual representations for programs by defin­
ing abstract mathematical mappings from program s­
tates to graphical objects. This approach is used in
PAVANE [CkCJ92], PROVIDE [Moh88], ALADDIN
[HHR89] and ANIMUS [Dui98].
More recently, a new approach was introduced, defend­
ing a semantic directed annotation in opposition to
the traditional structure oriented {algorithmic) annota­
tion. The idea is to formalize the program semantics,
and associate animation functions to concepts whose
meaning is so far specified. The CENTAUR system
[Ber91] uses this new approach.

2.2. Animation Systems

Searching for tools that use some kind of animation
to explain an underlying reasoning, is an easy task
because there are lots of program animators accessible
via WWW; we also found many reports and articles
devoted to this subject. As told above, we made
some effort to classify all the applications related to
algorithm animation and program visualization. As a
start point, we looked for existing criteria.
Stasko in [SDBP97] proposed a classification for
software visualization systems, defining six evaluation
parameters: scope (specifies the range of programs
that the animator is able to take as input for visu­
alization); content (defines the subset of program
information that is visualized); form (specifies the
characteristics of the output produced by the ani­
mator); method (defines how the visualization is
specified); interaction (defines how the user interacts
and controls the animator); and effectiveness (con­
cerning how the system presents the information to
the user).
This classification criteria can be used on visualization
systems which are ·language oriented: use specific
source language, specific annotation language or
specific data types. However we felt the need for a
broader criteria that could couple with a larger set
of systems. The classification system that we looked
for should be more concerned with methodological
parameters (as identified in the beginning of that
section) and not so closed to technical perspectives.

374

In that sense, we arrived to a set of five types of
visualisation/animation systems, as follows.
Most of the well known animators are not general
purpose; instead they only work with a specific
algorithm. Many applications in that family allow
some interaction with the user (we classified them
as Type II); while the rest just show the animation
without any interaction with the user, Who is limited
to watch the explanation in a completely passive way
(this group is classified as Type I).
The animation systems that came up along the last ten
years, tend to be much more generic (applicable to a
larger set of algorithms) while providing an interactive
environment. Systems like BALSA [BS84J (the first
in this class); TANGO [Sta90]; JCAT [BNR97]; VIP
[MM88]; ZSTEP [LF95]; JELIOT [HPS+97]; PAVANE
[CkCJ92] ; LENS [MS93] (already mentioned along
the last section) belong to that class, that we call
Type Ill, but use different approaches to generate
the visualizations. The first three systems use al­
gorithm annotations; the next two use a specific
source language and automatic algorithm annOtation;
JELIOT uses special data types and precompilation;
and, at last, LENS uses direct manipulation of the
visualization.
Some programming environments, also source lan­
guage dependant, provide important functionality
for program visualizations. Examples of that are:
PECAN [Rei85] which provides multiple views of the
program syntax, semantics and execution, GARDEN
[Rei87] and FIELD [Rei90]. In our opinion, those
systems also should be classified as Type Ill.
We. also found some compiler and programming
environment generators that provide means to visu­
alize some steps of the generation process or even
include some visual debugging capabilities in' the code
produced, or can generate environments with visual
outputs. We decided to consider those generators -as
LRC [Sar99], CENTAUR [Ber91J and LISA [MLAZOOJ,
for mstance - in the family of animator systems,
classifying them as Type IV.
At last, there are some environments -like AGG
[MRRT99], CPN [Jen96], and FORMS3 [CBC96J­
for visual programming that simulate the behaviour of
the system specified by those programs. We classified
them as Type V.
Nowadays, there are systems that use special data
types, automatic annotation, automatic generation of
animations and other modern techniques that must be
~tudied under the characterization system above. So,
It would be useful to add new parameters to Stasko's
classification proposal\ such as: degree of automation
of the visualization construction; number of views

Figure 1. Architecture of Alma system

that can be created from the same program; degree
of independence between the source language and
animation system; degree of the source text alteration
required by the animation process.

3 Architecture of Alma

Convinced about the importance of program visualiza­
tion and algorithm animation and after reviewing the
existing systems, we decided to design and develop a
new visualization environment, Alma, obeying the fol­
lowing design goals:

• build an integrated and easy to use environment;

• avoid the need for any kind of change in the source
code;

• allow the selection of different views of the same
program

• create a system as generic as possible in order to
be used by different source languages.

To comply with the requirements above, and based on
our background on compiler specification and imple­
mentation, we conceived the architecture shown in fig­
ure 1. The architecture proposed follows the compil­
ers implementation method called semantics directed
translation, by opposition to the older and well known
syntax directed translation. That implementation mod­
el is influenced by the use of an attribute grammar to
specify (formally) the syntax and semantics of a lan­
guage. According to that model, the meaning of the
source program (to process) is explicitly represented by
a syntax tree decorated with attribute values, DAST,
and a clear separation between the compiler's front­
end-responsible for program analysis, and tree build­
ing and decoration~and the compiler's back-end-in
charged of the translation-is maintained.

375

In Alma we also use a OAST as an interuaJ represen­
tation for the meaning of the program (we intend to
visualize), and we isolate all the source language de­
pendencies in the front-end, while keeping the generic
animation engine in the back-end.

This allows us to concentrate on both tasks-meaning
recognition and representation, and visualization­
separately, but most important, the approach gives
generality to our system.

The DAST is specified by an abstract grammar inde­
pendent of the concrete source language. In some sense
we can say that the abstract grammar models a virtu­
al machine. So the DAST is intended to represent the
program state in each moment, and not to reflect di­
rectly the source language syntax. In this way we will
rewrite the DAST to describe different program states,
simulating its execution; notice that we deal with a
semantic transformation process, not only a syntactic
rewrite.
Each node has a production identifier (Prod!d) that is
its key; a symbol identifier; a set of pairs (name, value)
which represents the attributes associated with the
symbol labelling that node; and a set of subtrees that
are its children-the tree rooted in that node is equiv­
alent to the grammar derivation rule Prod!d.
A Tree Walker Visualizer, crossing the tree, creates vi­
sual representations of nodes, gluing figures in order
to get the program image on that moment. Then the
DAST is rewritten, and after that the process will be
repeated generating a set of images (that representS the
animation of the program).

4. Visualization in Alma

The visualization is achieved applying visualizing rules
(VR) to DAST subtrees; the specification of those rules
defines the mapping between trees and figures. Gluing
those partial figures creates a visual representation for
the program.

4.1. Visualizing Rules

The VRB {Visualizing Rule Base) is a mapping that
associates with each attributed tree, defined by a gram­
mar rule {or production), a set of pairs.

VRB: DAST >-+ set (cond x dp)

where each pair has a matching condition, cond, and a
procedure, dp, which defines the tree visual represen­
tation. Each cond is a predicate, over attribute values
associated with tree nodes, that constrains the use of

the drawing procedure {dp), i.e., cond restricts the vi­
sualizing rule applicability.
The written form of each visualizing rule is as follows:

vis_rule(Prod!d)= <tree-pattern>,
(condition),
{drawing procedure}

<tree-pattern>= <root, child_l, ... , child_n>

In this specification, condition is a boolean expression
(by default, evaluates to true) and drawing procedure
is a sequence of one or more calls to elementary draw­
ing procedures.
A visualizing rule can be applied to all the trees that
are instances of the production Prodld. A tree-pattern
is specified using variables to represent each node. At
least, each node has the attributes value, name and
type that will be used on the rule specification, either
to formulate the condition, or to pass to the drawing
procedures as parameters.
Notice that, although each VR associates to a produc­
tion a set of pairs, its written form, introduced above,
only describes one pair, for the sake of simplicity; so it
can happen to have more than one rule for the same
production.
To illustrate the idea suppose that in Alma 's abstract
grammar a relational operation, r·eLoper, is defined
by the 13th production:

p13: rel_oper : exp exp

where exp is defined as:

p14: exp CONST
p16: exp VAR
p16: exp oper

To build a visual representation for that relational op­
eration we need to distinguish two cases: the first oc­
curs when the value of operand expressions is unknown
(the value attributes are not yet instantiated); the sec­
ond occurs when the value of the operands is known
(that means that the expressions have been evaluated).
So, different semantic cases of production p13 will be
represented by different figures, as shown in the exam­
ple of figure 2 where we assume that the first expression
(left operand) is a variable and the second expression
{right operand) is a constant: the drawing on the top
describes the first case, and the drawing below the sec­
ond one. The visualizing rules to specify that mapping
are written below.

vis_rule(p13) •
<opr,a,c>,

376

({a.value=NULL) AND (c.value~NULL) AND
(a.type=VAR) AND (c.type=CONST)),

{drawRect(a.name),drawRect(),put(opr.name),
put('?')}

D D opr.name 7
a.name o

~.value I ~.vruue I opr.name ?
a.name o

Figure 2. Visualization of a relational opera·
tion

vis_rule(p13) ~

<opr,a,c>,
((a.value!=NULL) AND (c.value!=NULL) AND
(a.type=VAR) AND (c.type=CONST)),

{dravRect(a.name,a.value),dravRect(c.value),
put(opr.name),put('?')}

4.2. Visualization Algorithm

The visualization algorithm traverses the tree apply­
ing the visualizing rules to the sub-trees rooted in
eacl! node according to a bottom-up approach (post­
fix traversal). Using the production identifier of the
root node, it obtains the set of possible representation­
s; then a drawing procedure is selected depending on
the constraint condition that is true.
The proposed algorithm is presented below.

visualize(tree){

}

If not(empty(tree))
then forall t in children(tree)

do visualize(t);
rules<- VRB[prodid(tree)];
found <- false;
while not(empty(rules)) and not(found)

do r <- choice(rules);
rules <- rules - r;
found <- match(tree,r)

If (found) then draw(tree,r);

5. Animation in Alma

Each rewriting rule (RR) specifies a state transition
in the process of program execution; the results
of applying the rule is a new DAST obtained by a
semantic (may be also a syntactic) change of a sub-tree.

This systematic rewriting of the original DAST is inter­
leaved with a sequence of visualizations producing an
animation. A main function synchronizes the rewriting

process with the visualization in a parameterized way,
allowing for different views of the same source program.

5.1. Rewriting Rules

The RRB (Rewriting Rule Base) is a mapping that
associates with each tree a set of tuples.

RRB: DAST >-+ set(cond x newtree x atribsEval)

where each tuple has a matching condition, cond, a
tree, newtree, which defines syntactic transformation­
s and an attribute evaluation procedure, atribsEval,
which defines the changes in the attribute values (se­
mantic modifications).
The written form of each rewriting rule is as follows:

rule(Prodid)= <tree-pattern>,
(condition),
<NewProdid: newtree>,
{attributes evaluation}

<tree-pattern>= <root, child_l, ...• child_n>
<newtree> =<root, child_l, ...• child_n>

In this specification, condition is a boolean expres­
sion (by default, evaluates to true) and attributes
evaluation is a set of statements that defines the new
attribute values {by default, evaluates to skip).
A rewriting rule can be applied to all the trees that
are instances of the production Prodld. The new tree
is also a production belonging to the same abstract
grammar, so it will be specified by the new production
identifier.
A tree-pattern associates variables to nodes in or­
der to be used in the other fields of the rule specifi­
cation: the matching condition, the new tree and the
attribute evaluation. When a variable appears in both
the tree-pattern (we call the left side of the RR) and
the newtree {the so called right side of the RR), it
means that all the information contained in that node,
including its attributes will not be modified, i.e. the
node is kept in the transformation as it is.
Notice that, although each RRB associates to a pro­
duction a set of tuples, its written form, introduced
above, only desrribes one tuple. So, it can happen to
have more than one rule for the same production.
For instance, consider the following productions, be­
longing to Alma's abstract grammar, to define a condi­
tional statement:

p8:
p9:

IF cond actions actions
cond actions

The DAST will be modified using the following rules:

377

rule(p8) = <if,op.a.b>,
(op.value=true).

Figure 3. Conditional Statement Rewriting
Rules

<p9:if,op,a>,
{ }

rule(p8) <if,op,a,b>,
(op.value=false),
<p9:if,op,b>,
{ }

The graphical representation of these two RRs is shown
in figure 3. The THEN and ELSE nodes represent the
actions blocks.

5.2. Rewriting Algorithm

The rewriting process traverses the tree until a rewrit­
ing rule can be applied, or no more rules match the tree
nodes (in that cMe, the transformation process stops).
For each node, the algorithm determines the set of pos­
sible RR using its production identifier (Prodid) and
evaluating the contextual condition Msociated with
those rules. The DAST will be modified removing the
node that matches the left side of the selected RR and
replacing it by the new tree defined by the right side
of that RR. This transformation can be just a seman­
tic modification (only attribute values change), but it
can also be a syntactic modification, (some nodes dis­
appear or are replaced).
The rewriting algorithm follows:

OAST revrite(tree){
If not(empty(tree)) then

rules<- RRB[prodld(tree)];
found <- false;
vhile not(empty(rules)) and not(found)
do r <- choice(rules);

rules <- rules - r;

}

found <- match(tree,r)
If (found)

then tree <- change(tree,r)
else a <- nextchild(tree)

while not(empty(a)) and not(revritten(a))
do a <- nextchild(tree)
If not(empty(a))
then tree <- rebuild(tree,a,revrite(a))

return(tree)

bool revritten(t){ return(t != revrite(t))}

DAST rebuild(t,a,b){ t.a <- b; return(t) }

DAST change(tree,<<maptree>,<cond>,

}

<nevtree>,<eval>>){
instantiate(maptree,tree)
build(nevtree,maptree)
evaluate(newtree,eval)
return(newtree)

5.3. Animation Algorithm

The main function defines the animation process, call­
ing the visualizing and the rewriting processes repeat­
edly. The simplest way consists in redrawing the tree
after each rewriting, but the sequence of images ob­
tained can be very long and may be not the most inter­
esting. So the grain of the tree redrawing is contro1led
by a function, called bellow shownow (), that after each
tree syntactic-semantic transformation decides if it is
necessary to visualize it againi the decision is made
taking into account the internal state of the animator
(that reflects the state of program execution) and the
value of user-defined parameters.
The animation algorithm, that is the core of Aim a's
back-end, is as follows:

animator(tree){
visualize(tree);

}

Do rewrite(tree);
If shownowO
then visualize(tree);

until (tree==revrite(tree))

When no more rules can be applied, the output and
input of the rewrite function are the same.

6. An example

To illustrate Aim a system and the visualization and an­
imation processes (mappings and algorithms) discussed
in the previous subsections, consider the following ex­
tract of a Pascal program:

378

read(a);
read(b);
if(a>b) then a:=a-b

else vrite(b/2)

Consider also the productions of Alma 's internal ab­
stract granunar bellow (we only show the subset that
will be used in the example above):

pi:
p2:
p3:
p4:
p5:
p6:
p7:
p8:
p9:
p10:
p11:
p12:
p13:
p14:
p15:
p16:
p17:
p18:
p19:
p20:
p21:

statements

stat

IF

WHILE
cond
actions
rel_oper
exp

oper
ASSIGN
READ
WRITE

stat statements
stat
IF
WHILE
ASSIGN
READ
WRITE
cond actions actions
cond actions
cond actions
rel_oper
statements
exp exp
CONST
VAR
oper
exp exp
VAR exp
VAR
VAR
oper

Applying the visualization algorithm and the VRB
with visualizing rules like the following:

vis_rule(p17) =
<op,a,b>.
((a.value=NULL) AND (b.value=NULL) AND
(a.type=VAR) AND (b.type=VAR)),

{dravRect(a.name),dravRect(b.name),
right_arrov(op.name)}

vis_rule(p17) =
<op,a,b>.
((a.value!=NULL) AND (b.value!=NULL) AND
(a.type=VAR) AND (b.type=VAR)),

{dravRect(a.name,a.value),dravRect(b.name,
b.value),right_arrow(op.name)}

to the DAST obtained from the given Pascal program
and abstract grammar, and then rewriting the DAST
using the proposed algorithm and a RRB containing
rewriting rules as

rule(p17) = <opi,a,b>,
() .
<p17:op2,a,b>,
{op2.value=op1.name(a.value,b.value)}

rule(p18) = <at,al,b>,
() .
<p18:at,a2,b>,
{a2.name=a1.name;

a2.value=b.value}

we obtain an animation of that program; some of the
tree pictures belonging to the animation can be seen in

. figure 4.

D-

o-
DD > 7 DD-- D

•
0 c_;] -' -

~
o-
00 > 7 DD-- D . . .

De_;] ' --
•

c_;]

c_;]
•

[]c_;] . . > 7 p c:;::J -· p
De_;] _,_ --
•

c_;]

[jJ
c_;]c_;] . . > 7 ~[j]-· 0

~
[jJ

~[j] > 7 [Jc_;]_c_.c_;]
Figure 4. 5 Steps of the Animation of a Pascal
Program.

379

7 Cases Studies

As a first case study, we chose a classical, but very short
and simple, programming language that allows integer
variables declaration and includes atribution and in­
put/output statements (with integer expressions).
After the complete definition of Aim a's internal ah­
stract language (in the previous section we shown just
a part of its grammar), we developed a front-end for
it. Of course, as it is a procedural language, we did not
find problems to map that language into the interme­
diate representation.
As a second case study, we have created a front-end for
a domain specific language called Timed State Charts
[AB96J, [Var96J (TSC for short). Instead of a classi­
cal programming language, TSC is a specification lan­
guage used to describe the behaviour of dynamic sys­
tems based on transition state machines.
The lesson learned from that experiment was that we
could express the translation of TSC into Alma's inter­
mediate representation without any problems. So, a
source text in TSC will be translated into a OAST as a
classical imperative language!

8. Conclusion

In this paper we discussed how to build a generic visu­
alization mapping that associates figures to tree nodes
in order to create a visual representation for a program.
We also presented another mapping associating seman­
tic rewriting rules to tree nodes to simulate program
execution by state transitions. At last, we proposed
a general way of combining both mappings and algo­
rithlllii to animate a program, without need for extra
annotation or use of visual data types.
At moment the architecture of the system is defined
according to the design goals derived from the review
of existing animators; the rewriting and drawing algo­
rithms are created; and we have specified (in textual
and graphic forms) both rules bases for procedural and
alike languages.
To proceed into the implementation we decided to rely
upon LISA tool. LISA system is a generic and inter­
active environment for programming language devel­
opment. From a formal specification (attribute gram­
mar) of a particular programming language, LISA pro­
duces a language specific environment that includes
a language-oriented editor, a compiler/interpreter and
other graphic debugging tools.
This generator receives an attribute grammar, and pro­
duces an internal representation from which generates
a scanner, a parser and an attribute evaluator that are

the components of a new compiler for the language de­
scribed by the input grammar.
At a first step we used LISA to create (generate auto­
matically) the front-end's of Alma for 2 different lan­
guages, a classical imperative language and another one
based on temporal state machines to specify dynamic
systems. For each case, we tested the generation of the
OAST for different source programs of the two ellected
languages.
The next step (at moment, under development) will be
the reuse of LISA to implement Alma 's back-end, the
module that must recognize the internal representation
created by LISA generated front-end's and produce the
animation.
As USA, and the generated compilers, are implement­
ed in Java following an object-oriented approach, it
was not difficult to find and understand the structures
and functions used to process the given attribute gram­
mar and the specific source programs. So the coding
of structures and algorithms needed to implement the
back-end seems to be straight forward.

8.1. Future Developments

In the near future we intend to conclude the imple­
mentation of the back-end. We are advised that we
will have two major tasks to perform: add a large
number of rewriting rules and visualization rules to the
back-end in order to cover the procedural semantics
(logical and functional semantics later); study the
generation of several views for the same program,
controlling the level of detail for each visualization.

References

[AB96J J. Armstrong and L. Barroca. Specifica­
tion and verification of reactive system be­
haviour: The railroad crossing example.
Real Time Systems, 1996.

[Ber91] Yves Bertot. Occurences in debugger spec­
ifications. In PLDI91, 1991.

[BNR97] M. H. Brown, M. A. Najork, and
R. Raisamo. A java-based implementation
of collaborative active textbooks. In VL '97
- IEEE Symposium on Visual Languages,
pages 376-384. IEEE, September 1997.

[BS84] M. H. Brown and R. Sedgewick. A sys­
tem for algorithm animation. In SIG­
GRAPH'84, volume 18, pages 177-186,

380

Minneapolis, July 1984. ACM Computer
Graphics.

[CBC96] Paul Carlson, Magaret Burnett, and
Jonathan Cadiz. A seamless integration of
algorithm animation into a visual program­
ming language. In A VI'g6 - International
Workshop on Advanced Visual Interfaces.
acm, May 1996.

[CkCJ92] Roman G. C., Cox k., Wilcox C., and Plun
J. Pavane: A system for declarative visual­
ization of concurrent computations. Jour­
nal of Visual Languages and Computing,
3(1):161-193, 1992.

[Dui98] R. A. Duisberg. Animation using tempo­
ral constraints: An overview of the an­
imus system. Human-Computer Interac­
tion, 3(3):275-307, August 1998.

[HHR.89] E. Helttula, A. Hyrskykari, and K. Rai­
ha. Graphical specifications of algorithm
animations with aladdin. In 22rtd Hawai­
i International Conference on System Sci­
ences, January 1989.

[HPS+97] J. Haajanen, M. Pesonius, E. Sutien,
T. Terasvirta, P. Vanninen, and J. Tarhio.
Animation of user algorithms in the web. In
VL 'g7 - IEEE Symposium on Visual Lan­
guages, pages 360-368. IEEE, September
1997.

[Jen96] Kurt Jensen. Coloured Petri Nets - Basic
Concepts, Analysis Methods and Practical
Use, volume 1. Springer-verlag, 2 edition,
1996.

[LF95] H. Lieberman and C. Fry. Bridging the
gap between code and behavior in program­
ming. In AGM Conference on Computer­
s and Human Interface, Denver, Colorado,
April 1995.

[MLAZOO] Marjan Mernik, Mitja Lenic, Enis Avdi­
causevic, and Viljem Zumer. Compil­
er /interpreter generator system lisa. In
IEEE Proceedings of 33rd Hawaii Inter­
national Conference on System Sciences,
2000.

[MM88] A. J. Mendes and Teresa Mendes. Vip
- a tool to visualize programming exam­
ples. Education and Application of Com­
puter Technology, 1988.

[Moh88] T. G. Moher. Provide: A process visualiza­
tion and debugging environment. In IEEE
TI-ansactions on Software Engineering, vol­
ume 14, pages 849-857, June 1988.

[MRRT99] Boris Melamed, Michael Rudolf, Olga
Runge, and Gabriele Taentzer. The at­
tributed graph grammar system - home­
page. http:/ /tfs.cs.tu-berlin.dejagg/, 1999.

[MS93] S. Mukberjea and J. T. Stasko. Apply­
ing algorithm animation techniques for pro­
gram tracing, debugging, and understand­
ing. In 15th International Conference on
Software Engineering, pages 456-465, Bal­
timore, May 1993.

[Rei85] Steven Reiss. Pecan: Program develop­
ment systems that support multiple views.
IEEE Thmsactions on Software engineer­
ing, 1985.

[Rei87] Steven Reiss. Working in the gaxden
environment for conceptual programming.
IEEE Software, 1987.

[Rei90] Steven Reiss. Interacting with the field en­
vironment. Software Practice and Experi­
ence, 1990.

[Sax99] Joi\o Saraiva. Purely Functional Implemen­
tation of Attribute Grammars. PhD thesis,
Utrecht University, 1999.

[SDBP97] John Stasko, John Domingue, Marc H.
Brown, and Blaine A. Price. Software Vi­
sualization - Programming as a Multimedia
Experience. The MIT Press, 1997.

[Sta90] John T. Stasko. Simplifying algoritm ani­
mation with tango. In IEEE Workshop on
Visual Languages. IEEE, October 1990.

[Var96] Maria Joi\o Varanda. Concep~i\o, especifi­
c~ao de uma linguagem visual. Master's
thesis, Universidade do Minho, 1996.

381

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

