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Abstract: Many tools have been constructed using different formal methods to process various
parts of a language specification (e.g. scanner generators, parser generators and compiler
generators). The automatic generation of a complete compiler was the primary goal of such
systems, but researchers recognised the possibility that many other language-based tools could
be generated from formal language specifications. Such tools can be generated automatically
whenever they can be described by a generic fixed part that traverses the appropriate data structures
generated by a specific variable part, which can be systematically derivable from the language
specifications. The paper identifies generic and specific parts for various language-based tools.
Several language-based tools are presented in the paper, which are automatically generated using
an attribute grammar-based compiler generator called LISA. The generated tools that are described
in the paper include editors, inspectors, debuggers and visualisers/animators. Because of their
complexity of construction, special emphasis is given to visualisers/animators, and the unique
contribution of our approach toward generating such tools.

1 Introduction

The advantages of formal specification of programming
language semantics are well known. First, the meaning of a
program is precisely and unambiguously defined; second,
it offers a unique possibility for automatic generation of
compilers or interpreters. Both of these factors contribute to
the improvement of programming language design and
development. The programming languages that have been
designed with formal methods have improved syntax and
semantics, less exceptions and are therefore easier to learn.
Moreover, from formal language definitions many other
language-based tools can be automatically generated, such
as: pretty printers, syntax-directed editors, type checkers,
data flow analysers, partial evaluators, debuggers, profilers,
test case generators, visualisers, animators and documen-
tation generators; for a more complete list see [1]. In most
of these cases the core language definitions have to be
augmented with tool-specific information (e.g. mapping
information in debuggers). In other cases, a fragment of
formal language definitions (e.g. regular definitions) is
enough for automatic tool generation. It is also possible to

extract implicit information from the formal language
definition (e.g. dependencies among attributes in semantic
functions) to automatically generate a tool. There are many
benefits of automatically generated language-based tools.
Building language-based tools from scratch is time-
consuming and error prone, which makes maintenance
very costly. This is a serious problem in building language-
based tools for domain-specific languages (DSLs). In the
case of DSLs, a compiler=interpreter is usually developed
without support for other language-based tools (e.g.
debuggers), which are indispensable for programmers. The
lack of appropriate tools might even cause newly developed
DSLs to become obsolete.

Although previous efforts have explored the concept of
automatic generation of language-based tools [1–5], this
paper contributes a more general approach that identifies
generic (fixed) and specific (variable) parts from which
language-based tools can be generated automatically from
language specifications. In many cases, the language
specification must be extended, or appropriate information
extracted, in order to be able to automatically generate a
language-based tool. The paper discusses several tools where
the language definition does not need to be extended, such as
editors to help in writing sentences of the language and
various inspectors (e.g. automata visualisers, syntax tree
visualisers and semantic evaluator animators) that are helpful
for a better understanding of the language analysis process.
Such example tools have all been incorporated in the
compiler generator system called LISA [6]. This paper also
presents several language tools that require extensions to a
language definition in order to implement a new tool (e.g.
debuggers, algorithm animators and program visualisers).

The main goal of the paper is to show how language-
based tools can be automatically generated from an
extended language definition in a systematic manner by
identifying generic and specific parts. The approach is
presented in detail for visualisers=animators. Program
visualisers=animators are useful tools for deeper and
clearer understanding of algorithms, and are valuable for
both programmers and students. Algorithm animators and
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program visualisers are strongly language and algorithm-
oriented, and are not usually developed in a systematic or
automatic way. This paper introduces the architecture and
implementation of the Alma system, which represents an
approach to the automatic generation of animators from
extended language definitions. The system has a specific
front-end for each language and a generic back-end, and
uses a decorated abstract syntax tree (DAST) as the
intermediate representation. In the implementation of
Alma, the language development system LISA is used in
two different applications. LISA generates the front-end for
each new language, and some parts of it (Java classes) are
reused to build the back-end.

The standard definitions about languages and context-free
grammars that make automatic implementation of program-
ming languages and language-based tools possible can be
found in classical textbooks, such as [7]. To specify the
semantics of programming languages, context-free gram-
mars need to be extended. Attribute grammars [8] are a
generalisation of context-free grammars in which each
symbol has an associated set of attributes that carry
semantic information, and with each production a set of
semantic rules with attribute computation is associated.
Attribute grammars have proved to be very useful in
specifying the semantics of programming languages,
in automatic construction of compilers=interpreters,
and in specifying and generating interactive progra-
mming environments [9]. The approach presented in this
paper is strongly tied to the power provided by attribute
grammars.

2 Related work

The development of the first compilers in the late 1950s
without adequate tools was a very complicated and time-
consuming task. For instance, the implementation of the
compiler for the programming language Fortran took about
18 person-years [10]. Later on, formal methods, such as
operational semantics, attribute grammars, denotational
semantics, action semantics, algebraic semantics and
abstract state machines, were developed. They made the
implementation of programming languages easier and
contributed to the automatic generation of compilers=
interpreters.

Many tools have been built in past years, based on
different formal methods to assist in processing different
parts of language specification, such as: scanner generators,
parser generators and compiler generators. The automatic
generation of a complete compiler was the primary goal of
such systems. However, researchers soon recognised the
possibility that many other language-based tools could be
generated from formal language specifications. Therefore,
many tools not only automatically generate a compiler but
also complete language-based environments. Such auto-
matically generated language-based environments include
editors, type checkers, debuggers, and various analysers.

For example, FNC-2 [11] is an attribute grammar system
that generates a scanner=parser, an incremental attribute
evaluator, a pretty printer and a dependency graph
visualiser. The CENTAUR system [3] is a generic
interactive environment which produces a language-specific
environment from formal specifications written in Natural
Semantics, a kind of operational semantics. The generated
environment includes a scanner=parser, a pretty printer, a
syntax-directed editor, a type checker, an interpreter and
other graphic tools. The SmartTools system [5], a successor
of the CENTAUR system, is a development environment

generator that provides a compiler=interpreter, a structured
editor and other XML related tools. The ASFþSDF
environment [12] generates a scanner=parser, a pretty
printer, a syntax-directed editor, a type checker, an
interpreter and a debugger from algebraic specifications.
In the Gem-Mex system [4], the formal language is specified
with abstract state machines. The generated environment
includes a scanner=parser, a type checker, an interpreter and
a debugger. Very similar to the synthesiser generator
(SGen) [2], the LRC system [13] generates, from high-
order attribute grammar specifications, an incremental
scanner=parser and attribute evaluators, syntax-directed
editor, multiple views of the abstract semantic tree
(unparsing windows) and windows-based interfaces.
From the above description of various well known
compiler=interpreter generators, it can be noticed that
editors, pretty printers and type checkers are almost
standard tools in such automatically generated environ-
ments. However, in those papers particular language-based
tools are described from the user’s point of view and not
how these tools are actually generated. No systematic
treatment of language-based tool generation has appeared in
the literature. In this paper, a systematic approach is
described with specific emphasis on the automatic gener-
ation of visualisers=animators.

To our knowledge, the only visualiser=animator to be
automatically generated from formal specifications is
Jitan [14, 15], a visualisation environment for concurrent,
object-oriented programming for Java. The CENTAUR
system was used to implement Jitan, where the syntax
was specified by the METAL formalism and the semantics
defined by the TYPOL formalism. The authors of Jitan
reported that only about ten semantic rules of language
specifications needed to be equipped with simple exten-
sions. This was possible because their two visualiser engines
need to know the existence and status of available objects.
In this case, the generic part of the system is enormous and
the specific part is tailored to objects and threads. Even
though their approach is specific to automatically generating
language-based tools, it is quite different from that
described in this paper with respect to generic and specific
parts. The Alma system is much more general in this
respect and needs to have the specific part as large as
possible. For example, an Alma user has all of the power to
define the appearance of the visualisation (e.g. colours and
lines) through rules.

3 Tools from language definitions generated by
the LISA system

LISA is a compiler-compiler, or a system that generates
automatically a compiler=interpreter from attribute gram-
mar based language specifications. The syntax and seman-
tics of LISA specifications and its special features
(i.e. ‘templates’ and ‘multiple attribute grammar inheri-
tance’) are described in more detail in [16]. The use of LISA
in generating compilers for real programming languages
(e.g. PLM, AspectCOOL and COOL, SODL) is reported in
[17–19]. LISA is unique to other attribute-grammar based
compiler generators because it employs the ‘attribute
grammar ¼ class’ paradigm [9] to enable incremental
language development to a greater extent than other
approaches. LISA has been used in many projects in
combination with newly developed technologies and frame-
works, such as conversion of parts of LISA specifications to
XML schema and XML schema evolution (e.g. metamodel
inference [20]).
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To illustrate the LISA style, the specification of a
simple Robot language is given in Fig. 1. A robot can
move in four directions from the initial position (0, 0).
After moving, it is stopped in an unknown location,
which the user wants to compute. Often, it is desirable to
extend languages like the Robot language with new
features. For example, it may be desired to know when
the robot will reach the final position. Another example
of adding a new language feature is the possibility that
the robot can move at a different speed. In that case new
syntactic constructs have to be added to the language.
The new language (RobotSpeed) is specified (Fig. 2) as
an extension to the Robot language using multiple
attribute grammar inheritance. From these descriptions
LISA automatically generates an interpreter for the
RobotSpeed language.

Additionaly, LISA is capable of generating other
language-based tools. In the following subsections four
families of such tools are briefly described: editors to help
the final users in the creation and maintenance of the
sentences of the specified language; inspectors that
are useful to understand the behaviour, or to debug
the generated language processor itself; debuggers,
which are indispensable in the debugging process; and

visualisers=animators, similar to inspectors, which are
useful in understanding the meaning of the source program
that is being processed.

It is important to notice that automatic generation is
possible whenever a tool can be built from a generic (fixed)
part and a specific (variable) part. An additional requirement
is that the specific part, which is language dependent, has to
be systematically derivable from the language specifica-
tions. That part has a well defined internal representation
that can be traversed by the algorithms of the generic part.
For example, a lexical analyser uses an algorithm that
interprets an action table [21]. This algorithm is generic and
the same for different languages. However, the action table
represents the specific part, and is changed whenever a
language specification is modified. Table 1 summarises
some of the language-based tools generated by the LISA
system. It is not the aim of this paper to describe all of the
algorithms (many of them are described in [21]). The
algorithms for program visualisation and animation are
described in detail in Section 4.

However, to show the differences in generic and specific
parts and the differences in exploiting language
definitions, other language-based tools are briefly
introduced.

Fig. 1 Robot language
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3.1 Editors

Two different LISA generated language oriented editors
(i.e. editors that are sensitive to the language lexicon=syntax)
are briefly described in this Section.

3.1.1 Language knowledgeable editors: LISA
generates a language knowledgeable editor, which is a
compromise between text editors and syntax-directed
editors, from formal language specifications. In this case,
a language definition does not need to be extended because
the matching algorithm (i.e. the generic part) only needs
information about regular definitions in the language.

The LISA generated language knowledgeable editor is
aware of the regular definitions of the language lexicon (see
Table 1). Therefore, it can colour the different parts of a
program (comments, operators and reserved words) to
enhance understandability and readability of programs.
Improved understandability is important for programs
written in DSLs where end-users are typically not
programmers but application engineers. Developing such
editors for every different DSL is time-consuming and
costly. The benefits of automatically generated editors are
obvious.

In Fig. 3 the reserved words, commands and integers in a
RobotSpeed program are recognised by distinguishing each

feature with a different colour (e.g. in Fig. 3 the reserved
words are in red).

3.1.2 Syntax-directed editors: Syntax-directed
editors help users to write syntactically correct programs
before they are actually compiled, exhibiting the language
structure by inserting directly the keywords at the correct
places (the user only has to fulfil the variable parts of their
text). Syntax-directed editors are aware of the language
syntax of edited programs and can be automatically
generated from a syntax language definition. LISA currently
generates a structure editor from formal language specifica-
tions. A structure editor is a kind of syntax-directed editor,
where the syntax structure of written programs are explicitly
seen while editing the program (see Figs. 4 and 5 where the
selected text is a set of COMMANDS in the RobotSpeed
language). The language definition is not extended because
the incremental parsing algorithm (i.e. the generic part) only
needs the information about syntax definitions in the
language.

3.2 Inspectors for language processors

Inspectors are useful in better understanding how an
automatically generated language compiler=interpreter
works. LISA generates the following inspectors: finite

Fig. 2 RobotSpeed language
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state automaton visualiser (useful for better understanding
how the lexical analyser works), syntax tree visualiser
(useful for better understanding how the syntax analyser
works), dependency graph visualiser and semantic tree

visualiser. The last two inspectors are briefly introduced in
this sub-Section.

3.2.1 Dependency graph visualisation: As
attribute grammars are specified on the declarative level,
the order of attribute evaluation is determined by the
compiler construction tool. That sequence is also important
for the language designer to understand the actual evaluation
order. LISA generates this inspector from information
extracted from language specifications, which is where the
augmented dependency graph (i.e. the specific part) is
computed. The augmented dependency graph is used in an
algorithm (i.e. the generic part) for dependency graph layout.

Figure 6 presents an augmented dependency graph
that is drawn by the LISA generated tool for the
1st RobotSpeed production. Direct dependencies (e.g.
COMMANDS.time ! START.time) and indirect depen-
dencies (e.g. COMMANDS.inx ! COMMANDS.outx) are
shown in different colours. With the aid of this inspector it is
easier to discover why a particular attribute grammar is not
absolutely noncircular. Circular attribute grammars are not
supported by LISA and circularity is detected in Fig. 7.

3.2.2 Semantic evaluator animation: In attri-
bute grammars a set of attributes carrying semantic
information is associated with each nonterminal. For
example, attributes time and outx are associated with
nonterminal COMMANDS in the RobotSpeed language
specifications. In the evaluation process the value of these
attributes has to be computed. The semantic analysis is
better understood by animating the visits to the nodes of the
semantic tree, and the evaluation of attributes in these
nodes. LISA generates this inspector from semantic
functions associated with syntax rules. The semantic tree
layout algorithm (i.e. the generic part) uses a decorated
syntax tree and semantic functions, which constitutes the
specific parts.

Figure 8 shows a snap-shot of the animation process. The
animation of the evaluation process is also very helpful in

Table 1: Generic and specific parts of LISA generated language-based tools

Generated tool Formal specifications Generic part Specific part

Lexer regular definitions algorithm which interprets

action table

action table: State �S ! State

Parser (LR) BNF algorithm which interprets

action table and goto table

action table: State �T ! Action

goto table: State � ðT [ NÞ ! State

Evaluator attribute grammars (AG) tree walk algorithm semantic functions

Language knowledgeable

editor

regular definitions

(extracted from AG)

matching algorithm same as lexer

Structure editor BNF (extracted from AG) incremental parsing algorithm same as parser

Finite state automata

visualisation

regular definitions

(extracted from AG)

finite state automata

layout algorithm

same as lexer

Syntax tree

visualisation

BNF (extracted from AG) syntax tree layout algorithm syntax tree

Dependency graph

visualisation

extracted from AG DG layout algorithm dependency graph

Semantic evaluator

animation

extracted from AG semantic tree layout algorithm decorated syntax tree and semantic functions

Debugger additional formal

specifications

mapping algorithm mapping component

Program visualisation

and animation (ALMA)

additional formal

specifications

visualisation, rewriting

and animation algorithm

visual and rewrite rules and

decorated abstract tree (DAST)

Fig. 3 Language knowledgeable editor

Fig. 4 Structure editor
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debugging language specifications. Users can also control
the execution by single-stepping and setting the breakpoints.

Notice the way scalability is addressed: as the tree grows
it is impossible to show all of the picture in the main
window. Therefore, a subtree is displayed in the main
window and a general picture is shown below (see Fig. 8).

3.3 Debugging support for DSLs defined in
LISA

Debuggers provide software engineers with an essential tool
toward discovering the location of program errors. How-
ever, development can be difficult when it comes to the issue
of debugging a program written in a DSL, which often
requires both programming language development expertise
and domain knowledge. This is due to the fact that a DSL is
often translated into some other general purpose language
(GPL) and then compiled using the tools available for the
GPL. Even if the domain expert has knowledge about the
underlying GPL, one line of DSL code may be translated

into dozens of lines of GPL code, which requires knowledge
of the code generator in order to understand the correspon-
dence between the DSL and GPL. As an example, consider
the challenges in debugging parsers generated by tools such
as Yacc. In such a case, the benefits provided by the domain
idioms are lost because the domain expert is forced to debug
their intention at the GPL level, not at the higher abstraction
level provided by the DSL. This sub-section describes the
ability to generate debuggers for DSLs defined in LISA.
From a DSL grammar, LISA can generate the mapping
transformations needed by the DSL Debugger Framework
(DDF) [22], which provides debugging support for DSLs in
Eclipse. This allows an end-user or domain expert to debug
their DSL program at the proper level of abstraction.

3.3.1 DSL debugger generation processes
overview: An illustrative overview of the DSL
debugger generation process is shown in Fig. 9. The front-
end of the process begins with the generation of a lexer and
parser for the DSL. LISA automatically generates the lexer

Fig. 5 Syntax tree view

Fig. 6 Dependency graph view

Fig. 7 Circular dependency graph
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and parser from a DSL grammar definition, such as the
Robot language grammar definition (shown in Fig. 10 of the
following Section). In addition to the lexer and parser, a
mapping generator is needed to link the DSL code to the
generated GPL code. The mapping generator is specified as
additional semantic actions in the DSL grammar definition.
The lexer, parser, and mapping generator form the building
blocks for the front-end of the DDF. The back-end of the
DDF consists of the stand-alone command line GPL
debugger and the Eclipse debugger perspective [23]. The
Eclipse debugger perspective provides the graphical inter-
face that is commonly expected in integrated development
environments (IDEs). Note that the choice of the GPL
debugger depends on the kind of GPL code generated from
the DSL. In the Robot language example, the generated
GPL code is Java, which influenced the choice to use the
Java command line debugger ( jdb) [24]. Although this

specific example represents a DSL that is translated to Java,
the Eclipse debugger platform is independent of the GPL.
Thus, LISA and the DDF can be used with any generated
GPL provided that a debugger exists for the GPL.

The semantic actions associated with the debugger use
syntax-directed translation and additional semantic func-
tions in the grammar specification to generate the mapping
information. In Fig. 9, with the mapping generator
embedded inside the grammar, the lexer and parser
generated by LISA (step 1) take the Robot DSL as input
(step 2). LISA not only translates the Robot DSL into the
corresponding Robot.java, but also generates the Mapping.
java file (step 3). The mapping file represents a data
structure that records all of the mapping information about
which line of the Robot DSL code is mapped to the
corresponding segment of Robot.java code. It indicates
the location of the Robot.java code segment. Interestingly,

Fig. 8 Semantic evaluation view

Fig. 9 Debugger generation overview
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the mapping information crosscuts the grammar in such a
way that an aspect emerges within the grammar definition
[25]. The mapping component interacts and bridges the
differences between the Eclipse debugger platform and the
jdb (step 4). There are two round-trip mapping processes
involved (steps 5 and 6) between the Robot DSL debugging
perspective in Eclipse and jdb. A user issues debugging
commands from Eclipse that are interpreted into a series
of jdb commands against the Robot.java code. Based on the
pre-defined debugging mapping knowledge, the mapping
component determines the sequence of debugging com-
mands that need to be issued to the jdb at the GPL level. The
centre piece of the DDF is the mapping component that
bridges the generated code from the front-end to the
execution engines of the back-end (e.g. the GPL com-
mand-line debugger and the Eclipse debugger perspective).
The mapping component acts as an interpreter that knows
two different languages (i.e. the DSL source and the
generated GPL code). The DDF translates the user’s
debugging intentions from the Eclipse debugger perspective
to the GPL debugger; it also translates the debugging
outputs from the GPL debugger back to the user through the
Eclipse debugger perspective at the DSL level.

The generic part in this case is a mapping algorithm that
uses syntax-directed translation and additional semantic
functions in the grammar specification to generate the
mapping component, which constitute the specific part.

3.3.2 Robot DSL debugger: Figure 10 represents
a fragment of the Robot DSL grammar in LISA. Line 11
indicates the start of the grammar production to process a
‘right’ command, with lines 12 through 18 providing the
semantic actions needed to execute the intention of ‘right’ in
Java. Lines 12, 14, 16 and 17 represent the debug mapping
information that contains the line number of the ‘right’
command (attribute dslline in line 12) in the Robot DSL.
The mapping contains the following information:

(i) the DSL line number (line 17)
(ii) the translated Java file name (line 18)
(iii) the line number of the first line of the corresponding
code segment in Robot.java (attribute gplbegline on line 18)

(iv) the line number of the last line of the corresponding
code segment in Robot.java (atribute gplendline on line 18).

The jdb responds to the debugger commands sent from the
mapping component. The results from the jdb are sent back
to a reverse-mapping component. Because the messages
from the jdb are command line outputs, which know nothing
of the Robot language and the Eclipse debug platform, it is
necessary to remap the results back into the Eclipse
debugging perspective. The Robot DSL’s variable position
is displayed in the variables view (see upper right corner of
Fig. 11). The mapping component translates the messages
back to the Robot DSL through the wrapper interface. The
domain expert only interacts directly with the DSL editor
and debugger view at the Robot language level (see left side
of Fig. 11).

This Section demonstrated LISA’s ability to generate
programming language tools inside the LISA programming
environment. Additionally, integration with external IDEs,
such as Eclipse, is also possible due to the power of
language-based generation.

3.4 Program visualisation and animation

Another instance of tools that can be derived from
formal language specifications are program visualisers=
animators. The purpose of such a family of tools is to help
the programmer to inspect the data and control flow of a
source program – a static view of the algorithms realised by
the program (visualisation) – and to understand its
behaviour – a dynamic view of the algorithms’ execution
(animation). In this Section the Alma system is briefly
introduced. The front-ends that are used by Alma can be
constructed using any compiler generator tool, but in this
discussion it will be used as a LISA addon.

For automatic generation of a program visualiser=
animator, a language specification needs to be extended
with additional information that defines how the input
sentence is converted into the animator’s internal represen-
tation (DAST), as shown in Fig. 12. Below is an example of
such an extension for the Robot language, where additional
steps are added to each command.

Fig. 10 Robot DSL grammar in LISA notation
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languageAlmaRobotextendsRobot,AlmaBase{
rule start {
START::¼ begin COMMANDS end compute {
START.dast ¼ new Alma.
CRoot(COMMANDS.tree); };

}
rule moves {
COMMANDS::¼ COMMAND COMMANDS compute {
COMMANDS[0].tree ¼ new Alma.
CStmtsNode(COMMAND.tree,
COMMANDS[1].tree); }

j epsilon compute {
COMMANDS[0].tree ¼ NULL; };

}
rule move {
COMMAND::¼ left #Number compute {
COMMAND.tree ¼ new Alma.CLstNode(new
Alma.CConstNode(“left”),
newAlma.CConstNode(#Number));};

j COMMAND::¼ right #Number compute {
COMMAND.tree ¼ new Alma.CLstNode(new
Alma.CConstNode(“right”),
new Alma.CConstNode(#Number));};

. . .
}

}

Fig. 11 Robot DSL debugger perspective in Eclipse

standard alma
java classes

animator

source
program

LISA
attribute grammar

specification

LISA

compiler

visualiser

rewriter

animation

front-end
back-end

VRB

RRB

DAST

Fig. 12 Architecture of the Alma system
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The extension shown above illustrates the use of multiple
attribute grammar inheritance, which is a standard LISA
feature [16]. It is used to specify the attribute evaluation
related to the DAST construction. From this specification,
a parser and a translator are generated that convert each
input text into an abstract representation used by the
animator, common to all different source languages. That
processor, which is the animator’s front-end, is the
language dependent component of the tool. In this case,
its generic part is more complex (described in detail in
Section 4) than in the cases studied in previous sub-
Sections 3.1 and 3.2: it is not just a standard algorithm
(we use three language independent algorithms), but it
also requires two standard data structures (a visual rule
base, and a rewriting rule base). Notice that the DAST is
language paradigm dependent. Each node of the DAST
is related to concepts defined in the source program.
The visualisation of these concepts will assist in under-
standing the program.

Consider the following source program in the Robot
language:

DOWN 3
RIGHT 7
UP 2
LEFT 4

The animation algorithms can generate a visualisation like
the one that can be seen in Fig. 13. The final layout can be
modified by the Alma designer. Drawing procedures called
by the visualising rules can be changed easily.

Another possible visualisation is shown in Fig. 14, which
is more abstract and shows the effect produced by the
program in the robot. For this kind of visualisation, variable
values are not shown as in the first visualisation. Instead,
the robot co-ordinates are used to evaluate each new
position of the robot. The program variables are mapped to
robot attributes in an interesting manner. In this case, it is

clear that each x and y of the program will be the co-
ordinates used to draw the robot. This is not as simple in
other cases.

The approach allows the visualisation of data structures
and can handle procedures and objects. In these cases, the
animation can be achieved with adequate visualisation rules
and drawing procedures. The implementation of the system,
which is discussed in the following Section, has a front-end
specific for each language and a generic back-end. The
implementation uses a decorated abstract syntax tree
(DAST) for the intermediate representation between the
front and back ends.

4 Alma implementation

The Alma system was designed to become a new generic
tool for program visualisation and animation based on the
internal representation of the input program in order to
avoid any kind of annotation of the source code (with visual
types or statements) The system was also designed to be
able to handle different programming languages.

Alma was conceived as a tool to shield an end-user
(a programming beginner, a student, a teacher) from the
concerns of formal specification of the programming
language. Visualisation and rewriting rules, which form the
core of Alma, depend only on generic abstract concepts. The
mapping of the concrete programming language constructs
into abstract concepts is entirely embedded in the front-end,
which is specific for each language and built just once by a
compiler specialist. The front-end performs the translation
task, from the concrete program to Alma’s internal
representation, and hides all details from the end-user.

4.1 Alma architecture

To comply with the requirements above, we conceived the
architecture shown in Fig. 12.

Alma also uses DAST as an internal representation for
the meaning of the program that is to be visualised. All of
the source language dependencies are isolated in the front-
end, and the generic animation engine is in the back-end.
The DAST is specified by an abstract grammar independent
of the concrete source language. In some sense, it can be
said that the abstract grammar models a virtual machine.
The DAST is intended to represent the program state in
each moment, and not to reflect directly the source language
syntax. In this way we rewrite the DAST to describe
different program states, simulating its execution; notice
that we deal with a semantic transformation process, not
only a syntactic rewrite.

A tree walk visualiser traverses the tree, creates a visual
representation of nodes, and glues figures in order to get the
program image at a specific moment. The DAST is
rewritten (to obtain the next internal state) and redrawn to
generate a set of images that will constitute the animation of
the program. Different visualisations can be generated from
the same DAST depending on the visualisation rules.

4.1.1 Visualisation in Alma: The visualisation is
achieved by applying visualisation rules (VR) to DAST
subtrees. The rules define a mapping between trees and
figures and constitute the specific part. When the partial
figures corresponding to the nodes of a given tree are
assembled together, a visual representation is obtained for
the respective program.

Visualising rules: The VRB (Visualising rule base) is a
mapping that associates with each attributed tree, defined by
a grammar rule (or production), a set of pairs

yi yi yi yi yi

xixi xi xi xi

0 0

3

7 7

1 1

3

2

7

2

4

4

4

0 3

3

7

4

2
down

right

right

up

left

up

left

left

up

left

Fig. 13 Robot operational animation

Fig. 14 Robot animation
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VRB : DAST 7!setðcond� dpÞ

where each pair has a matching condition (cond) and a
procedure (dp), which defines the tree visual representation.
Each cond is a predicate, over attribute values associated
with tree nodes, which constrains the use of the drawing
procedure (dp); i.e. cond restricts the applicability of the
visualising rule.

The written form of each visualising rule is as follows:

vis rule(ProdId) ¼ <tree-pattern>,
(condition),
{drawing procedure}

<tree-pattern>¼ <root, child 1,
. . ., child n>

In this template, condition is a Boolean expression (by
default, evaluates to true) and drawing procedure is a
sequence of one or more calls to elementary drawing
procedures.

A visualisation rule can be applied to all the trees that are
instances of the production ProdId. A tree-pattern is
specified using variables to represent each node. Each node
has the attributes value, name and type that will be
used on the rule specification, either to formulate the
condition, or to pass to the drawing procedures as
parameters.

Although each VRB associates to a production a set of
pairs, for the sake of simplicity its written form only
describes one pair. It is possible to have more than one rule
for the same production. To illustrate the idea, suppose that
in Alma’s abstract grammar a relational operation,
rel oper, is defined by the 13th production:

p13: rel oper: exp exp

where exp is defined as

p14: exp : CONST
p15: exp : VAR
p16: exp : oper

A visual representation for that relational operation is shown
in Fig. 15.

The visualisation rules to specify that mapping are written
as follows.

vis rule(p13) ¼
<opr,a,c>,
((a.type ¼ exp) AND (c.type ¼ exp)),
{drawRect(a.name,a.value),
drawRect (c.name,c.value),

put(opr.name),put(’?’)}

This visualisation rule is applied to a three-node tree, which
consists of an operator and two operands. Each operand can
be a CONST, VAR or oper (another operation).
For each operand, a rectangle is constructed with its value
inside and its name as a label of the rectangle. A visual
representation of the operation is drawn and the image is
finished with a ? character to identify a relational
expression.

Visualisation rules are similar to pretty-printers or
unparsing facilities in many compiler generators (e.g.
PPML in Centaur [26]). Although unparsing produces text

(in many case the text before parsing), visualisation rules in
Alma are also able to produce figures.
Visualisation algorithm: The visualisation algorithm (i.e. the
generic part) traverses the tree and applies the visualisation
rules to the sub-trees rooted in each node according to
a bottom-up approach (post-fix traversal). Using the
production identifier of the root node, it obtains the set of
possible representations. A drawing procedure is selected
depending on the first constraint condition that is true. The
algorithm is presented as follows:

visualize(tree){
If not(empty(tree))
then forall t in children(tree) do
visualize(t);

rules <	 VRB[prodId(tree)];
found<	 false;

While (not(empty(rules)) and
not(found))
do r <	 choice(rules);

rules <	 rules - r;
found <	 match(tree,r)

If (found) then draw(tree,r); }

A program animation is not the same as code visualisation
because it depends on the granularity of the visualisation
rules. The DAST is an abstract representation of the source
code, which assists in applying a visualisation rule to each
node of the tree (getting a more detailed visualisation,
usually an operational view like a debugger). It is also
possible to apply a visualisation rule to a set of nodes, or
even to the root. In this last case, the animation is more
abstract from a debugger output. We assume that Alma
suffers the same problems as other systems that use visual
languages. Scalability is indeed a problem and care must be
taken such that the drawings used in a visualisation help
program understanding.

4.1.2 Animation in Alma: Each rewriting rule
(RR) specifies a state transition in the process of program
execution and constitutes the specific part. The result of
applying the rule is a new DAST obtained by a semantic
(may be also a syntactic) change of a sub-tree. This
systematic rewriting of the original DAST is interleaved
with a sequence of visualisations producing an animation.
A main function synchronises the rewriting process with the
visualisation in a parameterised way, allowing for different
views of the same source program.

Rewriting rules: The RRB (rewriting rule base) is a
mapping that associates a set of tuples with each tree

RRB :DAST 7! setðcond� newtree� atribsEvalÞ

where each tuple has a matching condition (cond), a tree
(newtree, which defines syntactic transformations), and
an attribute evaluation procedure (atribsEval, which
defines the changes in the attribute values).

The written form of each rewriting rule is as follows:

rule(ProdId)¼ <tree-pattern>,
(condition),
<NewProdId: newtree>,
{attribute evaluation}

<tree-pattern>¼ <root, child 1, . . .,
child n>

<newtree>¼ <root, child 1, . . ., child n>

In this template, condition is a Boolean expression (by
default, evaluates to true) and attribute evaluation

a.value c.value
opr.name ?

a.name c.name

Fig. 15 Visualisation of a relational operation
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is a set of statements that defines the new attribute values
(by default, evaluates to skip).

A rewriting rule can be applied to all the trees that are
instances of the production ProdId. A tree-pattern
associates variables to nodes in order to be used in the other
fields of the rule specification (i.e. the matching condition,
the new tree and the attribute evaluation). When a variable
appears in both the tree-pattern (the left side of the
RR) and the newtree (the right side of the RR), it means
that all the information contained in that node, including its
attributes, will not be modified (i.e. the node is kept in the
transformation unchanged).

Although each RRB associates to a production a set of
tuples, its written form, introduced above, only describes
one tuple. It is possible to have more than one rule for the
same production. For instance, consider the following
productions, belonging to Alma’s abstract grammar, to
define a conditional statement:

p8: IF : cond actions actions
p9: j cond actions

The DAST will be modified using the following rules:

rule(p8)¼ <if,op,a,b>,
(op.value ¼ true),
<p9:if,op,a>,
{ }

rule(p8)¼ <if,op,a,b>,
(op.value ¼ false),
<p9:if,op,b>,
{ }

Rewriting algorithm: The rewriting algorithm (i.e. the
generic part) is also a tree-walker that traverses the tree until
a rewriting rule can be applied, or no more rules match the
tree nodes (in that case, the transformation process stops).
For each node, the algorithm determines the set of possible
RR using its production identifier (ProdId) and evaluates
the contextual condition associated with those rules. The
DAST will be modified, removing the node that matches the
left side of the selected RR and replacing it by the new tree
defined by the right side of that RR. This transformation can
be just a semantic modification (only attribute values
change), but it can also be a syntactic modification (some
nodes disappear or are replaced).

The rewriting algorithm follows:

rewrite(tree){
If not(empty(tree)) then
rules<	 RRB[prodId(tree)];

found <	 false;
While (not(empty(rules)) and not(found))
do r <	 choice(rules);
rules <	 rules 	 r;
found <	 match(tree,r)

If (found)
then tree <	 change(tree,r)
else a <	 nextchild(tree)

While (not(empty(a))
and not(rewritten(a)))
do a <	 nextchild(tree)

If not(empty(a)) then tree
<	 rebuild(tree,a,rewrite(a))

return(tree) }

Animation algorithm: The main function defines the
animation process, calling the visualisation and the rewrit-
ing processes repeatedly. The simplest way consists in
redrawing the tree after each rewriting, but the sequence of

images obtained can be very long and may not be the most
interesting. The granularity of the tree redrawing is
controlled by a function, called shownow(), which after
each tree’s syntactic-semantic transformation decides if it is
necessary to visualise again. The decision is made taking
into account the internal state of the animator (that reflects
the state of program execution) and the value of user-
defined parameters.

The animation algorithm, which is the core of Alma’s
generic back-end, is as follows:

animate(tree){
visualize(tree);
Do rewrite(tree);

If shownow() then visualize
(tree);

until (tree¼¼rewrite(tree)) }
When no more rules can be applied, the output and input of
the rewrite function are the same.

4.2 Alma animation example

In this Section, an Alma animation example is presented in
a toy imperative language that consists of assignment,
conditional, repetitive and I=O statements.

4.2.1 An example: The example presented in
Fig. 16 has an assignment, a repetitive statement, a reading
and a writing statement. Figures 17 and 18 show
visualisations belonging to an Alma animation. The first
one represents the initial state of the program and the second
one shows the first iteration of the cycle. Notice that symbol
			> represents an assignment or an operation (if an
arithmetic symbol is under the arrow); the symbol #
represents a conditional statement; the symbol @ represents
a repetitive statement; the symbol ¼
¼� represents a write
and �¼
¼ a read statement.

We have adopted the original LISA approach to cope
with the size of the tree to be drawn (as noted in sub-Section
3.2.2). The approach displays the picture condensed in a
small window below the main window with the circle part
magnified.

The generality of the system can be a handicap to achieve
output effects. The system would be more useful if it
allowed the addition of new rules to support new concepts or
generate different outputs. Alma has a generic part
(visualisation=animation algorithms; tree, nodes, identifier
table and rules structure; and rule base interpretation) and
a specific part (visualisation and rewriting rules, nodes).

Fig. 16 Example source program
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We conclude that the generic part gives generality and the
specific part makes it possible to obtain more adequate
visualisations.

4.3 Other Alma features

Alma can also cope with different languages, different
levels of animation detail, different types of visualisations
and different types of paradigms.

4.3.1 Different languages: If we want to apply
the system to a different source language, we only have to
construct a new front-end that defines the concrete syntax of
the new language and maps its main concepts to Alma
nodes. This front-end can be generated using LISA.

4.3.2 Different level of animation detail: It is
also possible to modify the sampling frequency (number of
state transformations before a visualisation), or choose the
set of nodes we want to visualise, in order to get a different
level of animation detail. An animation can have more or
fewer visualisations, depending on the desired detail level.
The most detailed animation implies the visualisation of the
tree after each rewriting. The synchronisation between
these processes depends on a function called shownow.

This function counts the rewritings and returns 0 or 1
depending on the desired frequency.

The visualisation is obtained by traversing a DAST that
has the associated drawings. If we decide to show only some
nodes we will obtain less detail in the visual representation.
There are some nodes that are more important than others
and their visualisation can explain all the functionality of the
program. It is also possible to access an interface to choose
the desired nodes and watch the results.

It is important to distinguish the animation detail level
from the visualisation detail level. For animation detail, the
drawings do not have to change (it is concerned with process
synchronisation and the number of visualisations). In
visualisation detail, it is necessary to redefine the visualisa-
tion rules to obtain different results.

4.3.3 Different types of visualisations: Alma
has two bases of rules that can be improved with new
semantics or new drawings. It may be desired to obtain
different visualisations for the same language used before.
Alternatively, it may be desired to animate a very different
language, which would require the definition of new
visualisations. There are several possibilities to change
visualisations: varying the level of visualisation detail using

Fig. 17 Initial state of program

Fig. 18 First iteration of cycle
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a different mapping between nodes and drawing; choosing
different drawings; or both, to obtain a different abstraction
level.

The generated visualisations are based on rules that map
nodes to drawings. If we want to change the drawings to
obtain a different visualisation, we can modify rules or
specify new ones. The same concepts can be represented
with different drawings.

If we want to change the visualisation detail, we must
associate the drawings with another level of nodes. In some
cases, the same drawings can be used, but when the concepts
concerned at this level are different, it is necessary to define
another drawing. By changing drawings and associated
nodes, it is possible to modify the abstraction level of the
visual results. The idea is to create new visualisation rules to
associate more abstract drawings with higher level nodes.

4.3.4 Different types of paradigms: If there is
a very different source language from a different

programming paradigm, it is necessary to verify which
concepts are common and which are not. For the last ones,
new visualisation rules must be defined, new DAST nodes
must be created, and new semantics must be specified with
rewriting rules. This Section briefly shows an example in
Prolog.

Consider the following input program:

mother(julie,susan).
mother(susan,john).
father(peter,paul).
father(peter,susan).
parents(M,P,E):-mother(M,E), father(P,E).

A front-end is needed to map the Prolog concepts to Alma
nodes. An extended LISA grammar associates facts and rules
with a PROCDEF node, because this node represents the
definition of a code block that can be invoked from any
place of the program. For each query an execution tree is
created.
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Fig. 19 Alma generated animation
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The animation of the execution tree (simulation of the
proof process) uses the visualisation rules already defined
for other languages. In a similar way, the same rewriting
rules are used to simulate procedure calls.

For example, consider the following query:

? 	 parents(M,P,susan).

The output can be seen in Fig. 19, which presents the less
detailed version of the generated animation (the minimal
number of steps are shown). Figure 20 shows another kind
of visualisation for the same program. This visualisation is
obtained by using other visualisation rules.

This example illustrates the possibility of reusing the
visualisation and rewriting rules, already defined in Alma
for imperative languages, to animate declarative programs
(proof processes).

These examples assume that Alma will be mainly used in
small programs, or with DSLs for which there are no
debugging tools or visualisers. Alma produces graphical
representations that usually have problems of scalability,
and it is also very difficult to choose the appropriate
drawings for better understanding. This discussion did not
include details on output quality or system performance.
The focus of this Section was the approach to visualising
automatically different concepts and different languages
using the same DAST-based approach.

5 Conclusion

Many applications today are written in well understood
domains. One trend in programming is to provide software
tools designed specifically to handle the development of
domain-specific applications to greatly simplify their
construction. These tools take a high-level description of
the specific task and generate a complete application.

One such well established domain is compiler construc-
tion, because there is a long tradition of producing compilers
by hand using an underlying theory that is well understood
(supporting all the analysis phases, and even code
generation and optimisation processes). At present, there
exist many generators that automatically produce language-
based tools from programming language specifications.
Although particular automatic generation of language-based
tools was discussed before, in this paper a more general
approach is taken by identifying generic and specific parts
from which language-based tools can be generated auto-
matically from language specifications. Previous generators
varied widely in what constituted the generic and specific
parts. Such classification can also be a base for comparing
systems that automatically generate language-based tools.
To generate language-base tools automatically, it is often
the case that a language specifications needs to be extended
or appropriate information needs to be extracted. Concrete
examples of both types, produced by the generator system
LISA, have been introduced and discussed in the paper.

The benefits of automatically generated language-based
tools should not be ignored. Building language-based tools

from scratch (especially for DSLs) is time-consuming and
error-prone, which makes tool maintenance very costly.
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