
VisualizatiodAnimation of Programs in Alma: obtaining different results

Maria Jolo Varanda Pereira *
Polytechnic Institute of Braganqa -Portugal

Pedro Range1 Henriques
University of Minho - Portugal

mjoao@ipb.pt

Abstract

' Alma, a system for program animation, receives as input
a computer program and produces a sequence of visualiza-
tions that will describe its functionality The system gener-
ates automatically program animations basing this process
on rhe internal representation of those programs. The back-
end of this system works over an execution tree (DAST -
Decorated Abstract Syntax Tree), implementing the anima-
tion algorithm. This algorithm uses two bases of rules: vi-
sualizing rules (10 associate graphical representation with
program elements creating a visual description of the pro-
gram state) and rewriting rules (to change the program
state).
In this paper, the main goal will be topresent the extensibil-
ity of the system in rhe sense ojadding or modifying inputs
and outputs. We also discuss the characteristics of Alma's
architecture that make this possible.

1. Introduction

The purpose of an animation system is to help the pro-
grammer to inspect the data and control flow of a source
program-static view of the algorithm implemented by the
program-and to understand its behavior-dynamic view
of the algorithm.
Convinced about the importance of program visualization
and algorithm animation and after reviewing the existing
systems [2], we decided to design and develop a new visu-
alization environment, Alma, obeying the following design
goa1s:build an integrated and easy to use environment; avoid
the need for any kind of change in the source code; allow
the selection of different views of the same program; create
a system as generic as possible in order to be used by dif-
ferent source languages.
The Alma system was designed to become a new generic
tool for program visualization and animation based on the
internal representation of the input program in order to

'The work of M. Joao is partially suppon by the Panuwese program
PRODEP, ac@o 5.2 da medida 5 doutoramentos

260

-
prh@di.uminho.pt

Figure 1. Architecture of Alma system

avoid any kind of annotation of the source code (with visual
types or statements), and to be able to cope with different
programming languages.
To comply with the requirements above, and based on our
background on compiler specification and implementation,
we conceived the architecture shown in figure 1.
The system has a front-end specific for each language and a
generic back-end, and uses a decorated abstract syntax tree
(DAST) for the intermediate representation between them.
The DAST represents the meaning of the program we in-
tend to visualize; in that way, we isolate all the source
language dependencies in the front-end, while keeping the
generic animation engine in the back-end. The DAST is
specified by an abstract grammar independent of the con-
crete source language. In some sense we can say that the
abstract grammar models a virtual machine. So the DAST
is intended to represent the program state in each moment,
and not to reflect directly the source language syntax. The
tree generated by the front-end (after program analysis) rep-
resents the input program. The program tree is static and is
kept unchanged. Applying some rewriting d e s to that tree,
we will get an execution tree representing the first state of
program execution. In this way we rewrite the DAST to
describe different program states, simulating its execution;
notice that we deal with a semantic transformation process,
not only a syntactic rewrite.
A Tree Walk Visualizer, traversing the execution tree, cre-
ates visual representations of nodes, gluing figures in order

to get the program image on that moment. Then the DAST
is rewritten (to obtain the next internal state), and redrawn,
generating a set of images that will constitute the animation
of the program.

2. Basic use of Alma System

A typical user only has to create the input of the system,
editing the program he wants to animate. Then, he submits
his program using a command line like:

> java Animate file-name.test

and the program will be animated. For each programming
language that has an Almafront-end previously created, the
programmer just uses the system (as exemplified above)
without any additional specification or modification. This
is the original Alma purpose and its main use mode.
The generality of the system can be an handicap to achieve
output effects. We think that the system would be more use-
ful if it allows the addition of new rules to support new con-
cepts or generate different outputs. Alma system has a fixed
pan (visualizationlanimation algorithms; tree, nodes, iden-
tifier table and rules structure; rule bases interpretation, etc)
and an extensible part (visualization and rewriting rules,
nodes, etc). We conclude that the fixed part gives gener-
ality and the extensible part makes possible to obtain more
adequate visualizations.
In the next section we will show how different kind of users
can interact with the system in order to get the most appro-
priate animation.

level of visualiWfion detail
new drawings
level o f abafraciion

3. Advanced use of Alma System

Table I shows how to customize Alma system. As we have
said, the system is divided into two parts: fixed pan and
extensible part. Column 1 represents the desired effect and
column 2 explains how to extend.

EXTENSIBLE PART

To obtain I Has 10 modify

+
inferpetalion mechanism

of drawinpr
. . . .

+new nodes
=new rewrir,np rules

Table 1. Extensions of Alma System

Different Languages
If the user wants to apply the system to a different source
language, he only has to construct a front-end that defines
the concrete syntax of the new language and maps its main

concepts to Alma nodes. This fmnt-end can be generated
using LISA system [I] .

Different level of animation detail
The advanced user can also modify the sampling frequency
(number of state transformations (tree rewritings) before
a visualization) or choose the set of nodes he wants to
visualize, in order to get a different level of animation
detail. An animation can have more or less visualizations
depending on the desired detail level. The most detailed
animation implies the visualization of the tree after each
rewriting. The synchronization between these processes
depends on a function called shownow. This function
counts the rewritings and returns 0 or 1 depending on the
desired frequency.
The visualization is obtained traversing a DAST that has
associated drawings. If we decide to show only some nodes
we will get a less detailed visual representation. There
are nodes that are more important than the others and
their visualization can explain all the functionality of the
program. The user will access an interface where he can
easily choose those nodes and watch the results.
We have to distinguish animation detail level from visu-
alization detail level. On the first one, we do not have to
change the drawings (it is concerned with process synchro-
nization, number of visualizations), and on the second we
have to redefine visualization rules in order to get different
results, as we will discuss in the next paragraph.

Different types of visualizations
Alma system has two bases of rules that can be improved
with new semantics or new drawings. The user may want to
get different visualizations for the same language he used
before or he may want to animate a very different language
and he must define new visualizations for it. There are
several possibilities to change visualizations: varying the
level of visualization detail using a different mapping
between nodes and drawings; choosing different drawings;
or both in order to get a different abstraction level.
The generated visualizations are generated based on rules
that map nodes to draws. If the user wants to change
the draws in order to get a different visualization, he can
modify rules or specify new ones. He can represent the
same concepts with different drawings.
If we want to change the visualization detail we must
associate the drawings to another level of nodes. In some
cases, we can use the same drawings but when the concepts
concerned to this level are different we must define another
drawings too. Changing drawings and associated nodes,
we can modify the abstraction level of the visual results.
The idea is to create new visualization rules in order to
associate more abstract drawings to higher level nodes.

261

Different type of paradigms
When we have a very different source language mainly if i t
implements a different programming paradigm, we have to
verify which concepts are common and which are not. For
the last ones, we have to specify new visualization rules,
create new DAST nodes and specify new semantics with
rewriting rules. In this section we will show an example:
Prolog.
We take as example the following input program:

mother(julie,susan) .
mother isusan, john).
fatheripeter.pau1) .
father (peter, susan) .
parents(M,P,E) :-mother(M,E) ,fatheriP,E) .

We must have a front-end to map the Prolog concepts to
Alma nodes. An extended LISA grammar associates facts
and rules to PROCDEF node, because this node represents
the definition of a code block that can he invoked from any
place of the program. The execution tree for the query:

? - parents(M,P,susan).

can he seen on figure 2

Figure 2. Execution tree created by Alma
A query is mapped to a CALLPROC node that has associated
a set of parameters (LST) and a PROCDEF node which de-
fines a fact ora rule. In the first case, the CALLPROC has the
value true hut, in the second case, it is necessary to ver-
ify the truth of every predicate on the rule body, replacing
the inner CALLPROC nodes by the appropriate PROCDEF
nodes. Each PROCDEF node has a local identifier table as-
sociated, whose variable values will he used (on PROCDEF
exit) to update the outer table.
The animation of the execution tree (simulation of the proof
process) uses the visualization rules already defined for
other languages. In a similar way, we apply the same rewrit-
ing d e s used to simulate procedure calls.
The effect can he seen in figure 3 that presents the less de-
tailed version of the generated animation (the minimal num-
her of steps are shown).

Figure 3. Alma generated animation

With this example, we have illustrated the possibility of
reusing the visualization and rewriting rules, already de-
fined in Alma for imperative languages, to animate declar-
ative programs (proof processes).
But the system is also prepared to he extended with extra
rules if it is necessary. For example, we can have several
PROCDEF for each CALLPROC node and, in this case, we
should use a backtracking stack. So, we have to define new
rewriting rules to specify the management of this stack.

4. Conclusion

This paper introduced the architecture of Alma system that
allows to achieve the proposed objective: systematize the
program animation process making it automatic and algo-
rithdlanguage independent. The main idea is to avoid an
algorithm or language oriented approach, developing in-
stead a new generic model based on the program semantics
(the program soul, or A h a in Portuguese). We discussed
the characteristics that enable us to customize the system -
to adapt to new languages or produce different outputs.
As future work, we plan to develop an interface that helps
the user to perform the desirable extensions.

References

[I] P. Henriques, M. J. Varanda, M. Memik, and M. Lenic.
Automatic generation of language-based tools. In WTA -
Workshop on Longuage, Descriptions, Tools and App/ications
(ETAPS'OZ), April 2002.

121 J. Stasko. 1. Domineue. M. H. Brown, and B. A. Price. Soh- . _ -
ware Visualization - Programming as a Multimedia Drperi-
ence. The MlT Press, 1997.

262

