
Distributed Paged Hash Tables

José Rufino1 �, António Pina2, Albano Alves1, and José Exposto1

1 Polytechnic Institute of Bragança, 5301-854 Bragança, Portugal
{rufino,albano,exp}@ipb.pt

2 University of Minho, 4710-057 Braga, Portugal
pina@di.uminho.pt

Abstract. In this paper we present the design and implementation of
DPH, a storage layer for cluster environments. DPH is a Distributed
Data Structure (DDS) based on the distribution of a paged hash table.
It combines main memory with file system resources across the cluster
in order to implement a distributed dictionary that can be used for the
storage of very large data sets with key based addressing techniques. The
DPH storage layer is supported by a collection of cluster–aware utilities
and services. Access to the DPH interface is provided by a user–level
API. A preliminary performance evaluation shows promising results.

1 Introduction

Today commodity hardware and message passing standards such as PVM [1]
and MPI [2] are making possible to assemble clusters that exploit distributed
storage and computing power, allowing for the deployment of data-intensive
computer applications at an affordable cost. These applications may deal with
massive amounts of data both at the main and secondary memory levels. As
such, traditional data structures and algorithms may no longer be able to cope
with the new challenges specific to cluster computing.
Several techniques have thus been devised to distribute data among a set

of nodes. Traditional data structures have evolved towards Distributed Data
Structures (DDSs) [3, 4, 5, 6, 7, 8, 9] . At the file system level, cluster aware
file systems [10, 11] already provide resilience to distributed applications. More
recently a new research trend has emerged: online data structures for external
memory that bypass the virtual memory system and explicitly manage their own
I/O [12].
Distributed Paged Hashing (DPH1) is a cluster aware storage layer that

implements a hash based Distributed Data Structure (DDS). DPH has been
designed to support a Scalable Information Retrieval environment (SIRe), an
ongoing research project with a primary focus on information retrieval and cat-
aloging techniques suited to the World Wide Web.
� Supported by PRODEP III, through the grant 5.3/N/199.006/00, and SAPIENS,
through the grant 41739/CHS/2001.

1 A preliminary presentation of our work took place at the PADDA2001 workshop [13];
here we present a more in-depth and updated description of DPH.

J.M.L.M. Palma et al. (Eds.): VECPAR 2002, LNCS 2565, pp. 679–693, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153402663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


680 José Rufino et al.

The main idea behind DPH is the distribution of a paged hash table over
a set of networked page servers. Pages are contiguous bucket sets2, all with the
same number of buckets. Because the amount of pages is initially set our strategy
appears to be static. However, pages are created on–demand so the hash table
grows dynamically.
A page broker is responsible for the mapping of pages to page servers. The

mapping takes place just once for the lifetime of a page (page migration is not
yet supported) and so the use of local caches at the service clients alleviates the
page broker. In a typical scenario, the page broker is mainly active during the
first requests to the DPH structure when pages are mapped to the available page
servers. Because the local caches are incrementally updated the page broker will
be relieved from further mapping requests.
The system doesn’t rely only on the available main memory at each node.

When performance is not the primary concern, a threshold based swap mecha-
nism may also be used to take advantage of the file system. It is even possible
to operate the system solely based on the file system, achieving the maximum
level of resilience. The selection of the swap-out bucket victims is based on a
Least–Recently–Used (LRU) policy.
The paper is organized as follows: section 2 covers related work, section 3

presents the system architecture, section 4 shows preliminary performance results
and section 5 concludes and points directions for future work.

2 Related Work

Hash tables are well known data structures [14] mainly used as a fast key based
addressing technique. Hashing has been intensively exploited because retrieval
times are O(1) when compared with O(log n) for tree-structured schemes or
O(n) for sequential schemes. Hashing is classically static meaning that, once set,
the bit–length of the hash index never changes and so the complete hash table
must be initially allocated.
In dynamic environments, with no regular patterns of utilization, the use of

static hash tables results on storage space waste if only a small bucket subset is
used. Static hashing may not also be able to guaranteeO(1) retrieval times when
buckets overflow. To counterwork these limitations several dynamic hashing [15]
techniques have been proposed, such as Linear Hashing (LH) [16] and Extendible
Hashing (EH) [17], along with some variants.
Meanwhile, with the advent of cluster computing, traditional data struc-

tures have evolved towards distributed versions. The issues involved aren’t triv-
ial because, in a distributed environment, scalability is a primary concern and
new problems arise (consistency, timing, order, security, fault tolerance, hot–
spots, etc.). In the hashing domain, LH* [3] extended LH [16] techniques for
file and table addressing and coined the term Scalable Distributed Data Struc-
ture (SDDS). Distributed Dynamic Hashing (DDH) [4] offered an alternative
2 In the DPH context, a bucket is a hash table entry where collisions are allowed and
self–contained, that is, collisions don’t overflow into other buckets.



Distributed Paged Hash Tables 681

approach to LH* while EH* [5] provided a distributed version of EH [17]. Al-
though in a very specific application context, [18] have exploited a very similar
concept to DPH, named two–level hashing. Distributed versions of several other
classical data structures, such as trees [7, 8] and even hybrid structures, such as
hash–trees [19], have also been designed. More recently, work has been done on
hash based distributed data structures to support Internet services [9].

3 Distributed Paged Hashing

Our proposal shows that for certain classes of problems, an hybrid approach,
that mixes static and dynamic techniques, may achieve good performance and
scalability without the complexity of purely dynamic schemes.
When the dimension of the key space is unknown a priori, a pure dynamic

hashing approach would incrementally use more bits from the hash index when
buckets overflow and split. Only then storage consumption would expand to
make room for the new buckets. Typically, the expansion takes place at another
server, as distributed dynamic hashing schemes tend to move one of the splits
to another server.
Although providing maximum flexibility, a dynamic approach increases the

load on the network, not only during bucket splitting, but also when a server
forwards requests from clients with an outdated view of the <bucket, server>
mapping. Once we know in advance that the application domain (SIRe) will
include a distributed web crawler, designed to extract and manage millions of
URLs, then it doesn’t make much sense not to start, from the beginning, using
the maximum bit–length of the hash index. As such, DPH is a kind of hybrid ap-
proach that includes both static and dynamic features: it uses a fixed bit–length
hash table, but pages (and buckets) are created on–demand and distributed
across the cluster.

PThreads

pCoR

TCP/IP GM (for Myrinet)

DPH services (page broker + page servers)

DPH API

DPH user applications

Fig. 1. The DPH architecture



682 José Rufino et al.

3.1 Architecture

Figure 1 presents the architecture of DPH. User applications interface with the
DPH core (the page broker and the page servers) through a proper API. The run-
time system is provided by pCoR [20], a prototype of CoR [21]. CoR paradigm
extends the process abstraction to achieve structured fine grained computation
using a combination of message passing, shared memory and POSIX Threads.
pCoR is both multithreaded and thread safe and already provides some very
useful features, namely message passing (by using GM [22] over Myrinet) be-
tween threads across the cluster. This is fully exploited by the DPH API and
services, which are also multithreaded and thread safe.

3.2 Addressing

The DPH addressing scheme is based on one–level paging of the hash table:

1. a static hash function H is used to compute an index i for a key k: H(k) = i;
2. the index i may be split into a page field p and an offset field o: i =< p, o >;
3. the hash table may be viewed as a set of 2#p pages, with 2#o buckets per
page, where #p and #o are the (fixed) bit–length of the page and offset
fields, respectively;

4. the page table pt will have 2#p entries, such that pt[j] = psj, where psj is
a reference to the page server for page j.

H is a 32 bit hash function3, but smaller bit subsets from the hash index
may be used, with the remaining bits being simply discarded. The definition of
the page and offset bit–lengths are the main decisions to take prior to the usage
of the DPH data structure. The more bits the page field uses, the more pages
will be created, leading to a very sparse hash table (if enough page servers are
provided), with a small number of buckets per page. Of course, the reverse will
happen when the offset field consumes more bits: fewer, larger pages, handled by
a small number of page servers. The later scenario will less likely take advantage
of the distribution. Thus, defining the index bit–length is a decision dependent
on the key domain. We want to minimize collisions and so large indexes may
seem reasonable but that should be an option only if we presume that the key
space will be uniformly used. Otherwise storage space will be mostly wasted on
control data structures.

3.3 Page Broker

The page broker is responsible for the mapping of pages into page servers. As
such, the page broker maintains a page table, pt, with 2#p entries, one for each
page. When it receives a mapping request for page p, the page broker returns
3 H has been chosen from [23]. A comparison was made with other general hash
functions from [24], [14] and [25], but no significant differences have been found,
both in terms of performance and collision avoidance.



Distributed Paged Hash Tables 683

0

1

0

1

2#o-1

<key> <data> <key> <data>

0

1

LRU

<key> <data>

data node data node

data node

2#o-1

2#p-1
file system

page table <key> <data>

data node

page

page

2#o-2

2#o-2

Fig. 2. Main data structures for a page server

pt[p], which is a reference to the page server responsible for the page p. It may
happen, however, that this is the first mapping request for the page p. If so,
the page broker will have to choose a page server to handle that page. A Round
Robin (RR) policy is currently used over the available page servers, assuring that
each handles an equal share of the hash table, but we plan to add the choice for
more adaptive policies, such as weighted RR (proportional to the available node
memory and/or current load, for instance) or others.

3.4 Page Servers

A page server hosts a page subset of the distributed hash table (as requested
by the page broker, during the mapping process), and answers most of the DPH
user level API requests (insertions, searches, deletions, etc.).
Figure 2 presents the main data structures for a page server. A page table

with 2#p entries is used to keep track of the locally managed pages. A page is
a bucket set with 2#o entries. A bucket is an entry point to a set of data nodes
which are <key, data> pairs. Collisions are self contained in a bucket (chaining).
Other techniques, like using available empty buckets on other pages (probing),
wouldn’t be compatible with the swapping mechanism4.
Presently, buckets are doubly–linked lists. These rather inefficient data struc-

tures, with O(n) access times, were used just to rapidly develop the prototype.
In the future we plan to use more efficient structures, such as trees, skip–lists [26]
or even dynamic hashing.
4 This mechanism uses the bucket as the swap unit and depends on information kept
therein to optimize the process.



684 José Rufino et al.

One of the most valuable features of a page server is the ability to use the
file system as a complementary online storage resource. Whenever the current
user data memory usage surpasses a certain configurable threshold, a swapping
mechanism is activated. A bucket victim is chosen, from the buckets currently
hold in memory. The victim, chosen from a Least–Recently–Used (LRU) list, is
the oldest possible referenced bucket that still frees enough memory to lower the
current usage bellow the threshold.
The LRU list links every bucket currently in main memory, crossing local

page boundaries, and so a bucket may be elected as a victim in order to release
storage to a bucket from another local page. The LRU list may also be exploited
in other ways. For instance, besides being a natural queue, quickly browsing
every bucket in a page server is possible, without the need to hash any key.
Buckets that have been swapped-out to the file system are still viewed as

online and will be swapped-in as they are needed. The swapping granularity
is currently at the bucket level and not at the data node level. This may be
unfair to some data nodes in the bucket but prevents too many small files (often
thousands), one for each data node, at the file system level, which would degrade
performance. The swapping mechanism is further ooptimizedthrough the use of
a dirty bit per bucket, preventing unmodified buckets to be unnecessarily saved.
A page server may work with a zero threshold thus using the main memory

just to keep control data structures and as an intermediate pool to perform the
user request, after which the bucket is immediately saved to the file system and
the temporary instance removed from main memory.
If a DPH instance has been terminated graciously (thus ssynchronizingits

state with the file system), then it may be loaded again, on–demand: whenever
a page server is asked to perform an operation on a bucket that is empty, it first
tries to load a possible instance from the file system because an instance may
be there from a previous shutdown of the DPH hash table. In fact, even after
an unclean shutdown, partial recovery may be possible because uunsynchronized
bucket instances are still loaded.

3.5 User Applications

User applications may be built on top of the DPH API and runtime environment.
From a user application perspective, insertions, retrievals and removals are the
main interactions with the DPH storage layer. These operations must have a key
hashed and then mapped into the correct page server. This mapping is primarily
done through a local cache of the page broker page table. A user application starts
with an empty page table cache and so many cache misses will take place, forcing
mapping requests to the page broker. This is done automatically, in a transparent
way to the user application. Further mappings of the same page will benefit from
a cache hit and so the user application will readily contact the relevant page
server.



Distributed Paged Hash Tables 685

Presently, mapping never changes for the lifetime of a DPH instance5 and so
the cache will be valid during the execution of the user application. This way, a
page broker will be a hot–spot (if ever) for a very limited amount of time. Our
preliminary tests show no significant impact on performance during cache fills.

3.6 Client–Server Interactions

Our system operates with a relatively small number of exchanged messages6:

1. mapping a page into a page server may use zero, two, four or (very seldom)
more messages: if the local cache gives a hit, zero messages were needed;
otherwise the page broker must be contacted; if the page table gives a hit,
only the reply to the user application is needed, summing up two messages;
otherwise a page server must be contacted and so two more messages are
needed (request and reply); of course, if the page server replied with a nega-
tive acknowledgement, the Round Robin search for another page server will
add two more messages per page server;

2. insertions, retrievals and removals typically use two messages (provided
a cache hit); however, insertions and retrievals may be asynchronous, using
only one message (provided, once again, a cache hit); the later means that no
acknowledge is requested from the page server, which translates into better
performance, though the operation may have not be successfully performed
and the user application won’t be aware of it.

Once local caches become updated, and assuming the vast majority of the
requests to be synchronous insertions, retrievals and deletions, we may set two
messages as the upper bound for each interaction of a client with a DPH instance.

4 Performance Evaluation

4.1 Test–Bed

The performance evaluation took place in a cluster of five nodes, all running
Linux Red Hat 7.2 with the stock kernel (2.4.7-10smp) and GM 1.5.1 [22]. The
nodes were interconnected using a 1.28+1.28 Gbits/s Myrinet switch. Four of
the nodes (A,B,C,D) have the following hardware specifics: two Pentium III
processors at 733 Mhz, 512 Mb SDRAM/100 MHz, i840 chipset, 9Gb UDMA
66 hard disks, Myrinet SAN LANai 9 network adapter. The fifth node (E) has
four Pentium III Xeon processors running at 700 Mhz, 1 Gb ECC SDRAM/100
MHz, ServerWorks HE chipset, 36 Gb Ultra SCSI 160 hard disk and a Myrinet
SAN LANai 9 network adapter.
5 We are referring to a live instance, on top of a DPH runtime system.
6 We have restricted the following analysis to the most relevant interactions.



686 José Rufino et al.

4.2 Hash Bit–Length

Because DPH uses static hashing, the hash bit–length must be preset. This
should be done in such a way that overhead from control data structures and
collisions are both minimized. However, those are conflicting requisites. For in-
stance, to minimize collisions we should increase the bit–length, thus increasing
the hash table height; in turn, a larger hash table will have more empty buckets
and will consume more control data structures. We thus need a metric for the
choice of the right hash bit–length.

Metric Definition Let Bj be the number of buckets with j data nodes, after
the hash table has been built. If k keys have been inserted, then Pj = (Bj×j)/k is
the probability of any given key to have been inserted in a Bj bucket. Also, letNj

be the average number of nodes visited to find a key in a Bj bucket. Once we have
used linked lists to handle collisions, Nj = (j + 1)/2. Then, given an arbitrary
key, the average number of nodes to be searched for the key is N =

∑
j(Pj×Nj).

The overhead from control data structures is O = C/(U + C), where C is the
storage consumed in control data structures and U is the storage consumed in
user data (keys and other possible attached data). Finally, our metric is defined
by the ranking R = nN × oO, where n and o are the percentual weights given
to N and O, respectively. For a specific scenario, the hash bit–length to choose
will be the one that minimizes R.

Application Scenario The tests were performed, in a single cluster node (A),
for a varying number of keys, using hash bit–lengths from 15 to 20. The page
field of our addressing scheme used half of the hash; the other half was used as
an offset in the page (for odd bit–lengths, the page field was favored). Keys were
random unique sequences, 128 bytes wide; user data measured 256 bytes7.
Figure 3 presents the rankings obtained. If an ideal general hash function

(one that uniformly spspreads the hashes across the hash space, regardless of
the randomness and nature of the keys) was used, we would expect the optimum
hash bit–length to be approximately log2k, for each number of keys k. However,
not only our general hash function [23] isn’t ideal, but also the overhead factor
must be taken into account. We thus observe that our metric is minimized when
the bit–length is log2k − 1, regardless of k8.
In order to determine if the variation of the key size would interfere with

the optimum hash bit–length we ran another test, this time by varying the key
size across {4, 128, 256}. Figure 4 shows the results for 125000 keys. It may
be observed that log2k − 1 still is the recommended hash bit–length, indepen-
dently of the key size9. The ranking is preserved because regardless of the key
size, the hash function provides similar distributions of the keys; therefore, N is
approximately the same, while the overhead O is the varying factor.
7 Typical sizes used in the web crawler being developed under the SIRe project.
8 For instance, 17 bits for the hash bit–length seems reasonable when dealing with
a maximum of 125000 keys, but our metric gives 16 bits as the recommended value.

9 This was also observed with 250000, 500000 and 1000000 keys.



Distributed Paged Hash Tables 687

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

15 16 17 18 19 20

hash bit-length

ra
nk

in
g

1 000 000 keys

500 000 keys

250 000 keys

125 000 keys

Fig. 3. R for n = 50% and o = 50%

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

15 16 17 18 19 20

hash bit-length

ra
nk

in
g

4 bytes

128 bytes

256 bytes

Fig. 4. Effect of the key size on R

4.3 Scalability

To evaluate the scalability of our system we produced another type of experi-
ments using k=1500000 as the maximum number of keys. Accordingly with the
metric R defined in the previous experiment, the hash bit–length was set to
log2k − 1 = 19 bits. Also, as previously, keys were random unique sequences,
128 bytes wide, with 256 bytes of attached user data. Each client thread was
responsible for the handling of 125000 keys.
We measured insertions and retrievals. Insertions were done in newly created

DPH instances and thus the measured times (“build times”) accounted for cache
misses and page broker mappings. The retrieval times and retrieval key rates are
not presented, because they were observed to be only marginally better. The
memory threshold was set high enough to prevent any DPH swapping.



688 José Rufino et al.

One Page Server, Multiple Clients The first test was made to investigate
how far the system would scale by having a single page server to attend simulta-
neous requests from several multithreaded clients. Our cluster is relatively small
and so, to minimize the influence of hardware differences between nodes, we used
the following configuration: nodes A,B and C hosted clients, node D hosted the
page server and node E hosted the page broker.
Figure 5 shows the throughput obtained when 1, 2 or 3 clients make simul-

taneous key insertions by using, successively, 1, 2 or 3 threads: 1 active client,
with 1 thread, will insert 125000 keys; . . . ; 3 active clients, with 3 threads each,
will insert 3 × 3 × 125000 = 1125000 keys.
It may be observed that, as expected, we need to add more working nodes to

increment the throughput, when using 1 thread per client. Of course, this trend
will stop as soon as the communication medium or the page server get saturated.
With 2 threads per client, the keyrate still increases; in fact, with just 1 client

and 2 threads the throughput achieved is the same as with 2 clients with 1 thread
each but, when 3 simultaneous clients are active (in a total of 6 client threads),
the speedup from 2 clients is minimum, thus indicating that the saturation point
may be near.
When using 3 threads per client and just 1 active client, the speedup from

2 threads is still positive but, when increasing the number of active clients, no
advantage is taken from the use of 3 threads. With 2 active clients, 6 threads
are used, which equals the number of working threads when 3 clients are active,
with 2 threads each; as we already have seen, this later scenario produces very
poor speedup; nevertheless it still produces better results than 2 clients with 3
threads (the more threads per client, the more time will be consumed in thread
scheduling and I/O contention).
The values presented allow us to conclude that 6 working threads are pushing

the system to the limit, but they are unclear about the origin of that behavior:
the communication medium or the page server?

0

5000

10000

15000

20000

25000

30000

client nodes

in
se

rt
 r

at
e 

(k
ey

s/
s)

1 thread 8797 15824 20475

2 threads 15194 22934 24364

3 threads 17974 22892 23464

1 2 3

Fig. 5. Insert keyrate with one page server and multiple clients



Distributed Paged Hash Tables 689

Two Page Servers, Multiple Clients To answer the last question we added
one more page server to the crew and repeated the tests. But, with just four
nodes (the fifth hosted the page broker solely), we couldn’t perform tests with
more than 2 clients. Still, with a maximum of 3 threads per client, we were able
to obtain results using a total of 6 threads.
Figure 6 sums up the test results by showing the improving on the insert

rate when using one more page server. For 1 active client the gains are relatively
modest. For 2 active clients the speedup is much more evident, specially when
3 threads per client are used, summing up 6 threads on overall.
The results presented allow us to conclude that by adding page servers to our

system important performance gains may be obtained. However it remains to be
done a quantitative study of the performance scaling in a cluster environment
with much more nodes to assign both to clients and page servers.

Multiple <Page Server, Client> Pairs So far, we have decoupled clients
and page servers on every scenario we have tested. It may happen, however,
that both must share the same cluster node (as is the case for our small cluster).
Thus, it is convenient to evaluate how the system scales in such circumstances.
As previously, the page broker was always kept at the node E and measure-

ments were made with a different number of working threads in the client (1, 2
and 3). We started with a single node, hosting a client and a page server. We
then increased the number of nodes, always pairing a client and a page server.
The last scenario had four of these pairs, one per node, summing up to 12 active
threads and accounting for a maximum of 12× 125000 = 1500000 keys inserted.
Figure 7 shows the insert key rate. The 1–node scenario shows very low key

rates with 2 and 3 threads. This is due to high I/O contention between the client
threads and the page server threads. When the number of nodes is augmented,
the key space, although larger, is also more scattered across the nodes, which

0,2%

5,8%

1,7%

19,5%

3,4%

42,6%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

40,0%

45,0%

1 2

client nodes

sp
ee

du
p 

(%
)

1 thread

2 threads

3 threads

Fig. 6. Speedup with two page servers



690 José Rufino et al.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4

<page server, client> nodes

in
se

rt
 r

at
e 

(k
ey

s/
s)

1 thread

2 threads

3 threads

Fig. 7. Insert keyrate with multiple <page server, client> pairs

-8,5% -12,3% -12,9%

73,9% 72,3% 76,7%
85,6%

171,1%

187,7%

-50,0%

0,0%

50,0%

100,0%

150,0%

200,0%

2 3 4

<page server, client> nodes

sp
ee

du
p 

(%
)

1 thread

2 threads

3 threads

Fig. 8. Insert speedup with multiple <page server, client> pairs

alleviates the contention on each node and makes the use of more threads much
more profitable.
Figure 8 shows the speedup with multiple nodes. The speedup refers to the

increasing of the measured rates over the rates that could be predicted by linear
extrapolation from the 1–node scenario.

5 Conclusions

DPH is a Distributed Data Structure (DDS) based on a simple yet very effective
principle: the paging of a hash table and the mapping of the pages among a set
of networked page servers.
Conceptually, DPH uses static hashing, because the hash index bit–length

is set in advance. Also, the usage of a page table to preserve mappings between



Distributed Paged Hash Tables 691

sections (pages) of the table and their locations (page servers) makes DPH a di-
rectory based [15] approach.
However, the hash table is not created at once, because it is virtually paged

and pages are dynamically created, on–demand, being scattered across the clus-
ter, thus achieving data balancing. Local caches at user applications prevent the
page broker to become a hot–spot and provide some immunity to page broker
failures (once established, mappings do not change and so the page broker can
almost be dismissed).
Another important feature available in the DPH DDS is the capability to

exploit the file system as a complementary on–line storage area, which is made
possible through the use of a LRU/threshold based swapping mechanism. In this
regard, DPH is very flexible in the way it consumes available storage resources,
whether they are memory or disk based.
Finally, the performance evaluation we have presented shows that it is pos-

sible to define practical metrics to set the hash bit–length and that our selected
hash function [23] preserves the (relative) rankings regardless of the key size. We
have also investigated the scalability of our system and although we have ob-
served promising results, further investigation is needed with many more nodes.
Much of the research work on hash based DDSs has been focused on dynamic

hashing schemes. With this work we wanted to show that the increasing perfor-
mance and storage capacity of modern clusters may also be exploited with great
benefits using an hybrid approach.
In the future we plan to pursue our work in several directions: elimination

of the page broker by using directoryless schemes, inspired by hash routing tech-
niques, such as consistent hashing [27]; usage of efficient data structures to handle
collisions and near zero–memory–copy techniques to improve performance; ex-
ploitation of cluster aware file systems (delayed due to the lack of choice on
quality open–source implementations) and external memory techniques [12].

References

[1] Al Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for Networked Par-
allel Computing. Scientific and Engineering Computation. MIT Press, 1994. 679

[2] M. Snir, S. Otto, S. Huss-Lederman, David Walker, and J. Dongarra. MPI - The
Complete Reference. Scientific and Engineering Computation. MIT Press, 1998.
679

[3] W. Litwin, M.-A. Neimat, and D.A. Schneider. LH*: Linear Hashing for Dis-
tributed Files. In Proceedings of the ACM SIGMOD - International Conference
on Management of Data, pages 327–336, 1993. 679, 680

[4] R. Devine. Design and implementation of DDH: a distributed dynamic hashing
algorithm. In Proceedings of the 4th Int. Conf. on Foundations of Data Organi-
zation and Algorithms, pages 101–114, 1993. 679, 680

[5] V. Hilford, F.B. Bastani, and B. Cukic. EH* – Extendible Hashing in a Dis-
tributed Environment. In Proceedings of the COMPSAC ’97 - 21st International
Computer Software and Applications Conference, 1997. 679, 681



692 José Rufino et al.

[6] R. Vingralek, Y. Breitbart, and G. Weikum. Distributed File Organization with
Scalable Cost/Performance. In Proceedings of the ACM SIGMOD - International
Conference on Management of Data, 1994. 679

[7] B. Kroll and P. Widmayer. Distributing a Search Tree Among a Growing Number
of Processors. In Proceedings of the ACM SIGMOD – International Conference
on Management of Data, pages 265–276, 1994. 679, 681

[8] T. Johnson and A. Colbrook. A Distributed, Replicated, Data–Balanced Search
Structure. Technical Report TR03-028, Dept. of CISE, University of Florida,
1995. 679, 681

[9] S.D. Gribble, E.A. Brewer, J.M. Hellerstein, and D. Culler. Scalable, Distributed
Data Structures for Internet Service Construction. In Proceedings of the Fourth
Symposium on Operating Systems Design and Implementation, 2000. 679, 681

[10] W.K. Preslan et all. A 64–bit, Shared Disk File System for Linux. In Proceed-
ings of the 7h NASA Goddard Conference on Mass Storage Systems and Tech. in
cooperation with the Sixteenth IEEE Symposium on Mass Storage Systems, 1999.
679

[11] P.H. Carns, W.B. Ligon, R.B. Ross, and R. Thakur. PVFS: A Parallel File
System for Linux Clusters. In Proceedings of the 4th Annual Linux Showcase and
Conference, pages 317–327. USENIX Association, 2000. 679

[12] J. S. Vitter. Online Data Structures in External Memory. In Proceedings of
the 26th Annual Intern. Colloquium on Automata, Languages, and Programming,
1999. 679, 691

[13] J. Rufino, A. Pina, A. Alves, and J. Exposto. Distributed Hash Tables. Inter-
national Workshop on Performance-oriented Application Development for Dis-
tributed Architectures (PADDA 2001), 2001. 679

[14] D.E. Knuth. The Art of Computer Programming – Volume 3: Sorting and Search-
ing. Addison-Wesley, 2nd edition, 1998. 680, 682

[15] R. J. Enbody and H.C. Du. Dynamic Hashing Schemes. ACM Computing Surveys,
(20):85–113, 1988. 680, 691

[16] W. Litwin. Linear hashing: A new tool for file and table addressing. In Proceedings
of the 6th Conference on Very Large Databases, pages 212–223, 1980. 680

[17] R. Fagin, J. Nievergelt, N. Pippenger, and H.R. Strong. Extendible hashing:
a fast access method for dynamic files. ACM Transactions on Database Systems,
(315-344), 1979. 680, 681

[18] T. Stornetta and F. Brewer. Implementation of an Efficient Parallel BDD Package.
In Proceedings of the 33rd ACM/IEEE Design Automation Conference, 1996. 681

[19] P. Bagwell. Ideal Hash Trees. Technical report, Computer Science Department,
Ecole Polytechnique Federale de Lausanne, 2000. 681

[20] A. Pina, V. Oliveira, C. Moreira, and A. Alves. pCoR - a Prototype for Resource
Oriented Computing. (to appear in HPC 2002), 2002. 682

[21] A. Pina. MC2 - Modelo de Computação Celular. Origem e Evolução. PhD thesis,
Dep. de Informática, Univ. do Minho, Braga, Portugal, 1997. 682

[22] Myricom. The GM Message Passing System, 2000. 682, 685
[23] B. Jenkins. A Hash Function for Hash Table Lookup. Dr. Doob’s, 1997. 682,

686, 691
[24] A.V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and

Tools. Addison–Wesley, 1985. 682
[25] R.C. Uzgalis. General Hash Functions. Technical Report TR 91-01, University

of Hong Kong, 1991. 682
[26] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Communi-

cations of the ACM, 33(6):668–676, 1990. 683



Distributed Paged Hash Tables 693

[27] D. Kargeer, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto,
B. Kim, L. Matkins, and Y. Yerushalmi. Web Caching with Consistent Hashing.
In Proceedings of the 8th International WWW Conference, 1999. 691


	Distributed Paged Hash Tables
	Introduction
	Related Work
	Distributed Paged Hashing
	Architecture
	Addressing
	Page Broker
	Page Servers
	User Applications
	Client--Server Interactions

	Performance Evaluation
	Test--Bed
	Hash Bit--Length
	Metric Definition
	Application Scenario

	Scalability
	One Page Server, Multiple Clients
	Two Page Servers, Multiple Clients
	Multiple <Page Server, Client> Pairs


	Conclusions


