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Abstract

Prediction of the structure of branched polymers is a chglleg problem, for which only more or less
clumsy mathematical solutions have been made available lflang time in the case of kinetically con-
trolled polymerizations. The matter has, neverthelesssiderable economic significance. For instance,
a controlled amount of long branching is known to have mamebts on the rheologic properties of
the widely used polyolefins (Nele et al., 2003). Developn@#ngrocesses and their optimization could
benefit a lot with models with better predictive capacities.

Progresses in applied mathematics could at last bring @boasiderable improvement in this situation.
This paper reviews recent methods (Costa and Dias, 2003; &id Costa, 2003, 2005) allowing the
direct computation of moments (i. e. avoiding Hulburt-Kekasures) of polymer chain length distribu-
tions, even in the presence of gel, overcoming past diffesulin their computational implementation.
Description of non-linear free radical polymerizationsniswv possible, thanks to the development of
methods for solving highlgtiff two point boundary value problems (Cash et. al., 2001). (Claigth
distributions are obtained by adapting algorithms bettevkn with Laplace transform inversion (Pa-
poulis, 1956; Weeks, 1966; Durbin, 1974). Numerous pasinsistencies leading to unwanted errors
are now avoided through the use of well-founded chemicalnaathematical principles.

1 Introduction

The use of discrete transforms or generating functions énntledeling of random processes such as
polymer formation is known in Polymer Science and Engimggsince its very beginnings. Obtaining
the required discrete transforms of polymer chain lengstribution, possibly in complex domain, is the
most serious difficulty, and it can even be impossible. kBreible polymerizations are always tractable,
though. Most practical problems involve a tedious and gerone mathematical formulation, which for-
tunately can be avoided through a general procedure foralndian of the resulting partial differential
equations by the method of characteristics in an automatgd(@osta and Dias, 1994, 2005). How-
ever, only recently could the severe numerical difficulpessent with free-radical systems be overcome
(Costa and Dias, 2003; Dias and Costa, 2003, 2005).

Inversion of numerically computed discrete transforms afymer CLD was successfully carried out
for polycondensations (Mills, 1986; Costa and Villerma@288) but that method requires about half
as many values of the discrete transform as the upper lintiteothain length where the distribution is
sought. This is inadequate for most chain polymerizationsystems close to gel point, where chain
lengths of many millions are observed.
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An adaptation of methods used for inversion of Laplace foanss alleviates that problem (Miller et al.,
1996). More recent works by Sarmoria’s group (Asteasuaal. £2002a,b) have been using it.

These latter studies have only dealt with very simple kinethemes, mostly linear polymerizations,
as well as a free-radical polymerization showing transbepdlymer, but overly simplified, neglecting
the presence of more than one free-radical site per moleantbtherefore introducing severe inconsis-
tencies. The method of lines was used to solve the partidrdiitial equations yielding the discrete
transforms, disregarding previous works based on the rdathoharacteristics. This ruins any attempt
of dealing with complex multidimensional problems.

There are no such limitation on the approach we have beeg s8ige the early nineties. Predictions
of average molecular weights have been compared with theieg the pseudo-kinetic method, Monte
Carlo method, different versions of the method of momentkwaith numerical fractionation (Costa and
Dias, 2003, 2005; Dias and Costa, 2005) and shown to be maid.eA brief analysis of the possi-
bility of predicting the CLD by this method has already beeesented using a non-linear free radical
polymerization as a case study (Dias and Costa, 2005). kagathods can only deal with distributions
of a single kind of chain length, and try to take into accour@niching by considering multiple unidi-
mensional distributions. The presence of many propagaibeg per molecule destroys their predictive
capabilities, which is specially serious in the neighbodhof gel point.

There is no numerical method for inverting Laplace tramsforvhich can be universally trusted. Two
or more different methods have to be used and their resutippaced. We have therefore studied a set
of polymerization systems, allowing the analytical evétraof the chain length distribution, to test the
inversion method but now with CLDs showing much higher agerahain lengths and including a dis-
tribution typical of a hyperbranched polymer.

The calculation of the CLD is here shown for a case study wittustrial relevance: the metallocene
catalyzed copolymerization of an olefin with a non-conjedatiiene.

2 Overview of the method of CLD prediction through discrete ransforms

According to our general kinetic analysis of non-lineaewersible polymerizations (Costa and Dias,
1994, 2005), the chemical system should be first describedigh the mole concentrations of distin-
guishable chemical groups in polymer as well as the indalidpecies, such as monomers, initiators,
transfer agents collected in a vectr= [A;] of size N 4. For easeness of presentation, the sub-set of the
Np groups with lower indices will be considered to contain theroical groups in polymer. Polymer
molecules are lumped into classes with same counts of chaégrioups, or chain lengths. The-th
such class is defined by vectay, of size Np and named(a,,). Its mole concentration i®(a,,). In

the usual situation where a sample of polymer with infinitm $8 considered, the probability function
of the CLD in number of moleculeB, (a) is obtained normalizing by the overall mole concentratibn o

polymerP =320 ... ZE?VP:O P(ay,...,anp):

(1)

G, (s), the probability generating function (PGF) of the CLD is thiscrete transform (also known as
the vectorial moment generating function MGF)Rf(a) with respect to the group counts, related to the
MGF of the mole concentrations(s):

G(s) = Z Z s‘fl...s?vj\;AP(al,...,aNP)

a1=0 anp=0

Gn(s) = —— 2)

The reactions among the groups in polymer and/or individhamical compounds are described using
suitable sets of stoichiometric coefficients (Costa andsDi®94, 2005). In the case of irreversible
polymerizations, taking advantage of Flory’s Principletioé Equal Reactivity, it is possible to write



a general master equation describing the time chang@(sf in ideal reactors, such as in a CSTR

of constant space-time (but in a transient state), which is a hyperbolic first-ordartial differential

eguation taking the aspect below shown when volume chamgeegligible:
oG Gr(t)— G

- = GRP (P;,S7 G,) +

ot T 3)

Gr, is the MGF of the rate equation of formation of polymer spedig chemical reaction. It may
be found in Costa and Dias (2005), as well as the functiBns, RGQ,S} and R below used. The

vector G’ contains the partial derivatives 6f with respect tdog s, G;. = afzgs-' but involving only
J

the groups, again preferably ranged in the lower indjces 1, ..., N4,, present in the polymer which
are consumed by chemical reaction. Eq. (3) is solved by thadeof characteristics, leading to the
ordinary differential equations Eqgs. (4-7) to be solvedweeint = 0 andt = ¢, with initial and
boundary conditions Egs. (8-11):
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The inversion ofG(s) needs the repeated solution of the above two-point bounddng problem for a
set of values 08(t;), which may be real or complex according to the method choBenthe moment,
only unidimensional distributions have been computed,saral dummy Laplace variables are set equal
to one, except the one with respect to the chain length (argoount) to investigate. Thus, Papoulis’
method uses only real values of while Weeks’ and Durbin’s methods need complex values. ifithe
creased computational effort is countercarried by the niigher accuracy of these latter two methods.
Our numerical experiments with many kinds of CLDs have shtva Durbin’s method requires much
more evaluations of the MGF, and should be used mostly forkthg the accuracy, as it is a lot more
exact. An exception occurs with narrow CLDs (such as thes®aislistribution of ideal living polymer-
izations), for which Durbin’s method is the only which doed bhreak down.

3 The simulation of the metallocene catalyzed copolymerizamn of an
olefin with a non-conjugated diene

In the metallocene catalyzed olefin polymerization, longichbranching is introduced through the poly-
merization of terminal double bonds generated@kydride elimination. It has also been suggested
that the copolymerization of an olefin with a non-conjugadezhe can be used for producing long chain
branching polyolefins under mild conditions. In this cake,fgolymer will contain pendant double bonds
from the diene monomer in addition to those resulting fréthydride elimination. Gelation becomes



possible, and this must be avoided in industrial production

An olefin/diene polymerization system was recently sinaedaih the pre-gel region by using a finite
element procedure (Nele et al., 2003). The kinetic schemsidered initiations, propagations, chain
transfers (to hydrogen)i-hydride elimination and deactivation of polymer chaineeThemical groups
are:

e Olefin-terminated active chain (OTAC)

e Diene-terminated active chain (DTAC)

e Pendant double bond-terminated active chain (PTAC)
e Terminal double bond-terminated active chain (TTAC)
e Pendant double bond (PDB)

e Terminal double bond (TDB)

e Olefin monomer

e Diene monomer

e Initiator

e Chain transfer agent

e Polymerized olefin unit

e Polymerized diene unit

e Branching point

A total number ofV 4 = 13 chemical groups is considerellp = 9 of them being present in the polymer
molecules, from whichV,, = 6 are active. Four different kinds of active chains with diffiet reac-
tivities are distinguished. Likewise, pendant double tsfftbm diene) are distinguished from terminal
double bonds (originated hy-hydride eliminations). Four initiation reactions arertifere considered
and 16 propagation reactions are distinguished. With dnansfer,3-hydride elimination and deactiva-
tion reactions, a total number of 32 chemical reactions htaimed. Transfer to monomers, deactivation
of the catalysts or ring formation have been neglected; tweyd be easily included if needed so, as
shown with other polymerization systems (Costa and Dia@32R005; Dias and Costa, 2003, 2005).
The numerical values of the 32 kinetic parameters of thegntdgnetic scheme used in simulations are
similar to those used before in related works (Nele et ab3200ther values have been postulated taking
into account the decreased reactivity of pendant and tetrdwuble bonds.

Figure 1 shows the predict average chain lengths for batdiransient operation of a CSTR for the met-
allocene catalyzed copolymerization of an olefin with a sonjugated diene. With the present method
it is possible the calculation of average chain lengthsieedmd after gelation as shown in Figure 1.
The calculation of the CLD for this polymerization systemalso possible before and after gelation.
Papoulis, Weeks (or its implementation by Garbow) and Disbnethods were used.

The time evolution of the CLD for the present polymerizatgystem is presented in Figure 2 in a batch
reactor and in Figure 3 for batch and CSTR.

The reliability of these calculations was verified by conipgithe results obtained with Papoulis, Weeks
and Durbin’s inversion methods, and a very good agreemenitele@ the results of the different tech-
niques has been found. With Papoulis’ method, 5 terms in tiynpmial expansion were considered
for each value of chain length. In these circumstances,nard® min of CPU time are needed for the
calculation of a single point of the CLD. Garbow’s implemeitn of Weeks’ method was applied with
maximum order 128 and the minimum value of absolute unifossudo accuracy that allows conver-
gence (a typical value wa$)~'3) was considered. For these conditions, less than 40 min tf {@Re
were needed for each range of chain length considered. Toelatons with Durbin’s method were
performed with common values for absolute and relative moies10~'4. 3 h of CPU time can be
needed for the computation of a single value of the CLD, mingiiabout 200 evaluations of transform.



4 Conclusions

A general method for the numerical calculation of chain thrdjstributions in non linear polymeriza-
tions was presented. The major distinctive features ofdpoach are:

e Calculation of CLD both before and after gelation

e A kind of interpreter of irreversible polymerization syste makes possible the consideration of
complex kinetic schemes in an automated way

e Animproved accuracy in the evaluation of PGF is obtainedliogieating several simplifying as-
sumptions (such as the absence of multiple propagatingespaad the need for moment closures)

Adaptations of methods originally applied in the inversafri_aplace transforms could lead to reliable
results with moderate use of CPU time.

Predictions before and after gelation are possible, asstomthe copolymerization of an olefin with a
non-conjugated diene, something which alternative mestiisuach as the so-called "numerical fractiona-
tion") are unable to do.
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Figure 1: Predicted average chain lengths before and aftatign in metallocene-catalyzed copolymer-
ization of an olefin with a non-conjugated diene for batch @8d'R operation. Feed composition (same
in the Figs. 2-3: olefin=1 M; initiator = T&M; chain transfer agent = 1@ M; mole fraction of diene

: D
in feedM—JrD = 0.002.
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Figure 2: Predicted evolution of the chain length distidmutin the metallocene-catalyzed copolymer-
ization of an olefin with a non-conjugated diene for batchrapen.
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Figure 3: Predicted chain length distributiong=at5 min for batch and CSTR-€ 5 min ) operation in
the metallocene catalyzed copolymerization of an olefiln &ihon-conjugated diene.



