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Abstract

Prediction of the structure of branched polymers is a challenging problem, for which only more or less
clumsy mathematical solutions have been made available fora long time in the case of kinetically con-
trolled polymerizations. The matter has, nevertheless, considerable economic significance. For instance,
a controlled amount of long branching is known to have many benefits on the rheologic properties of
the widely used polyolefins (Nele et al., 2003). Developmentof processes and their optimization could
benefit a lot with models with better predictive capacities.
Progresses in applied mathematics could at last bring abouta considerable improvement in this situation.
This paper reviews recent methods (Costa and Dias, 2003; Dias and Costa, 2003, 2005) allowing the
direct computation of moments (i. e. avoiding Hulburt-Katzclosures) of polymer chain length distribu-
tions, even in the presence of gel, overcoming past difficulties in their computational implementation.
Description of non-linear free radical polymerizations isnow possible, thanks to the development of
methods for solving highlystiff two point boundary value problems (Cash et. al., 2001). Chain length
distributions are obtained by adapting algorithms better known with Laplace transform inversion (Pa-
poulis, 1956; Weeks, 1966; Durbin, 1974). Numerous past inconsistencies leading to unwanted errors
are now avoided through the use of well-founded chemical andmathematical principles.

1 Introduction

The use of discrete transforms or generating functions in the modeling of random processes such as
polymer formation is known in Polymer Science and Engineering since its very beginnings. Obtaining
the required discrete transforms of polymer chain length distribution, possibly in complex domain, is the
most serious difficulty, and it can even be impossible. Irreversible polymerizations are always tractable,
though. Most practical problems involve a tedious and error-prone mathematical formulation, which for-
tunately can be avoided through a general procedure for the solution of the resulting partial differential
equations by the method of characteristics in an automated way (Costa and Dias, 1994, 2005). How-
ever, only recently could the severe numerical difficultiespresent with free-radical systems be overcome
(Costa and Dias, 2003; Dias and Costa, 2003, 2005).
Inversion of numerically computed discrete transforms of polymer CLD was successfully carried out
for polycondensations (Mills, 1986; Costa and Villermaux,1988) but that method requires about half
as many values of the discrete transform as the upper limit ofthe chain length where the distribution is
sought. This is inadequate for most chain polymerizations,or systems close to gel point, where chain
lengths of many millions are observed.
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An adaptation of methods used for inversion of Laplace transforms alleviates that problem (Miller et al.,
1996). More recent works by Sarmoria’s group (Asteasuain etal., 2002a,b) have been using it.
These latter studies have only dealt with very simple kinetic schemes, mostly linear polymerizations,
as well as a free-radical polymerization showing transfer to polymer, but overly simplified, neglecting
the presence of more than one free-radical site per molecule, and therefore introducing severe inconsis-
tencies. The method of lines was used to solve the partial differential equations yielding the discrete
transforms, disregarding previous works based on the method of characteristics. This ruins any attempt
of dealing with complex multidimensional problems.
There are no such limitation on the approach we have been using since the early nineties. Predictions
of average molecular weights have been compared with those using the pseudo-kinetic method, Monte
Carlo method, different versions of the method of moments and with numerical fractionation (Costa and
Dias, 2003, 2005; Dias and Costa, 2005) and shown to be more exact. A brief analysis of the possi-
bility of predicting the CLD by this method has already been presented using a non-linear free radical
polymerization as a case study (Dias and Costa, 2005). Legacy methods can only deal with distributions
of a single kind of chain length, and try to take into account branching by considering multiple unidi-
mensional distributions. The presence of many propagatingsites per molecule destroys their predictive
capabilities, which is specially serious in the neighborhood of gel point.
There is no numerical method for inverting Laplace transforms which can be universally trusted. Two
or more different methods have to be used and their results compared. We have therefore studied a set
of polymerization systems, allowing the analytical evaluation of the chain length distribution, to test the
inversion method but now with CLDs showing much higher average chain lengths and including a dis-
tribution typical of a hyperbranched polymer.
The calculation of the CLD is here shown for a case study with industrial relevance: the metallocene
catalyzed copolymerization of an olefin with a non-conjugated diene.

2 Overview of the method of CLD prediction through discrete transforms

According to our general kinetic analysis of non-linear irreversible polymerizations (Costa and Dias,
1994, 2005), the chemical system should be first described through the mole concentrations of distin-
guishable chemical groups in polymer as well as the individual species, such as monomers, initiators,
transfer agents collected in a vectorA = [Aj ] of sizeNA. For easeness of presentation, the sub-set of the
NP groups with lower indices will be considered to contain the chemical groups in polymer. Polymer
molecules are lumped into classes with same counts of chemical groups, or chain lengths. Them-th
such class is defined by vectoram of sizeNP and namedP(am). Its mole concentration isP (am). In
the usual situation where a sample of polymer with infinite size is considered, the probability function
of the CLD in number of moleculesPn(a) is obtained normalizing by the overall mole concentration of
polymerP =

∑∞
a1=0 . . .

∑∞
aNP

=0 P (a1, . . . , aNP
) :

Pn(a) =
P (a)

P
(1)

Gn(s), the probability generating function (PGF) of the CLD is thediscrete transform (also known as
the vectorial moment generating function MGF) ofPn(a) with respect to the group counts, related to the
MGF of the mole concentrationsG(s):
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The reactions among the groups in polymer and/or individualchemical compounds are described using
suitable sets of stoichiometric coefficients (Costa and Dias, 1994, 2005). In the case of irreversible
polymerizations, taking advantage of Flory’s Principle ofthe Equal Reactivity, it is possible to write



a general master equation describing the time change ofG(s) in ideal reactors, such as in a CSTR
of constant space-timeτ (but in a transient state), which is a hyperbolic first-orderpartial differential
equation taking the aspect below shown when volume changes are negligible:

∂G

∂t
= GRP

(

A, s,G′) +
GF (t) − G

τ
(3)

GRP
is the MGF of the rate equation of formation of polymer species by chemical reaction. It may

be found in Costa and Dias (2005), as well as the functionsRAj
, RG′

j
, s′j andRG below used. The

vectorG′ contains the partial derivatives ofG with respect tolog sj , G′
j = ∂G

∂ log sj
, but involving only

the groups, again preferably ranged in the lower indicesj = 1, ...,NAP
, present in the polymer which

are consumed by chemical reaction. Eq. (3) is solved by the method of characteristics, leading to the
ordinary differential equations Eqs. (4-7) to be solved between t = 0 and t = tf with initial and
boundary conditions Eqs. (8-11):
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G|t=0 = G0(s0) (11)

The inversion ofG(s) needs the repeated solution of the above two-point boundaryvalue problem for a
set of values ofs(tf ), which may be real or complex according to the method chosen.For the moment,
only unidimensional distributions have been computed, andso all dummy Laplace variables are set equal
to one, except the one with respect to the chain length (or group count) to investigate. Thus, Papoulis’
method uses only real values ofsj, while Weeks’ and Durbin’s methods need complex values. Thein-
creased computational effort is countercarried by the muchhigher accuracy of these latter two methods.
Our numerical experiments with many kinds of CLDs have shownthat Durbin’s method requires much
more evaluations of the MGF, and should be used mostly for checking the accuracy, as it is a lot more
exact. An exception occurs with narrow CLDs (such as the Poisson distribution of ideal living polymer-
izations), for which Durbin’s method is the only which does not break down.

3 The simulation of the metallocene catalyzed copolymerization of an
olefin with a non-conjugated diene

In the metallocene catalyzed olefin polymerization, long chain branching is introduced through the poly-
merization of terminal double bonds generated byβ-hydride elimination. It has also been suggested
that the copolymerization of an olefin with a non-conjugateddiene can be used for producing long chain
branching polyolefins under mild conditions. In this case, the polymer will contain pendant double bonds
from the diene monomer in addition to those resulting fromβ-hydride elimination. Gelation becomes



possible, and this must be avoided in industrial production.
An olefin/diene polymerization system was recently simulated in the pre-gel region by using a finite
element procedure (Nele et al., 2003). The kinetic scheme considered initiations, propagations, chain
transfers (to hydrogen),β-hydride elimination and deactivation of polymer chains. The chemical groups
are:

• Olefin-terminated active chain (OTAC)

• Diene-terminated active chain (DTAC)

• Pendant double bond-terminated active chain (PTAC)

• Terminal double bond-terminated active chain (TTAC)

• Pendant double bond (PDB)

• Terminal double bond (TDB)

• Olefin monomer

• Diene monomer

• Initiator

• Chain transfer agent

• Polymerized olefin unit

• Polymerized diene unit

• Branching point

A total number ofNA = 13 chemical groups is considered,NP = 9 of them being present in the polymer
molecules, from whichNAP

= 6 are active. Four different kinds of active chains with different reac-
tivities are distinguished. Likewise, pendant double bonds (from diene) are distinguished from terminal
double bonds (originated byβ-hydride eliminations). Four initiation reactions are therefore considered
and 16 propagation reactions are distinguished. With chaintransfer,β-hydride elimination and deactiva-
tion reactions, a total number of 32 chemical reactions are obtained. Transfer to monomers, deactivation
of the catalysts or ring formation have been neglected; theycould be easily included if needed so, as
shown with other polymerization systems (Costa and Dias, 2003, 2005; Dias and Costa, 2003, 2005).
The numerical values of the 32 kinetic parameters of the present kinetic scheme used in simulations are
similar to those used before in related works (Nele et al., 2003). Other values have been postulated taking
into account the decreased reactivity of pendant and terminal double bonds.
Figure 1 shows the predict average chain lengths for batch and transient operation of a CSTR for the met-
allocene catalyzed copolymerization of an olefin with a non-conjugated diene. With the present method
it is possible the calculation of average chain lengths before and after gelation as shown in Figure 1.
The calculation of the CLD for this polymerization system isalso possible before and after gelation.
Papoulis, Weeks (or its implementation by Garbow) and Durbin’s methods were used.
The time evolution of the CLD for the present polymerizationsystem is presented in Figure 2 in a batch
reactor and in Figure 3 for batch and CSTR.
The reliability of these calculations was verified by comparing the results obtained with Papoulis, Weeks
and Durbin’s inversion methods, and a very good agreement between the results of the different tech-
niques has been found. With Papoulis’ method, 5 terms in the polynomial expansion were considered
for each value of chain length. In these circumstances, around 10 min of CPU time are needed for the
calculation of a single point of the CLD. Garbow’s implementation of Weeks’ method was applied with
maximum order 128 and the minimum value of absolute uniform pseudo accuracy that allows conver-
gence (a typical value was10−13) was considered. For these conditions, less than 40 min of CPU time
were needed for each range of chain length considered. The calculations with Durbin’s method were
performed with common values for absolute and relative accuracies10−14. 3 h of CPU time can be
needed for the computation of a single value of the CLD, requiring about 200 evaluations of transform.



4 Conclusions

A general method for the numerical calculation of chain length distributions in non linear polymeriza-
tions was presented. The major distinctive features of thisapproach are:

• Calculation of CLD both before and after gelation

• A kind of interpreter of irreversible polymerization systems makes possible the consideration of
complex kinetic schemes in an automated way

• An improved accuracy in the evaluation of PGF is obtained by eliminating several simplifying as-
sumptions (such as the absence of multiple propagating species and the need for moment closures)

Adaptations of methods originally applied in the inversionof Laplace transforms could lead to reliable
results with moderate use of CPU time.
Predictions before and after gelation are possible, as shown for the copolymerization of an olefin with a
non-conjugated diene, something which alternative methods (such as the so-called "numerical fractiona-
tion") are unable to do.
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Figure 1: Predicted average chain lengths before and after gelation in metallocene-catalyzed copolymer-
ization of an olefin with a non-conjugated diene for batch andCSTR operation. Feed composition (same
in the Figs. 2-3: olefin=1 M; initiator = 10−6M; chain transfer agent = 10−4 M; mole fraction of diene
in feed D

M+D
= 0.002.
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Figure 2: Predicted evolution of the chain length distribution in the metallocene-catalyzed copolymer-
ization of an olefin with a non-conjugated diene for batch operation.
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Figure 3: Predicted chain length distributions att=15 min for batch and CSTR (τ= 5 min ) operation in
the metallocene catalyzed copolymerization of an olefin with a non-conjugated diene.


