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Abstract

A method to predict average molecular weights before and after gelation for general irreversible non-linear polymerisations forming
tree-like molecules is described. Recently developed numerical methods for solving two point boundary value problems are essential for
the success of these calculations after gelation and open the way to eventually be able to efficiently predicting chain length distributions.
Anionic and free-radical polymerisation of vinyl monomers in the presence of divinyl monomers or with transfer to polymer are taken
as case studies. Comparison to experimental data and with simulation results obtained through “numerical fractionation” confirms the
usefulness of current approach.
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1. Introduction

Since more than one decade a few modelling schemes
of general polymerisation reactions and reactors have been
proposed. FollowingVillermaux and Blavier (1984), their
development has been pursued by, among others, Ray and
collaborators (Ray, 1991; Saldivar and Ray, 1995) and
Kiparissides and collaborators (Achilias and Kiparissides,
1992; Konstadinides et al., 1992). Fairly general kinds of
polymerisations (radical copolymerisations, linear polycon-
densations and polyadditions ...) have been treated using
kinetic approaches, with the aim of giving to engineers and
scientists a faster and less error-prone way of dealing with
the complex systems which occur in practice. Commercial
software packages have been using these principles since
more than one decade.

The kinetic approach for modelling irreversible non-linear
polymerisations which has been independently developed
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by the present authors (Costa and Dias, 1994) shares sim-
ilar objectives with the above cited lines of thought and is
also based in the numerical solution of species conservation
equations, but it tries in addition to:

• deal with more general classes of irreversible polymeri-
sations;

• eliminate unwanted assumptions such as the pseudo-
steady state hypothesis, neglect of multi-radicals or mul-
tiple growth centres in general and small ring formation;

• take into account the presence of gel;
• provide ways of efficiently computing molecular weight

distributions, molecular average radius of gyration and
gel properties.

Its two more distinctive peculiarities reside in the simulta-
neous use of a description based on sets of stoichiometric
coefficients and numerical computation of moment generat-
ing functions. It is the combination of the two which makes
the originality and strength of this approach: isolated uses
of either technique were previously known and are more
widespread.
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There is a problem with the easiness of use of the pre-
viously defined stoichiometric relations with polyadditions.
Therefore, a thorough revision of its basic notation has been
carried out in order to improve its numerical performance
and applicability to other polymerisation schemes, a task
which has been started in a previous work (Costa and Dias,
1995). Prediction of gel properties related to elastic proper-
ties and the prediction ofz-average molecular radius of gy-
ration of polymer molecules (Costa and Dias, 1998) will not
here be described in order to keep this presentation within
a manageable size.

The whole approach would be close to useless should
the equations for the moment generating functions become
intractable. Numerical solution of non-linear free radical
polymerisation models do present severe problems, which
only recently (Costa and Dias, 2003) could be overcome.
A general procedure for solving the resulting equations
should therefore be considered an essential component
of this method in order to make possible its widespread
use.

Numerical inversion of moment generating functions of
discrete probability distributions orz-transforms has also
been known (Mills, 1986; Costa and Villermaux, 1988) to
be useful for obtaining chain length distributions (CLD)
with polycondensations and some non-radical polyadditions
(Costa and Dias, 1995). An analysis of its truncation and
round-off errors (Abate and Whitt, 1992) shows this is a re-
liable method. Still, when average chain length increases,
it becomes too slow, as it requires as many values of the
transform or generating function as the upper value of chain
length where distribution is to be evaluated. A better algo-
rithm is needed to deal with that situation. It has been sug-
gested (Abate and Whitt, 1992) that determination of the
asymptotic behaviour of the distribution should be tried.
This would require finding the singularities of the generating
function closer to the origin, or Hayman’s method (Hayman,
1956) in case they do not exist. A practical way to do it
with numerically estimated generating functions is yet to be
found.

In recent years, some researchers have developed the use
of Laplace transforms, the continuous counterpart of dis-
crete moment generating functions orz-transforms, aiming
at computing CLD. AfterMiller et al. (1996)have shown the
potential of this method, Sarmoria and collaborators have
been using it in process modelling of polyolefines viscosity
breaking by peroxides (Asteasuain et al., 2002a) and both
linear (Asteasuain et al., 2004) and branched (Brandolin
et al., 2002) simple free radical polymerisations.

There is some convergence of the above described ap-
proach with the methods described in this paper, but consid-
erable differences in the mathematical treatments are also
conspicuous: a continuous variable approximation is intro-
duced, and partial differential equations are solved using dis-
cretisation in dummy Laplace variables, avoiding the method
of characteristics. No way to compute CLD in the presence
of gel is presented either.

A thorough comparison of the performances of these ap-
proaches is certainly worth doing, but is outside the scope
of this paper.

Whatever the detailed mathematical approach is used, ma-
nipulation of mass balance equations of polymer species is a
tedious and error-prone task. The same way as it is possible
now to solve fairly complex mathematical problems using
commercial packages or open-source programs like Octave,
it would be interesting to develop some sort of interpreter of
polymerisation schemes. It is hoped that the methods here
described can pave the way to such a development.

2. Statistical description of polymer molecular structure

2.1. Nomenclature of groups

Chemical groups in polymer molecules, as well as
monomers, initiators, transfer agents, by-products of poly-
merisation (such as water liberated in polyesterification
reactions), and all other non-polymer molecules, are given
the common nameAn, with n= 1, NA. Their mole concen-
tration will also be calledAn. A subset of these comprises
theNY monomersY1 . . . YNY

.
For each of the monomers there is a corresponding re-

peating unit (RU)X1 . . . XNY
.

Each RU is supposed to contain some root group (RG), to
which all other groups in polymer belonging to same RU are
directly attached. Root groups are not changed by chemical
reaction.

So, degree of polymerisation is the count of RG per
molecule.

Besides RG, other examples of polymer groups include
the repeating units and any side or main chain groups formed
by chemical reaction. A total ofNP groups comprises the
chemical moieties belonging to polymer molecules.

A sub-set of thoseNP groups, theactiveNAP
polymer

groups, are consumed by chemical reaction.
This notation provides the means of adding new groups

and reactions to a polymerisation scheme without disrupt-
ing the results previously obtained with a scheme with less
groups and reactions.

Our first examples (case studies I and II) are based upon
the n-butyllithium (or any monofunctional lithium alkyl or
aryl) initiated anionic copolymerisation of styrene (Y1) and
m- or p-divinylbenzene (Y2) with ethylbenzene (S) as the
solvent.

After a few fundamental studies on its chemical kinetics
(Worsfold, 1970; Eschwey and Burchard, 1975) have been
carried out, this system was later found to be useful as a
model for RIM encapsulation of electronic parts (Your et al.,
1989; Christiansen et al., 1990; Karles et al., 1991).

The initiator and then-butyl fragment are groupsA1 and
A2 (seeTable 3). Styrene monomer (Y1 or A3) is associated
to a root groupX1 (or A4), which can be identified as the
pending phenyl group.



The 1,1,2-ethanetriyl carbanion with its lithium counter-
cation is an active group belonging to polymer (A5), while
the ethylene group formed after propagation is an example
of an inactive group in polymer(A6).

Copolymerisation withm- or p-divinylbenzene (Y2) in-
troduces the divinyl monomer as a new chemical group not
belonging to polymer (A7). It is associated to a new root
group (A8), a phenylene group.

For p-divinylbenzene, kinetic measurements (Worsfold,
1970; Karles et al., 1991) show that the pending vinyl group
is about 10 times less reactive than the initial one, and
about as reactive as the vinyl groups in styrene andm-
divinylbenzene. On the contrary, anion reactivities look more
or less similar.

So, in case study I, the divinyl monomer will be the meta
isomer, so that its lithium anion can be lumped with the
lithium anion of styrene into a single anion groupA5. The
same assumptions were used in Flory’s classical analysis of
non-linear polyadditions (Flory, 1953).

Another active polymer group is the pendant vinyl group
A9.

This “ideal” living anionic homopolymerisation styrene/m-
divinylbenzene would therefore be described by a set of
NA = 9 groups, from whichNP = 6 belong to poly-
mer (“groups” 1, 3 and 7 are chemical compounds, the
initiator and monomers styrene andm-divinylbenzene).
Two active polymer group exist (A5 and A9) and so
NAP

= 2.
In case study II, lithium 1,1,2-ethanetriyl anion is a new

active group in polymerA10. A few secondary reactions
(transfer to solvent, termination and transfer through hy-
dride elimination) are also taken into account. The over-
all number of groups increases now toNA = 18, NP =
12 of them belonging to polymer, of whichNAP

= 5 are
active.

In case study III, free radical copolymerisation of a
monovinyl monomer with a divinyl monomer is considered.
Styrene copolymerisations withm- andp-divinylbenzene,
as well as ethylene dimethacrylate and diisopropenylben-
zene have been extensively investigated before and after
gelation (Hild and Okasha, 1985a,b; Hild et al., 1985) and
will be here briefly discussed.

Case study IV is the free radical polymerisation of a sin-
gle vinyl monomer with transfer to polymer in a batch re-
actor. This is a classical problem in non-linear free radi-
cal polymerisations (Bamford and Tompa, 1954) which has
been analysed in the past by the method of the moments
(Tobita and Hamielec, 1988) and “numerical fractionation”
(Teymour and Campbell, 1994).

2.2. Molecular chain length and mass distributions

The vector withNA components containing the counts of
groupsA1 . . . ANA

in a given polymer moleculePm, with m
being some arbitrary index, will be namedam.

TheNA−NP componentsaj such that�Pj
=0 will always

be nil and their storage should be avoided in a computational
implementation.

The ensemble of molecular trees with same vectors of
numbers of groups will be namedP(am), with mole con-
centration written asP(am). Letting the counting variable
m sweep all natural numbers, an overall mole concentration
P(a), is obtained.

P(a)/P is also the probability function of the number
chain length distribution (NCLD) of polymer molecules. We
will rather use the mole concentration distribution without
normalising byP.

Most of the times its vectorial moment generating function
G(s) instead of its real counterpart will be used:

G(s) =
∞∑

a1=0

· · ·
∞∑

aNA
=0

s
a1
1 . . . s

aNA

NA
P (a1, . . . , aNA

). (1)

As theNA−NP componentssj such that�Pj
=0 are useless,

they will be considered equal to 1. The molecular massMm

of a generic moleculeP(am) is obtained from the molecular
masses of the groups it contains:

Mm =
NA∑
j=1

ajmMAjm
. (2)

Number molecular mass distribution (NMMD) of polymer
molecules is related to the NCLD by introducing its moment
generating function, as shown inTable 1. Some widely used
average molecular masses are defined as the ratios of integer
moments relative to molecular mass, obtained by differen-
tiation ofG, and are thus related to the moments relative to
the numbers of groups.

A convenient notation for those moments adapts the index
convention for partial derivatives, leading to expressions like
those below, using the abbreviation1N for a vector ofN
components all equal to 1:

�n...p =
∞∑

a1=0

. . .

∞∑
aNA

=0

an . . . apP (a)

= � . . . �G
� logsn . . . � logsp

(1NA
)

=Gn...p(1NA
) (3)

0th order moment is simply�0. Moments with any indexj
such that�Pj

= 0 are obviously nil.
Well-known definitions of number, weight andz-average

molecular masses make use of lower integer moments of
NMMD, and can thus be computed as further shown in
Table 1.

2.3. Kinetic description of polymer formation

A classification of chemical reactions will be next intro-
duced according to their effects on the number and kind of



Table 1
Summary of notation describing molecular mass distributions

Variable Mathematical definition

Moment generating function of number molecular mass distribution (NMMD) G(sM) = ∑∞
m=1 s

Mm
M

P(Mm) = G

(
s
MA1
M

, . . . , s
MANA
M

)

First-order moment of NMMD �M = ∑NA
n=1MAn�n

Second-order moment of NMMD �MM = ∑NA
m=1

∑NA
n=1MAmMAn�mn

Third-order moment of NMMD �MMM = ∑NA
l=1

∑NA
m=1

∑NA
n=1MAl

MAmMAn�lmn

Number-average molecular mass Mn = �M
�0

Weight-average molecular mass Mw = �MM
�M

z-average molecular mass Mz = �MMM
�MM

Table 2
Summary of notation describing polymerisation reactions

Reaction description Number Rate constant Net change of number of polymer molecules

Polymer/polymer propagations, NRP
kn −1

condensations or terminations n = 1, NRP

Polymer/monomer propagations NR − NRP
kn 0
n = NRP

+ 1, NR

Unimolecular reactions of polymer N∗
RP

k∗
n 0

n = 1, N∗
RP

Unimolecular reactions N∗
R

− N∗
RP

k∗
n 0

n = N∗
RP

+ 1, N∗
R

Polymer/polymer reactions, no new N∗∗
RP

k∗∗
n 0

connections between RU n = 1, N∗∗
RP

Polymer/non-polymer reactions, no N∗∗
RS

k∗∗
n 0

new connections between RU n = N∗∗
RP

+ 1, N∗∗
RP

+ N∗∗
RS

Non-polymer/non-polymer reactions, NS k∗∗
n 0

without creation of new polymer n = N∗∗
RP

+ N∗∗
RS

+ 1, N∗∗
R

molecules

Bimolecular initiations NI kIn 1
n = 1, NI

Transfers to monomers NM kMn 1
n = 1, NM

polymer molecules.Table 2summarises the notations here
used. Some reactions (propagation, termination or end group
linking) create connections between repeating units and thus
lead to an increase of molecular mass. A total ofNR such
reactions are supposed to create connection between RU.

First NRP
reactions of this class are supposed to involve

only groups present in polymer molecules. So, they cause
the net disappearance of a polymer molecule.

The otherNR − NRP
reactions occur between a group

belonging to a polymer molecule and a non-polymeric
molecule. Therefore, the overall number of polymer
molecules is conserved.Tables 3 and 4 summarize the
descriptions of groups in cases I and II respectively.

In case study I,NRP
=1 (propagation over pending double

bonds in polymer), while another 2 involve a monomer and
a polymer anion (Table 5); in case study II, as reactivities of



Table 3
Description of groups in a simplified model of anionic copolymerisation of styrene withm-divinylbenzene (case study I)

Group description n �Pj �Aj
Alias Chemical formula MAn

n-butyllithium 1 0 0 I LiC4H9 64
Initiator fragment 2 1 0 –C4H9 57
Styrene 3 0 0 Y1 CH2&CHC6H5 104
Phenyl in RG styryl 4 1 0 X1 –C6H5 77
Lithium carbanion 5 1 1 –CH2CH−(. . .)Li+ 34
1,1,2-ethanetriyl 6 1 0 –CH2CH< 27
m-divinylbenzene (DVB) 7 0 0 Y2 (CH2&CH)2C6H4 130
Phenylene in RG from DVB 8 1 0 X2 –C6H4– 76
Pendant vinyl group in polymer 9 1 1 –CH&CH2 27

Table 4
Description of groups in anionic copolymerisation of styrene with a divinylbenzene (case study II)

Group description n �Pj �Aj
Alias Chemical formula MAn

n-butyllithium 1 0 0 I LiC4H9 64
Initiator fragment 2 1 0 –C4H9 57
Styrene 3 0 0 Y1 CH2&CHC6H5 104
Phenyl in RG styryl 4 1 0 X1 –C6H5 77
Lithium carbanion from styrene 5 1 1 –CH2CH−(. . .)Li+ 34
1,1,2-ethanetriyl 6 1 0 –CH2CH< 27
p-divinylbenzene (DVB) 7 0 0 Y2 (CH2&CH)2C6H4 130
Phenylene in RG from DVB 8 1 0 X2 –C6H4– 76
Pendant vinyl group in polymer 9 1 1 –CH&CH2 27
Lithium carbanion from DVB 10 1 1 –CH2CH−(. . .−)Li+ 34
Terminal ethylene 11 1 0 –CH2CH2(. . .) 28
Vinylene anion (one hydrogen is considered to
belong to the contiguous repeating unit) 12 1 0 –CH−Li+&CH(. . .) 32
Terminal vinylene from styrene 13 1 1 –CH&CH–(. . .) 26
Terminal vinylene from DVB 14 1 1 –CH&CH–(. . .–) 26
Lithium hydride 15 0 0 LiH 8
Ethylbenzene (EB) 16 0 1 S CH3CH2C6H5 106
Lithium carbanion from EB 17 0 1 CH−(CH3)C6H5Li+ 112
Phenylmethylmethine end group 18 1 0 –CH(CH3)C6H5 105

Table 5
Reaction stoichiometry for a simplified model of anionic copolymerisation of styrene and a divinylbenzene (case study I)

Reaction name Chemical equation Stoichiometric functions

Styrene initiation I + Y1
kI1−→A2 + X1 + A5 �I1 = s2s4s5

DVB initiation I + Y2
kI2−→A2 + X2 + A5 + A9 �I2 = s2s5s8s9

Pendant vinyl initiation I + A9
k∗∗
1 =kI3−→ A2 + A5

�∗∗−
1 = 1

�∗∗+
1 = s2s5

s9

Propagation on pendant vinyl group A5 + A9
k1=kp−→ A6 + A5

�−
1 = s6

s5

�+
1 = s5

s9

Propagation on styrene Y1 + A5
k2=kp−→ A5 + X1 + A6

�−
2 = s4s5

�+
2 = s6

s5

Propagationon DVB A5 + Y2
k3=kp−→ X2 + A5 + A9 + A6

�−
3 = s6

s5

�+
3 = s5s8s9

carbanions and double bonds are distinguished according to
the nature of the repeating unit or monomer to which they
are attached, 6 different propagation reactions are defined
(Table 6).

Thenth such reaction involves the groupsAg−
n

andAg+
n

.
It will be assumed thatg−

n �g+
n .

In order to avoid the multiple levels of indexing as
above and make the resulting expressions more read-
able, a notation inspired in the way computer assembly
languages describe indirect addressing will be used, as
vectorsg+ and g− are just collections of indices. Thus,
the two groups directly involved in thenth reaction



Table 6
Reaction stoichiometry of anionic copolymerisation of styrene and a divinylbenzene (case study II)

Reaction name Chemical equation Stoichiometric functions

Styrene initiation I + Y1
kI1−→A2 + X1 + A5 �I1 = s2s4s5

DVB initiation I + Y2
kI2−→A2 + X2 + A9 + A10 �I2 = s2s8s9s10

Pendant vinyl initiation I + A9
k∗∗
1 =kI3−→ A2 + A10

�∗∗−
1 = 1

�∗∗+
1 = s2s10

s9

Propagation of styryl anion on pendant vinyl group A5 + A9
k1=kp13−→ A6 + A10

�−
1 = s6

s5

�+
1 = s10

s9

Propagation of DVB anion on pendant vinyl group A9 + A10
k2=kp23−→ A6 + A10

�−
2 = s10

s9

�+
2 = s6

s10

Propagation of styryl anion on styrene Y1 + A5
k3=kp11−→ A5 + X1 + A6

�−
3 = s4s5

�+
3 = s6

s5

Propagation of DVB anion on styrene Y1 + A10
k4=kp21−→ A5 + X1 + A6

�−
4 = s4s5

�+
4 = s6

s5

Propagation of styryl anion on DVB A5 + Y2
k5=kp12−→ X2 + A9 + A10 + A6

�−
5 = s6

s5

�+
5 = s8s9s10

Propagation of DVB anion on DVB Y2 + A10
k6=kp22−→ X2 + A9 + A10 + A6

�−
6 = s8s9s10

�+
6 = s6

s10

coalescing polymer molecules will rather be designated as
A[n−] andA[n+].

The other groups in the same repeating unit may also be
transformed by that reaction (first shell substitution effect).
By introducingstoichiometric coefficients, equal to the num-
bers of moles in products minus the number of moles in
reagents for each group (or species), taking the formation of
1 mole of bonds as reference, theNR bimolecular reactions
between groupsA[n−] andA[n+] are written as:

NA∑
j=1

(�−
nj + �+

nj )Aj = 0, n = 1, NR. (4)

Two sets of stoichiometric coefficients have been distin-
guished: those which concern the groups connected to the
RU at the RG attached to group, and those related to the
other RG. They may be equal in the less frequent cases
where an end-group reacts with itself, such as in the con-
densation of silanols.

The rate of thenth reaction of this kind will be written as:

Rn = knA[n−]A[n+]. (5)

According to Flory’s Principle of Equal Reactivity,kn does
not depend on the nature of the molecule to which the groups
are attached, but the above defined pseudo second-order rate
constantkn is often not a true constant and is a function of
the composition of the reaction media.

This remark is particularly pertinent in anionic polymeri-
sation of hydrocarbons (Table 5). The observed fractional
orders with respect to initiator, both in propagation and
initiation, have been described through a simple associa-
tion model for anionic species (Lewis and Brown, 1970;
Bywater and Worsfold, 1967; Bywater, 1998). Only a

fraction of the anions is available at every moment for
participating in initiation or propagation. That fraction
should be the same for every chemically similar anionic
group, irrespective of molecular chain length (Worsfold and
Bywater, 1960; Arest-Yakubovich, 1997). Apparent kinetic
constants should follow a power law with respect to overall
anion concentration, with a negative exponent slightly less
than 1, explaining thus the observed apparent orders with
respect to initiator which are much less than 1.

In general,NI bimolecular initiation reactions involving
a pair of groupsA[In−] andA[In+] not present in polymer,
with rate constantskIn , create a new polymer molecule with
a vector of groups�In :

A[In−] + A[In+]
kIn−→ P(�In). (6)

There are in case study II six initiation reactions (see
Table 6), four of them creating new polymer molecules
from non-polymeric ones; the other two are the initiations
of the pendent double bonds, either by initiator or by an
anion formed by transfer to solvent.

Other reactions between groups, both bimolecular (for ex-
ample, termination by dismutation in free-radical polymeri-
sation), sometimes unimolecular (such as the termination by
hydride expulsion in anionic polymerisation), do not create
connections between repeating units, and do not change the
number of polymer molecules.

It is assumed there areN∗
R such unimolecular reactions,

N∗
RP

of which involving groups in polymer molecules and
the others only non-polymer molecules (for instance, initia-
tor decomposition), with rate constantsk∗

n:

NA∑
j=1

�∗
njAj = 0, n = 1, N∗

R. (7)



Table 7
Reaction stoichiometry of anionic copolymerisation of styrene and a divinylbenzene (case study II) (cont.)

Reaction name Chemical equation Stoichiometric functions

Hydride elimination of A5 A5
k∗
1=ke1−→ A13 + A15 �∗

1 = s13
s5

Hydride elimination ofA10 A10
k∗
2=ke2−→ A14 + A15 �∗

2 = s14
s10

Transfer of styryl anion to vinylene group from styrene A5 + A13
k∗∗
2 =kt11−→ A11 + A12

�∗∗−
2 = s11

s5

�∗∗+
2 = s12

s13

Transfer of styryl anion to vinylene group from DVB A5 + A14
k∗∗
3 =kt12−→ A11 + A12

�∗∗−
3 = s11

s5

�∗∗+
3 = s12

s14

Transfer of DVB anion to vinylene group from styrene A10 + A13
k∗∗
4 =kt21−→ A11 + A12

�∗∗−
4 = s11

s10

�∗∗+
4 = s12

s14

Transfer of DVB anion to vinylene group from DVB A10 + A14
k∗∗
5 =kt22−→ A11 + A12

�∗∗−
5 = s11

s5

�∗∗+
5 = s12

s13

Transfer of styrene anion to solvent A5 + S
k∗∗
6 =kS1−→ A11 + A17 �∗∗−

6 = s11
s5

Transfer of DVB anion to solvent A10 + S
k∗∗
7 =kS2−→ A11 + A17 �∗∗−

7 = s11
s10

Initiation of styrene by solvent anion Y1 + A17
kI4−→A18 + X1 + A5 �I4 = s18s4s5

Initiation of DVB by solvent anion Y2 + A17
kI5−→A18 + X2 + A9 + A10 �I4 = s18s8s9s10

Initiation of pendant vinyl by solvent anion A9 + A17
k∗∗
8 =kI6−→ A18 + A10

�∗∗−
8 = s10s18

s9

�∗∗+
8 = 1

Hydride elimination in anionic polymerisations (Kern et al.,
1972; Spach et al., 1962) is an example of these reactions.
It transforms the carbanions into terminal vinylene groups.
Two different elimination reactions can be distinguished in
case study II according to the nature of the carbanion, as
shown inTable 7.

Intramolecular reactions can be described using this for-
malism. The pair of groups in same molecule which react
intramolecularly have to be defined as a new active group.

N∗∗
R bimolecular reactions between groups in polymer

molecules, with rate constantsk∗∗
n do not create new con-

nections between repeating units. Transfer reactions are an
example. Their description in terms of stoichiometric coef-
ficients follows from the definitions below:
NA∑
j=1

(�∗∗−
nj + �∗∗+

nj )Aj = 0, n = 1, N∗∗
R . (8)

The degradative transfer reaction between styryl carbanions
and the terminal vinylene groups is also an example of such
reactions. It is convenient to distinguish two kinds of reac-
tions among this latter class:

• The firstN∗∗
RP

involve two polymer molecules, examples
being transfer to polymer, termination by dismutation and
the transfers from anions to vinylene end groups in anionic
polymerisation (case study II);

• The nextN∗∗
RS

involve one polymer molecule and a small
molecule, a typical example being transfer to solvent;

• The remaining NS reactions concern only small
molecules.

For NM reactions between a group in a polymer molecule
and a monomer (transfer to monomer), with rate constants

kMn , a new polymer molecule is created from that monomer:

NA∑
j=1

(�−
Mnj

+ �+
Mnj

)Aj

kMn−→ P(�+
Mn

), n = 1, NM. (9)

Notice that the new polymer molecule with degree of poly-
merisation one does not keep unchanged the previously
extant double bonds in monomer—their reactivity is most
often much lower than double bonds of monomer. An im-
portant exception is vinyl acetate.

In any case, this model keeps track of such reactivity
changes.

The overall rate of formation or disappearance of groups
by chemical reaction is the sum of the contributions of the
above-mentioned processes:

RAn =
NR∑
m=1

km(�−
mn + �+

mn)A[m−]A[m+]

+
N∗
R∑

m=1

k∗
m�∗

mnA[m∗]

+
N∗∗
R∑

m=1

k∗∗
m (�∗∗−

mn + �∗∗+
mn )A[m∗∗−]A[m∗∗+]

+
NI∑
m=1

kIm�ImnA[Im−]A[Im+]

+
NM∑
m=1

kMm(�
−
Mmn

+ �+
Mmn

)A[Mm−]A[Mm+]. (10)

Whenever the excess volume of mixing of the various species
can be neglected, the density of the mixture in the reac-



tor is easily computed from the knowledge of the volume
difference between products and reagents for each chemi-
cal reaction. Defining�Vm, �V ∗

m and�V ∗∗
m , and so on, as

the mole volume changes due to each kind of reaction in
the system (because of density changes and evaporation or
precipitation of by-products), the rate of relative change of
volume caused by chemical reactions,Rv, results from the
expression below:

Rv =
NR∑
m=1

kmA[m−]A[m+]�Vm +
N∗
R∑

m=1

k∗
mA[m∗]�V ∗

m

+
N∗∗
R∑

m=1

k∗∗
m A[m∗∗−]A[m∗∗+]�V ∗∗

m

+
NI∑
m=1

kImA[Im−]A[Im+]�VIm

+
NM∑
m=1

kMmA[Mm−]A[Mm+]�VMm. (11)

It is also possible to write a rate equation for the overall
number of polymer molecules:

R�0 = −
NRP∑
m=1

kmA[m−]A[m+] +
NI∑
m=1

kImA[Im−]A[Im+]

+
NM∑
m=1

kMmA[Mm−]A[Mm+]. (12)

The following auxiliary functions, extensively used from
now on, will be namedstoichiometric functions:

�U
L (s) =

NA∏
j=1

�Pj =1

(sj )
�ULj ,

U = +; −; ∗; ∗ ∗ +; ∗ ∗ −,

L = n; In;Mn. (13)

Methods documented inCosta and Dias (1994)make now
possible to write the generating function of the rate equations
of formation of polymer species by chemical reaction:

GRP
=

NRP∑
m=1

km

(
�−

m�+
m

�G
� logs[m−]

�G
� logs[m+]

− �G
� logs[m−]

A[m+] − �G
� logs[m+]

A[m−]
)

+
NR∑

m=NRP
+1

km
�G

� logs[m−]
A[m+](�−

m�+
m − 1)

+
N∗
RP∑

m=1

k∗
m

�G
� logs[m∗]

(�∗
m − 1)

+
N∗∗
RP∑

m=1

k∗∗
m

[
�G

� logs[m∗∗−]
A[m∗∗+](�∗∗−

m − 1)

+ �G
� logs[m∗∗+]

A[m∗∗−](�∗∗+
m − 1)

]

+
N∗∗
R −NS∑

m=N∗
RP

+1

k∗∗
m

�G
� logs[m∗∗−]

A[m∗∗+](�∗∗−
m − 1)

+
NI∑
m=1

kImA[Im−]A[Im+]�Im +
NM∑
m=1

kMmA[Mm+]

×
[
A[Mm−]�+

Mm
+ �G

� logs[Mm−]
(�−

Mm
− 1)

]
.

(14)

3. Prediction of average molecular weights and chain
length distributions in ideal reactors: general aspects

3.1. Mass balance equations

Integration of mass balance equations for a non-steady
state perfectly mixed continuous stirred tank reactor will be
done in the same way as described inCosta and Dias (1994).
For a reaction volumeV and inlet and outlet flow-ratesQF

andQ, the following overall mass balance holds:

dV

dt
= RvV + QF (t) − Q(t). (15)

Introducing a space-time� based on theinlet flow-rate,� =
V/QF , the mass balance of an active groupAj becomes:

dAj

dt
= RAj

+ AjF − Aj

�
− RvAj , (16)

Aj |t=0 = Aj0. (17)

Space-time� may be an unknown function of time and re-
action volume. It can be computed with help of Eq. (15) and
suitable additional conditions.

Moment generating functions of the distributions above
defined also verify similar mass balance equations, which are
first-order partial differential equations. The moment gener-
ating function of the NCLD of polymerG(s) is obtained by
solving Eq. (18) with the initial condition Eq. (19), simul-
taneously with the above mass balances of groups Eq. (16)
and initial conditions given by Eq. (17):

�G
�t

= GRP
+ GF (t) − G

�
− RvG, (18)

G|t=0 = G0[s0(t, s)]. (19)

The solution of similar equations by the method of charac-
teristics (Courant and Hilbert, 1962) has already been pre-
sented in detail elsewhere (Costa and Dias, 1994, 2003),



and so only the final results are shown. The system of char-
acteristic equations for computing the moment generating
function of polymer NCLD can be found in Appendix A.

In order to computeG(s) for complex values along a
circle or a spherical surface (according to the number of
dimensions of the problem) of radius close to 1 centred in
the origin (Abate and Whitt, 1992; Mills, 1986; Costa and
Villermaux, 1988), as well as its derivatives ats= 1NA

(for
the evaluation of the moments), it is necessary to compute
the starting vector of the characteristicss0 for each value
of s. There are two situations which require very different
levels of computing effort:

• For the evaluation of average degrees of polymerisation
and average molecular masses before gelation, sinces0 =
1NA

it is only necessary to sets=1NA
in Eqs. (A.1)–(A.3)

or additional differential equations for time derivatives
along characteristics of higher derivatives ofG, and a set
of ordinary differential equations with respect to time is
obtained, leading to an initial value problem, which is
more or less easily solved. As before stated, it is recom-
mended to always carry out a prediction of gel time by
integration of the above-mentioned initial value problem.

• If there is gel, or ifs �= 1NA
(for computing the NCLD),

vector s0 must be found, leading to a boundary value
problems of the “time-like” variety (Deuflhard and
Bornemann, 2002) for obtaining a numerical solution of
the boundary value problem for computing characteris-
tics. A shooting method using integration for increasing
time values is the natural way of finding a numerical
solution. A few representative examples of polyconden-
sations and non-radical polymerisations have been solved
with this approach (Costa and Dias, 1994, 1995).

Numerical sensitivity already occurs with some polyaddi-
tions: it is enough to take into account the effect of the last
repeating unit in the propagation or initiation rate constants
in order to be struck by that problem. Parallel multiple shoot-
ing (Keller, 1972) must be used to overcome this difficulty.
Free radical polymerisations present a more difficult chal-
lenge. Owing to the high relative values of termination rate
constants relatively to propagation, the system becomes very
“stiff” and extreme numerical sensitivity occurs.

Only recently (Costa and Dias, 2003) could a solution be
found, thanks to the use of the integrator in automatic con-
tinuation code ACDC (Cash et al., 1995, 2001; Bashir-Ali
et al., 1998).

In fact, its continuation procedure was not successful, as
it usually leads to the trivial solution branch after gelation
instead of the physical meaningful solution branch, but its
implicit Runge–Kutta integrator based on a Lobatto quadra-
ture does succeed in finding the required solutions.

Some numerical case studies will next be discussed in
order to provide an overview of its expected performance
in terms of accuracy, CPU time and memory requirements
when dealing with complex polymerisations.

4. Numerical treatment of non-radical polymerisation
models

It is enlightening to find the analytical solution of Flory’s
simplified kinetic scheme (case study I) which presents a be-
haviour typical of the more general chemical system; this is
nearly the only way of independently checking the calcula-
tions of average molecular weights or CLD with a solution
computed through a different method. Using the stoichio-
metric functions inTable 5, the mass balance in Laplace do-
main leading to the generating function of polymer NCLD
in a batch reactor, neglecting density changes, may be writ-
ten as follows:

�G
�t

= kI I

[
s2s4s5Y1 + 2s2s5s8s9Y2

+ �G
� logs9

(
s2s5

s9
− 1

)]

+ kp

{
�G

� logs5

[
Y1(s4s6 − 1) + 2Y2(s6s8s9 − 1)

+ s6

s9

�G
� logs9

− A9

]
− A5

�G
� logs9

}
. (20)

In fact, it is possible to generalise this scheme to an arbitrary
numberNY of monomersYj with functionalities (numbers
of double bonds)j=1, NY , provided the reactivity of all dou-
ble bonds and anions is the same. This slightly more com-
plicated scheme is discussed in Appendix B. It is convenient
to introduce an overall concentration of double bondsB:

B = A9 +
NY∑
j=1

jY j . (21)

Mass balance equations of initiator, anionsA5, monomers,
double bonds (adding monomer balances) and pendant
double bondsA9 can be written as:

dI

dt
= −dA5

dt
= −kI IB, (22)

dYj
dt

= −jY j (kI I + kpA5) j = 1, NY , (23)

dB

dt
= −B(kI I + kpA5), (24)

dA9

dt
= kI I


−A9 +

NY∑
j=1

j (j − 1)Yj


 − kpA5A9. (25)

Introducing the conversions of double bondsp and of ini-
tiator pI , they verify:

dp

dt
= I0(1 − p)

[
kI (1 − pI ) + kppI

]
, (26)

dpI

dt
= kIB0(1 − p)(1 − pI ). (27)



Initial weight distribution of functionalitiesfwj
is defined

through the initial fractions of active groups belonging to
each monomerYj :

fwj
= jY j0∑NY

j=1jY j0

= jY j0

B0
. (28)

The initial concentration of initiator will be given in terms
of the average chain lengthr, equal to the final number
average degree of polymerisation which would be achieved
for fw = 1:

r = B0

I0
. (29)

Anions are associated (Lewis and Brown, 1970) in the hy-
drocarbon solvents used in anionic polymerisations of vinyl
monomers. Rate of monomer consumption is usually not first
order with respect to the overall anion concentrationA5. Al-
though some controversy is not absent (Arest-Yakubovich,
1997; Bywater, 1998) a simple model considering associa-
tion of anionsI andA5 leads to a power-law dependency of
apparent initiation and propagation rate constants on over-
all anion concentrations as shown in Eqs. (30) and (31) be-
low, explaining observed experimental orders1

mI
and 1

mP

(although no direct correspondence exists in many cases be-
tween degree of aggregation and these parameters, as shown
by Young et al. (1984))

kI = kI0I
−1+1/mI , (30)

kp = kp0I
−1+1/mp . (31)

An example isn-butyllithium initiated bulk polymerisation
of styrene in benzene, for whichmI = 6 (Worsfold and
Bywater, 1960), andmP = 2.

Karles et al. (1991)have found thatmP =1.2±0.8 for bulk
polymerisation of DVB, different from styrene, which is a
source of some complications in kinetic modelling. Notice
that no mixed association of anions coming from initiator
and from polymer would be allowed using this simplified
model (which does not allow either for dependence ofmP

on the nature of terminal unit). According to Eqs. (30), (31)
and (27), the two conversions would be related through a
binomial integral:

p = kI0

kp0

I

1
mI

− 1
mp

0

∫ pI

0
u

1− 1
mp (1 − u)

1
mI

−1
du. (32)

Owing to the binomial integral in Eq. (32) above, a full an-
alytical solution is possible only for instantaneous initiation
or for a constant ratio of initiation and propagation apparent
constantsCI = kI

kp
. If this condition holds, conversions of

initiator pI and of active groups in monomersp are related
through:

log(1 − pI ) = (CI − 1)pI − rCIp. (33)

The critical conversion for gelationpg, related topIg through
Eq. (33) above, results from the calculations in Appendix B:

1

fw − 1
= rp2

g − (1 − 1/CI ){2(1 − 1/CI )pg

+ [(1 − 1/CI )pIg − 2]pIg/r}. (34)

For a given initial weight average monomer functionality,
gelation occurs only if the initial mole ratior is above a
critical valuerc obtained by settingpg =pIg =1 in Eq. (34)
above.

As previously stated, inclusion of hydride expulsion and
transfer to solvent, which are important reactions unless tem-
perature is much lower than ambient (Priddy et al., 1992),
makes impossible to find an analytical solution for the pre-
diction of average molecular weights.

The set of kinetic parameters and initial concentrations
used in case studies I and II is presented inTable 8. Values
for relative reactivities of double bonds were taken from
Worsfold (1970)and rate constants for secondary reactions
were taken fromPriddy et al. (1992). Some values had to
be assumed owing to lack of experimental data.

We have considered three variants of the kinetic scheme:

• System I: as described inTable 8;
• System II: equal reactivities of double bonds and an-

ions, as would approximately hold for styrene+m-
divinylbenzene;

• System III: as system II without transfer to solvent and
termination, corresponding to case study I.

The analytical solution (case study I, system III) was pre-
cious in order to test the numerical solution method. A very
serious problem, as shown inFig. 1, is the numerical sensi-
tivity of system of characteristics Eqs. (A.1)–(A.6), forcing
the use of parallel multiple shooting (Keller, 1972), as we
have already done in an earlier research (Costa and Dias,
1995) with a “home-made” code.

Notice inFig. 2the very different shapes of characteristic
curves associated to the different variables; characteristics
associated to the numbers of anions are smooth (Fig.3),
while those associated to the numbers of double bonds have
a steep growth towards the end of the integration interval
(Fig. 4).

Code ACDC (Cash et al., 2001) can deal with the “stiff”
systems (Hairer and Wanner, 2002) found in free-radical
polymerisation (discussed in next section) and this is a
relatively easy problem for that method. Prediction of
weight-average molecular weight takes about 30 s CPU
before gelation, and each prediction of sol fraction and
Mw after gelation takes about 59 s. Computations were
performed with a PIV 1.5 GHz running Linux (comput-
ing times are about the same with a dual G4 Power PC
running Apple MacOSX, also with a program compiled
with GNU C compiler gcc-2.95 and associated Fortran
compiler).



Table 8
Kinetic parameters for simulations of anionic copolymerisation of styrene +p-divinylbenzene (case study II)

Parameter Relative value Absolute value

M10 3.996 mol dm−3

M20 0.004 mol dm−3

I0 0.004 mol dm−3

S0 4 mol dm−3

kI 0.7 dm3 mol−1 s−1

kp 220 dm3 mol−1 s−1

kS 1.4 × 10−4 dm3 mol−1 s−1

ke 2 × 10−4 s−1

kp11 kp11 = kp
kp22 Cp = kp22/kp11 = 9.7
kp12 r1 = kp11/kp12 = 0.094
kp21 r2 = kp22/kp21 = 10
kp13 Cp1 = kp13/kp11 = 0.8
kp23 Cp2 = kp23/kp22 = 0.07
kI1 CI1 = kI1/kp11 = kI /kp = 0.0032
kI2 CI2 = kI2/kp12 = CI1 = 0.0032
kI3 CI3 = kI3/kp13 = CI1 = 0.0032
kI4 CI4 = kI4/kp11 = CI1 = 0.0032
kI5 CI5 = kI5/kp12 = CI1 = 0.0032
kI6 CI6 = kI6/kp13 = CI1 = 0.0032
ke1 ke1 = ke
ke2 ke2 = ke
kt11 kt11 = kp11
kt12 kt12 = kp12/2
kt21 kt21 = kp12
kt22 kt22 = kp22/2
kS1 kS1 = kS
kS2 kS2 = kS
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Fig. 1. Numerical “blow-up” of solution of system of differential equations
for computing characteristics.

Numerical accuracy can be checked for system III com-
paring predicted values ofG obtained with the analytical
solution described in Appendix B. In fact, this solution in-
volves the numerical resolution of the algebraic equation
Eq. (B.12) or Eq. (B.13), which is rather tricky for high dou-
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Fig. 2. Characteristics for case study II, system I, atp = 1.

ble bond conversions and so it can have a non-negligible
numerical error too.

Nevertheless, in the worst case (conversionp = 0.999),
there is agreement ofG(1) by the two methods within 9
decimal places, and except for that extreme case we have
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obtained 11 decimal places agreement, so this should be
regarded as satisfactory.

In Fig. 5 is shown an example of number and weight
average molecular weights prediction, while inFigs. 6and7
are compared the changes brought up by the different values
of rate parameters.

Unfortunately, no experimental data for molecular weight
have been published for these systems.

5. Modelling of free radical copolymerisation of
monovinyl and divinyl monomers and its application to
styrene + divinylbenzene systems (case study III)

In order to present a comparison of predictions of the
present method with experimental data, the classical prob-
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Fig. 6. Mw for case study II with different kinetics.

lem of the free radical crosslinking copolymerisation will be
used as an example. For this kind of systems, some experi-
mental studies can be found in the literature namely for the
copolymerisation of mono/divinyl monomers. It was impor-
tant for our goals to have available experimental data in the
pre- and post-gel regimes, and the extensive investigation
on kinetics of free radical copolymerisation, in benzene and
60◦C, of styrene withm- andp-divinylbenzene, ethylene
dimethacrylate and diisopropenylbenzene (Hild and Okasha,
1985a,b; Hild et al., 1985) could fulfil these requirements.
This chemical system should only present a low extent of
cyclisations, which are an important factor in most non-
linear free-radical polymerisations (seeElliott and Bowman
(2002)as an example of a sustained modelling effort of these
systems).

Variable, but always small, mole ratios of divinyl
monomer to styrene have been used in these experiments.
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Table 9
Description of groups considered in the free radical crosslinking copoly-
merisation of styrene withm-divinylbenzene

Group description j �Pj �Aj

Free radical from styrene 1 1 1
Free radical fromm-divinylbenzene 2 1 1
Pendant double bond fromm-divinylbenzene 3 1 1

Monomeric styrene 4 0 1
Monomericm-divinylbenzene 5 0 1
Primary radical 6 0 1
Initiator (AIBN) 7 0 1

Polymerised styrene unit 8 1 0
Polymerisedm-divinylbenzene unit 9 1 0

System styrene/m-divinylbenzene was investigated before
gelation with initial concentrationsM10 = 4 mol dm−3

for styrene,M20 = 0.08 mol dm−3 for m-divinylbenzene
and I0 = 0.08 mol dm−3 for AIBN. This corresponds to
an initial mole ratio of divinyl monomer with respect to

monovinyl monomer of� = M20
M10

= 0.02 (2%). The same

system was studied after gelation for an initial compo-
sition of M10 = 4 mol dm−3, M20 = 0.2 mol dm−3 and
I0 = 0.08 mol dm−3 which corresponds to� = 5%. Average
molecular weights have been measured by size exclusion
chromatography (SEC) and in some cases by light scattering
(LS) and are available in these works in a tabular form.

A description of groups and kinetic scheme for the sim-
ulation of this system is presented inTables 9and10. Free
radicals from styrene, free radicals fromm-divinylbenzene
and pendant double bonds fromm-divinylbenzene are the
active species present in the polymer. Monomers, primary
radicals and initiator are active but are not present in the
polymer. Polymerised monomer units are present in the
polymer but are inactive. The kinetic scheme comprises

the usual steps in this kind of systems: initiator decompo-
sition, initiation of monomers and pendant double bonds
with primary radicals, propagation of monomers and pen-
dant double bonds with the different kinds of radicals
and termination between the different polymeric radicals,
which in this systems is known to occur predominantly by
combination.

Kinetic parameters assumed in this case study are pre-
sented inTable 11. A set of parameters were fixed as ref-
erence values (Hild and Okasha, 1985a): kp11 is the rate
constant of homopropagation of styrene andktc is the corre-
spondent value termination rate constant,f = 0.6 was kept
fixed andkd a known value for the dissociation of AIBN.

Recent experimental studies (Zetterlund et al., 2002) have
found that apparent termination rate constant and initiator
efficiency are neither independent from conversion nor from
divinylbenzene content. We have nevertheless kept using ear-
lier found values because they fit these observed conversion
vs. time values.

Reactivity ratio of styrener1 was experimentally deter-
mined in that work, where it is also reported the impossi-
bility of a precise determination of the reactivity ratio for
m-divinylbenzene due to the small amount of this monomer
in the initial reaction mixture. In these conditions, an ideal
copolymerisation has been assumed:r1r2 = 1. Only with a
strong deviation from ideality a noticeable influence of this
parameter in the gelation of the system (Costa and Dias,
2003) is expected. Conversely, reactivity of pendant double
bonds has a strong influence in the behaviour of this kind
of systems. Its relative value to the propagation of styrene
(Cp13) is used as a reference value. The remaining kinetic
parameters needed for the simulations can be obtained from
this basic set as reported inTable 11. Here the present sim-
ulation method was used to obtain an estimation ofCp13:
the observed gelation time for the experimental system with
� = 2%, tg = 7.5 h could be reproduced andCp13 = 0.138
was estimated with a relative error of 0.06% in the gelation
time.

For these reaction conditions, inFig. 8 are compared the
predictions of the present method with experimental val-
ues for weight and number average molecular weights (Hild
and Okasha, 1985a) in the polymers produced with� = 2%.
Some discrepancies were observed between the experimen-
tally measured weight average molecular weight by SEC and
LS, namely in the neighbourhood of gelation. Nevertheless,
the agreement between predictions and experimental values
is fairly good.

With the same set of kinetic parameters, the system with
�=5% was also simulated and a comparison with the corre-
spondent experimental values obtained byHild et al. (1985)
can be found inFig. 9; in this case (post-gel results) only ex-
perimental observations by SEC are available. At first sight,
agreement is not bad either, but, unfortunately, inconsistent
results are found: predicted gelation time istg = 2.1 h while
the experimental value istg = 3.5 h. In order to reproduce
the reported gelation time, a new value ofCp13 = 0.091 was



Table 10
Reaction scheme in the free radical crosslinking copolymerisation of styrene withm-divinylbenzene

Reaction name Chemical equation

Initiator decomposition A7
k∗
1=kd−→ 2fA6

Styrene initiation A4 + A6
kI1=ki1−→ A1 + A8

m-divinylbenzene initiation A5 + A6
kI2=ki2−→ A2 + A3 + A9

Pendant double bond propagation with radical from styrene A1 + A3
k1=kp13−→ A2

Pendant double bond propagation with radical fromm-divinylbenzene A2 + A3
k2=kp23−→ A2

Termination by combination of radicals from styrene A1 + A1
k3=ktc11−→ products

Cross termination by combination A1 + A2
k4=ktc12−→ products

Termination by combination of radicals fromm-divinylbenzene A2 + A2
k5=ktc22−→ products

Propagation of styrene with radical from styrene A1 + A4
k6=kp11−→ A1 + A8

Propagation of styrene with radical fromm-divinylbenzene A2 + A4
k7=kp21−→ A1 + A8

Propagation ofm-divinylbenzene with radical from styrene A1 + A5
k8=kp12−→ A2 + A3 + A9

Propagation ofm-divinylbenzene with radical fromm-divinylbenzene A2 + A5
k9=kp22−→ A2 + A3 + A9

Initiation of pendant double bonds fromm-divinylbenzene A3 + A6
k∗∗
1 =ki3−→ A2

Table 11
Kinetic parameters in free radical crosslinking copolymerisation of styrene withm-divinylbenzene

Kinetic constant Relative value Absolute value

kp11 145 dm3 mol−1 s−1

ktc 2.9 × 107 dm3 mol−1 s−1

kd 8.5 × 10−6 s−1

f 0.6

r1 r1 = kp11
kp12

0.44

kp13 Cp13 = kp13
kp11

= 0.138 20.01 dm3 mol−1 s−1

ki1 Ci1 = ki1
kp11

= 1 145 dm3 mol−1 s−1

ki2 Ci2 = ki2
kp11

= 1
r1

329.5 dm3 mol−1 s−1

ki3 Ci3 = ki3
kp11

= Cp13 20.01 dm3 mol−1 s−1

kp12 r1 = kp11
kp12

329.5 dm3 mol−1 s−1

kp21 Cp21 = kp21
kp11

= 1 145 dm3 mol−1 s−1

kp22 r2 = kp22
kp21

= 1
r1

329.5 dm3 mol−1 s−1

kp23 Cp23 = kp23
kp11

= Cp13 20.01 dm3 mol−1 s−1

ktc11 2.9 × 107 dm3 mol−1 s−1

ktc12 2.9 × 107 dm3 mol−1 s−1

ktc22 2.9 × 107 dm3 mol−1 s−1

calculated and the correspondent simulations have also been
compared with experimental results inFig. 9. Agreement is
not so good as the observed with the previous set of kinetic
parameters.

A similar apparent reactivity decrease of pendant double
bonds with increasing amounts of divinyl monomer has
been reported with this same chemical system (Zetterlund

et al., 2002) as well as many others, namely byTobita and
Hamielec (1989)in their analysis of the copolymerisation
of methyl methacrylate with ethylene glycol dimethacry-
late. The effect of cyclisation has been pointed as a con-
tributing factor for this kind of inconsistencies observed
in these chemical systems, but this is unlikely for this
system.



104

105

106

107

0 2 4 6 8 10

Present method

Number average (GPC)

Weight average (LS)

Weight average (GPC)

A
ve

ra
ge

 m
ol

ec
ul

ar
 w

ei
gh

t

Time (hr)

 _
M

n

 _
M

w

Fig. 8. Comparison between the predictions of the present method and ex-
perimental data (Hild and Okasha, 1985a) for the free radical crosslinking
copolymerisation of styrene andm-divinylbenzene with an initial mole
ratio � = 2%.

1000

104

105

106

107

0 2 4 6 8 10

Present method (C
P13

=0.091)

Present method (C
P13

=0.138)

Number average (GPC)
Weigth average (GPC)

A
ve

ra
ge

 m
ol

ec
ul

ar
 w

eig
th

Time (hr)

 _
M

n

 _
M

w

Fig. 9. Comparison between the predictions of the present method and
experimental data (Hild et al., 1985) for the free radical crosslinking
copolymerisation of styrene andm-divinylbenzene with an initial mole
ratio � = 5%.

In our opinion, the problem should rather involve the
modelling of the termination reaction and the assumed con-
stant initiator efficiency. Further investigation is needed in
this subject, namely to clarify the adequacy of the kinetic
schemes involved in these kind of polymerisations and to
obtain more reliable experimental results, particularly in the
post-gel region.

Owing to its improved mathematical exactness, the ability
to deal with gel and the possibility to consider complex
kinetic schemes, the method presented in this work could
be a valuable tool for this purpose.

6. Modelling of free radical polymerisation with
transfer to polymer (case study IV)—a comparison
with other approaches

As free-radical polymerisations are kinetically controlled,
the condition for random branch points in a statistical gela-
tion process often cannot be used. This fact invalidates the
mathematical treatment of this systems by the theory of
branching processes.

Modelling non-linear free radical polymerisations has
been for a long time a controversial subject. Based on
pioneering work byBamford and Tompa (1954), several
models have been applied to the treatment of non-linear
free radical polymerisations. These models have been de-
rived by writing population balances in the reactor and a set
of ordinary differential equations results for the moments
of the CLD (method of the moments). Nevertheless, in
order to obtain a tractable model, some mathematical ap-
proximations have been introduced, such as (among others)
pseudo-steady state for radical concentrations and negligi-
ble presence of multiple radical centres. Additionally, it is
necessary to consider closure conditions to make possible
the resolution of the equations for the moments. Extension
of the method of the moments to the post gel region re-
mains difficult (Tobita and Hamielec, 1989). Therefore the
method of moments or related methods that use this kind of
population balances are mostly used to the analysis of pre-
gel conditions and a set of approximation conditions has to
be used (Miller et al., 1996; Asteasuain et al., 2002a,b).

Important discrepancies can be observed when predictions
by the method of moments are compared with more accurate
methods (Costa and Dias, 2003).

Monte Carlo simulation has the advantage of pro-
viding a detailed view of molecular structure and is a
possible alternative method for dealing with these prob-
lems. Its successful use with polycondensations has been
known since long ago (Mikes̆ and Dus̆ek, 1982). However,
widely different time scales in free radical polymerisation
make its straightforward application very time consum-
ing, and so some simplifications had to be introduced
(Tobita, 1994b,c).

Recent simulations of non-linear free radical polymeri-
sations using Galerkin finite-elements method (Iedema and
Hoefsloot, 2002) have once again neglected the presence of
multiple radical centres together with some simplifications
in the kinetic schemes. In addition, the properties of the gel
cannot be obtained by this method.

“Numerical fractionation” (Teymour and Campbell, 1994)
overcomes many difficulties associated with the use of the
method of moments when gel is present and can be used for
reconstructing an approximate CLD. Nevertheless, this tech-
nique is based on population balances making use of many
approximations also present in the method of moments.

For comparison purposes of theoretical predictions, the
free radical polymerisation of a single monomer with trans-
fer to polymer in a batch reactor has been chosen. This is a



Table 12
Description of groups in a free radical polymerisation with transfer to polymer

Group description j �Pj �Aj
Chemical formula (example)

Free radical 1 1 1 –HYC•
Transfer to polymer center 2 1 1 –CH2–CHY–CH2–
Monomer 3 0 1 CH2&CHY
Primary radical 4 0 1 (CH3)2CNC•
Initiator 5 0 1 (CH3)2CNCN&NCCN(CH3)2
Polymerised monomer unit 6 1 0 –CH2–CHY–

Table 13
Reaction scheme in a free radical polymerisation with transfer to polymer

Reaction name Chemical equation

Initiator decomposition A5
k∗
1=kd−→ 2fA4

Monomer initiation A3 + A4
kI1=ki−→ A1 + A6

Termination by combination A1 + A1
k1=ktc−→ products

Propagation of monomer A1 + A3
k2=kp−→ A2 + A1 + A6

Transfer to polymer A1 + A2
k∗∗
1 =kfp−→ A1

Termination by disproportionation A1 + A1
k∗∗
2 =ktd−→ products

classical problem which has been analysed in the past by the
method of the moments (Tobita and Hamielec, 1988) and
“numerical fractionation” (Teymour and Campbell, 1994).
The description of groups and kinetic scheme considered is
presented inTables 12and13. Kinetic parameters for this
case study are presented inTable 14. The propagation rate
constant for the monomer is a recently measured value by
PLP for vinyl acetate (Hutchinson et al., 1994). Initiator de-
composition rate constant and efficiency were taken as usual
values for AIBN.

Initial monomer and initiator concentration has been
kept fixed at, respectively,M0 = 3 mol dm−3 and I0 =
4.29 × 10−3 mol dm−3. Remaining parameters inTable
14 were chosen in order to specify simulation conditions
close to the used in other analysis of this polymerisa-
tion system (Teymour and Campbell, 1994; Tobita and
Hamielec, 1988).

For these reaction conditions, predictions of “numerical
fractionation” technique have been obtained according to the
principles presented in literature (Teymour and Campbell,
1994). Saidel–Katz approximation for the third moment was
used as closure condition andn= 10 generations were con-
sidered in the calculations.

In Fig. 10are presented the predictions by the two meth-
ods for the number- and weight-average chain lengths as
a function of monomer conversion. Number-average chain
length shows only small differences in the post gel region.
Nevertheless, for the weight average chain length the pre-
dictions present important differences in the vicinity of the
gel point and beyond. To test the consistency of the meth-
ods the linear case (CP = 0) has also been simulated, and,

as expected, no significant differences have been observed
(Fig. 11).

This fact, in our opinion, is explained by the effect of the
approximation conditions used in “numerical fractionation”,
namely the neglect of the existence of poly-radicals, which
are known to exist in fairly large amounts close to gelation
(Tobita and Zhu, 1996).

7. Conclusions

This work could offer some significant steps towards
building a kind of interpreter of irreversible polymerisation
schemes. Fairly general and complex chemical systems
can be analysed without the need for approximations like
pseudo-steady state hypothesis. Any number of radical or
ion sites can exist in a single molecule, and this helps to
eliminate approximations or even inconsistencies that arise
from treating non-linear polymerisations as a perturbation
of linear polymerisation schemes (Costa and Dias, 2003).

Intrinsic mathematical limitations of commercial software
dealing with polymerisation reactions and reactors could
therefore be overcome.

Practical implementation of this approach shows that
computational resources needed for prediction of average
molecular weights before gelation are quite modest for
current personal computers.

Prediction of sol fraction and average molecular weights
after gelation is a much more difficult problem, especially for
free radical polymerisation, and some tens of hours of CPU
time and 512 or more of RAM with a personal computer are
the bare minimum.

Predictions of average molecular weights and gela-
tion time for styrene+m-divinylbenzene assuming no
intramolecular reaction could not fit experimental data us-
ing a single value of relative reactivity of pending double
bonds for different initial mole ratios of divinyl monomer.
Even if this chemical system should not be too sensitive to
intramolecular reaction, this factor is possibly at the origin
of these discrepancies. It is expected that the computational
approach described in this paper can help in further in-
vestigations of these polymerisations, as it can be readily
extended to encompass other chemical reactions, such as
intramolecular propagation, transfer and termination.



Table 14
Kinetic parameters in free radical polymerisation with transfer to polymer

Kinetic constant Relative value Absolute value

kp 1.17× 104 dm3 mol−1 s−1

kd 9 × 10−6 s−1

f 0.5

ki Ci = ki
kp

= 1.0 1.17× 104 dm3 mol−1 s−1

kfp CP = kfp
kp

= 10−3 11.7 dm3 mol−1 s−1

ktd 17.55× 107 dm3 mol−1 s−1

ktc Ctc = ktc
ktd

= 0.1 1.755× 107 dm3 mol−1 s−1
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Fig. 10. Comparison between the predictions of the present method and
“Numerical Fractionation” technique for a non-linear free radical poly-
merisation with transfer to polymer in a batch reactor.
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method and “Numerical Fractionation” technique for free radical poly-
merisation with transfer to polymer in a batch reactor.

Although in principle this method should also be able to
compute chain length distributions, a lot of improvement in
the numerical methods for solving the stiff two point bound-

ary value problems and in the inversion method itself (for
decreasing the number of required values of moment gen-
erating function) is needed. Evaluation of CLD for chain
lengths above a few hundreds is for the moment rather ex-
pensive in computer time.

Notation

a vector containing the counts of groups of
a polymer molecule, in whichaj is the
number of groupsAj belonging to poly-
mer molecules

Aj mole concentration of groupsAj

B overall concentration of double bonds in
case study I

CI = kI
kp

ratio of the two average rate constants of
initiation and propagation in case study I

fwj
initial weight distribution of functional-
ities in case study I, defined as the ini-
tial fraction of active groups belonging to
monomerYj

g−
j andg+

j indices of groups (withg−
j �g+

j ) caus-
ing thej th bimolecular reaction creating
links connecting RU; usually written as
[j−] and[j+]

g∗
j index of group causing thejth unimolec-

ular reaction; usually written as[j∗]
g−
Mj

andg+
Mj

indices of a group belonging to a polymer
and a group, corresponding to a monomer,
which are involved in thejth transfer
to monomer reaction; usually written as
[Mj−] and[Mj+]

g∗∗−
j and

g∗∗+
j

groups (withg∗∗−
j �g∗∗+

j ) reacting in the
jth bimolecular reaction not creating links
between RU; usually written as[j ∗ ∗−]
and[j ∗ ∗+]

g−
Ij

andg+
Ij

indices of groups (withg−
Ij

�g+
Ij

) in-
volved in the jth bimolecular initiation
reaction; usually written as[Ij−] and
[Ij+]

G(s) moment generating function of polymer
NCLD

G(sM) moment generating function of the
NMMD of polymer species



Gjk.... partial derivative ofG(s) with respect to
sj , sk, . . .

kj apparent second-order rate constant ofjth
reaction between groups forming a link
between the repeating units carrying them

k∗
j apparent first-order rate constant ofjth

unimolecular reaction
k∗∗
j apparent second-order rate constant ofjth

bimolecular reaction not creating links
between repeating units and thus keep-
ing unchanged the number of polymer
molecules

kIn apparent second-order rate ofnth bi-
molecular initiation reaction (which cre-
ates one polymer molecule with a sin-
gle repeating unit from the reaction of a
monomer and an initiator)

kMn apparent second-order rate of thenth
transfer to monomer reaction

mI association number of initiator when be-
longing to inactive complexes

mP association number of terminal anions
when belonging to inactive complexes

Mj relative molecular mass ofjth species
Mn number-average relative molecular mass
Mw weight-average relative molecular mass
Mz z-average relative molecular mass
NA number of different kinds of chemi-

cal groups (including special individual
molecules, like monomers and initiators)
in the chemical system

NAP
number of different kinds of groups
present in polymer molecules which may
be consumed by chemical reactions

NI number of initiation reactions (reactions
between non-polymer molecules forming
a polymer molecule)

NM number of transfer to monomerreactions
NP number of different kinds of groups

present in polymer molecules
NR number of reactions creating links be-

tween repeating units
N∗

R number of unimolecular reactions
N∗

RP
number of unimolecular reactions involv-
ing groups in polymer molecules

N∗∗
R number of bimolecular reactions which

do not create connections between repeat-
ing units

N∗∗
RP

number of bimolecular reactions involv-
ing groups in polymer molecules and
which do not create connections between
repeating units

NRP
number of reactions creating links be-
tween RU which involve only groups
present in polymer molecules

N∗∗
RS

number of bimolecular reactions involv-
ing one group in a polymer molecule and
a small molecule, without net creation or
destruction of polymer molecules

NS number of bimolecular reactions involv-
ing non-polymer molecules without cre-
ation of polymer molecules

NY number of different kinds of repeating
units

p overall conversion of double bonds in
case study I

pI conversion of initiator in case study I
P(a) mole concentration of the set of polymer

moleculesP(a), containinga groups of
the various possible kinds

Q volume flow rate
r initial ratio of mole concentrations of

double bonds and of initiator (same as
the final number average degree of poly-
merisation for a single monofunctional
monomer) in case study I

R ideal gas constant
Rj rate of formation by chemical reaction of

jth species
Rv relative rate of change of volume caused

by chemical reaction
s vector of Laplace parameters of the mo-

ment generating function associated with
distributions of the vectora of counts of
groups of a polymer species

sXj
Laplace parameter of the moment gener-
ating function associated with the count
of jth RU of a polymer species

t time
T absolute temperature
V reaction volume
w weight fraction
ws weight fraction of sol
Xj mole concentration ofjth repeating unit
Yj mole concentration ofjth monomer
0N null vector of sizeN
0MN ... null matrix of sizeM × N × · · ·
1N vector with all itsN components equal to

one

Greek letters

� initial mole ratio of divinyl to monovinyl
monomer

�9 auxiliary variable in case study I related
to G9 as defined by Eq. (B.11)

�Aj
variable which takes the value one when
Aj is an active group or species which
causes chemical reaction and zero when
it is only a product of chemical reactions



�Pj
variable which takes the value one when
Aj is a group in polymer species and zero
when it is an isolated chemical species

�ij Krönecker’s symbol, equal to one ifi= j

and equal to zero otherwise
�Vj change of mole volume by thejth chem-

ical reaction
�0 0th order moment of NMMD or NCLD
�jkl... moment of NMND with respect to the

counts of groupsAj ,Ak,Al . . .

�MM... nth order moment of mole concentration
distribution of polymer species with re-
spect to relative molecular mass, in which
n is the number of indexesM

�−
nk and�+

nk number of Ak groups formed by the
nth reaction creating connections between
RU, respectively, in the RU carrying the
group with lower index and in the one
with upper index

�∗
nk number of Ak groups formed by the

nthunimolecular reaction
�∗∗−
nk and

�∗∗+
nk

number ofAk groups formed by thenth
bimolecular reaction not creating con-
nections between repeating units, respec-
tively, in the repeating unit carrying the
group with lower index and in the one
with greater index

�Ink number of Ak groups of the polymer
molecule produced by thenth bimolecu-
lar initiation reaction (ifk�NAP

), −1 for
the two groups starting this reaction

�−
Mnk

change of number ofAk groups for the
polymer molecule involved in thenth
transfer to monomer reaction

�+
Mnk

number ofAk groups for the new polymer
molecule produced by thenth transfer to
monomer reaction

� space time (ratio of reactor volume and
inlet volume flowrate)

�U
L stoichiometric functions defined by Eq.

(13)

Subscripts

F in feed
g in gel
n number
s in sol
MAX upper limit
w weight
0 initial

Superscript

X average ofX

Abbreviations

CLD chain length distribution
CSTR continuous stirred tank reactor
DVB divinylbenzene
EB ethylbenzene
LS light scattering
NCLD number chain length distribution
NMMD number molecular mass distribution
RG root group (invariant moiety in a RU)
RU repeating units
SEC size exclusion chromatography
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Appendix A

A.1. Prediction of NCLD and its moments in ideal reactors
using the method of characteristics in a CSTR

The moment generating function of polymer NCLD is ob-
tained by solving the system of ordinary differential equa-
tions consisting of Eqs. (A.1)–(A.6) below (�ij is Krönecker’s
symbol):

dG

dt
= −

NRP∑
m=1

km�+
m�−

mG[m−]G[m+]

+
NI∑
m=1

kImA[Im−]A[Im+]�Im

+
NM∑
m=1

kMmA[Mm−]A[Mm+]�+
Mm

+ GF (t) − G(t)

�
− RvG, (A.1)

dGj

dt
=

NRP∑
m=1

km(�
−
mj + �+

mj )�
−
m�+

mG[m−]G[m+]

+
NR∑

m=NRP
+1

km(�
−
mj + �+

mj )�
−
m�+

mA[m+]G[m−]

+
N∗
RP∑

m=1

k∗
m�∗

mj�
∗
mG[m∗]



+
N∗∗
RP∑

m=1

k∗∗
m (�∗∗−

mj �∗∗−
m A[m∗∗+]G[m∗∗−]

+ �∗∗+
mj �∗∗+

m A[m∗∗−]G[m∗∗+])

+
N∗∗
R −NS∑

m=N∗
RP

+1

k∗∗
m �∗∗−

mj �∗∗−
m A[m∗∗+]G[m∗∗−]

+
NI∑
m=1

kIm�Imj �ImA[Im−]A[Im+]

+
Nm∑
m=1

kMmA[Mm+](�+
Mmj

�+
Mm

A[Mm−]

+ �−
Mmj

�−
Mm

G[Mm−])

+ GjF (t) − Gj

�
− RvGj , (A.2)

d log sj

dt
=

NRP∑
m=1

km[�j[m−](A[m+] − �−
m�+

mG[m+])

+ �j[m+](A[m−] − �−
m�+

mG[m−])]

+
NR∑

m=NRP
+1

km�j[m−]A[m+](1 − �−
m�+

m)

+
N∗
RP∑

m=1

k∗
m�j[m∗](1 − �∗

m)

+
N∗∗
RP∑

m=1

k∗∗
m [�j[m∗∗−]A[m∗∗+](1 − �∗∗−

m )

+ �j[m∗∗+]A[m∗∗−](1 − �∗∗+
m )]

+
N∗∗
R −NS∑

m=N∗
RP

+1

k∗∗
m �j[m∗∗−]A[m∗∗+](1 − �∗∗−

m )

+
Nm∑
m=1

kMm�j[Mm−]A[Mm+](1 − �−
Mm

), (A.3)

G|t=0 = G0(s0), (A.4)

Gj|t=0 = �G0

� logsj
(s0), (A.5)

sj|t=0 = sj0. (A.6)

Vector s0 defining the starting point of the characteristic at
time t = 0 must be computed in order that the characteris-
tic curve passes through the prescribed values ofs at time
t. In fact, only theNAP

components related to the active
polymer groups are unknown, since the other are constant

values. Therefore, a two-point boundary value problem for
the above system of ordinary differential equations must be
solved.

In the prediction of average molecular weights, only the
solution ats=1NA

is wanted and the problem becomes much
simpler if there is no gelation, because the solution is then
s0 = 1NA

and there is no need to solve the above mentioned
two point boundary value problem. After computing vector
s0 (in case there is gel) or, alternatively, setting it equal to
1NA

, it becomes possible to obtainG and any of its deriva-
tives ats = 1NA

, yielding thus the moments of the NCLD
of polymer and finally the moments of the NMMD of poly-
mer, leading to weight fraction of sol and average molecular
weights.

Differentiation of Eq. (18) leads to additional ordinary
differential equations analogous to Eq. (A.2) above, which
are used to compute higher positive integer order derivatives
of G, such as:

dGjk

dt

=
NRP∑
m=1

km�−
m�+

m[(�−
mj + �+

mj )(�
−
mk + �+

mk)G[m−]G[m+]

+ (�−
mj + �+

mj )(G[m−]kG[m+] + G[m+]kG[m+])

+ (�−
mk + �+

mk)(G[m−]jG[m+] + G[m+]jG[m−])

+ G[m−]jG[m+]k + G[m+]jG[m−]k]

+
NR∑

m=NRP
+1

km�−
m�+

mA[m+][(�−
mj + �+

mj )(�
−
mk + �+

mk)

×G[m−]+(�−
mj+�+

mj )G[m−]k+(�−
mk+�+

mk)G[m−]j ]

+
N∗
RP∑

m=1

k∗
m�∗

m(�
∗
mkG[m∗]j

+ �∗
mjG[m∗]k + �∗

mj�
∗
mkG[m∗])

+
N∗∗
RP∑

m=1

k∗∗
m [A[m∗∗+]�∗∗−

m (�∗∗−
mk G[m∗∗−]j

+ �∗∗−
mj G[m∗∗−]k + �∗∗−

mj �∗∗−
mk G[m∗∗+])

+ A[m∗∗−]�∗∗+
m (�∗∗+

mk G[m∗∗+]j

+ �∗∗+
mj G[m∗∗+]k + �∗∗+

mj �∗∗+
mk G[m∗∗+])]

+
N∗∗
R −NS∑

m=N∗
RP

+1

k∗∗
m A[m∗∗+]�∗∗−

m (�∗∗−
mk G[m∗∗−]j



+ �∗∗−
mj G[m∗∗−]k + �∗∗−

mj �∗∗−
mk G[m∗∗−])

+
Nm∑
m=1

kMmA[Mm+][A[Mm−]�+
Mmj

�+
Mmk

�+
Mm

+ �−
Mm

(�−
Mmj

G[Mm−]k + �−
Mmk

G[Mm−]j + �−
Mmj

�−
Mmk

× G[Mm−])] +
NI∑
m=1

kImA[Im−]A[Im+]�Imj �Imk
�Im

+ GjkF (t) − Gjk

�
− RvGjk. (A.7)

Numerical solution of those systems of ordinary differen-
tial equations requires the jacobian of their right-hand sides,
which can be analytically obtained. It is not presented here
by conciseness, but is available free of charge from the au-
thors.

No gel exists if there is no second solution fors0 when
s= 1NA

with real positive values lower than 1 for any of its
components; if it does exist, that solution should be chosen
instead ofs0 = 1NA

.
In practice, it is better to compute gel timetg as the time

for which weight average degree of polymerisation becomes
infinite and check afterwards whether the reaction time is
higher thantg.

Appendix B

B.1. Analytical treatment of a simple non-linear living
polymerisation in a batch reactor

A more elegant way of writing Eq. (20), also leading to
a slight generalisation of this kinetic scheme, results when
the set of Laplace parameters of RGsXj

(j = 1, NY ) is
introduced. In this case,sX1 = s4 andsX2 = s8. If there are
still other monomers, provided their functional groups have
the same reactivities, in the above scheme, assuming that
monomerYj has functionalityj, Eq. (20) may be rewritten
as:

�G
�t

= kI I


s2s5

NY∑
j=1

jsXj
s
j−1
9 Yj + �G

� logs9

(
s2s5

s9
− 1

)


+ kp




�G
� logs5


 NY∑

j=1

jY j (s6sXj
s
j−1
9 − 1)

+ s6

s9

�G
� logs9

− A9


 − A5

�G
� logs9


 . (B.1)

The equations of the characteristics derived from Eq. (B.1)
are:

dG

dt
= kI I s2s5

NY∑
j=1

jsXj
s
j−1
9 Yj + kp

s6

s9
G5G9, (B.2)

dG5

dt
= kI I s2s5


 NY∑

j=1

jsXj
s
j−1
9 Yj + G9

s9




= kI I s2s5B�9, (B.3)

dG9

dt
= (kI I s2s5 + kps6G5)

×

 NY∑

j=1

j (j − 1)sXj
s
j−1
9 Yj − G9

s9


 , (B.4)

d log s5

dt
= kpB(1 − s6�9), (B.5)

d log s9

dt
= kI I

(
1 − s2s5

s9

)
+ kp

(
A5 − s6G5

s9

)
. (B.6)

Assuming that reaction starts from monomers only, but al-
lowing for a partial conversion of double bonds resulting
from instantaneous initiation, the initial conditions are:

sj |t=0 = sj0 j = 5,9, (B.7)

G|t=0 = B0

NY∑
j=1

fwj

j
sXj

{[s2s50p0 + s90(1 − p0)]j

− [s90(1 − p0)]j }, (B.8)

G9|t=0 = B0s90(1 − p0)

NY∑
j=1

fwj
sXj

{[s2s50p0

+ s90(1 − p0)]j−1 − [s90(1 − p0)]j−1}, (B.9)

G5|t=0 = I0s2s50

NY∑
j=1

fwj
sXj

[s2s50p0

+ s90(1 − p0)]j−1 = I0s2s50�0. (B.10)

Owing to the binomial integral in Eq. (33), a full analytical
solution is possible only for constantCI , including the case
of instantaneous initiation. The crux for obtaining the ana-
lytical solution is the invariance along each characteristic of
the auxiliary variable�9:

�9 = G9

Bs9
+

NY∑
j=1

sXj
s
j−1
9

jY j

B
. (B.11)

According to these solutions, the first step to computeG(s)
consists in solving a single algebraic equation in terms of the
auxiliary variable�9, Eqs. (B.12), or (B.13) for instantaneous



initiation:

�9 =
NY∑
j=1

fwj
sXj


s9(1 − p) + s2s5

r

×


CI (CI − 1)[1 − (1 − pI )

s6�9+CI−1
CI ]

(s6�9 + CI − 1)2

− s6�9 log(1 − pI )

s6�9 + CI − 1


 (1 − pI )

1−s6�9
CI




j−1

, (B.12)

�9 =
NY∑
j=1

fwj
sXj

{
s9(1 − p) + s2s5

[
1

r
+ s6�9

(
p − 1

r

)]

× exp[(1 − s6�9)(1 − rp)]
}j−1

CI → ∞, (B.13)

s50 = s5(1 − pI )
1−s6�9

CI , (B.14)

G5 = I0CI �9s2s50[1 − (1 − pI )
s6�9+CI−1

CI ]
s6�9 + CI − 1

, (B.15)

s9(1 − p) = s90 + s2s50

r

{
s6�9 log(1 − pI )

CI − 1 + s6�9

+ CI (CI − 1)

(s6�9 + CI − 1)2

×[1 − (1 − pI )
CI−1+s6�9

CI ]
}
, (B.16)

G9

B0
= �9s9(1 − p) −

NY∑
j=1

fwj
sXj

[s9(1 − p)]j , (B.17)

G

B0
= CI s2s6s50�

2
9

s6�9 + CI − 1

×

1 − (1 − pI )

CI−1+s6�9
CI

r(s6�9 + CI − 1)
− p + (CI − 1)pI

CI r




+
NY∑
j=1

fwj

j
sXj

{sj90
− [s9(1 − p)]j }. (B.18)

For instantaneous initiation, the simplified relationships be-
low hold:

s50 = s5 exp[(1 − s6�9)(1 − rp)], (B.19)

G5 = B0

r
s2s50�9, (B.20)

s90 = s9(1 − p)

1 − 1/r
+ s2s6s50�9(rp − 1)

r − 1
, (B.21)

G9

B0
= �9s9(1 − p) −

NY∑
j=1

fwj
sXj

[s9(1 − p)]j , (B.22)

G

B0
= �9[s9(1 − p) − s90(1 − 1/r)] +

NY∑
j=1

fwj

j
sXj

× {[s90(1 − 1/r)]j − [s9(1 − p)]j }. (B.23)

Eqs. (B.12) or (B.13) have multiple solution branches. The
physically meaningful branch has to be chosen from the
behaviour ats= 1NA

.
From its definition Eq. (B.11), taking into account the

meaning ofG9 as well as Eqs. (B.17) or (B.18),�9 is a
real positive value less than or equal to 1. If all polymer
molecules are finite,�9 = 1; this solution always exists. If
a second solution for�9 between 0 and 1 can be found, it
takes precedence over that trivial solution�9 = 1, and this
means that an infinite network is present.

Stating that a double root 1 exists for Eqs. (B.12) or
(B.13), Eq. (34) for critical gel conversions is obtained. Dif-
ferentiation of equations above ons= 1NA

would allow an-
alytical expressions for the various moments of the NCLD
to be obtained.

It is possible to obtain a full analytical solution (Tobita,
1994a) for a somewhat simpler description (only mono- and
difunctional monomers were considered in that work). It is
useful for testing numerical inversion methods.
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