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Abstract 

Objective. To investigate whether janus kinase (JAK) inhibitor exhibites a 

chondroprotective effect against mechanical stress-induced expression of a disintegrin 

and metalloproteinase with thrombospondin motifs (ADAMTS) and matrix 

metalloproteinase (MMPs) in human chondrocytes. 

Materials and methods. Normal human articular chondrocytes were seeded onto stretch 

chambers and incubated with or without tofacitinib (1000 nM) for 12 h before 

mechanical stimulation or cytokine stimulation. Uni-axial cyclic tensile strain (CTS) 

(0.5 Hz, 10% elongation, 30min) was applied and the gene expression levels of type II 

collagen α1 chain (COL2A1), aggrecan (ACAN), ADAMTS4, ADAMTS5, MMP13, and 

runt-related transcription factor 2 (RUNX-2) were examined by real-time polymerase 

chain reaction. Nuclear translocation of RUNX-2 and nuclear factor-κB (NF-κB) was 

examined by immunocytochemistry, and phosphorylation of mitogen-activated protein 

kinase (MAPK) and signaling transducer and activator of transcription (STAT) 3 was 

examined by western blotting. The concentration of interleukin (IL)-1β, IL-6 and tumor 

necrosis factor -α in the supernatant were examined by enzyme-linked immunosorbent 

assay. 

Results. COL2A1 and ACAN gene expression levels were decreased by CTS, but these 

catabolic effects were canceled by tofacitinib. Tofacitinib significantly down-regulated 

CTS-induced expression of ADAMTS4, ADAMTS5, MMP13 and RUNX2 in 

chondrocytes, and the release of IL-6 in supernatant by chondrocytes. Tofacitinib also 

reduced CTS-induced nuclear translocation of RUNX-2 and NF-κB, and 
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phosphorylation of MAPK and STAT3. 

Conclusion. Tofacitinib suppressed mechanical stress-induced expression of ADAMTS4, 

ADAMTS5, and MMP13 by human chondrocytes through inhibition of the JAK/STAT 

and MAPK cascades. 

Keywords 
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Introduction 

Oral low-molecular-weight compounds that inhibit janus kinase (JAK) (1) and 

spleen tyrosine kinase (2) have been introduced as targeted synthetic disease-modifying 

anti-rheumatic drugs (DMARDs) and have demonstrated good therapeutic efficacy in 

terms of rheumatoid arthritis (RA) disease progression. JAKs constitute a family of 

non-receptor tyrosine kinases of approximately 130-kDa comprising JAK1, JAK2, 

JAK3, and Tyk2. Cytokine binding causes two separate receptor polypeptide chains to 

dimerize, bringing together the associated JAKs, which then phosphorylate each other 

on tyrosines to become fully activated. The activated JAKs then phosphorylate various 

intracellular transmitters such as signaling transducer and activator of transcription 

(STAT) proteins and mitogen-activated protein kinases (MAPKs), including 

extracellular signal-regulated protein kinase (ERK), p38 MAPK, and c-Jun N-terminal 

kinase (JNK), thus controlling the expression of various genes in the nucleus (3, 4). 

Recently, it has been shown that Tofacitinib, a pan-JAK inhibitor, exhibits consistent 

efficacy in patients with an inadequate response and intolerance to conventional 

synthetic DMARDs (5, 6), while another study demonstrated that tofacitinib 

monotherapy had comparable effects to biologic DMARDs (7-9). However, there has 

been no report that examined the effects of tofacitinib on the protease expressions by 

chondrocytes. 

Damaged articular cartilage is exposed to mechanical loading in inflammatory joint 

diseases such as RA and osteoarthritis, and the molecular mechanisms of cartilage 

breakdown in these diseases show considerable overlap, particularly with respect to 
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matrix‐degrading enzymes,   such as a number of matrix metalloproteinase (MMP) (10), 

however almost all clinical trials involving MMP inhibitors have failed, including a trial 

of a novel inhibitor targeting disease­relevant MMPs (11). We previously reported 

(12-14) that catabolic mechanical stress induced the expression of MMP, a disintegrin 

and metalloproteinase with thrombospondin motifs (ADAMTS), and other proteases in 

cultured human chondrocytes. Runt-related transcription factor 2 (RUNX-2) and 

inflammatory cytokines such as IL-1β play important roles in regulating expression of 

these proteases via nuclear factor-κB (NF-κB) and MAPKs. In the current study, we 

investigated the effects of tofacitinib on mechanical stress-induced expression of 

transcription factors and proteases in human chondrocytes. The results of the study 

suggest that tofacitinib may have a role for cartilage protection from further 

deterioration promoted by mechanical loading by inhibiting chondrocyte-derived matrix 

proteases. 
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Materials and Methods 

Cells and cell culture 

Normal human articular chondrocytes from the knee joint (NHAC-kn) were purchased 

from Lonza (Walkersville, MD, USA). The cells were cultured in chondrocyte basal 

medium (Lonza) containing chondrocyte growth medium, fetal bovine serum, 

transforming growth factor-β, R3 insulin-like growth factor, transferrin, insulin, 

gentamicin, and amphotericin-B (CDM™BulletKit®, Lonza) at 37°C. The medium was

changed every 2 days, and NHAC-kn cells were used at passage three. 

Cyclic tensile strain with or without JAK inhibitor tofacitinib 

Tofacitinib (CP-690550) citrate was purchased from Selleck Chemicals (Houston, TX, 

USA), dissolved in dimethyl sulfoxide, and then diluted with phosphate-buffered saline 

(PBS) to 100 or 1000 nM. The maximum concentration (Cmax) when tofacitinib is 

administrated with 5mg twice daily (BID) (167nM) is higher than 100 nM, and 1000 

nM of tofacitinib is equivalent to the serum Cmax (1006 nM) when tofacitinib is 

administrated with 30mg BID dose in human (18). We applied tofacitinib treatment for 

1, 6, and 12 h before cyclic tensile strain (CTS), and found that the samples with 12h 

treatment had the most reproducible data. Thus, we used 12h treatment for all 

experiments in this study. NHAC-kn cells were seeded onto stretch chambers with a 

type I collagen-coated culture surface of 2 × 2 cm for isolation of RNA, and 3 × 3 cm 

for immunocytochemistry and protein isolation. CTS was applied using an ST-140 

mechanical stretch system (STREX, Osaka, Japan). In this system, the chamber was 
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attached to the stretching apparatus, which has a fixed side opposite a movable side 

driven by a computer-controlled motor. This apparatus allows the entire silicon 

membrane to be stretched uniformly (15, 16). In the current study, CTS (0.5 Hz, 10% 

elongation) was applied for 30 min to cause catabolic stress, as described previously, 

(12-14, 17). The current particular force (10% elongation) and frequency (0.5Hz; one 

second on, one second off) has been used for analysis for chondrocyte metabolism, and 

reported that CTS with this condition for 30 min result in the catabolic reaction by 

chondrocytes with decreased type II collagen and aggrecan expression, and increased 

expression of MMP-3, -13, ADAMTS-4, and -5 (12-14). Cells incubated without 

mechanical stress were used as a control. 

Reverse transcription PCR and real-time PCR analysis 

The cells were washed three times with PBS at 1, 6, 12, and 24 h after CTS, and total 

RNA was isolated using an miRNeasy® Mini Kit (Qiagen, Hilden, Germany). RNA 

samples (1000 ng) were reverse-transcribed with ReverTra Ace (Toyobo, Osaka, Japan). 

The resulting cDNAs were used for PCR amplification in the presence of 10 pmol of 

specific primers using ExTaq DNA polymerase (TaKaRa, Ohtsu, Japan). The specific 

primers used are described in Table 1 (RUNX2, ADAMTS4, ADAMTS5, MMP13, type II 

collagen α1 chain [COL2A1], aggrecan [ACAN] and glyceraldehyde-3-phosphate 

dehydrogenase [G3PDH]). Each reverse transcription (RT) PCR reaction was allowed 

to proceed for 30–37 cycles. 



Effect of JAK inhibitor on chondrocytes 

9 

Real-time PCR was performed using an Mx3000P QPCR System (Agilent 

Technologies, Santa Clara, CA, USA) with TaqMan Gene Expression Assays for 

human ADAMTS4 (Hs00192708_m1), ADAMTS5 (Hs00199841_m1), MMP13 

(Hs00233992_m1), RUNX2 (Hs01047977_m1), and G3PDH (Hs03929097_g1) 

(Applied Biosystems, Foster City, CA, USA). Amplification of the housekeeping gene 

G3PDH was used to normalize the efficiency of cDNA synthesis and the amount of 

RNA. We calculated the final expression levels by dividing the expression levels of 

ADAMTS4, ADAMTS5, MMP13, and RUNX2 by the expression level of G3PDH. Each 

value obtained for the control cells (unstretched cells without tofacitinib) was set to 1. 

Immunocytochemistry 

The mechanical stress-induced nuclear translocation of RUNX-2 and NF-κB p65 was 

examined by immunocytochemistry. Cells were stretched for 30 min with or without 

tofacitinib, according to the protocols described above, and then fixed with 1% 

paraformaldehyde solution. The membranes of the culture chambers were then removed 

and incubated with anti-RUNX-2 antibody (1:100, ab76956, Abcam, Cambridge, UK), 

and anti-NF-κB p65 antibody (1:100, C22B4, Cell Signaling, Danvers, MA, USA), for 

2 h at room temperature. Bovine serum albumin-containing solutions without primary 

antibodies were used as negative controls. We used Alexa Fluor 488-conjugated 

antibody (10 g/ml, anti-mouse/rabbit) as secondary antibodies, Alexa Fluor 

568-conjugated phalloidin (2 g/ml, Molecular Probes, Eugene, OR, USA) for actin 

staining, and Hoechst 33342 (1 g/ml, ICN Biomedicals, Aurora, OH, USA) for nuclear 
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staining. Cells were observed under a fluorescence microscope (Leica, Wetzlar, 

Germany), and nuclear translocation was evaluated by the positive-cell ratios for 

RUNX-2 and NF-κB p65 (number of positive cells/all cells), calculated as the mean 

value from four fields at 100× magnification. 

Western blot analysis 

Cells were resuspended in Mammalian Protein Extraction Buffer (GE Healthcare, 

Piscataway, NJ, USA) 30 min after CTS. Cell lysates (15 μg total protein/lane) were 

loaded onto sodium dodecyl sulfate–polyacrylamide gels using BioRad Any kD™

Mini-PROTEAN® TGX™ Gels (Bio-Rad, Munchen, Germany) and run for 40 min at

150 V and then transferred to polyvinylidene difluoride membranes using a 

Trans-Blot® Turbo™ Blotting System (Bio-Rad). The membranes were incubated with

blocking reagent (Toyobo) and incubated overnight at 4°C with antibodies to ERK, 

JNK, p38 MAPK (Abnova, Taipei, Taiwan), STAT3 (Santa Cruz Biotechnology, Santa 

Cruz, CA, USA), and phosphorylated ERK, JNK, p38, and STAT3 (Cell Signaling 

Technology, Beverly, MA, USA) at dilutions of 1:1000. After washing with washing 

buffer, the membranes were incubated with IRDye Goat Anti-Rabbit IgG (LI-COR 

Biosciences, Lincoln, NE, USA) or IRDye Goat Anti-Mouse IgG (LI-COR 

Biosciences) as secondary antibodies at room temperature for 1 h. Immunoreactive 

proteins were detected using the OdysseyFc Imaging System (LI-COR Biosciences). 

We also analyzed the densities of the obtained western blotting fragments using the 
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OdysseyFc Imaging System. The levels of phosphorylated p38, ERK, JNK, and STAT3 

were indicated as ratios, and normalized to the densities of the p38, ERK, JNK, and 

STAT3 fragments. 

ELISA for cytokines in the culture medium 

Cell culture supernatants were collected at 12 and 24 h after CTS. The concentration of 

IL-1β, IL-6 and tumor necrosis factor -α (TNF-α) in the supernatant was measured 

using a high sensitivity IL-1β and IL-6 enzyme-linked immunosorbent assay (ELISA) 

kit (Quantikine® HS ELISA Human IL-1β/IL-1F2 Immunoassay, Quantikine® HS 

ELISA HumanIL-6 Immunoassay and Quantikine® HS ELISA Human TNF-α 

Immunoassay, R&D Systems, Inc., Minneapolis, MN, USA), according to the 

manufacturer’s protocol. Cell culture supernatants without mechanical stress were used 

as a control. 

Statistical analysis 

The results are expressed as mean ± standard deviation. Statistical comparisons were 

performed using Student’s t-tests. All experiments were repeated at least four times and 

similar results were obtained. All differences were considered statistically significant at 

a P value < 0.05. 

Ethics approval 
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We didn’t acquire any data from patients or animals in this study. Thus, the ethics 

approval was not required in accordance with the policy of our institution. 

Results 

Effects of tofacitinib on CTS-induced gene expression 

We previously reported that RUNX2 and ADAMTS5 mRNA expression levels increased 

1 h after CTS (early phase), ADAMTS4 and MMP13 increased 24 h after CTS (late 

phase), and COL2A1 and ACAN levels decreased 15–30 h after CTS (12, 14). We 

therefore examined the effects of different concentrations of tofacitinib on the 

expression levels of RUNX2 and ADAMTS5 1 h after CTS, and COL2A1, ACAN, 

ADAMTS4, and MMP13 24 h after CTS. 

COL2A1 and ACAN expression levels were reduced by CTS, but these 

down-regulation were canceled by treatment with tofacitinib, as demonstrated by RT–

PCR. In the absence of tofacitinib, CTS up-regulated RUNX2, ADAMTS4, ADAMTS5, 

and MMP13 expression levels, but these were down-regulated in tofacitinib-treated 

samples. RT-PCR demonstrated a significant difference in RUNX2 mRNA levels after 

treatment with 100 and 1000 nM tofacitinib, but no differences in ADAMTS4, 

ADAMTS5, and MMP13 levels (Fig. 1A, B). As presented in Fig. 1B, 1000 nM of 

tofacitinib showed significantly stronger effect than 100 nM of tofacitinib on the 
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expression of RUNX-2 mRNA, which has been demonstrated in our previous study to 

be an important transcription factor in regulation of MMP-13 and ADAMTS-5 in the 

similar experiment (12). We therefore used tofacitinib 1000 nM for the following 

experiments. 

RUNX2 mRNA expression was increased 1 h after CTS (Fig. 2A), and ADAMTS4 

and MMP13 were increased 24 h after CTS (Fig. 2B, D) in the absence of tofacitinib. 

ADAMTS5 induction in the absence of tofacitinib was biphasic, with early and late 

phases at 1 and 12 h, respectively, after CTS (Fig. 2C). Both early- and late-phase 

increases were significantly down-regulated by treatment with tofacitinib (Fig. 2A–D). 

Significant differences were noted at 1 h for RUNX2, at 24 h for ADAMTS4, at 12 h for 

ADAMTS5, and at 24 h for MMP13. 

Effects of tofacitinib on CTS-induced nuclear translocation of RUNX-2 and NF-κB 

p65 in chondrocytes 

CTS induced RUNX-2 and NF-κB p65 translocation to the nucleus, as demonstrated by 

immunocytochemistry, but this effect was inhibited in cells treated with tofacitinib (Fig. 

3A). The percentages of chondrocytes positive for nuclear RUNX-2 and NF-κB p65 

were significantly decreased by treatment with tofacitinib (Fig. 3B). 

Effects of tofacitinib on CTS-induced activation of MAPK and JAK/STAT 

pathways 

Mechanical stress can activate stress-response signaling pathways, such as MAPK and 
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JAK/STAT. We therefore investigated MAPK (ERK, JNK, and p38) and STAT3 

phosphorylation in the presence and absence of tofacitinib at 30 min after CTS. CTS 

significantly increased MAPK and STAT3 phosphorylation compared with 

non-stretched controls, as shown by western blot analysis, while tofacitinib inhibited the 

CTS-induced phosphorylation of ERK, JNK, p38, and STAT3 (Fig. 4A–D). 

Effects of tofacitinib on CTS-induced expression of cytokines from chondrocytes 

The concentration of IL-1β and IL-6 in the supernatant after CTS increased in a 

time-dependent manner in samples without tofacitinib, and the production of IL-6 24 h 

after CTS was significantly increased compared with that without CTS. The 

concentration of IL-6 in samples with tofacitinib treatment 12 and 24 h after CTS were 

significantly decreased compared with that in samples without tofacitinib treatment. In 

contrast, no significant effects of tofacitinib were seen on the concentration of IL-1β 

(Table. 2). The concentrations of TNF-α were under detection limit of ELISA in the 

current experimental protocol. 

Discussion 

Articular cartilage is exposed to proinflammatory cytokines and matrix proteinases 

derived from the synovial membrane in joints with active RA. Once cartilage 

degeneration has started, mechanical loading further promotes cartilage damage even if 

the synovitis is effectively treated by DMARDs. Larsen grade II joint destruction (19) 
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with joint-space narrowing represents a critical point, especially in weight-bearing large 

joints, and joints with pre-existing damage of Larsen grade III or higher are disposed to 

progressive joint destruction, despite tumor necrosis factor-blocking therapies (20). 

Early diagnosis and intervention with DMARDs aimed at suppressing synovitis before 

the initiation of cartilage damage are thus the optimal strategies (21, 22). In this study, 

we used normal chondrocytes to confirm the effects of JAK inhibitor on the 

mechanical-stress in the normal or less damaged cartilage. Clinically, we should prevent 

the cartilage degeneration by early treatment and control of disease activity, because 

damaged cartilage would not stand against mechanical stress especially in the 

weight-bearing joint. 

JAKs play important roles in intracellular signal transduction for various cytokines 

(1, 3, 4). Tofacitinib is the first oral JAK inhibitor approved for the treatment of RA (23), 

and has been demonstrated to act on JAK1, JAK2 and JAK3. The dominant effects of 

tofacitinib are mediated through dimers of JAK1 and/or JAK3 (24, 25). Although the 

anti-inflammatory effects of tofacitinib on synovial inflammation have been 

demonstrated in vitro (7, 24) and among RA patients (9, 26), its direct effects on 

chondrocyte metabolism remain unclear. Tofacitinib has been reported to increase levels 

of adenosine, which possesses anti-inflammatory activity (27), in human chondrocytes, 

and partially to prevent over-glycosylation of collagen by inhibiting the 

IL-1β-stimulated production of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2, and 

regulate the IL-1β stimulated changes of protein profile in chondrocytes (28). These 

reports showed tofacitinib have potential chondro-protective effects, and gave support 
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to our result. 

Mechanical stress is known to regulate cell metabolism via ion channels or cell 

surface integrins (29). Involvement of JAK/STAT activation in mechano-transduction 

has been identified in some cell types such as cardiomyocytes and fibroblasts (30, 31), 

but rarely in chondrocytes (32). In the current study, we showed that mechanical stress 

activated the JAK/STAT3 pathway. Furthermore, as we expected, tofacitinib reasonably 

inhibited ADAMTS-4, ADAMTS-5, and MMP-13 gene expression and suppressed the 

down-regulation of type II collagen and aggrecan by blocking at least the part of the 

downstream of mechanical stress-induced activation of JAK-mediated signaling. 

Obviously, our results suggest the beneficial effects derived by JAK-STAT3 pathway 

inhibition on chondrocyte metabolism under mechanical stress, and not by the specific 

effects of tofacitinib used in the study. 

Aging is known to promote cartilage-matrix stiffening via the accumulation of 

advanced glycation end-products (AGEs) (33, 34). Huang et al. (35) previously reported 

that blocking the JAK/STAT3 signaling pathway with selective JAK-2 and JAK-3 

inhibitors inhibited AGE-induced activation of MMP-13 and ADAMTS and prevented 

AGE-mediated decreases in collagen II and aggrecan. We speculate JAK inhibition by 

tofacitinib may also attenuate aging-related AGE-mediated protease expression by 

chondrocytes and might be a useful information for the development of the disease 

modifying osteoarthritis drugs. 

Regarding changes in transcriptional activity caused by mechanical stress, Marcu et 

al. (36) reported that NF-κB was triggered by mechanical stress and that activated 
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NF-κB regulated the expression of several cytokines and matrix-degrading enzymes. In 

addition, the MAPK pathway, which involves ERK, JNK, and p38, is known to be 

modulated by various external stimuli (37, 38). We previously reported that the 

application of CTS to human chondrocytes induced nuclear translocation of NF-κB and 

RUNX-2 via activation of MAPKs such as ERK, p38, and JNK, and evoked 

downstream expression of proteases such as ADAMTS-4, ADAMTS-5, and 

MMP-13,(14-16). The present in vitro study demonstrated that tofacitinib inhibited 

protease expression, at least partly by inhibiting the mechanical stress-induced nuclear 

translocation and activation of NF-κB and RUNX-2. 

The JAK-STAT pathway and STAT signaling have been shown to be activated in 

chondrocytes and chondrocyte-like cells, and to induce MMP expression via several 

cytokines, including IL-1β, oncostatin M (39), IL-7 (40), and IL-6/sIL-6R in 

combination with IL-1β (41). We previously reported that CTS (0.5 Hz, 10% elongation 

for 30 min) induced IL-1β production by human chondrocytes 12 h after stimulation 

(late phase) (14). In this study, the concentration of IL-1β in the supernatant after CTS 

increased at 12 after CTS, and this might influence on the biphasic expression of 

ADAMTS-5. However, tofacitinib did not show significant inhibition on CTS-induced 

IL-1β production by chondrocytes. Wang et al. reported that IL-6 was up-regulated by 

fluid-induced shear stress (42-44) via up-regulation of cyclooxygenase-2 (COX-2) and 

prostaglandin E2 (PGE2) production in chondrocytes (42). In this study the 

concentration of IL-6 in the supernatant significantly increased at 24h after CTS, and it 

was significantly decreased by treatment with tofacitinib. Thus, tofacitinib could inhibit 
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the IL-6-induced up-regulation of COX-2 and PGE2 production. It might therefore be 

reasonable to speculate that tofacitinib may not inhibit the IL-1β-mediated catabolic 

effect directly, but may contribute to the reduction of NF-κB activation evoked by the 

cytokine loop after mechanical stress. 

There were several limitations to this study. First, the stretching system used was a 

simple model because cells were cultured in monolayers. Thus, our findings of the 

current study are limited to the vitro effects of JAK-STAT signaling inhibition on 

CTS-induced ADAMTS / MMP production in monolayer cultured chondrocytes. The 

results might be different if investigated in chondrocytes cultured under 

three-dimensional condition and in tissue, or by other mechanical-stress such as shear 

and compression. Second, the study focused on the effects of tofacitinib mainly on the 

expression of ADAMTS-4, 5 and MMP-13 at mRNA levels in vitro, and did not 

investigate other selective JAK inhibitors, and whether such drugs might exert similar 

chondro-protective effects thus remains unknown. Third, the inflammatory condition 

within the RA joint is complicated, and factors other than mechanical stress were 

excluded in the current in vitro model. Fourth, it would be difficult to obtain the 

reproducible results in OA or RA tissue;.OA tissue may show various stages of cell 

differentiation and chondrocytes from RA tissue may be affected by cytokines or drug 

treatment. 

In conclusion, JAK is involved in the mechanical stress-induced signal transduction 

pathway in chondrocytes. Our in vitro study showed that inhibition of JAK-mediated 

STAT and MAPK activation could ameliorate the expression of proteases in mechanical 
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stress-loaded human chondrocytes in vitro. 
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Figure legends 

Table 1. 

Primer sequences used for RT–PCR 

Table 2. 

The effect of tofacitinib on the CTS induced expression of cytokines from chondrocyte. 

The data are presented as the mean ± standard deviation (n=6 per experimental group). 

Tofa, tofacitinib. *P < 0.01 relative to CTS (−), §P < 0.05 between Tofa (−) and Tofa (+) 

Figure 1. 

(A) Results of RT–PCR showing CTS-induced gene expression in chondrocytes treated 

with various concentrations of tofacitinib. CTS reduced the expression of COL2A1 and 

ACAN and induced the expression of RUNX2, ADAMTS4, ADAMTS5, and MMP13. 

Tofacitinib up-regulated the expression of COL2A1 and ACAN and down-regulated the 

CTS-induced RUNX2, ADAMTS4, ADAMTS5, and MMP13 expression. PCR 

amplifications were repeated at least three times with similar results. (B) Results of 

real-time PCR (n=8 per experimental group) showing CTS-induced gene expression in 

chondrocytes treated with various concentrations of tofacitinib. Tofacitinib showed 

concentration-dependent effects on RUNX2, ADAMTS4, and ADAMTS5 expression. 

Tofacitinib 1000 nM inhibited RUNX2 expression significantly more than 100 nM. Tofa, 

tofacitinib. *P < 0.01 
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Figure 2. 

Results of real-time PCR (n=8 per experimental group) showing effects of tofacitinib 

(1000 nM) on time-dependent changes in expression of RUNX2, ADAMTS4, ADAMTS5, 

and MMP13 (A-D). CTS induced RUNX2 expression after 1 h (A), ADAMTS4 and 

MMP13 after 24 h (B, D), and ADAMTS5 after 1 h and 12 h (C). Tofacitinib 

significantly down-regulated these expressions at both early and late phases. Tofa, 

tofacitinib. *P < 0.05 relative to 0 h, **P < 0.01 relative to 0 h, §P < 0.01 between Tofa 

(−) and Tofa (+), §§P < 0.01 between Tofa (−) and Tofa (+) 

Figure 3. 

(A) Results of immunocytochemistry showing that tofacitinib (1000 nM) inhibited 

CTS-induced nuclear translocation of RUNX-2 and NF-κB p65 subunit in chondrocytes 

(30 min after CTS). In the absence of tofacitinib, RUNX-2 and NF-κB both translocated 

to the nucleus following CTS (green signals), but translocation was suppressed by 

tofacitinib. Right panels show merged images stained with Hoechst 33342. (B) 

Percentages of chondrocytes positive for nuclear RUNX-2 and NF-κB p65 subunit were 

significantly reduced by tofacitinib. Tofa, tofacitinib. *P < 0.01 

Figure 4. 

Fold increases in phosphorylation based on analysis of western blots by densitometry. 
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(A) Total and phosphorylated ERK (P-ERK), (B) total and phosphorylated JNK 

(P-JNK), (C) total and phosphorylated p38 (P-p38), and (D) total and phosphorylated 

STAT3 (P-STAT3). CTS up-regulated phosphorylation of ERK, JNK, p38, and STAT3, 

and these effects were down-regulated by tofacitinib. Tofa, tofacitinib. (n=4 per 

experimental group) *P < 0.05, **P < 0.01 
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