
I t is expected that cell-based therapy will eventually 
be effective for treating various diseases including 

cardiac arrhythmia.  The numbers of patients with heart 
diseases have been increasing worldwide due to the 
aging of populations.  The number of cardiac pacemaker 
implantations for bradyarrhythmia has therefore also 
been increasing [1].  However,  pacemaker implanta-
tions present various problems including short battery 
life,  lead complications,  risk of infection,  metal allergy,  
and electronic interference; alternatives are needed 
[2-4].  Here we review various types of cells that can be 
used for a biological pacemaker,  and we discuss the 
problems that must be addressed before the clinical 
application of cell-based therapy.

Electronic Prerequisites for the  
Automaticity of a Pacemaker

The sinoatrial node can generate impulses faster than 
those generated in other areas.  Sinoatrial node cells can 
spontaneously depolarize during diastole.  The If current 
flows through hyperpolarization-activated cyclic nucle-
otide-gated (HCN) channels,  which are cation channels 
activated by hyperpolarization at voltages more negative 
than −50 mV.  This current is mainly involved in dia-
stolic depolarization [5 , 6].  HCN4 is one of the iso-
forms and is highly expressed in the sinoatrial node.  
HCN4 mutations have been shown to cause sinus node 
dysfunction [7-9].  However,  transgenic mice overex-
pressing HCN2 specifically in the heart exhibited no 
discernible abnormalities under physiological condi-
tions [10].

On the other hand,  working cardiomyocytes main-
tain the resting membrane potentials during diastole.  
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The IK1 current flowing through Kir channels plays an 
important role in this phenomenon.  Left ventricular 
cardiomyocytes of guinea pigs transduced with domi-
nant-negative Kir2.1 show spontaneous action potentials 
[11].  Additionally,  IK1-enhanced human-induced plu-
ripotent stem cell-derived cardiomyocytes (hiPSC-CMs) 
lose spontaneous beating and acquire stable resting 
membrane potentials [12].

Thus,  enhancement of the If current and attenuation 
of the IK1 current are prerequisites for spontaneous dia-
stolic depolarization of sinoatrial node cells (Fig. 1) 
[13].

Cell-based Therapy

Mainly two types of cells have been used as a plat-
form for a biological pacemaker: mesenchymal stem 
cells (MSCs) and pluripotent stem cells (PSCs) (Fig. 2).

Mesenchymal stem cell-based therapy. Mesen
chymal stem cells (MSCs) can differentiate into several 
types of mesodermal cells,  including osteoblasts,  chon-
drocytes,  myocytes and adipocytes [14].  MSCs do not 
fire spontaneously like cardiomyocytes do (Fig. 2).  
However,  MSCs robustly express connexin 40 and 43,  
that form the gap junction.  MSCs can then electrically 
couple with cardiomyocytes [15].  MSCs transduced 
with HCN1,  HCN2 or HCN4 can generate If current 
[16-20].  The depolarization of adjacent cardiomyocytes 
could result in the closing of the HCN channels,  and 
the next repolarization could result in the opening of the 
HCN channels.  That is to say,  MSCs can be used as a 
platform for delivering the If current that depolarizes 
adjacent cardiomyocytes [21].  HCN4-overexpressing 
porcine MSC transplantation was shown to be able to 
increase the heart rate in a porcine model of complete 
atrioventricular block,  however,  the physiological heart 
rate could not be recovered [22].

MSCs can possibly migrate and differentiate into 
other cell types in vivo [23] .  It has thus been discussed 
whether the stability of coupling between HCN-
transduced MSCs and the myocardium can be main-
tained for a long time [24 , 25].

Pluripotent stem cell-derived sinoatrial node cell-
like cells. Pluripotent stem cells (PSCs) can differen-
tiate into a variety of cells,  and they are expected to be 
a robust source for regenerative medicine [26-30].  
Thus,  many different methods have been established to 
induce or sort PSC-derived sinoatrial node cell-like 
cells.  The following methods have been used to isolate 
sinoatrial node cell-like cells from PSC-derived cells:  
Sinoatrial and atrioventricular node-like cells derived 
from mouse embryonic stem cells (mESCs) could be 
identified and isolated by Shox2 promoter- and Cx30.2 
promoter-based antibiotic selection,  and progenitor 
cells of sinoatrial node-like cells could be isolated by 
sorting CD166-positive cells during the cardiac differ-
entiation of mESCs [31 , 32].  Shox2-deficient murine 
embryos exhibited hypoplasia of sinus venosus myocar-
dium (including the sinoatrial nodal region) and a lack 
of Tbx3 and Hcn4 expression,  along with an ectopic 
activation of working myocardium genes,  Nppa,  Cx40 
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Fig. 1　 Differences between the action potential configurations of 
sinoatrial node cells (top) and ventricular cells (middle).  Sinoatrial 
node cells have a pacemaking ability via slow diastolic depolariza-
tion.  The depolarization requires the presence of the If current and 
absence of the IK1 current (bottom).



and Nkx2.5 [33 , 34].
The following methods were shown to induce 

sinoatrial node-like cells from PSCs.  Activation of cal-
cium-activated potassium channels increased the pro-
portion of pacemaker-like cells using mESCs [35].  
TBX3 is expressed in the sinoatrial node.  Tbx3-null 
murine embryos form sinoatrial nodes with atrial gene 
expression [36].  TBX3 is required to suppress the atrial 
and ventricular genes,  Cx40,  Cx43,  Scn5a and Kcnj2 
[37 , 38].  Mutations in human TBX3 are also known to 
be a cause of ulnar mammary syndrome [39 , 40].  
Therefore,  TBX3 transduction in the early cardiac dif-
ferentiation phase and Myh6-promoter-based antibiotic 
selection led to the induction of pacemaker-like cells 
using mESCs [41].

Additionally,  SHOX2 transduction in the early car-
diac differentiation phase also increased the proportion 
of sinoatrial node-like cells using mESCs [42].  These 
two transcription factors,  SHOX2 and TBX3,  play an 
important role in the development of the sinoatrial 
node [33 , 34 , 36 , 37 , 43].  Protze et al.  established a 
method for inducing sinoatrial node-like pacemaker 
cells from human PSCs without genetic manipulation 
[44].  The cells were identified as NKX2-5-negative car-
diomyocytes,  and their pacemaking ability was demon-
strated ex vivo.

The sinoatrial node-like cells derived from PSCs 
have patterns of gene expression and electrical features 
similar to those of endogenous sinoatrial node cells.  
However,  isolated sinoatrial node cells could not suffi-
ciently perform pacemaking in the right ventricle [45].  
Integration between transplanted cells and endogenous 

cardiac tissue might be important for achieving suffi-
cient pacemaking.  Further investigations are needed to 
determine whether the pacemaking ability of PSC-
derived sinoatrial node-like cells is sufficient to treat 
bradycardia in vivo.

HCN4-overexpressing pluripotent stem cell-derived 
cardiomyocytes. PSC-derived cardiomyocytes have 
pacemaking ability because they have the ion channels 
and receptors that are required for impulse generation,  
propagation and modulation [46-52].  However,  the 
pacemaking ability of PSC-derived cardiomyocytes 
might be insufficient for treating bradycardia because 
the new ectopic rhythm rate caused by transplanted 
PSC-derived cardiomyocytes was shown to be only one-
third to one-half of sinus rhythm [53-55].

PSC-derived cardiomyocytes can express Kir2.1 with 
long-term culturing,  but they generate a poor IK1 cur-
rent [12 , 47 , 56-59].  Additionally,  the expression of 
HCN channels decreases with maturation [47].

We have thus transduced HCN4 into PSC-derived 
cardiomyocytes and established cardiomyocytes gener-
ating an abundant If current and a poor IK1 current 
(Fig. 2) [60].  The rabbit HCN4-overexpressing mESC- 
derived cardiomyocytes (mESC-CMs) showed more 
frequent spontaneous beating and stronger pacemaking 
ability compared to those of non-overexpressing mESC-
CMs.  HCN4-overexpressing mESC-CMs expressed 3- 
to 5-times higher levels of transcripts of Hcn4 than did 
non-overexpressing mESC-CMs.  Additionally,  the 
transplantation of HCN4-overexpressing mESC-CMs 
generated a new rapid rhythm in rats with complete 
atrioventricular block,  and the transplantation partially 
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Fig. 2　 Various cells that may be used for a biological pacemaker.



recovered the heart rate comparable to the physiological 
sinus rate [55].  These cells must also be compared with 
PSC-derived sinoatrial node-like cells.

Advantages and disadvantages of a cell based-bio-
logical pacemaker. Some aspects of cell-based ther-
apy are of concern.  The duration of cell retention is the 
most important problem for all cell-based therapies,  
and it is not yet known how long transplanted cardio-
myocytes are retained in the heart,  whereas the battery 
life of a mechanical pacemaker can be examined and 
determined.  Negative chronotropic drugs that are used 
for treatment of heart failure and tachyarrhythmia can 
suppress the pacemaking ability of a biological pace-
maker,  but a mechanical pacemaker can pace regardless 
of the administration of these drugs [61-64].  Tachyar
rhythmia induced by transplanted cells is also a con-
cern,  since even PSC-derived cardiomyocytes (PSC-
CMs) can induce arrhythmias [65 , 66].

We and another group have demonstrated that 
ivabradine,  an HCN channel blocker,  decreased spon-
taneous beating,  and this drug may be useful for the 
suppression of excessive pacing by a biological pace-
maker with HCN channel overexpression [60 , 67].  
Additionally,  PSC-derived cells and genetically edited 
cells present the possibility of tumorigenesis.

On the other hand,  if transplantation can be per-
formed by catheterization,  the implantation of a bio-
logical pacemaker is minimally invasive and can be 
performed repeatedly in the same patient [68].  There is 
also no need to worry about electromagnetic interfer-
ence.  Moreover,  the expression of β-adrenoceptor can 
provide physiologic autonomic responsiveness.  The risk 
of infection in the case of the transplantation of a bio-
logical pacemaker might be lower than that with the 
implantation of a mechanical pacemaker.  A biological 
pacemaker could thus be a complementary treatment 
for a mechanical pacemaker.

Gene Therapy

Adenoviral gene therapy using different genes has 
also been studied for the regeneration of pacemakers 
[67 , 69-75].  HCN gene overexpression can increase the 
heart rates of bradycardia model animals.  Especially,  
adenoviral HCN2/SkM1 transduction into left bundle 
branches was shown to be able to recover the physio-
logical heart rates in complete atrioventricular dogs 
[73].  In contrast,  the overexpression of chimeric HCN 

channels,  containing N- and C- termini of HCN2 and 
the transmembrane region of HCN1,  caused an exces-
sive tachycardia [67].

TBX18 overexpression makes adult ventricular car-
diomyocytes transdifferentiate into sinoatrial node-like 
cells [74 , 75].  TBX18 is required for the formation of 
the sinoatrial node head and the differentiation of 
sinoatrial node myocardium [36].  TBX18 gene injection 
into the left ventricle was shown to recover the physio-
logical heart rate in a complete atrioventricular block 
porcine model [75].  TBX18 is required for the forma-
tion of the sinoatrial node [36].  However,  continuous 
TBX18 expression is necessary to maintain the 
sinoatrial node-like phenotype even though TBX18 was 
undetectable in the neonatal and adult sinoatrial nodes 
[74].  Since adenoviral vector does not integrate into a 
genome,  the expression of a transgene is transient.  
Thus,  a safe and long-lasting vector is required as with 
other gene therapy.

Challenges Regarding the Clinical  
Application of Biological Pacemakers

Before clinical application,  the efficacy and safety of 
a biological pacemaker must be validated in vivo.  Thus 
far,  it has never been demonstrated that transplantation 
of a biological pacemaker can completely recover the 
physiological heart rate in large-animal bradycardia 
models [53 , 76].  We have reported that HCN4 overex-
pression enhanced mESC-CMs’ pacemaker ability in 
complete atrioventricular model rats [55].  We are now 
attempting to create HCN4-overexpressing hiPSC-CMs 
and transplant them into large-animal bradycardia 
models.

Moreover,  cell delivery systems are required to 
achieve safe and reliable cell-based therapy.  For exam-
ple,  a catheter system and biomaterial carriers have 
been developed [77 , 78].

Conclusion

Various methods for the establishment of cell-based 
therapy for a biological pacemaker have been investi-
gated,  but a biological pacemaker has not yet been real-
ized in a clinical situation.  The effects of candidate 
biological pacemakers on bradycardia and arrhythmo-
genicity must be investigated in large-animal bradycar-
dia models prior to the realization of clinical applica-
tions of biological pacemakers.
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