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Introduction

The central point around which this thesis has been developed is the in-
vestigation of geometrical structures which are present in some theories of
increasing interest in physics. In particular attention has been focused on
information theory and quantum mechanics, where the systematic use of
specific coordinate systems makes extremely difficult a proper geometrical
interpretation of their contents.

A guiding principle in this investigation has been the search for analogies
with situations where the role of tensorial structures is better understood,
first of all the realm of Lagrangian and Hamiltonian mechanics. Interestingly
a unifying feature of all this investigation has been Hamilton-Jacobi theory
and particularly its relationship with the definition of generating functions
of canonical transformations. Indeed complete solutions of Hamilton-Jacobi
equation generate symplectic diffeomorphisms which permit to map tangent
bundle TM or cotangent bundle T ∗M of a carrier spaceM onto two copies
M×M of the same carrier space.

Let T ∗M be the cotangent bundle over a n-dimensional configuration
space M and let (qj, pj) define a local coordinate system of T ∗M. In these
coordinates the canonical symplectic structure ω0 on T ∗M is written as fol-
lows:

ω0 =
n∑
k=1

dpk ∧ dqk , (1)

whereas an associated Liouville potential one form is

θ0 =
n∑
k=1

pkdq
k . (2)

A symplectic diffeomorphism on T ∗M from (qk, pk) to (Qk, Pk) is assigned
once a generating function S(q,Q; t) satisfying the condition

det

∣∣∣∣ ∂2S

∂qj∂Qk

∣∣∣∣ 6= 0 , (3)

i



is given. In particular such a diffeomorphism is obtained according to the
following formulae:

pk =
∂S

∂qk
(4)

Pk = − ∂S

∂Qk
. (5)

If H(q, p, t) is a Hamiltonian function on T ∗M the transformed Hamil-
tonian is K = H + ∂S

∂t
. If K can be chosen to vanish the system can be

reduced to equilibrium and S(q,Q, t) is a complete solution of the following
Hamilton-Jacobi equation:

∂S

∂t
+H

(
q,
∂S

∂q
, t

)
= 0 , (6)

which generally is a non-linear first-order PDE.
If the variables Qk define the configuration of the system at a fixed time

T and qk at a different instant t, a complete solution of (6) can be written
as follows

S(q,Q, t) =

∫ T

t

Ldt , (7)

where the integral is evaluated along a solution of equations of the motion
which passes through the point Qk(T ) and qk(t) and L =

∑
k q̇

kpk−H is the
lagrangian function associated with the dynamical system. Such an integral
is called Hamilton principal function and it will play an important role in
information geometry, as it will be shown in the third chapter.

It is possible to look at the theory of generating functions from a more
“geometrical” point of view. 1Indeed let us consider the product manifold
T ∗M× T ∗M and let π1 and π2 be the associated projections onto the first
and the second factor of the product.

Since T ∗M is a symplectic manifold with respect to the canonical two
form ω0, the two form ω = π∗1(ω0) − π∗2(ω0) on T ∗M × T ∗M defines a
symplectic structure on the product manifold. An associated Liouville one-
form is θ = π∗1(θ0)− π∗2(θ0).

The graph Σ ≡ ((q, p), φ(q, p)) of a symplectic diffeomorphism φ : T ∗M→
T ∗M determines a submanifold of the product manifold T ∗M×T ∗M which
is a Lagrangian submanifold with respect to the symplectic two form ω.
Therefore the following chain of equalities is valid:

0 = ω|Σ = d θ|Σ , (8)

1This geometrical aspect has been used in order to define Hamilton-Jacobi theory also
at the level of Lagrangian mechanics on the tangent bundle TM (for more details see [1])
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and consequently there exists locally a function Sφ on Σ such that

θ|Σ = dSφ . (9)

This function is the generating function of the symplectic diffeomorphism φ
and the equation (9) can be rewritten in the more familiar form2∑

k

(pkdq
k)−

∑
k

(PkdQ
k) = dSφ(q,Q) . (10)

Hamilton-Jacobi theory, however, is not only a useful tool in Hamiltonian
description of particle mechanics. During the 60’s Peter Bergmann [3, 4], and
Arthur Komar [5, 6] proposed a Hamilton-Jacobi formulation of General Rel-
ativity based on the Hamiltonian formulation introduced same years before
by Dirac [7, 8]. This formulation was characterized by the presence of four
first-class constraints (for more details on Dirac theory of constraints see [9]),
let us call them Ca, associated with the reparametrization freedom of Ein-
stein theory. Bergmann and Komar, therefore, considered these constraints
as Hamiltonians and used them in order to write four Hamilton-Jacobi equa-
tions for a functional S[g] of the metric tensor, g. Furthermore this functional
was interpreted as the generating functional of a canonical transformation
mapping the initial phase space of the theory to the constrained one.

Mappings like (10) will be widely adoperated in this thesis in order to
move from a description in terms of configurations and “velocities” or “mo-
menta” to a description in terms of pairs of configurations. This is extremely
useful in order to avoid the use of “velocities” in theories where “velocities”
or “momenta” do not possess a direct physical measurable interpretation,
like statistics and information theory or classical and quantum field theory.

Another central topic where the role of this kind of transformations will
be investigated is covariant relativistic description of field theories. The
main feature of this “picture” is the avoidance of a splitting of space-time
into space and time. Many poposals have been advanced in order to define
brackets depending on the values of the dynamical fields at different points of
the spacetime, instead of equal-time (such a kind of bracket is fundamental in
order to understand how to formulate Quantum Mechanics in a relativistic
setting). Therefore it is natural to ask whether canonical transformations
mapping a cotangent bundle T ∗M into two copies of the configuration space
M×M could play a role in such a kind of covariant description.

Apart from the fact that general relativity has forced physicists to trans-
late physical ideas in the language of differential geometry, understanding the

2This formula can be generallized also to include one-parameter group of diffeomor-
phism in the so called extended formalism (see for instance [2]).
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geometrical content in the description of a physical system is extremely use-
ful in order to build generalizations in a proper way. Furthermore a deeper
comprehension of the mathematical description of a system is necessary in
order to find analogies with other theories: these analogies are fundamental
in any scientific discipline since they promote an exchange of ideas and con-
sequently an increase of knowledge. Therefore in this thesis it will presented
an investigation of some aspects of some physical systems from a more geo-
metrical perspective: Quantum Mechanics, covariant description of particles
and fields and Information Geometry share, in fact, some common features
related with the theory of canonical transformation.

Let us now take a closer look at the structure of the thesis. It is divided
into three chapters.

In the first chapter we will start with some considerations on quantum-
to-classical transitions. After recalling the WKB method, we will illustrate
how classical-like dynamics can be obtained by reducing the initial Hilbert
space associated with a quantum system to a manifold of selected states.
Then the discussion will move towards the possibility of introducing a varia-
tional principle in order to define dynamical evolution of Quantum Systems.
In particular the proposals advanced by Dirac and Schwinger will be prop-
erly analyzed. Both of them, in fact, focused on the relationship between
variational principles and the theory of canonical transformation: in partic-
ular they considered propagators as the analogue of generating functions.
We will mainly focus on the approach proposed by Schwinger providing also
some interesting examples. Furthermore in the last part of the chapter it
will be shown directly by means of an example how Schwinger extended his
variational principle also to field theories [10] and how it is possible to use
this formulation to generalize Hamilton-Jacobi theory to a relativistic setting
without breaking covariance.

Covariant description of relativistic physical systems will be the topic of
the second chapter. In particular the definition of Peierls bracket [11] both
for particle and fields dynamics will be presented from a more geometrical
point of view. Peierls bracket is a bracket which involves the values of dy-
namical fields at different points of the spacetime and it was widely used by
de Witt [12] in its covariant description of gravitational field. In this second
chapter we will focus mainly on the geometrical interpretation of Peierls’ pre-
scription and this will allow us to generalize Peierls’ idea in order to define a
Jacobi structure on the space of geodesics. According to Kirillov theorem [13]
this kind of geometrical structure is the most general antisymmetric bilinear
operator which satisfy a locality requirement.

Third chapter will be devoted to Information Geometry. Information
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geometry was born as a geometrical study of the problem of statistical infer-
ence. After a short review of the main concepts and definitions of Information
Geometry, it will be explained how Hamilton principal function (7) can be
used in order to introduce a “canonical” potential function for a given sta-
tistical model. Potential functions are two-points functions which generalize
the concept of divergence functions. They allow to recover all tensors which
characterize a statistical model (Ξ, g, T ): Ξ is a manifold the points of which
are probability distributions, g is a metric tensor and T is a symmetric tensor
of degree three, called skewness tensor. Since there is not a unique potential
function which determines a given statistical model, this chapter will advance
a proposal in order to select a “canonical” one.

v



Chapter 1

Hamilton-Jacobi methods in
Quantum Dynamics

The subject of this chapter is the analysis of the role of Hamilton-Jacobi the-
ory and contact transformations in the development of Quantum descriptions.
We will begin with a summary of the WKB method for solving Schrödinger
equation: it can be transformed into a pair of coupled partial differential
equations involving the amplitude A(x, t) and the phase S(x, t) of the wave
function. In the short wave-lenght limit when ~ → 0 these two equations
decouple and one reduces to the Hamilton-Jacobi equation of a particular
classical Hamiltonian system. A different way of looking at classical-like dy-
namics of a Quantum system proposed in a recent paper [14] employs the
quantizer-dequantizer formalism and the definition of suitable systems of co-
herent states. Both these procedures, indeed, allow to define submanifolds of
states of the Hilbert space associated with a quantum systems. A Quantum
dynamics which suitably reduces to these sets of states will be called classical-
like and conditions under which the induced motion on the manifold of states
is completely integrable are provided.
A different perspective is adopted in the second part of the chapter. Indeed
during the development of Quantum Theory eminent scientists investigated
the possibility of defining contact transformations in a quantum framework.
In particular in this section we will present the ideas exposed by Dirac and
Schwinger about quantum transformation functions, which are kernels of in-
tegral operators that allow to change the representation of the Hilbert space
associated with a given Quantum System. Both of them found an analogy
between these transformation functions and variational formulations.
In particular we will dedicate more time to Schwinger’s formulation of Quan-
tum dynamics, which is based on a variational principle, and to its deep re-
lations with Hamilton-Jacobi theory. Firstly we will describe this principle
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for the case of non relativistic Quantum Mechanics of particles, revisiting the
usual examples of free particle and harmonic oscillator. Then we will intro-
duce the extension of these results to the theory of Quantized fields made by
Schwinger during the 50’s. This analysis allows to define a generalization
of Hamilton-Jacobi equation to relativistic field theories. The section closes
with the example of the free Lagrangian of the Klein-Gordon field.

1.1 Dynamical Aspect in the

Quantizer-Dequantizer Formalism

In this first section, following the paper [14], we will expose how it is possi-
ble to define classical-like dynamics for a Quantum systems according to a
reduction procedure. Reduction will require the definition of a generalized
Weyl system or of a set of generalized coherent states, which will provide
the immersion of a manifold M into the Hilbert space H associated with a
Quantum system: this will introduce a non-linear element in a linear theory.

Indeed, the mathematics of Quantum Mechanics entails linear structures
in the Hilbert space H of the system, in the dynamical evolution given by
Schrödinger equation, and in the set of linear operators on H. On the other
hand, the degrees of freedom of a classical physical system are generally
modelled on non-linear manifolds, and the dynamical evolution needs not
allow for any superposition rule.

Consequently, to better understand the quantum-to-classical transition it
is conceivable that the introduction of nonlinear changes of coordinates in
Quantum Mechanics may make the analysis more clear. An example of such
a classical limit procedure is given by the so-called WKB short-wave limit of
Schrödinger equation which will be now briefly recalled.

Let ψ(x, t) be a wavefunction in the Hilbert spaceH = L2(Rn , dµ), where
dµ is the Lebesgue measure on Rn, and consider the Schrödinger equation:

ı~
∂ ψ

∂t
= − ~2

2m
∆ψ + V (x)ψ (1.1)

Using a polar representation ψ(x , t) = A(x , t) e−
ı
~W (x ,t), where the functions

A and W are real, and A is strictly positive, the Schrödinger equation (1.1)
becomes a system of two coupled partial differential equations:

∂W

∂t
=

1

2m
|∇W |2 + V (x)− ~2

2m

∆A

A
, (1.2)

∂A

∂t
=

1

2m
(2∇A · ∇W + A∆W ) . (1.3)
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We would like to stress that this is a nonlinear change of coordinates in a real-
ization of the Hilbert space which makes the superposition rule, appropriate
for the description of interference phenomena, quite nontrivial.

Now, one may perform what is known as the classical limit of the Schrödinger
equation, which amounts to take the limit in which ~ goes to 0. It is clear
that the only term which is affected by this limiting procedure is the third
one in the right hand side of equation (1.2). Clearly, when ∆A

A
is bounded, if

~ goes to 0, so does ~2

2m
∆A
A

, and thus one can neglect the third term in equa-
tion (1.2). The result is that the system of equations is no longer coupled,
and Eq. (1.2) reduces to the Hamilton-Jacobi equation:

∂W

∂t
=

1

2m
|∇W |2 + V (x) , (1.4)

associated with the Hamiltonian function H = 1
2m
p2 +V (x) plus an equation

that will be recognized as a continuity equation.

Remark 1 In the case in which A = 0 at some isolated points, that is, the
wavefunction ψ has nodes, the third term of equation (1.2) could present
divergences, and thus one should previously check that ∆A

A
presents no diver-

gences on the nodes, and then proceed as illustrated above. If ∆A
A

actually
presents divergences, than the procedure outlined can not be applied to the
quantum state described by the wavefunction ψ.

When one is dealing with a time-independent Hamiltonian, it is possible
to make the following ansatz for the solution of equation (1.4):

W (x, q, t) = S(x, q) + Et (1.5)

where E is a constant and q are parameters that will be identified with
the final coordinates of the system. Then Eq. (1.4) reduces to the time-
independent Hamilton-Jacobi equation

1

2m
|∇S|2 + V (x) = E . (1.6)

Once a complete solution S(x , q) of the Hamilton-Jacobi equation is de-
termined, it can be shown that

A2 =

∣∣∣∣det

(
∂2S

∂xj ∂qk

)∣∣∣∣ ,
is a solution of Eq. (1.3). Let us recall that a complete solution of the
Hamilton-Jacobi equation is a function S(x, q), with parametric dependence

3



on the second factor q, that would define a diffeomorphism dS : Rn × Rn →
T ∗Rn given by1:

dS(x, q) := (x, dqS(x)) , (1.7)

or, in local coordinates, pk = ∂S/∂qk(x, q), by means of which one can replace
initial position x and initial momentum p, with initial position x and final
position q. Furthermore, it is possible to define a symplectic structure ω on
Rn × Rn as follows:

ω := (dS)∗ ω0 = d ((dS)∗θ0) =
∂S

∂xj∂qk
dxj ∧ dqk , (1.8)

where θ0 = pj dqj is the the canonical one form on T ∗Rn, and ω0 = dθ0 =
dpj ∧ dqj is the canonical symplectic structure on T ∗Rn [15]. Consider the
Hamiltonian function H = 1

2m
p2 +V (x) on T ∗Rn and its associated Hamilto-

nian vector field XH defined by the condition iXHω0 = dH, then, when there
exists a complete solution S of Hamilton-Jacobi equation, it is possible to
define the vector field

X̃H = ((dS)−1)∗XH (1.9)

which is the image under the push-forward of the diffeomorphism (dS)−1 (see
Eq. (1.7)) of the Hamiltonian vector field XH . The vector field X̃H will be
the Hamiltonian vector field, with respect to the symplectic structure ω on
the manifold Rn × Rn, of the Hamiltonian:

H̃ = dS∗(H) . (1.10)

Since the new variables qj will be constants of the motion, one gets that:

X̃H =
∂S

∂xj
∂

∂xj
. (1.11)

In order to solve Eq. (1.3) it is better to rewrite it in a more useful form.
If one multiplies both sides of the equation by 2A the following expression
comes to be valid:

∂A2

∂t
+∇ ·

(
A2∇S

m

)
= 0 . (1.12)

If one considers a time-independent solution A, the equation above be-
comes:

∇ ·
(
A2∇S

m

)
= 0 . (1.13)

1It is possible to generalize this construction to an arbitrary configuration manifold Q
(see for instance [1]). In such case, dS will be a diffeomorphism only on open submanifolds
of Q×Q and T ∗Q.
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In order to exhibit an explicit solution of this equation let us notice that
if a vector field X preserves the volume form fΩ, then the vector field fX
preserves the volume Ω (see [16] for a proof). Since:

LXΩ = (divX)Ω , (1.14)

the previous result tells that if the divergence of X with respect to the volume
form fΩ is zero, then the divergence of fX with respect to the volume form
Ω is zero. It is already known that the vector field X̃H is Hamiltonian with
respect to the symplectic form ω; therefore, it preserves the volume form:

fΩ = det

(
∂2S

∂xj∂qk

)
dx1 ∧ dq1 ∧ · · · ∧ dxn ∧ dqn .

It then follows that the vector field fX̃H preserves the volume form Ω on
Rn × Rn, and thus one gets that:

∇ ·
(

det

(
∂2S

∂xj∂qk

)
∇S
)

= 0 . (1.15)

Consequently, a stationary solution of Eq. (1.3) is given by:

A2 = det

(
∂2S

∂xj∂qk

)
. (1.16)

The existence of a complete solution for the Hamilton-Jacobi equation,
however, implies the system to be completely integrable, that is, there must
be n independent constants of the motion in involution, which is a very
special situation.

Remark 2 It is clear that (1.4) is a non-linear equation, and thus, the clas-
sical limit, understood as ~ → 0, has destroyed the linearity of Schrödinger
equation. Looking at this situation from the opposite point of view, one could
say that the non-linear Hamilton-Jacobi equation becomes linear. Moreover,
when we add the amplitude A and unfold the resulting system into a Hilbert-
space setting, it becomes completely integrable. Therefore, it could be tempting
to say that the “quantization” procedure may be thought of as a possible lin-
earization procedure for a first order partial differential equation represented
by the Hamilton-Jacobi equation for S.

It is readily seen that the classical limit of the Schrödinger equation highly
depends on the chosen wavefunction ψ(x , t), since an arbitrary wavefunction
ψ = A e−

ı
~W needs not to be such that ~2

2m
∆A
A
≈ 0. Accordingly, it seems

that the information on the “classical limit” of the theory is not contained
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in the whole Hilbert space H, but in families of suitably-defined states. This
idea of considering subsystems is at the basis of the so-called reduction pro-
cedures, which have been fruitfully employed in the Hamiltonian description
of dynamical systems. Indeed, a common situation arising in reduction pro-
cedures is precisely the generation of nonlinear dynamics starting from linear
ones (see for instance [17], Ch. 7.1-2).

In Classical Mechanics, (pure) states of a system are described as points of
a suitable manifold M , usually a phase-space. The observables of the theory
are described as a certain class of real-valued functions on M . Of course, if
M is a smooth manifold, the observables are described by real-valued smooth
functions. The dynamical evolution is described using a one-parameter group
γt of transformations of M in itself. If M is a smooth manifold, and γt is
smooth, then there is a (complete) vector field Γ generating γt. The fact that
γt is a one-parameter group is associated with the fact that one requires the
evolution of the system to be completely determined once the initial state
m ∈M is specified.

In Quantum Mechanics, it is possible to immerse a manifold M in the
Hilbert space H of a physical system, for instance, by means of the so-called
generalized coherent states. In this way, to every m ∈M there corresponds a
normalized vector |m〉 ∈ H, and it is possible to define real-valued functions
on M starting with quantum observables (described by self-adjoint opera-
tors), and vice versa. From this point of view, generalized coherent states
can be thought of as a double-way bridge between Classical and Quantum
Mechanics, for, on the one hand, they can be used as a tool to achieve the
quantization of a given classical system, and, on the other hand, they can be
used as a tool to “dequantize” a given quantum system [18].

In the remaining part of this section this last perspective will be adopted
by implementing a reduction-like procedure of quantum dynamical maps us-
ing generalized coherent states. Specifically the following question will be
asked: is it possible to immerse M in H in such a way that a given quantum
unitary evolution on H defines a one-parameter group of transformations of
M in itself? Consequently one could look for a classical-like interpretation
of the points of M , and thus, for the dynamical system on it arising from the
reduction of the quantum dynamical map. In this sense one can interpret
the resulting dynamical map as being classical-like. Of course, a complete
answer to this question is not easy to give, and thus this section contains
only a preliminary discussion in which the conceptual aspects of this project
are outlined and the well-known example of the canonical coherent states for
the quantum harmonic oscillator is reformulated accordingly.
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1.1.1 Weyl systems and generalized coherent states

In the spirit of Dirac correspondence principle, classical Poisson-Brackets on
functions on a phase space are replaced by commutators among linear op-
erators on a Hilbert space. In the case of canonical commutation relations
(CCRs) [Q ,P] = ı~I, at least one of the linear operators representing posi-
tions Q and momenta P must be an unbounded operator, leading to problems
related to the domain of definition for the CCRs. To handle this problem
Weyl proposed to formulate CCRs in terms of group elements rather than
algebra generators [19], [20]. Specifically, let (V, ω) be a symplectic Abelian
vector group of finite dimension 2n, that is, a vector space V endowed with
a non-degenerate antisymmetric bilinear form ω (symplectic form) invariant
under the action of the vector group. Then, in Weyl’s approach the CCRs are
replaced with a projective unitary representation U of the symplectic Abelian
vector group V , i.e., for any v, w ∈ V , U(v),U(w) are unitary operators on
a Hilbert space H such that:

U(v)U(w)U(v)†U(w)† = eı ω(v,w) . (1.17)

By selecting a Lagrangian subspace X ⊂ V , i.e., a maximal isotropic sub-
space, the unitary operators U(v) corresponding to an irreducible representa-
tion of V can be realized as von Neumann’s irreducible representation on the
Hilbert space L2(X, dµ) of square integrable functions ψ on X with respect
to the Lebesgue measure:

(U(v)ψ)(x) = (U(x, α)ψ)(x) = eıα·xψ(x+ q) . (1.18)

where the symplectic vector space V is naturally identified with X ⊕X∗ ∼=
T ∗X and vectors v ∈ V can be written as pairs (x, α) with x ∈ X and
α ∈ X∗. It is well-known that the generators Q of the subgroup U(q , 0) and
the generators P of the subgroup U(0 , α) satisfy the CCRs on an appropriate
domain [21, 22].

Weyl’s idea can be generalized to the so-called quantizer-dequantizer for-
malism [23], in which projective representations of groups are replaced by
two maps U,D, called quantizer and dequantizer respectively. Let (M ,µ) be
a measure space, for instance a topological space with a Borelian measure,
and H a Hilbert space with its associated spaces L(H) and U(H) of linear
and unitary operators respectively. One defines two maps U,D : M → U(H),
by means of which a unitary operator U(m), or D(m), is associated to any
point m ∈ M . The map U allows to build operators starting with functions
on M , that is, given a function f in M one can define the linear operator:

Af :=

∫
M

f(m)U(m)dµ(m) , (1.19)

7



with Af acting on the vector |ψ〉 ∈ H as

Af |ψ〉 :=

∫
M

f(m)(U(m)|ψ〉) dµ(m) .

Thus |ψ〉 will be in the domain of Af if ||Af |ψ〉|| <∞. This will be achieved
if the map U is strongly continuous, that is for any |ψ〉 ∈ H, the map
x 7→ U(x)|ψ〉 is continuous, and f ∈ L1(M,dµ). Notice that in such case
(notice that the map x 7→ U(x)|ψ〉 is not only continuous but bounded
||U(x)|ψ〉|| ≤ ||U(x)||||ψ|| = ||ψ||):

||Af |ψ〉|| ≤ ||f ||L1 ||ψ|| ,

and the operator Af is bounded. More general measurable maps f will
lead to unbounded operators Af . Analogously, starting with D and a linear
operator A one can build a function fA:

fA(m) := Tr (AD†(m)) . (1.20)

Clearly, whenever A is an unbounded operator, a careful analysis is needed
in order to be sure that the trace in the definition of fA makes sense.

If the maps U,D are such that:∫
M

Tr (D†(m)U(m′)) f(m′) dµ(m′) = f(m) , (1.21)

for any test function f on M , that is

Tr (D†(m)U(m′)) = δ(m,m′) , (1.22)

in the sense of distributions, then if D(m) is strongly continuous too, it is
readily seen that on test functions:

fAf
(m) = Tr (D†(m) Af ) =

∫
M

f(m′)Tr (D†(m)U(m′)) dµ(m′) = f(m) .

(1.23)
If one assumes that the map fA is integrable in M , then the correspondence
A 7→ fA is a left-inverse to the correspondence f 7→ Af .

Fixing a fiducial normalized state |0〉 in the Hilbert space H, the map U
allows to immerse M in the Hilbert space H rather than in the unitary group
U(H) by means of the map m ∈M 7→ |m〉 ∈ H given by:

|m〉 := U(m)|0〉 . (1.24)
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In general, one can immerse a classical-like manifold M in the Hilbert space
H by means of an injective immersion i : M → H with no reference to the
unitary group U(H). The two most common features required for this map
are weak continuity, that is, the map m 7→ 〈ψ|m〉 is continuous for all |ψ〉 ∈
H, and the completeness condition:∫

M

|m〉〈m| dµ(m) = I . (1.25)

Given an orthonormal basis {|k〉} of H, one has that:

|m〉 =
∑
k

ψk(m)|k〉 , (1.26)

and the completeness condition implies that the set of functions ψk(m) form
an orthonormal set in the Hilbert space L2(M , dµ). A set of states |m〉
satisfying these properties will be called system of generalized coherent states
and the triple (M,U,D) a quantizer-dequantizer scheme or a generalized
Weyl system.

Remark 3 This immersion procedure is very similar to what is done in in-
formation geometry where a statistical modelM is immersed in the statistical
manifold P(X) of probability distributions on a measure space X (see [24],
[25] and references therein). Indeed, one can pullback the Hermitean tensor2:

h :=
〈dψ|dψ〉
〈ψ|ψ〉

− 〈dψ|ψ〉〈ψ|dψ〉
〈ψ|ψ〉2

(1.27)

on M to obtain a Riemannian and a (pre)symplectic tensor (the real and
the immaginary part of the pullback tensor). The Riemannian tensor defined
on M in this way can be thought of as the Quantum analogue of Fisher-Rao
metric ([26]).

Analogously to what has been done with the maps U,D in Eq.(1.19) and
Eq.(1.20), the parametrized family of states |m〉 may be used to build linear
operators starting with functions (Notice that in this situation the operator
valued function m 7→ |m〉〈m| is strongly continuous):

f 7→ Af :=

∫
M

f(m) |m〉〈m| dµ(m) , (1.28)

and vice versa:

2Note that this tensor is not defined on the null vector. Indeed, it is the pullback to
H0 = H− {0} of an Hermitean tensor on the complex projective space P(H).
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A 7→ fA(m) := 〈m|A|m〉 . (1.29)

If the analogue of the biorthogonality condition (1.22) is satisfied, that is:

Tr (|m〉〈m||m′〉〈m′|) = δ(m,m′) ,

then relation (1.23) holds and fAf
= f if f is integrable.

Notice that Af+g = Af + Ag, and fA+B = fA + fB. Of course, if A is
unbounded, one has to check that the vectors |m〉 lie in its domain in order
for fA(m) to make sense. In addition, we note that f is real valued if and
only if Af is symmetric.

The correspondence A 7→ fA allows to use the Lie and Jordan products
on self-adjoint linear operators to define a symmetric and a skew-symmetric
product on real-valued functions fA. Indeed, let � denote the Jordan prod-
uct:

A�B :=
1

2
(AB + BA) , (1.30)

and let [[ , ]] denote the Lie product:

[[A ,B]] := − ı
~

[A ,B] , (1.31)

on pairs of self-adjoint operators. Then, the brackets of the corresponding
functions are defined as follows:

(fA , fB) := fA�B , {fA , fB} := f[[A ,B]] . (1.32)

If there exist n = dim(M) linear operators A1 , ... ,An such that:

dfA1(m) ∧ dfA2(m) ∧ ... ∧ dfAn(m) 6= 0 ∀m ∈M , (1.33)

then {dfA1(m) , ... , dfAn(m)} form a basis of T ∗mM for all m ∈ M and one
can write:

G
(
dfAj

, dfAk

)
:=
(
fAj

, fAk

)
, (1.34)

Λ
(
dfAj

, dfAk

)
:=
{
fAj

, fAk

}
. (1.35)

Given f1, f2 arbitrary (real-valued) smooth functions on M their differentials
can be expanded in terms of the chosen basis:

df1 = αj1 dfAj
, df2 = αj2 dfAj

, (1.36)

and thus the following (2, 0) tensors G and Λ can be written as follows:

G (df1 , df2) := αj1 α
k
2 G
(
dfAj

, dfAk

)
, (1.37)
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Λ (df1 , df2) := αj1 α
k
2 Λ
(
dfAj

, dfAk

)
, (1.38)

where the summation on repeated indices is understood. Notice that, the
linear extension of 1.34 and 1.35 according to 1.37 and 1.38 does not agree,
in general, with the brackets among linear operators, that is, once a choice of
{dfA1(m) , ... , dfAn(m)} is made for all m ∈ M , it could happen that there
are linear operators B,C such that:

G (dfB , dfC) 6= fB�C , Λ (dfB , dfC) 6= f[[B ,C]] . (1.39)

When the submanifold M is considered to be a constraint manifold, this situ-
ation is similar to the one considered by Dirac when dealing with constraints
([9]). In the following paragraph (remark 5), when dealing with the coherent
states, an explicit example will be presented where this situation is actually
realized.

1.1.2 Dynamical maps in the quantizer-dequantizer
formalism

Invariant sets of generalized coherent states. Up to now the atten-
tion has been focused on the kinematical description of the system with no
attention to the dynamical aspect of the theory which, in Quantum Mechan-
ics, is encoded in a strongly continuous one-parameter group Ut of unitary
operators on the Hilbert space of the system. Now, one may wonder whether
a quantum dynamical map t 7→ Ut induces a flow γt on a classical-like man-
ifold M of generalized coherent states. If so, γt could be interpreted as a
classical-like dynamical flow on M representing the quantum evolution Ut.

The generalized reduction procedure principle (as discussed for instance
in [17], Ch. 7), states that a necessary condition for Ut to induce a dynamical
map γt on M is the invariance of the range Σ = i(M) of the immersion i as
a subset of H, with respect to Ut, that is Ut(Σ) ⊆ Σ. In the generalized
coherent states setting this means that, for all t ∈ R, m ∈ M there exists
mt ∈M such that:

Ut|m〉 = |mt〉 . (1.40)

Then, the induced flow γt in M is defined as follows:

m 7→ γt(m) := mt . (1.41)

In general, this reduction procedure would give rise to a non-linear flow on
M , although the initial dynamical map Ut was given by linear operators.
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Notice that if γt exists, it must be a one-parameter group of transfor-
mations of M . Indeed, being Ut U−t = I, one naturally has that γ−t is the
inverse map of γt, and vice versa. This fact has an immediate consequence,
that is, the set M cannot be interpreted as a classical-like configuration space,
but rather it should be thought of as a classical-like space of states, i.e., a
phase-space, representing a subset of quantum states. This follows from the
fact that in general the dynamics induced on configuration space are not one-
parameter groups of transformations, but just projections of flows on phase
spaces. For example, the motion of a particle in Classical Mechanics calls for
the introduction of the cotangent bundle of its configuration space in order
to describe its dynamics by means of a vector field, which, in turn, gives rise
to a one-parameter groups of transformations.

Hence, if one has an invariant set of generalized coherent states |m〉,
m ∈M , with respect to the quantum dynamical map Ut, it reduces to a one-
parameter group of transformations γt of M , and if M is a smooth manifold
and the maps γt are smooth, then the resulting vector field Γ describing the
dynamics on M must be complete. On the contrary, dynamical vector fields
in classical Lagrangian and Hamiltonian Mechanics are often not complete
because of the presence of singularities. Notice that further reductions of the
dynamical system (M ,Γ) can happen, as it is often the case, for instance if
the original quantum system has a symmetry group and such group acts on
M equivariantly.

Hamilton-Jacobi theory can be helpful in finding examples where such
a reduction is possible. Indeed when a dynamical system is completely in-
tegrable, it admits a description in terms of action-angle variables and the
corresponding dynamical flow is a one parameter group of transformations.

Invariance and complete integrability. Suppose that H is a self-adjoint
operator generating the quantum dynamical map Ut = e−ı

Ht
~ . For simplicity

it will be assumed that the Hamiltonian operator H has a purely discrete
spectrum and that the flow γt exists. Furthermore, again just for the sake
of simplicity, it will be assumed that the spectrum σ(H) of the Hamiltonian
operator is non-degenerate; however, the extension of the argument to the
degenerate case presents no conceptual difficulties.

Let {|k〉} denote a basis of normalized eigenvectors of H, and Ek = |k〉〈k|
the orthogonal projector associated to the eigenvector |k〉. Without loss of
generality, one can assume that the immersion i : M → H is such that the
states |m〉 are in the domain of H for all m ∈ M if H is an unbounded
operator. Concretely, this amounts to say that the coefficients ψk(m) =
〈k|m〉 are such that:
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fH2(m) = 〈m|H2|m〉 =
∑
k

E2
k |ψk(m)|2 < +∞ ∀m ∈M , (1.42)

where Ek denotes the k-th eigenvalue of H.
Since [Ek ,Ut] = 0 for all k, it follows that fEk is a constant of the motion

for γt:

fEk(γt(m)) = 〈m|U†t Ek Ut|m〉 = 〈m|Ek|m〉 = fEk(m) . (1.43)

Of course, these functions will not be all functionally independent, however,
since there is an infinite number of them, it could be possible to find a subset
fEk1

, ... , fEkN of constants of the motion where N is such that the system is
completely integrable. More generally, let C be the algebra generated by the
functions fEk . Then the vector field Γ whose flow is given by γt will project
to the space defined by the algebra C. Now, if the skew-symmetric tensor Λ
defined before, see Eq. (1.35), is non-degenerate and its inverse ω defines a
closed 2-form, and if the algebra C has 1

2
dimM independent generators, the

system Γ will be completely integrable (see for instance [17], Ch. 8).
In order to make this construction more concrete, the paradigmatic ex-

ample of coherent states, namely, the canonical coherent states of the Har-
monic oscillator, will be illustrated. In this case, the standard creation and
annihilation operators a+ and a are such that the Hamiltonian operator is
H = ~ω(a+a + 1

2
I), and its spectrum is given by {~ω(n + 1

2
)}. Canonical

coherent states are given by the map:

z 7→ |z〉 = eza−za
† |0〉 = e−

|z|2
2

+∞∑
n=0

zn√
n!
|n〉 , (1.44)

where z ∈M = C, and |n〉 is the n-th eigenvector of H. An explicit calcula-
tion shows that:

Ut|z〉 = e−ı
ωt
2 e−

|z|2
2

+∞∑
n=0

zn√
n!

e−ınωt |n〉 =

= e−ı
ωt
2 e−

|z|2
2

+∞∑
n=0

(ze−ıωt)n√
n!

|n〉 = e−ı
ωt
2 |ze−ıωt〉 . (1.45)

Since e−ı
ωt
2 is an overall phase factor, it bears no physical relevance, and

one can dispose of it. Equivalently, one could have started considering the
Hamiltonian operator ~ωa†a, and a direct consequence would have been:
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Ut|z〉 = |ze−ıωt〉 , (1.46)

without the overall phase factor.

Remark 4 The appearence of the overall phase factor e−ı
ωt
2 suggests that a

more geometrical formulation of the reduction procedure outlined here should
be performed considering the immersion of M in the complex projective space
P(H) rather than in the Hilbert space H. Indeed, P(H) is precisely the
space of pure states of Quantum Mechanics, and, according to [27], there
is an infinite-dimensional formulation of complete integrability which applies
directly to unitary evolutions on P(H).

Considering ~ωa†a as Hamiltonian operator, the dynamical evolution of
a canonical coherent state is again a canonical coherent state, therefore, the
quantum dynamical map associated to the Hamiltonian operator H gives
rise to a classical-like dynamical map γt. Since |z〉 is in the domain of the
Hamiltonian for all z ∈ C, the one-parameter group γt is differentiable, and
thus, there is a complete vector field Γ generating it.

Writing3 z = x+ ıp, with x, p ∈ R, one immediately see that:

γt(x , p) = (x cos(ωt) + p sin(ωt) , p cos(ωt)− x sin(ωt)) , (1.47)

and it is clear that this is nothing but the dynamical flow of the harmonic
oscillator on M = C ∼= R2 which is a completely integrable system.

The functions fEk are constants of the motion for γt:

fEk(x , p) = ~ωe−(x2+p2) (x2 + p2)k

(k − 1)!
. (1.48)

Furthermore, the function fH is well defined for all z ∈ C and reads:

fH(x , p) = ~ω(x2 + p2) . (1.49)

This is precisely the functional form of the Hamiltonian function for the
classical harmonic oscillator, and, of course, it is a constant of the motion
for γt. Being dim(M) = 2, there can not be two (or more) functionally
independent constants of the motion, and in fact, we have dfH ∧ dfEj =
dfH ∧ dfEk = dfEk ∧ dfEj = 0 for all k, j.

It will be shown now that, in this case, γt is the flow of the Hamiltonian
vector field Γ associated with fH by means of the symplectic structure Ω

on M = C ∼= R2 constructed as follows. Consider X =
√

~
2mω

(a† + a) and

3Notice that x and p are dimensionless.
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P = ı
√

~mω
2

(a†−a), a direct calculation shows that the real-valued functions

fX and fP are:

fX(x , p) =

√
2~
mω

x , fP(x , p) =
√

2~mω p , (1.50)

and are functionally independent on all C. The commutation relations as-
sociated with X and P are [X ,P] = ı~I. Obviously, these commutation
relations do not make sense on the whole Hilbert space H because X and P
are unbounded operators, however, they do make sense, weakly, on the set
of coherent states, that is, 〈z|[X ,P]|z〉 is well defined for all z. This means
that {fX , fP} can be camputed as follows:

{fX , fP} = Λ (dfX , dfP) = 1 . (1.51)

Consequently one can define the following antisymmetric contravariant tensor
on C ∼= R2:

Λ =
1

~
∂

∂x
∧ ∂

∂p
. (1.52)

It is clear that this is an invertible Poisson tensor. Its inverse Ω is a symplectic
form, and reads:

Ω = ~ dp ∧ dx . (1.53)

A straightforward calculation shows that Γ = Λ(dfH , ·) is indeed the vector
field generating γt. Note that the antisymmetric part Ω′ of the pullback to
M = C ∼= R2 of the Hermitean tensor h (see Eq. 1.27) is:

Ω′ = dp ∧ dx , (1.54)

and thus Ω = ~Ω′.

Remark 5 Going back to (1.39), it is possible now to provide an explicit re-
alization of the situation considered there. At this purpose, let A = 1

2
(|1〉〈0|+

+|0〉〈1|) and B = ı
2

(|1〉〈0| − |0〉〈1|) be two self-adjoint operators. The associ-

ated functions are fA = e−(x2+p2) x and fB = e−(x2+p2) p. A direct calculation
shows that [[A ,B]] = 1

2~ (|0〉〈0| − |1〉〈1|), and thus

f[[A ,B]] =
e−(x2+p2)

2~
(
1− x2 − p2

)
. (1.55)
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However, the bracket between fA and fB using the Poisson tensor (1.52) is
written as follows:

Λ(dfA , dfB) =
e−2(x2+p2)

2~
(
1− 2x2 − 2p2

)
, (1.56)

which is different from (1.55). An analogous result holds for G(dfA , dfB).

It is interesting to note that the same classical-like dynamical map can
be found starting with a Hamiltonian H having a non-degenerate, purely
discrete spectrum with polynomial growth σ(H) = {

∑N
j=0 ~ω εjnj}, that is:

H =
+∞∑
n=0

E(n) |n〉〈n| , (1.57)

with E(n) =
∑N

j=0 ~ω εjnj. In order to see this, it is useful to consider the
polar form of the immersion map defining the canonical coherent states:

|z〉 = e−
ρ
2

+∞∑
n=0

ρ
n
2

√
n!

eınϕ |n〉 , (1.58)

where z =
√
ρ eıϕ, and deform it as follows4:

|z〉 = e−
ρ
2

+∞∑
n=0

ρ
n
2

√
n!

eı(
∑N
j=0 εjn

j)ϕ |n〉 . (1.59)

Note that, unlike the case of canonical coherent states for harmonic oscillator
Hamiltonian, this immersion presents a discontinuity at z = 0. Accordingly,
one will consider M = C0

∼= R2 − {(0 , 0)}.
A straightforward calculation shows that:

Ut|z〉 = e−
ρ
2

+∞∑
n=0

ρ
n
2

√
n!

eı(
∑N
j=0 εjn

j)(ϕ−ωt) |n〉 ≡ |zt〉 , (1.60)

which means that the set of coherent states is invariant with respect to the
quantum dynamical map generated by H. Writing z = x+ ıp, it follows that:

γt(x , p) = (x cos(ωt) + p sin(ωt) , p cos(ωt)− x sin(ωt)) , (1.61)

which is again the dynamical flow of the harmonic oscillator (on M ∼= R2 −
{(0 , 0)}).

4A slightly more general set of coherent states of this form were investigated in [28].
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The function fH reads:

fH(x , p) = 〈z|H|z〉 = ~ω e−ρ
+∞∑
n=0

ρn

n!

(
N∑
j=0

εjn
j

)
=

= ~ω
N∑
j=0

εj Tj(ρ) = ~ω
N∑
j=0

εj Tj(x
2 + p2) , (1.62)

where Tj(ρ) is the j-th Touchard polynomial5. It is interesting to notice
that the antisymmetric part Ω of the pullback to M ∼= R2 − {(0 , 0)} of the
Hermitean tensor h (see Eq. (1.27)) becomes:

Ω =

(
N∑
j=0

εj
∂

∂ρ
Tj(ρ)

)
dρ ∧ dϕ =

=
1

x2 + p2

(
N∑
j=0

εj

(
x
∂

∂x
Tj(x

2 + p2) + p
∂

∂p
Tj(x

2 + p2)

))
dx ∧ dp , (1.63)

and a direct calculation shows that the dynamical vector field Γ generating
γt is the Hamiltonian vector field associated with fH by means of ~Ω:

~Ω (Γ , ·) = dfH . (1.64)

From this, one can conclude that, in order to guarantee that the immersed
manifold Σ(M) is invariant with respect to the different quantum dynamical
maps arising from the choice of a specific Hamiltonian H, one has to carefully
select the immersions of M ∼= R2 − {(0 , 0)}. Once, this is done, one always
obtains the same reduced classical-like dynamical map γt. However, the
function fH and the antisymmetric part Ω of the pull-back of h change in
such a way that the vector field Γ generating γt is Hamiltonian for fH with
respect to Ω, that is, different quantum dynamical maps lead to alternative
Hamiltonian description of the same classical-like dynamics.

However we will not develop further this idea. Indeed this section has
been used to illustrate some relationships between Hamilton-Jacobi theory
and the Quantum-Classical correspondences, both from a kinematical and

5The j-th Touchard polynomal is defined as follows:

Tj(x) := e−x
+∞∑
k=0

xk kj

k!
.
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a dynamical point of view, as exposed in the paper [14]. Next sections, in-
stead, will be devoted to the introduction of variational principles for defining
Quantum Dynamics and to the relationship between these formulations and
the theory of canonical transformations. More emphasis will be laid on this
topics since variational principles will play a fundamental role also in the
subsequent chapter.

1.2 Variational Principle in Quantum

Mechanics

In the previous section it has been shown a first relation between quantum
description of particle mechanics and Hamilton-Jacobi theory when one looks
at particular states of the Hilbert space associated with a Quantum mechan-
ical system.

A stronger bond between Hamilton-Jacobi theory and Quantum Mechan-
ics was felt by some of the founders of quantum theory from the very begin-
ning. In particular this link was made evident by those authors who analyzed
the role of variational principles in Quantum Mechanics. The pioneering work
in this field was the paper written by Dirac [29] in 1933, entitled “The La-
grangian in Quantum Mechanics”. In this paper Dirac proposed a definition
of canonical transformations in the quantum setting and showed the anal-
ogy between Action functionals in classical mechanics and Green functions
in quantum mechanics.

The ideas exposed in this article influenced many theoretical physicists
in the following decades. In particular Richard Feynmann testified in his
Ph.D. thesis [30] how relevant had been the reading of this work for his
“path-integral” formulation of Quantum Mechanics.

Instead a different approach was proposed by Julian Schwinger in the
50’s: he elaborated a formulation of quantum mechanics [31] according to
which dynamics is derived from a variational principle, in a way more similar
to classical Lagrangian mechanics.

In this section we will present this relation between quantum variational
principles and Hamilton-Jacobi theory. After a brief summary of Dirac’s
ideas, we will focus on Schwinger variational principle and we will complete
the general discussion with a revisitation of some known examples in order
to make clearer the exposition.

However before going into the Quantum discussion we will briefly recall
the variational principle which is used in the Lagrangian formulation of clas-
sical particle mechanics.
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Let us consider a single particle in classical mechanics. From a kinematical
point of view fields are the trajectories of a particle in a certain configuration
space. In the simplest situation the configuration space of the system is a
vector space, for instance R3 ×R = R4, where also time dimension has been
added. This choice will be useful in the rest of the thesis where the discussion
will focus on relativistic frameworks. A generic trajectory is a differentiable
section γ : R 7→ R4 × R.

The starting point of Lagrangian formulation is the choice of the action
functional S [γ]. In many cases this functional is given in terms of a density
function, L, called the Lagrangian, i.e.

S[γ] =

∫
R
L(γ, γ̇, s)ds , (1.65)

where γ̇ denotes the differential of the map γ. If one introduces a set of glob-
ally defined coordinate functions {xµ} on R4, the functional (1.65) assumes
the more familiar form

S[γ] =

∫
R
L
(
xµ,

dxµ

ds
, s

)
ds . (1.66)

According to the variational principle, the dynamical trajectories are sta-
tionary points of the action functional. The variation of the trajectory by
means of a tangent vector field, δγ, gives rise to the equations of motion,

δS =

∫
R

d

dλ
L
(
xµ + λδxµ, ẋµ + λ

d

ds
δxµ
)
ds = 0 , (1.67)

where the perturbation of the velocities is the differential of the perturbation
along the path.

For a complete set of variations6, previous stationarity condition corre-
sponds to the Euler-Lagrange equations

d

ds

(
∂L
∂ẋµ

)
− ∂L
∂xµ

= 0 . (1.68)

After this short summary let us move on towards the quantum world.

1.2.1 A tribute to Dirac

In this paragraph we want to briefly recall some precursory observations made
by Dirac on the possibility of a Lagrangian formulation of Quantum Mechan-
ics. We think it is worth illustrating these ideas because they influenced all
subsequent works on the same subject.

6By completeness one is requiring the variations to be able to separate trajectories by
the values of functionals.
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As above mentioned, the central question posed by Dirac is the possibility
of introducing a Lagrangian formulation of Quantum mechanics. The main
advantages of such a formulation would be the definition of a variational prin-
ciple and relativistic invariance, since the Action is a scalar quantity. But
in what sense is it possible to define a variational principle in Quantum Me-
chanics? The answer proposed by Dirac is based on contact transformations:
his analysis is aimed at the definition of a quantum analogue of classical
contact transformations.

Let us consider a classical Hamiltonian dynamical system described in
terms of two independent sets of variables, (qr, pr) and (Qr, Pr). As already
stated in the introduction, a contact transformation intertwining the two
different descriptions is generated by a function, say S(q,Q), according to
the following formulae:

pr =
∂S

∂qr
Pr = − ∂S

∂Qr

. (1.69)

On the other hand, in quantum mechanics one can choose two different
resolutions of the identity or different bases for the same system, one asso-
ciated with the spectral decomposition of the operator q̂, the other with the
spectral decomposition of Q̂. The transformation function connecting these
representations is

〈q|Q〉 , (1.70)

which allows to write operators in a “mixed representation”, i.e.

〈q|α̂|Q〉 =

∫
dq′ 〈q|α|q′〉 〈q′|Q〉 =

∫
dQ′ 〈Q′|α̂|Q〉 〈q|Q′〉 . (1.71)

In the following we will use Dirac bra-ket notation, where |q〉 denote a vector
and 〈q|Q〉 indicates the scalar product of the two vectors.

According to definition (1.71) one has that:

〈q|p̂r|Q〉 = −i~ ∂

∂qr
〈q|Q〉 ,

〈
q|P̂r|Q

〉
= i~

∂

∂Qr

〈q|Q〉 , (1.72)

and 〈
q|f(q̂)g(Q̂)|Q

〉
= f(q)g(Q) 〈q|Q〉 . (1.73)

Last expression can be extended also to “well ordered” functions of the
operators q and Q, where the ordering means q on the left and Q on the
right. Therefore, if one defines the function U(q,Q)

〈q|Q〉 =: e−
i
~U(q,Q) , (1.74)
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equations (1.72) become

〈q|p̂r|Q〉 = −i~∂U
∂qr
〈q|Q〉 ,

〈
q|P̂r|Q

〉
= i~

∂U

∂Qr

〈q|Q〉 , (1.75)

which are the operator analogue of a classical contact transformation.
A largely studied generating function is the one associated with the dy-

namical evolution. It is known [32] that the contact transformation relating
the value of the dynamical variable q at time T with its value at any other
time t is generated by the action function:

S(qt, qT ) =

∫ T

t

L(q(τ), q̇(τ))dτ , (1.76)

where the integral is evaluated along a solution of the equations of motions
passing through the points qT and qt at times T and t respectively. Fur-
thermore L is the Lagrangian function associated with the chosen dynamical
system and q̇ denotes the time derivative of the function q(t). Indeed when
the action functional is evaluated along a given solution of Euler-Lagrange
equations it becomes a function of initial and final generalized positions called
Hamilton principal function. Quantum analogue of this function is the gen-
erating transformation

〈qt|qT 〉 = e
i
~S(qt,qT ) (1.77)

intertwining between the reperesentations in which either q̂t or q̂T is diagonal.
In order to simplify the notation let us define the following function:

Aγ(t1, t2) = e
∫ t2
t1
Ldt ,

where γ is the path connecting q(t1) and q(t2) over which the integral is
performed.

If one decomposes the time interval [t, T ] into smaller sections
[t, t1] , [t1, t2] , · · · , [tm, T ] the final result is:

Aγ(t, T ) = Aγ(t, t1)Aγ(t1, t2) · · ·A(tm, T ) . (1.78)

On the other hand it is also possible to write the generating transformation
(1.77) as follows

〈qt|qT 〉 =

∫
dq1 〈qt|q1〉

∫
dq2 〈q1|q2〉 · · ·

∫
dqm 〈qm|qT 〉 , (1.79)

where |qi〉 denotes the basis of vector associated with the operator qti .
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And now the fundamental observation made by Dirac: “· · · from equation
(1.79) we can extract the statement that, if we take specified values for qt
and qT , then the importance of our considering any set of values for the
intermediate q’s is determined by the importance of this set of values in the
integration on the right hand side of equation (1.79). If we now make ~ tend
to zero, this statement goes over into the classical statement that, if we take
specified values for qt and qT , then the importance of our considering any set
of values for the intermediate q’s is zero unless this values makes the action
function stationary.”

In other words according to the action principle the right hand side of
equation (1.78) becomes a two-point function only when one replaces for the
qti the values which make the action function stationary. The quantum ana-
logue of this evaluation is the integration on the right hand side of equation
(1.79), the variational principle being contained in the expression of the in-
termediate generating transformations and in their contribution to the whole
set of integrals. This analogy is strenghtened by the observation that in the
limit ~→ 0 the main contribution to these integrals come from points which
make the action function stationary.

Starting from these ideas Feynmann elaborated his formulation of quan-
tum mechanics where the generating transformation is the central object
characterizing a given dynamical system. However, in the next paragraph,
we will present a different scheme introduced by Schwinger, where quantum
dynamics is obtained according to a variational principle. This approach
shares same features with Dirac’s paper but the conclusions are completely
different.

1.2.2 Schwinger’s Variational Principle

As already mentioned, in this paragraph we will illustrate another variational
principle which was introduced by Schwinger in his formulation of Quantum
Theory in order to get quantum dynamics. During the 50’s he used this
principle to elaborate his theory of Quantized Fields [10] of which QED is
the best known example.

However this principle can be also applied to non relativistic Quantum
Mechanics of particles. Indeed, as above stated, it is the dynamical principle
of Schwinger’s formulation of Quantum Theory [31]. We will not enter into
the details of the whole formulation, which would require the introduction of
many concepts not related to the topics of this chapter. In this paragraph
we will focus only on the variational principle for non relativistic quantum
systems. Fields will be described in the subsequent section.

Following Schwinger’s discussion, let us consider a quantum system de-
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scribed by the set of dynamical variables {q̂, p̂} obeying the canonical com-
mutation relations

[q̂a, p̂b] = i~δab . (1.80)

Concerning the dynamics, let us suppose that it is generated by a Hermitian
Hamiltonian operator Ĥ(q̂, p̂, t) function of the dynamical variables and the
evolution parameter t. Let us consider a representation of canonical commu-
tation relations in a coordinate system where positions q̂ are diagonal.

The transformation function connecting position representations at the
two extremes of an infinitesimal interval of time is given by

〈q′, t+ dt| q′′, t〉 = 〈q′, t| 1− i

~
Ĥ(q̂(t), p̂(t), t) |q′′, t〉 (1.81)

where dynamical variables q̂(t), p̂(t) evolve according to Heisenberg equations
of motion:

dÂ

dt
=
∂Â

∂t
− i

~

[
Â, Ĥ

]
, (1.82)

Â denoting any observable of the system.
If one considers the variation of this transformation in response to a

variation of all its arguments, i.e. q′, q′′, t, t + dt7 one gets the following
results:

δ 〈q′, t+ dt| = i
~ 〈q

′, t+ dt| p̂a(t+ dt)δqa(t+ dt)− Ĥ(t+ dt)δ(t+ dt)

δ |q′′, t〉 = − i
~ p̂a(t)δq

a(t)− Ĥ(t)δ(t) |q′′, t〉

and consequently

δ 〈q′, t+ dt|q′′, t〉 =
i

~
< q′, t+ dt|

∑
a

(p̂a(t+ dt)δqa(t+ dt)− p̂a(t)δqa(t))−

−
(
Ĥ(t+ dt)δ(t+ dt)− Ĥ(t)δ(t)

)
|q′′, t > , (1.83)

where every δqa commutes with the whole set of dynamical variables. In
particular if the representation of the commutation relations is irreducible
every δqa is a multiple of the identity.

If now one expands p̂a(t + dt) and Ĥ(t + dt) according to Heisenberg
equations of motions associated with the operator Ĥ(t) itself and neglects all
terms of order higher than one, the following expression is obtained:

δ 〈q′, t+ dt|q′′, t〉 =

〈
q′, t+ dt|δ

[∑
a

(p̂a(t)(q̂
a(t+ dt)− q̂a(t)))− Ĥ(t)dt

]
|q′′, t

〉
.

(1.84)

7Here dt represents an ”infinitesimal quantity” rather than a differential form as we
have been using up to now.
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Therefore one gets that:

δ 〈q′, t+ dt|q′′, t〉 =
〈
q′, t+ dt|δŴ |q′′, t

〉
(1.85)

where the Hermitian operator δŴ is the variation of the operator:

Ŵ = dt

(∑
a

p̂a(t)
dq̂a

dt
− Ĥ(t)

)
=: dtL̂(t) . (1.86)

The composition rule of two consecutive transformations is written in
terms of integral kernels as follows:

〈q′, t+ 2dt|q′′, t〉 =

∫
dq̄ 〈q′, t+ 2dt|q̄, t+ dt〉 〈q̄, t+ dt|q′′, t〉 . (1.87)

Consequently, by using Leibniz rule, one can show the validity of the following
expression

δ 〈q′, t+ 2dt|q′′, t〉 =
〈
q′, t+ 2dt|δŴt+dt,t+2dt|q′′, t

〉
+
〈
q′, t+ 2dt|δŴt,t+dt|q′′, t

〉
.

(1.88)
Therefore if one considers a finite time interval [t1, t2] the following quan-

tum action principle can be derived:

δ 〈q′, t1|q′′, t2〉 =
i

~

〈
q′, t1|δŴ1,2|q′′, t2

〉
(1.89)

where

Ŵ1,2 =

∫ t2

t1

dtL̂(t)

is the action operator, L̂ being the corresponding Lagrange operator. This
integral is evaluated along a path (q̂(t), p̂(t)) which is solution of the Heisen-
berg equations of motion associated with the Hamiltonian operator Ĥ(t)
which defines the Lagrange operator L̂(t).

Formula (1.89) expresses Schwinger’s Quantum Action Principle, accord-
ing to which the variation of the transformation function which connects two
representations of the same quantum system at different times is given in
terms of the variation of an action operator.

Let us remark the fundamental role played by Heisenberg equations of
motion: since dynamical variables satisfy these equations one has shown the
existence of a action operator satisfying (1.89).

However this is not the end of the story. Indeed it is possible to better
characterize the form of the variation of the action, since, once one has chosen
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the Hamiltonian operator of the system, the only freedom of change is varying
initial or final states. Therefore one has that

δ 〈q′, t1 | =
i

~
〈q′, t1 |Ĝ1 δ |q′′, t2〉 = − i

~
Ĝ2 |q′′, t2〉 , (1.90)

where Ĝ1 and Ĝ2 are Hermitian operator depending only on the dynamical
variables at the respective instant of time. Consequently one can conclude
that

δ 〈q′, t1|q′′, t2〉 =
i

~

〈
q′, t1|Ĝ1 − Ĝ2|q′′, t2

〉
(1.91)

and
δŴ1,2 = Ĝ1 − Ĝ2 .

This is the quantum analogue of the Principle of Stationary Action. By
using Schwinger’s words : “· · · It (the Principle of Stationary Action) asserts
that the infinitesimal variation of W1,2 -which depends upon the variables
at all values of t between t1 and t2- in fact involves only variations at the
end points, t1 and t2, and so is stationary with respect to variations at any
intermediate time.”

Here is the difference between Dirac’s variational principle and Schwinger’s
Principle of Stationary Action: even if they consider transformation functions
as the quantum analogue of the generating functions for canonical trans-
formations, Dirac interprets the averaged superposition of the whole set of
possible intermediate states, written in equation (1.79), as a Quantum vari-
ational formulation, whereas Schwinger is more “traditional” suggesting to
introduce a Quantum Action operator.

Coming back to the Principle of Stationary Action, it is possible to start
from this principle and derive Heisenberg equations and the commutation
relations between dynamical variables.

Given a path γ : t ∈ [t1, t2] → (q̂a(t), p̂a(t)) one can define the Action
operator

Ŵ1,2 =

∫ t2

t1

(∑
a

p̂adq̂
a − Ĥdt

)
.

Its infinitesimal variation can be written as follows

δŴ1,2 =

∫ t2

t1

(∑
a

(δpadq̂
a + p̂adδq

a)− δĤdt− Ĥdδt

)
=

=

∫ t2

t1

(∑
a

(δpadq̂
a − dp̂aδqa)− δĤdt+ dĤδt

)
+

∫ t2

t1

d

(∑
a

p̂aδq
a − Ĥδt

)
,

(1.92)
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where the last term involves only operators on the boundary.
If one imposes the stationarity of the action with respect to variations in

the bulk of the interval [t1, t2] the following equation must be valid:

∑
a

(
δpa

dq̂a

dt
− dp̂a

dt
δqa
)

+
dĤ

dt
δt = δĤ . (1.93)

Therefore, if one considers only variation that commute with all the dy-
namical variables, q̂ and p̂, equation (1.93) implies the following set of equa-
tions:

dq̂a

dt
=
∂Ĥ

∂pa

p̂a
dt

=
∂Ĥ

∂qa

dĤ

dt
=
∂Ĥ

∂t

which are Heisenberg equations of motion. Let us notice that one has varied
independently both sets of dynamical variables q̂ and p̂. This is called the
first order variational principle and in general it produces different equations
of motion with respect to the Lagrangian formulation presented at the begin-
ning of this section. Indeed Euler-Lagrange equations of motion are implicit
differential equation of second order whereas this first order formulation pro-
vides first order differential equations, and the two resulting set of equations
can be related when the Legendre transformation between the tangent bundle
and the cotangent bunlde of the configuration space is invertible.

Coming back to the equation (1.92) the total variation of the action op-
erator can be written as

δŴ1,2 = Ĝ1 − Ĝ2 (1.94)

where
Ĝ =

∑
a

p̂aδq
a − Ĥδt .

This operator Ĝ is the sum of two terms: the first one Ĝq =
∑

a p̂aδq
a is the

generator of the translation in q whereas the second term Ĝt = Ĥδt is the
generator of time translations.

Since Ĝq is the generator of spatial translations we have that for any

observable F̂ , the variation δqF̂ assumes the following form

δqF̂ =
−i
~

[
F̂ , Ĝq

]
(1.95)
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and consequently
∂F̂

∂qa
=
−i
~

[
F̂ , p̂a

]
. (1.96)

This implies the following set of commutation relations

∂q̂b

∂qa
=
−i
~
[
q̂b, p̂a

]
= δba (1.97)

which are the canonical commutation relations among q̂ and p̂. The other
commutation relations [

q̂a, q̂b
]

= 0 (1.98)

are determined by the choice of the Hilbert space representation.
It is known in classical mechanics that the addition of a total time deriva-

tive of a function to the Lagrangian does not affect the equations of motion.
A similar result is valid for the corresponding Quantum Action Principle.
Indeed if one considers two Lagrange operators, L̂ and L̄ differing by a total
time derivative, i.e.

L̂− L̄ =
dŵ

dt
(1.99)

the difference between the corresponding Action operator is

Ŵ1,2 − W̄1,2 = ŵ1 − ŵ2 , (1.100)

where the right-hand side of previous equation is a quantity defined on the
boundary of the time interval. Consequently the bulk variations of the two
Action operators are not affected by this change in the Lagrange opeator and
the Quantum Action Principle is still valid even if there is a change of the
generators Ĝ1 and Ĝ2. Indeed one gets

Ĝi − Ḡi = δŵi (1.101)

which expresses the fact that by adding the time derivative dw
dt

one has
changed the Hilbert space representation by means of a unitary transfor-
mation.

For instance let us consider the following pair of Lagrange operators

L̂q − L̂p =
∑
a

(
p̂a
dq̂a

dt
+
dp̂a
dt
q̂a
)

=
d

dt

(∑
a

p̂aq̂
a

)
=

d

dt
ŵ . (1.102)

If one calls Ĝq =
∑

a p̂aδq
a and Ĝp = −δpaq̂a the corresponding variations

one can obtain the following result:

Ĝq − Ĝp = δ

(∑
a

p̂aq̂
a

)
(1.103)
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and consequently the following equation for the generating transformation
〈q′|p′〉 can be written:

δ 〈q′|p′〉 =
i

~

〈
q′|
∑
a

q̂ap̂
a|p′
〉

=
i

~

(∑
a

q′ap′a

)
〈q′|p′〉 . (1.104)

This equation can actually be solved and one obtains the following transfor-
mation function:

〈q′|p′〉 =
1

(2π~)n/2
e
i
~(

∑
a p
′
aq
′a) , (1.105)

where n is the number of q̂ operators and the coefficient 1
(2π~)n/2

has been

chosen to obtain a unitary transformation.

Remark 6 A remark is in order now. Indeed the analogy between Schwinger’s
variational formulation of Quantum dynamics and the theory of contact trans-
formations is evident. Let us consider a time-dependent Hamiltonian dy-
namical system described in terms of the variables {qa, pa}. The generating
function S(q,Q, t1, t2) of a contact transformation satisfies the equation:

dS(q,Q, t1, t2) =
∑
a

padq
a −H(q, p, t1)dt1 −

∑
a

PadQ
a +H(Q,P, t2)dt2 .

(1.106)
This is the analogue of the Principle of Stationary Action. The fact that

the variation of the transformation function in equation (1.91) is an operator
which depends only on the boundary reflects the classical statement that a
canonical transformation may be generated by an exact (if the topology of the
space is trivial) one form. Furthermore the fact that the graph of an exact one
form is a Lagrangian submanifold of the cotangent bundle T ∗Q × T ∗Q with
respect to the symplectic form ω1−ω2, is the classical counterpart of the fact
that the variation δŴ1,2 must be the generator of a unitary transformation
and consequently a self-adjoint operator.

1.2.3 Examples

In this paragraph we will present two well-known examples of quantum dy-
namics formulated a la Schwinger: free particle and harmonic oscillator. This
examples will show more evidently the relation between this description and
Hamilton-Jacobi theory.

Let us start from the dynamics of a free particle in a one dimensional
vector space, with Hamiltonian operator

Ĥ =
p̂2

2m
.
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According to the Principle of Stationary Action, dynamical variables q̂, p̂
evolve following Heisenberg equations of motion. Therefore one has that

p̂(t) = p̂

q̂(t) = q̂ +
p̂

m
t .

Equation (1.91) in this case becomes

δ 〈q′, t|q′′〉 =
i

~

〈
q′, t|

(
p̂(t)δq′ − p̂δq′′ − p̂2

2m
δt

)
|q′′
〉
, (1.107)

where one has to replace p̂ with the solution of the equation of motion, i.e.

p̂ =
m (q̂(t)− q̂)

t
.

Since [q̂, q̂(t)] = i~t
m

, the final equation is:

δ 〈q′, t|q′′〉 =
i

~

〈
q′, t|

((
m(q̂(t)− q̂)

t

)
(δq′ − δq′′)− m(q̂(t)− q̂)2

2t2
δt

)
|q′′
〉

=

=
i

~

〈
q′, t|

((
m(q̂(t)− q̂)

t

)
(δq′ − δq′′)− m(q̂2(t) + q̂2 − 2q̂(t)q̂)

2t2
δt+

i~δt
2t

)
|q′′
〉
.

(1.108)
Therefore one can write the equation above as follows:

δ 〈q′, t|q′′〉
〈q′, t|q′′〉

=
i

~
δ

(
m(q′ − q′′)2

2t
+ log

(
i~√
t

)
+ logC

)
(1.109)

and the corresponding solution is

〈q′, t|q′′〉 =
C√
t
e
i
~
m(q′−q′′)2

2t . (1.110)

The constant C is chosen by requiring that

lim
t→0
〈q′, t|q′′〉 = δ(q′ − q′′) , (1.111)

so that one gets

〈q′, t|q′′〉 =

√
m

2iπ~t
e
i
~
m(q′−q′′)2

2t . (1.112)

It is worth noticing that the argument of the exponential is the classical
action function of the free motion of a single particle and the amplitude is
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proportional to the square root of the determinant of the matrix Ajk = ∂S
∂q′jq′′k

.
This is related to the particular expression of the Hamiltonian operator: the
corresponding Heisenberg equations coincide with Hamilton equations of a
free particle on a line.

The other example I want to present is the harmonic oscillator. Hamilton
operator in this case is

Ĥ =
p̂2

2m
+
mω2q̂2

2

and the corresponding equations of motion are:

dq̂

dt
=
p̂(t)

2m
dp̂

dt
= −mω2q̂ .

The solutions can be written as follows:

q̂(t) = q̂ cos (ωt) +
p̂

mω
sin (ωt) (1.113)

p̂(t) = p̂ cos (ωt)−mωq̂ sin (ωt) , (1.114)

and consequently one has that

[q̂, q̂(t)] =
i~
mω

sin (ωt) .

Equation (1.89) in this case becomes:

δ 〈q′, t|q′′〉 =
〈
q′, t|p̂(t)δq′ − p̂δq′′ − Ĥδt|q′′

〉
, (1.115)

and replacing p̂ and p̂(t) for the following expressions coming from the solu-
tions (1.114):

p̂ =
mω

sin (ωt)
(q̂(t)− q̂ cos (ωt))

p̂(t) =
mω

sin (ωt)
(q̂(t) cos (ωt)− q̂)

one obtains the following equation:

δ 〈q′, t|q′′〉
〈q′, t|q′′〉

=
i

~
δ

{
Mω

2 sin (ωt)

[(
q′2 + q′′2

)
cos (ωt)− 2q′q′′

]
− i~ log

√
Cω

sin (ωt)

}
.

(1.116)
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Therefore the solution of this equation is:

〈q′, t|q′′〉 =

√
mω

2iπ~ sin (ωt)
e
i
~{ Mω

2 sin(ωt) [(q′2+q′′2) cos(ωt)−2q′q′′]} , (1.117)

where the integration constant has been chosen as in the previous example.
Once more one can notice that the argument of the exponential is the action
function for the classical harmonic oscillator and the amplitude is given by
the square root of the determinant of the matrix Ajk = ∂S

∂q′j∂q′′k
.

In the subsequent section we will present the generalization of previous
result to the theory of Quantum Fields given by Schwinger. This will give
the opportunity of discussing Hamilton-Jacobi theory for Field Theories.

1.3 Quantum Field Theory and

Hamilton-Jacobi equation

In this section we will briefly describe Schwinger’s variational formulation in
Quantum Field Theory [10]. We will not go into the details but we will focus
only on the relations between this kind of description and Hamilton-Jacobi
theory. We will consider only a scalar field theory over a four dimensional
Minkowsi spacetime. The generalization to field with internal degrees of
freedom can be straightforwardly conceived.

Let us consider a four-dimensional space-time R4 and a system of coor-
dinate functions xµ, with µ = 0, · · · , 3. We choose Minkowski metric with
signature (−1, 1, 1, 1). Let us introduce the operator-valued field 8 φ(x). A
given state of the Hilbert space on which the operator φ(x) acts, can be char-
acterized by choosing a complete set of commuting observables which can be
constructed from the values of the field φ(x) on a simultaneity surface, σ,
associated with a time function, τ . If one denotes such a state as

|ζ, σ〉 , (1.118)

where ζ represent the joint spectrum of a maximally commuting set of ob-
servables, it is possible to describe the change of description by means of the
transformation function

〈ξ, σ1|ζ, σ2〉 . (1.119)

Particularly interesting is the transformation function

〈ζ ′, σ1|ζ ′′, σ2〉 (1.120)

8According to modern algebraic description, quantum fields are operator-valued distri-
bution. However for the scope of this discussion I will not consider these details.
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which generates the evolution from the simultaneity surface σ1 to the surface
σ2.

According to the Quantum Action Principle (1.89) the infinitesimal vari-
ation of this transformation function is equal to the infinitesimal variation of
a Hermitian operator, the Action operator

W1,2 =

∫ σ1

σ2

Ldx , (1.121)

where the operator L is the Lagrange operator, function of the dynamical
fields and their derivatives. The Principle of Stationary Action states that
this variation is the difference of two Hermitian operators defined on the two
simultaneity surfaces, i.e.

δ 〈ζ ′, σ1|ζ ′′, σ2〉 =
i

~
〈ζ ′, σ1|F (σ1)− F (σ2)|ζ ′′, σ2〉 . (1.122)

After some computations similar to the ones presented in the previous
section one has that

δW1,2 =

∫
V

(
∂L
∂φ
− ∂µ

(
∂L
∂∂µφ

))
d4x+ F (σ1)− F (σ2) (1.123)

where V is the volume contained between the two simultaneity surfaces σ1

and σ2. According to the Principle of Stationary Action the volume integral
must vanish, providing the equations of motion

∂L
∂φ
− ∂µ

(
∂L
∂∂µφ

)
= 0 . (1.124)

This shows in a more evident way how equations of motion are actually
related to the Lagrange operator, a formalism which fits better with the
principles of special relativity.

As far as the operators F (σ) are concerned, they depends only on the
variation of the simultaneity surface δσ. In a relativistic theory one requires
the dynamics to be defined in terms of an action of the Poincaré group P
(this point will be made clearer in a following chapter) and one can choose
the carrier space of the theory to be a homogeneous space with respect to this
action. In the case of Minkowski space-time one can choose planar surfaces
and “rigid” transformations (translations and Lorentz transformations) so
that the form of the generator F (σ) is expressed as follows

F (σ) =

∫
σ

dσnµ (πµδφ+ T µν δx
ν) , (1.125)
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where πµ = ∂L
∂(∂µφ)

and T µν = Lδµν − πµ∂νφ is the stress tensor operator.9 As

above mentioned the variation δxν is made up of two contributions, i.e.

δxν = εν − ενµxµ ,

and consequently the generator F (σ) can be written as the sum of three
terms: the first is related to the variation of the value of the field, whereas the
other two terms are generated by translations and Lorentz transformations.
Therefore one gets

F (σ) =

∫
σ

dσ (nµπ
µδφ) +

(
ενPν +

1

2
ενµJ

µ
ν

)
, (1.126)

where

Pν =

∫
σ

dσnµT
µ
ν , Jµν =

∫
σ

dσnρ
(
xµT ρν − xνT ρµ

)
.

These operators form a representation of the Lie algebra p of the Poincaré
group P . Furthermore the first term is the generator of the variation of the
value of the field at a fixed space time point and from this one derives the
following relation: [

φ(x),

∫
σ

dσnµπ
µδφ

]
= i~δφ(x) , (1.127)

which corresponds to the “equal time” commutation relations:

[φ(x), nµπ
µ(x′)] = i~δ(x− x′) , (1.128)

where the δ distribution is defined on the simultaneity surface σ.
Eventually the Principle of Stationary Action provides the following form

for the variation of the action operator

δW1,2 =
i

~
(F (σ1)− F (σ2)) , (1.129)

and the right-hand side of this expression can be ordered in such a way that
operators involving fields defined on σ1 stands on the left. In this way one
replaces the previous operator equation with an equation for a new operator
W . In particular one can derive the following equations:

δ

δφ(σ1)
W = nµπ

µ(σ1) ,
δ

δφ(σ2)
W = −nµπµ(σ2)

δ
(1)
µ W = Pµ(σ1) , δ

(2)
µ W = −Pµ(σ2)

δ
(1)
µνW = Jµν(σ1) , δ

(2)
µνW = −Jµν(σ2) ,

9For field describing systems with internal spin degrees of freedom this tensor will
contain an additional term coming from the transformation of the values of the field φ(x)
under Lorentz transformations.
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which can be considered as the Hamilton-Jacobi equations for a Relativistic
Quantum Field Theory. Let us remark that the description is fully covariant,
in the sense that even if a simultaneity surface has been chosen the results
are independent of the particular surface. Furthermore the relativistic de-
scription has replaced the Hamilton-Jacobi equation ∂W

∂t
= H with a set of

equations involving all the generators of the action of the Poincaré group P .
This is in agreement with the notion of relativisic dynamics given by Dirac
in his paper [33].

After obtaining the operator W one can easily solve the equation for the
transformation function

δ 〈ζ ′, σ1|ζ ′′, σ2〉 =
i

~
δW 〈ζ ′, σ1|ζ ′′, σ2〉 , (1.130)

and the corresponding solution is given by

〈ζ ′, σ1|ζ ′′, σ2〉 = e
i
~ (W) . (1.131)

Therefore this formulation provides as solution the integrated dynamics, that
is the unitary transformation which connects two different configuration of
the dynamical variables.

It would be desirable to understand if it is possible to generalize the simple
presentation given in these sections to less trivial geometrical situations. For
instance it would be very interesting the application to abelian and non-
abelian gauge theories, also in the case of a discretized spacetime. Such an
application would have deep connections with the developments of quantum
simulation techniques [34, 35].

Free Scalar Field As an example let us consider the free Lagrangian of
the Klein-Gordon field, φ(x), which is:

L =
1

2

(
∂µφ(x)∂µφ(x)−m2φ2(x)

)
. (1.132)

Stationary points of this Action are solutions of the Klein-Gordon equation(
∂µ∂

µ +m2
)
φ(x) = 0 . (1.133)

If one chooses as time function the coordinate function x0 = t one can write
a solution of the previous equation as follows:

φ(x, t) =

∫
R3

d3k
eik·x

sin(ωkT )

(
φ̂σ1(k) sin(ωk(T − t)) + φ̂σ2(k) sin(ωkt)

)
,

(1.134)
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where φ̂σ1(k) is an operator valued field associated with the Fourier transform
of the boundary data φ(x, t = 0) whereas φ̂σ2(k) is related to the Fourier
transform of the other boundary data φ(x, t = T ). One can immediately
notice that for a given k there is a corresponding mode oscillating with k-
dependent frequency ω2

k = |k|2 + m2 and the operators φ̂σ1(k) and φ̂σ2(k)
behave analogously to the operators x(t = 0) and x(t = T ) in the example of
previous section. Therefore one defines the following commutation relations
between these oscillating modes 10[

φ̂σ1(k), φ̂σ2(k)
]

= iδ(3)(k + k′)
sin(ωkT )

ωk

. (1.135)

Since the simultaneity surfaces are planes orthogonal to the x0-axis, the co-
niugate field operator is π(x, t) = ∂0φ̂(x, t).

For this scalar field the stress tensor operator Tµν is

Tµν = ∂µφ∂νφ− gµνL . (1.136)

Therefore the Hamiltonian operator

H(t) = P0(t) =

∫
R3

(
π2(x, t) + |∇φ|2(x, t) +m2φ2(x, t)

)
d3x

assumes the following form:

1

2

∫
R3

d3k
[(
φ̂σ1(k)φ̂σ1(−k) + φ̂σ2(k)φ̂σ2(−k)

)
−2φ̂σ2(k)φ̂σ1(−k)− isin(ωkT ) cos(ωkT )

ωk

]
. (1.137)

Again one can immediately notice the analogy with a harmonic oscillator:
this Hamiltonian is the superposition of harmonic oscillator Hamiltonians
with k-dependent frequencies.

By exploiting the analogy with the harmonic oscillator once more the
operator functional W can be written as follows:

W = −1

2

∫
R3

d3k
ωk

sin(ωkT )

((
φ̂σ1(k)φ̂σ1(−k) + φ̂σ2(k)φ̂σ2(−k)

)
cos(ωkT )+

−2φ̂σ2(k)φ̂σ1(−k)
)

+
i

2

∫
R3

d3k log

(
ωk

sin(ωkT )

)
, (1.138)

10It is possible to derive brackets between fields defined on different simultaneity surfaces
following Peierls prescription: this is one of the fundamental ingreddients of the so-called
covariant formalism and it will be the subject of the following chapters.
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and one can notice that the last term in the equation above is the log-
arithm of the functional determinant of the operator (D(x, T ))−1/2, where
D(x, T ) is the causal Green function (the definition of this Green function
will be given in the second chapter of this thesis):

D(x, T ) =

∫
R3

d3xe−ik·x
sin(ωkT )

ωk

. (1.139)

Therefore the generating functional for the free dynamics of the scalar field
φ(x, t) is

〈φ2, σ2|φ1, σ1〉 = (det (D(x, T )))−
1
2 e

i
~S(σ1,σ2) (1.140)

where the argument of the exponential is the Action function.
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Chapter 2

Covariant Brackets

In this chapter we will revisit the possibility of defining covariant brackets
with respect to a given action of the Poincaré group. Usual Hamiltonian
formalism requires a splitting of space-time into space and time in order to
define canonical commutation relations. However many attempts have been
done to introduce a fully covariant formalism based on a Lagrangian func-
tion. In this chapter we will present some results related to this approach
which have been recently published in two papers [36]-[37].
In the first part we will present a more geometrical description of Peierls
Bracket [11], which is based on the definition of an action functional. In par-
ticular we will start from the analysis of this bracket for particle mechanics
and we will give some examples where there are evident connections with the
theory of Hamilton-Jacobi equation.
In the following part we will describe how field theories could be dealt with in
this formalism.
In the last part of the chapter we will investigate the possibility of defin-
ing a Jacobi bracket which is covariant with respect to a given action of the
Poincaré group. Indeed, according to a theorem by Kirillov, the most general
antisymmetric bracket which is local in a suitable sense is a Jacobi bracket.
As we will try to explain such a choice is compatible with the definition of
relativistic dynamics given by Dirac in [33] and we will show also a gener-
alization of Peierls’ prescription to introduce a Jacobi brackets based on a
Lagrangian formulation [37].

2.1 Peierls Bracket

The quest for a covariant bracket, which does not require a splitting of space-
time into space and time to be defined, has been a relevant issue since the
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advent of relativity. Such a relativistically covariant description of particles
and fields would have been necessary in order to undestand how to properly
define a covariant quantum theory.

The seminal paper [11] by Peierls in 1952 was actually enlightening from
this point of view. His approach was based on a clever use of the action
functional which avoids the introduction of a spliting into space and time in
order to define commutation relations between fields. Peierls bracket was also
employed by DeWitt [12] in his attempt to produce a quantum description
of general relativity. In particular he faced the problem of extending the
definition of Peierls bracket to Gauge Fields.

In this section we will present some ideas, contained in a recent work
by Asorey et al. [36], about the geometrical elements that emerge from a
careful analysis of Peierls prescription. We will limit to the case of particle
mechanics; field theory will be consider later in this chapter.

2.1.1 Peierls Bracket and Geodesical Motion

Action Functional. Let us start from single particle mechanics. One can
deal with particle mechanics as well as with field theories. Indeed in the case
of a single particle the fields will be the trajectories in a given configuration
space. In the simplest situation this configuration space is a vector space,
for instance R3 ×R = R4, where the additional real line is inserted to define
time. A generic trajectory is a differentiable section γ : R 7→ R4 × R.

The fundamental point in this formulation is the choice of the action
functional S [γ]. It plays a double role: first, it provides us with a set of
equations of motion by means of the corresponding variational principle (see
section 2 of previous chapter), and on the other hand it allows to define
tangent vectors to the space of solutions of the equations of motion. Let us
consider the action functional of a particle with only a kinetic term, i.e.

S[γ] =
m

2

∫
R
g(γ̇, γ̇)ds , (2.1)

where g is the background Riemannian metric of the configuration space, m
is the mass of the particle, and γ̇ denotes the differential of the map γ. If
one introduces a set of globally defined coordinate functions {xµ} on R4, the
functional (2.1) assumes the more familiar form

S[γ] =
m

2

∫
R
gµν (xµ)

dxµ

ds

dxν

ds
ds . (2.2)

For this Lagrangian function Euler-Lagrange equations (see equation (1.68))
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become the geodesic equations

d2xµ

ds2
+ Γµνρ

dxν

ds

dxρ

ds
= 0 , (2.3)

where Γµνρ are the Christoffel symbols of the Levi-Civita connection associated
with the metric tensor g = gµνdx

µ ⊗ dxν .

Remark 7 A perturbation of a path is actually a homotopy class of paths
and in a more general framework a variational principle can be settled by
fixing a fiducial path γ0 and considering another path in the same homotopy
class of the referring one. Since these paths enclose an area, one can define a
functional directly in terms of a two form, and provide a variational principle
by looking for its stationary points. In other words one is looking for critical
values of fluxes. This generalization is very useful when dealing with systems
which do not admit an intrinsic Lagrangian formulation, e.g. the motion of
an electron in the magnetic field generated by a monopole [38, 39] .

Let us now choose a solution γ0 of Euler-Lagrange equations which will
be the reference point in the space of trajectories. One can use the action
S and the set of functionals which are defined on this solution to define a
tangent space at this point. Indeed by means of one of these functionals, e.g.
A, it is possible to set a new variational principle in terms of the modified
action S ′ = S + λA. The new Euler-Lagrange equations are written in a
compact form as:

(δS + λδA) [γA] = 0 . (2.4)

If one is interested in the description of small perturbations δAγ with respect
to the reference solution γ0, the Euler-Lagrange equations simplify and one
obtains the following equations:

∇2

ds2
δAx

ν +R(δAγ, γ̇0)νµẋ
µ
0 = gµν

[
∂A
∂xµ
− d

ds

(
∂A
∂ẋµ

)]∣∣∣∣
γ=γ0

, (2.5)

where A is expressed in terms of a Lagrangian density A, i.e. A =
∫
A ds.

The symbol ∇
2

dt2
denotes the second covariant derivative along the vector

field γ̇0, and R is the Riemann curvature, both associated with the Levi-
Civita connection. On the l.h.s. we immediately recognize the operator, say
J , which appears in Jacobi equation [40]. It is important to stress that these
equations allow to define variations, δAx

µ, which are associated with suitable
functionals.
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Peierls Brackets: Definition and Geometrical Interpretation. Peierls
idea is to proceed by selecting two different solutions of Eq. (2.5), one van-
ishing at the far past along the trajectory, the other one vanishing in the far
future, and then taking their difference. The result is a solution of Jacobi
equation with no source. This tangent vector may act as a linear operator on
other functionals. The result of this action is called Peierls bracket. If δ−Ax

µ

and δ+
Ax

µ denote the required solutions, the Peierls bracket of two functionals
A, B is

{A,B}P =

∫
R

(
δ+
Ax

µ − δ−Ax
µ
) [ ∂B

∂xµ
− d

ds

(
∂B
∂ẋµ

)]∣∣∣∣
γ=γ0

ds . (2.6)

The solutions δ±Ax
µ matching the asymptotic past/future conditions can

be expressed in terms of the retarded/advanced Green functions

Gνµ
± (s, s′) =

(
J ±µν
)−1

(s, s′), (2.7)

where

Jµν =

(
gµν
∇2

ds2
+ gµσR

σ
ναβẋ

αẋβ
)∣∣∣∣

γ=γ0

. (2.8)

Indeed, in this case

δ+
Ax

ν(s) =
∫
RG

νµ
+ (s, s′)

[
∂A
∂xµ
− d

ds

(
∂A
∂ẋµ

)]
(s′)ds′ (2.9)

δ−Ax
ν(s) =

∫
RG

νµ
− (s, s′)

[
∂A
∂xµ
− d

ds

(
∂A
∂ẋµ

)]
(s′)ds′ . (2.10)

One may wonder why one is choosing the difference δ+
Ax

µ− δ−Axµ in order
to define Peierls brackets. The explanation is simple. Let us consider the
following difference:

gµνJ
µ
1

(
∇2

ds2
Jν2 +R(J2, γ̇0)νρẋ

ρ
0

)
− gµνJµ2

(
∇2

ds2
Jν1 +R(J1, γ̇0)ρν ẋ

ν
0

)
=

=
∇
ds

(
gµνJ

µ
1

∇
ds
Jν2 − gµνJ

µ
2

∇
ds
Jν1

)
=

d

ds

(
ωL

((
J1,

d

ds
J1

)
,

(
J2,

d

ds
J2

)))
(2.11)

where ωL in the final expression represents a two-form on the tangent bundle
TR4 associated with the Lagrangian density L which is given explicitly by:

ωL =
∂2L

∂ẋµ∂ẋν
dxµ ∧ dvν +

(
∂2L

∂ẋµ∂xν
− ∂2L
∂xµ∂ẋν

)
dxµ ∧ dxν .
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If now one chooses J1 = δ+
Ax

µ − δ−Ax
µ and J2 = δ+

Bx
µ − δ−Bx

µ, where
δ+
Bx

µ−δ−Bxµ is the solution associated with a second functional B, one obtains

gµνJ
µ
1

(
∇2

ds2
Jν2 +R(J2, γ̇0)νρẋ

ρ
0

)
− gµνJµ2

(
∇2

ds2
Jν1 +R(J1, γ̇0)ρν ẋ

ν
0

)
= 0 .

(2.12)
Consequently

d

ds

(
ωL

((
J1,

d

ds
J1

)
,

(
J2,

d

ds
J2

)))
= 0 , (2.13)

which means that the quantity ωL((J1,
d
ds
J1), (J2,

d
ds
J2)) is preserved along

solutions of the referring equations of the motion.
This result actually expresses a general fact: as it will be shown in the

next paragraph, Eq.(2.13) remains valid for every action functional coming
from a Lagrangian density not only of the kinetic type. Essentially, it is
related to the symmetry of the second variation of the action, and when one
has a Lagrangian density it gives rise to the two-form ωL. After proving this
it will be easy to see that the expression in brackets actually coincides with
Peierls bracket.

2.1.2 Peierls Bracket for a regular Lagrangian

In the previous paragraph Peierls bracket has been introduced and a first
application to geodesical motion has been showed. In this paragraph we will
extend previous results to the case of a regular1 Lagrangian L.

Let us start from a regular Lagrangian function L on TRN and let us in-
troduce a set of coordinate functions {xj, vj} on TRN , with j = 1, 2, · · · , N .
Euler-Lagrange equations (1.68) can be written as:

∂2L
∂vj∂vk

ẍk +
∂2L

∂vj∂xk
ẋk − ∂L

∂xj
= 0 . (2.14)

Concerning the second variation, when the action is written in terms of
a Lagrangian density L the generalization of the operator Jµν in eq.(2.8) is
the following operator Lµν :(

Cµν
d2

ds2
+Dµν

d

ds
+ Eµν

)∣∣∣∣
γ=γ0

, (2.15)

1A Lagrangian function L on TRN is regular if and only if the determinant of the

matrix ∂2L
∂vj∂vk

is nowhere vanishing, where
(
xj , vj

)
denote a set of coordinate functions

on TRN .
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which is a linear second order differential equation which acts on a variation
Jµ(s). This operator is written in terms of the following matrices

Cµν = − ∂2L
∂ẋµ∂ẋν

(2.16)

Dµν = − d

ds

∂2L
∂ẋµ∂ẋν

− ∂2L
∂ẋµ∂xν

+
∂2L

∂xµ∂ẋν
(2.17)

Eµν = − d

ds

∂2L
∂ẋµ∂xν

+
∂2L

∂xµ∂xν
(2.18)

evaluated along the reference solution γ0.
Since the matrix Cµν is invertible, Euler-Lagrange equations define the

following second order vector field [41] Γ on the tangent bundle of the con-
figuration space TRN :

Γ = vj
∂

∂qj
+ F j ∂

∂vj
, (2.19)

where F j = − (C−1)
jk
(
− ∂2L
∂vk∂xl

vl + ∂L
∂xk

)
.

If one considers the tangent lift [41] Γ↑ of the vector field Γ one gets the
following vector field on TTRN :

Γ↑ = vj
∂

∂qj
+ F j ∂

∂vj
+ ujv

∂

∂ujx
+W j ∂

∂ujv
, (2.20)

where W j = (C−1)
jk (

Dklu
l
v + Eklu

l
q

)
and we have used the following set

{xj, vj, ujx, ujv} of coordinate functions on TTRN .
Now let us consider a variation along a curve γ. A variation Jk(s) can

be identified with a vector field along the curve γ and so with a curve
γ̃(s) = (xk(s), Jk(s)) on the tangent bundle TRN . The tangent lift tγ̃(s) =(
xk(s), Jk(s), dx

k

ds
(s), dJ

k

ds
(s)
)

therefore is a curve on the double tangent bun-

dle TTRN .
On the double tangent bundle there exists a natural transformation, called

canonical flip φ : TTRN → TTRN , which is based on the fact that it is
possible to introduce two different vector bundle structures on the tangent
bundle TE of any vector bundle E over a manifoldM [42]. Specializing this
transformation to the case in analisys one can write the following map:

φ(x, v, ux, uv) = (x, ux, v, uv) . (2.21)

Applying this transformation to the curve tγ̃ one gets the following curve

φ(tγ̃)(s) =

(
xk(s),

dxk

ds
(s), Jk(s),

dJk

ds

)
, (2.22)
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which is an integral curve for the vector field Γ↑ if and only if γ(s) = (xk(s))
is a solution of the Euler-Lagrange equations (1.68) and

{
Jk(s)

}
is a solution

of the equations (2.15).
Let us now consider the curve tγ̃(s). The projection T (πM)(tγ̃(s)) =

(xk(s), Jk(s)) defines a vector field V along the curve γ(s). At any point
of the curve this vector generates a one parameter group of transformations,
and consequently this vector field generates a one parameter family of curves,
which are in the same homotopy class as γ(s). Therefore the tangent lift of
this vector field generates a family of curves which are the differential of the
previous family of curves. The tangent lift of this vector field is written as

V ↑ = Jµ(s)
∂

∂xµ
+
dJµ

ds
(s)

∂

∂vµ
, (2.23)

and its evaluation along the curve of the tangent bundle
(
xk(s), dx

k

ds
(s)
)

coincide with the curve in equation (2.22).
Let us now consider the following difference∫ ∫

dsds′
(
Jµ1 (s)

δ2S

δγµ(s)δγν(s′)
Jν2 (s′)−

(
δ2S

δγµ(s)δγν(s′)
Jµ1 (s)

)
Jν2 (s′)

)
,

where the second variation of the action functional is the operator in equation
(2.15). A direct computation shows that this difference can be written as a
total derivative, that is∫ ∫

dsds′
(
Jµ1 (s)

δ2S

δγµ(s)δγν(s′)
Jν2 (s′)−

(
δ2S

δγµ(s)δγν(s′)
Jµ1 (s)

)
Jν2 (s′)

)
=

∫
ds

d

ds

(
ωL

(
V ↑1 , V

↑
2

))
, (2.24)

where ωL denotes the following two-form on TR4

ωL =
∂2L

∂ẋµ∂ẋν
dxµ ∧ dvν +

(
∂2L

∂ẋµ∂xν
− ∂2L
∂xµ∂ẋν

)
dxµ ∧ dxν . (2.25)

Let us introduce the commutator Green function G̃µν(s, s′) = Gµν
+ (s, s′)−

Gµν
− (s, s′). If J1(s) = G̃(δA)2 and J2(s) = G̃(δB), where A and B are two

functionals of the curve γµ(s), the integrand in equation (2.24) is a constant
of the motion.

2The expression G̃(δA) will represent the integral
∫
G̃µν(s, s′) δAδγν (s′)ds′, where A is a

functional of the curve γµ(s).
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Then it has to be shown that actually this conserved quantity coincides
with Peierls bracket. Before this, however, let us introduce another definition
of Peierls bracket:

{A,B}P =

∫
R
δ−Ax

j

(
∂B
∂xj
− d

ds

(
∂B
∂ẋj

))
ds−

∫
R
δ−Bx

j

(
∂A
∂xj
− d

ds

(
∂A
∂ẋj

))
ds .

(2.26)
This definition and the one in Eq. (2.6) coincide when the action of the
variation δ+

Ax
µ over the functional B equals the action of the variation δ−Bx

µ

over the functional A [12].
Replacing J1 = δ−Ax

µ = G−(δA) and J2 = δ−Bx
µ = G−(δB) in Eq.(2.11),

we get〈
δB,G−(δA)

〉
(s)−

〈
δA,G−(δB)

〉
(s) =

d

ds

(
ωL
(
G−(δA), G−(δB)

))
.

(2.27)
Integrating both sides of the equation along the reference path, one gets

{A,B}P = lim
s→−∞

ωL
(
G−(δA), G−(δB)

)
(s) , (2.28)

which does coincide with the previous conserved quantity because in the
remote past the effect of the solution δ+

Ax
µ is negligible. Since these expres-

sions coincide one can actually compute the conserved quantity at any point
of the trajectory using the variations written in terms of commutator Green
function G̃(δA), G̃(δB).

Let us now look at the homogeneous part of the linearized problem (2.15).
Since it is a linear differential equation, the space of its solutions is a vector
space. As it is a second order ordinary differential equation, the dimension of
this vector space is 2× 4 = 8, where 4 is the dimension of the configuration
space. One can find a basis of this space by looking for a set of 8 independent
solutions. For instance a set of independent solutions are obtained by solving
the eight homogeneous differential equations

LµνJ
ν
− = 0 (2.29)

J
(ρ)
− (−T ) = Jρ− (2.30)

J
(ρ)
− (T ) = 0 (2.31)

and

LµνJ
ν
+ = 0 (2.32)

J
(ρ)
+ (T ) = Jρ+ (2.33)

J
(ρ)
+ (−T ) = 0 (2.34)
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where the vectors Jρ+ and Jρ− have only one non-vanishing component in the
ρ-position with value 1.

In terms of these solutions the Green’s function G̃µν(s, s′) can be written
as

G̃µν(s, s′) =
∑
ρ

J
(ρ)µ
+ (s)J

(ρ)ν
− (s′)− J (ρ)µ

− (s)J
(ρ)ν
+ (s′)

W (J
(ρ)
+ , J

(ρ)
− )

(2.35)

where W (J
(ρ)
+ , J

(ρ)
− ) = ωL

(
J

(ρ)
+ , J

(ρ)
−

)
is a constant of the motion.

This choice of variations is actually a choice of a basis of the tangent space
to the reference solution γ0, seen as a solution of a second order differential

equation. This basis will be denoted by
{

∂
∂xρ+

, ∂
∂xρ−

}
, where x+ and x− are

the parameters labelling the particular solution.
If now one replaces this expression in the definition of δ+

Ax
µ − δ−Axµ the

following result is obtained:

δ+
Ax

µ−δ−Ax
µ =

∑
ρ

J
(ρ)µ
+ (s)

∫
R J

(ρ)ν
− (s′) δA

δxν
(s′)ds′ − J (ρ)µ

− (s)
∫
R J

(ρ)ν
+ (s′) δA

δxν
(s′)ds′

W (J
(ρ)
+ , J

(ρ)
− )

,

and its action over a functional B can be written as

{A,B}P =
∑
ρ

1

W (J
(ρ)
+ , J

(ρ)
− )

(∫
R

δB

δxµ
(s)J

(ρ)µ
+ (s)ds

)(∫
R
J

(ρ)ν
− (s′)

δA

δxν
(s′)ds′

)
−
∑

ρ

1

W (J
(ρ)
+ , J

(ρ)
− )

(∫
R
δB

δxµ
(s)J

(ρ)µ
− (s)ds

)(∫
R J

(ρ)ν
+ (s′)

δA

δxν
(s′)ds′

)
.

One can identify variations along a path with the restriction of a vector
field along solutions, so that this bilinear operation on functionals can be
represented in terms of the bivector field along the space of solutions

Λ =
∑
ρ

1

W (J
(ρ)
+ , J

(ρ)
− )

∂

∂xρ+
∧ ∂

∂xρ−
. (2.36)

From this expression one can conclude that Peierls bracket is a bilinear an-
tisymmetric operation. However, this does not guarantee that it defines a
Poisson structure.

In summary, it has been shown that Peierls bracket can be read actually
as a bivector field defined on the space of solutions of a system of differential
equations in the case of single particle mechanics. Moreover if the dynamics
is covariant with respect to the action of the Poincaré group, this action is
directly implemented as a symmetry of the system because it maps solutions
into solutions.
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Example. Let us consider a very simple example in order to make these
ideas clearer.

Let us start with the geodesic motion in a flat Euclidean space, R4. The
Euler-Lagrange equations are

δjk
d2

ds2
xk = 0 (2.37)

and the operator J in the corresponding Jacobi equation Eq.(2.5) reduces
to

J = δlk
d2

ds2
Jk . (2.38)

Let us consider now a path which is solution of the variational problem
and which passes through two established points:

xj(s) =
xj− + xj+

2
+
xj− − x

j
+

2T
s. (2.39)

The integration constants have been chosen to match the conditions

x(−T ) = x− (2.40)

x(T ) = x+ . (2.41)

As previously illustrated one has to add a source term to the Jacobi
equation (2.5) and then to find two particular solutions, one vanishing in
the far past and one in the far future. These two solutions are respectively
obtained by convolution with the advanced and retarded Green’s functions
given by

Gjk
+ (s− s′) = δjk θ(s− s′) (s− s′) (2.42)

Gjk
− (s− s′) = δjk θ(s′ − s) (s′ − s) . (2.43)

Peierls brackets involves the causal Green’s function [43]

G̃ij(s, s′) = Gij
+ −G

ij
− = δij (s− s′).

If one considers a perturbation given in terms of a density function A one
gets that the required difference is(

δ+
Ax

j − δ−Ax
j
)

(s) = δjk
∫
R
(s− s′)

(
∂A
∂xk
− d

ds′
∂A
∂ẋk

)
(s′)ds′ . (2.44)

Thus the Peierls bracket of two functionals, A and B, expressed in terms of
two densities A and B is

{A,B}P = δjk
∫
R

∫
R
(s− s′)

(
∂B
∂xj
− d

ds

∂B
∂ẋj

)
(s)

(
∂A
∂xk
− d

ds′
∂A
∂ẋk

)
(s′)dsds′ ,
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and an explicit calculation shows that this expression does coincide with the
conserved quantity

ωL

((
J1,

d

ds
J1

)
,

(
J2,

d

ds
J2

))
(2.45)

when J1 = δ+
Ax

j − δ−Axj and J2 = δ+
Bx

j − δ−Bxj.
Let us now choose a set of independent solutions of the systems (2.31)

and (2.34). A straightforward analysis gives

J
(j)
+ (s) = x

(j)
+ (s+ T ) (2.46)

J
(j)
− (s) = x

(j)
− (s− T ) (2.47)

where

(x
(j)
± )i =

{
1 if i = j

0 if i 6= j.
(2.48)

Since ωL(J
(j)
+ , J

(j)
− ) = 2T one gets that the bivector field defining the Peierls

bracket is

Λ =
∑
j

T
∂

∂xj+
∧ ∂

∂xj−
. (2.49)

One can immediately recognize that the tensor Λ defines a Poisson bracket.
It coincides with the push-forward of the Poisson tensor ΛL = ω−1

L with
respect to the canonical transformation defined by the Hamilton principal
function

S(x−, x+) =
∑
j

(xj+ − x
j
−)2

2T
(2.50)

associated with the Lagrangian density generating the equations of motion.

2.2 From Particles to Fields

In this section we will show how previous construction can be extended to
field theory. Actually since the formalism we have adopted in the last section
is based on the use of curves and variational principles, this generalization is
almost straigthforward. The main point is the following: one has to replace
the one dimensional manifold representing the parametrization of a curve
with a higher dimensional manifold. In particular four dimensional manifolds
equipped with a Lorentzian metric tensor are of interest for the description
of relativistic field theories.
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In the following paragraphs we will investigate the features of this covari-
ant description for fields by examinating a simple example: relativistic scalar
field without interactions. In this way we will present the main geometrical
elements without caring of some technicalities which will make more obscure
the exposition.

2.2.1 Peierls Bracket and Scalar Field Theory

Let us start from the relativistic description of a free scalar field. A scalar
field is a section of the trivializable bundle π : E = R × R4 → R4, i.e.
maps from R4 with values in R. The base manifold R4 is equipped with the
Minkowski metric tensor g = ηµνdx

µ ⊗ dxν where the matrix ηµν has the
following form:

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.51)

The free dynamics of this field is given in terms of a variational principle,
the action functional being

S[φ] =

∫
R4

1

2

(
ηµν∂µφ∂νφ−m2φ2

)
d4x =

∫
R4

Ld4x . (2.52)

One can immediately see that the Lagrangian density L is a function
defined on the first jet bundle J1E of the vector bundle E, in particular it is
evaluated over the first prolongation j1φ of the field φ. The first jet bundle
generalize the notion of tangent bundle to field theories, replacing the single
derivatives of a curve with the whole set of partial derivative of a field, as
well as the first prolongation of a field φ generalizes the notion of differential
tγ of a curve γ. More details are contained in the Appendix A.

In this simple example one can introduce a single chart on the first jet
bundle J1E with the following coordinate function J1E 3 p → (xµ, u, uµ).
The first prolongation j1φ of a section φ of the vector bundle E is a section
of the first jet bundle which in the previous coordinates can be written as
j1φ(x) = (φ(x), ∂µφ(x)).

Therefore one can write the action functional in equation (2.52) as follows

S[φ] =

∫
R4

(j1φ)∗(L)d4x . (2.53)

According to Lagrangian variational principle, one is looking for station-
ary points of the action functional. A variation can be represented by a

48



compact support vertical vector field U = U(x) ∂
∂u

along the field φ; actually,
since the Lagrangian density involves the first prolongation of the field φ, a
variation is associated with the first prolongation U1 of the vertical vector
field U . In coordinates one obtains:

U1 = U
∂

∂u
+
dU

dxµ
∂

∂uµ
.

Therefore stationary points of the action functional satisfy

δSφ[U ] =

∫
R4

(j1φ)∗(LU1L)d4x = 0 , (2.54)

for every variation U . Euler-Lagrange equation is:

∂µ∂
µφ+m2φ = 0 . (2.55)

In order to apply Peierls prescription one has to select a reference solution
φ0 of Euler-Lagrange equation. As already outlined in the previous section
one has to introduce a new functional S ′ = S + λA and considering the lin-
earized Euler-Lagrange equation associated with this new functional around
the reference solution φ0. The result is an equation for a variation δAφ which
can be written in a compact form as follows:

δ2S

δφ(x)δφ(x′)
δAφ(x′) =

δA

δφ(x)
, (2.56)

where the second variation of the action is a linear operator evaluated along
the solution φ0. In the case of free dynamics of a scalar field this opera-
tor coincides with Klein-Gordon equation since the initial Euler-Lagrange
equations were already linear, that is:

δ2S

δφ(x)δφ(x′)
δAφ(x′) = ∂µ∂

µδAφ+m2δAφ (2.57)

At this point Peierls procedure ends with the selection of a particular
solution δ̃φA of the equation (2.56) written as the difference

δ̃φA = G+(δA)−G−(δA) = G̃(δA) (2.58)

where G̃ = G+ −G− is the commutator or causal Green function associated
with the linear equation (2.56). Let us recall once more that this solution
is actually a solution of the homogeneous equation associated with equation
(2.56).
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As already analyzed in the previous section this choice allows to define
a vector tangent to the space of solutions at the point φ0 and this tangent
vector acts as a differential operator on other functionals, for instance B; the
result of this action is the Peierls bracket which can be written as

{A,B}P =

∫
R4

δ̃φA(x)
δB

δφ(x)
d4x . (2.59)

Let us now consider the difference

V (x′)

(
δ2S

δφ(x′)δφ(x)
U(x)

)
−
(
V (x′)

δ2S

δφ(x′)δφ(x)

)
U(x) , (2.60)

where U, V are two arbitrary variations. Since the second variation is a
symmetric operator this difference can be rewritten as a quadridivergence
(see [12, 44]). In the case of Klein-Gordon equation one obtains the following
result:

V (x) (∂µ∂
µU(x))−(∂µ∂

µV (x))U(x) = ∂µ (V (x) (∂µU(x))− (∂µV (x))U(x)) ,
(2.61)

and when the two variations U, V are solutions of the homogeneous equations
associated with equation (2.56) one obtains that this divergence is zero. If
now one integrates the right hand side of last equation over a volume con-
tained between two simultaneity surfaces (these surfaces can be selected by
defining a time function on R4) one can see that the value of the integral
does not depend on the chosen surface and this integral defines a two-form
on the space of fields solutions of Klein-Gordon equation. It is possible to
write this form in a more effective way as follows:

ΩΣ
φ [U, V ] =

∫
Σ

i∗Σ (nµ (V (x) (∂µU(x))− (∂µV (x))U(x))) dσ , (2.62)

where i∗Σ is the pullback through the immersion of the simultaneity surface
Σ in R4 and dσ is the measure on the surface Σ induced by the measure on
R4.

In order to make more evident the generalization to other field theories
one can write this bracket in terms of tensors on the first jet bundle. Indeed
every first jet bundle possesses a vector valued m-form S which in coordinates
can be written as

S = (du− uµdxµ) ∧ (i∂νω)⊗ ∂

∂uν
, (2.63)

where ω is a volume form on R4. The contraction of this vector valued
m-form with the differential one form dL gives rise to a (m)-form on the
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first jet bundle which one calls dSL. In coordinates it assumes the following
expression

dSL =
∂L
∂uν

(du− uµdxµ) ∧ (i∂νω) . (2.64)

The differential of this m-form is a (m+1)-form on the first jet bundle which
can be contracted with two variations, i.e. two vertical vector fields, in order
to obtain a (m − 1)-form. The pullback of this (m − 1)-form through the
prolongation j1φ of a solution of Euler-Lagrange equations is a (m− 1)-form
on the base manifold R4 which can be integrated on a surface Σ. Since φ is
a solution of Euler-Lagrange equations this integral does not depend on the
chosen surface and defines a two-form on the space of solutions. Therefore
the expression (2.62) can be rewritten in an intrinsic way as follows:

ΩΣ
φ [U, V ] =

∫
Σ

i∗Σ
(
j1φ
)∗ (

i1V i
1
Ud(dSL)

)
. (2.65)

As already shown in previous section, if one replaces the variations U, V
with the variations δ̃φA, δ̃φB one obtains Peierls bracket. Therefore one can
write the following expression:

{A,B}P (φ) = ΩΣ
φ

[
δ̃φA, δ̃φB

]
. (2.66)

In particular when we specialize to the case of scalar field theory without
interaction one can obtain another interesting expression which is associated
with a specific choice of a time function.

If one considers the coordinate function x0 as a globally defined time
function τ the level sets of which define simultaneity surfaces, a solution of
Klein-Gordon equation whose values at τ = τ1 and τ = τ2 are given by the
two functions φ1(x) and φ2(x) respectively, is

φ(x, τ) =
1

(2π)3

∫
R3

dk eikx

sinωk(τ2 − τ1)

(
φ̃1(k) sinωk(τ − τ2)− φ̃2(k) sinωk(τ − τ1)

)
.

This can be seen as the superposition of harmonic oscillators with k-dependent
frequencies. The commutator Green function can be written as follows

G̃(x, y) =

∫
R3

dk

(2π)3ωk
eik(x−y) (sin(ωkx0) cos(ωky0)− cos(ωkx0) sin(ωky0)) .

After some lenghty computations one can write the Peierls bracket according
to the following formula:

{A,B}P =

∫
R4

d4z

∫
R4

d4y

∫
R3

dk

(2π)3ωk
eik(y−z) sin(ωk(y0 − z0))

δA

δφ
(y)

δB

δφ
(z) ,
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which can be seen as the superposition over the modes labelled by k of Peierls
brackets for a harmonic oscillator. Furthermore each one of these modes can
be interpreted as the superposition of a forward propagating mode and a
backward propagating mode, J+ and J− respectively. Causality is respected
as can be shown by computing the brackets between the two functionals
φ(x1) =

∫
R4 φ(x)δ(x− x1) and φ(x2) =

∫
R4 φ(x)δ(x− x2), that is:

{φ(x1), φ(x2)}P = G̃(x1 − x2) . (2.67)

2.2.2 A final comparison

In the final paragraph of this section we will make a brief comparison between
the covariant description of the previous sections and the Hamiltonian co-
variant description recently elaborated in the paper [44]. This will allow us to
clarify the relationship between this description and Hamilton-Jacobi theory
seen as the theory of generating functions of canonical transformations.

Let us start from the space of fields. These are sections of a fibre bundle
over a (d + 1)-dimensional manifold M equipped with a metric tensor g.
The space of physical states for a system described by a second order partial
differential equation are section of the first jet bundle J1E which are first
prolongation j1φ of sections φ of the fibre bundle E. Let us introduce on
J1E the following coordinate functions

{
xµ, ua, uaµ

}
.

It is possible to equip this space of sections ΓJ with some suitable differ-
ential structure (for instance Hilbert spaces if one considers solutions which
belong to some Sobolev spaces, but in general this choice will depend on the
physical interpretation of the fields). Therefore we will suppose to be able
to perform, at least formally, the usual operations of the differential calculus
on manifolds.

In order to define an action functional one can introduce the following
(d+ 1)-form on J1E which is written by means of the natural vector-valued
(d + 1)-form S on the first jet-bundle and a Lagrangian function L. This
form can be written as follows:

θL = dSL+ Lω =
∂L
∂uaµ

dua ∧ i∂µω −
(
∂L
∂uaµ

uaµ − L
)
ω , (2.68)

whereas the corresponding action functional assumes the following form:

S[φ] =

∫
M

(j1φ)∗θL . (2.69)

Variations U of a field φ can be identified with a vertical vector field along
the field φ; in particular, since the action involves the first prolongation of the
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field φ the corresponding variation is the first prolongation U1 of the vertical
field associated with U along j1φ. Critical point of the action functional
satisfy the following equation:

dSφ[U ] = 0, (2.70)

for a generic variation U . Let us show how to obtain Euler-Lagrange equation
in this approach. Indeed one has that

dSφ[U ] =
d

ds
S[φs]|s=0 =

∫
M

d

ds
(j1φs)

∗θL|s=0 =

∫
M

(j1φ)∗LU1 (θL) =

=

∫
M

(j1φ)∗iU1dθL +

∫
M

(j1φ)∗diU1θL . (2.71)

If the manifold does not have a boundary the second term in the last equality
vanishes as a consequance of Stoke’s theorem whereas the first term gives
Euler-Lagrange equation, as can be seen by a direct computation which gives
the following result:

(j1φ)∗iU1dθL = −Ua

(
∂

∂xµ

(
∂L
∂uaµ

)
− ∂L
∂ua

)
ω . (2.72)

Furthermore one can interpret the previous term as the definition of a one-
form

ELφ[U ] =

∫
M

(j1φ)∗iU1dθL , (2.73)

over the space of physical fields and the zeros of this one-form are the solution
of Euler-Lagrange equation. We will denote the space of these solutions by
EL.

Let us suppose now that the spacetime admits a time function and let
us consider a volume contained between two simultaneity surfaces, Σ1, Σ2.
Equation (2.71) restricted to this volume has both a contribution from the
bulk and another from the boundary. If one considers only fields which are
solutions of Euler-Lagrange equations the bulk contribution vanishes and one
gets only the boundary terms, which are:∫

M
(j1φ)∗diU1θL =

∫
Σ2

i∗Σ2
(j1φ)∗ (iU1θL)−

∫
Σ1

i∗Σ1
(j1φ)∗ (iU1θL) (2.74)

where

iU1θL =
∂L
∂uaµ

Uai∂µω . (2.75)

Equation (2.74) defines a one form α∂M on the manifold which is the cartesian
product IΣ1 × IΣ2 of the manifolds corresponding to the boundary values
{ϕa, πa} of the fields φa and the normal momenta pa = nµ ∂L

∂uaµ

3 on the surfaces

3nµ denotes the normal vector to the surface under analysis.

53



Σ1 and Σ2. The differential of this one-form detemines a two-form on the
same manifold which in general will be only presymplectic. This two-form
coincides with the expression in equation (2.65) when evaluated on vertical
vector fields. If the Lagrangian is not degenerate the manifold is a symplectic
manifold and the space EL is an isotropic submanifold. If Euler-Lagrange
equations give rise to a vector field and its flow determines a one-to-one
correspondence between the data on Σ1 and Σ2 for any possible choice of the
two surfaces Σ1 and Σ2, the vector field is complete and the space EL is a
Lagrangian submanifold of IΣ1×IΣ2 . Therefore smooth tensors on the space
of solutions EL can be associated to smooth tensors on the space IΣ1 which
can be considered as the manifold of the initial data of the physical fields.

Furthermore, if for any pair of values ϕaΣ1
, ϕaΣ2

there is only one solution
connecting them, the dynamical system is completely integrable. Therefore
smooth tensors on the space of solutions of Euler-Lagrange equations are
related to smooth tensors on the product manifold F × F corresponding to
the values of the field on the two surfaces Σ1 and Σ2.

After this comparison with the covariant formalism in [44], next section
will be devoted to the introduction of a Jacobi bracket on the space of solu-
tions of Euler-Lagrange equations coming from an action functional S with
a given Lagrangian density L. However, before entering into the details, the
first paragraph of next section will contain of a series of considerations origi-
nated from the reading of some enlightening papers which has motivated the
subsequent investigation on Jacobi brackets.

2.3 Covariant Jacobi Brackets for Test

Particles

2.3.1 Historical Remarks: On Relativistic Forms of
Dynamics and Jacobi Brackets

The advent of relativity has forced physicist to think of dynamics in different
terms. In the case of special relativity Dirac [33] explains very well what
would be a resonable meaning of relativistic dynamics: the construction of a
set of observables closing on the Lie algebra of the Poincaré group. In order
to preserve covariance with respect to this group, Dirac suggests to replace
the conventional time translation with the full translation subgroup of the
Poincaré group and various realizations of the Poincaré algebra are called
forms of relativistic dynamics.

In modern mathematical language one would say that a form of relativis-
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tic dynamics consists in a realization of the abstract commutation relations
of the Lie algebra of the Poincaré group as derivations of a certain associative
algebra of observables. Notice that this formulation does not discriminate
between classical and quantum systems and can be used in both instances.
Indeed one of the most relevant achievement of modern mathematics as ap-
plied to Physics has been the possibility of using abstract relations to under-
stand and discuss physical laws without using a specific realization. This way
of formulate problems allows to separate the aspects which are general from
the ones that are related with a chosen realization. For instance the language
of abstract algebras is at the base of Dirac’s analogy principle that allows to
relate the quantum description of physical systems and their corresponding
classical counterparts.

In a two pages paper Wigner raised the question[45]: to what extent do
the equations of motion determine the commutation relations? Adopting
Dirac’s point of view ,one might rephrase Wigner’s problem by searching to
what extent the invariance under the Poincaré group would determine the
commutation relations.

As the Lie algebra structure is essentially determined by the associative
structure which admits the Lie algebra as an algebra of derivations [46],this
amounts to ask for all possible associative products which admit as deriva-
tions the infinitesimal generators of the Poincaré group. Obviously the an-
swer is not unique: for instance, in the quantum setting the two associative
operator products A · B and A · K · B where K is any operator function
of the Casimir operator for the Poincaré goup, admit the Lie algebra of the
Poincaré group as derivations. Nevertheless in both cases these derivations
are inner (see Ref. [46]), i.e. they are realized as commutators with an ele-
ment of the algebra itself. Actually, in the case of the algebra of observables
of a quantum mechanical system, all the derivations are inner. However the
classical limits (for instance in the sense of Moyal products see Ref. [47]) of
these two associative products and of the corresponding commutators have
different properties; in the first case the commutator is related to a Poisson
bracket, whereas for the second situation the limiting algebra defines a Jacobi
bracket. 4

Therefore in the final section of this chapter it will be shown a possible
generalization of the covariant formalism outlined in previous sections by
replacing Peierls Bracket with a more general Jacobi Bracket. This idea has
been presented in a recent work by Asorey et al. [37]. We will focus on
a single example, the Lagrangian describing unparametrized geodesics for

4More general in paper [47] it is shown that in presence of KMS states, the classical
limit is indeed a Jacobi bracket.
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the Minkowski spacetime, but the result can be generalized to the space of
geodesics of more general manifolds equipped with a metric tensor.

Before entering this discussion we will start from a digression which will
be useful to properly interpret the final result.

2.3.2 Contact Manifolds out of the Klein-Gordon
Equation

As above announced in this paragraph we will start with a discussion on the
possibility of defining contact structures and Jacobi brackets on physically
meaningful submanifolds of the cotangent bundle T ∗R4, where the base man-
ifold R4 is equipped with the Minkowski metric tensor already defined in the
previous section.

On this base manifold one can define a set of linear coordinate functions
{xµ}. In this coordinates Klein-Gordon equation assumes the form (2.55) or
in a more compact form (

� +m2
)
ψ = 0 , (2.76)

where � =
∂2

∂x2
0

−∇2 is the d’Alembert operator.

This equation was proposed by Oskar Klein and Walter Gordon to de-
scribe relativistic electrons [48]. However, as electrons carry also a spin, the
equation does not provide with a satisfactory description of them and it is
suitable only for spinless particles. For instance it could describe composite
particles like pions, or Higgs boson.

By associating a “symbol” to this differential operator by means of the
functions e±ipµx

µ
, see Ref. [22], one can find a function on the cotangent bun-

dle T ∗R4 which is quadratical in the momentum four-vector of the relativistic
particle

e±ipµx
µ

�e∓ipµx
µ

= pµp
µ . (2.77)

The dispersion relation defined by means of the symbol above, determines a
seven-dimensional submanifold Σm of the phase space T ∗R4 as follows

Σm ≡
{

(x, p) ` pµpµ = m2
}
. (2.78)

Denoting with iΣ the canonical immersion of Σm into T ∗R4, one has that
the pull-back i∗Σ(θ0) = θm of the natural Liouville one-form θ0 = pµdx

µ,
defines a contact structure (see Appendix B for some basic definitions. A
more detailed exposition can be found in [32]). Indeed a direct computation
shows that:

θm ∧ (dθm)3 = (p3dp0 ∧ dp1 ∧ dp2 − p2dp0 ∧ dp1 ∧ dp3 + p1dp0 ∧ dp2 ∧ dp3 +

+p0dp1 ∧ dp2 ∧ dp3) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 6= 0 .
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As explained in the appendix, a contact structure is defined up to mul-
tiplication by a non vanishing function. Using as a reference one form the
canonical Liouville one form, one can consider all the family obtained by
means of a conformal factor. The adapted lifting of the Poincaré algebra
from the configuration space to the phase space is obtained by requiring that
the associated vector fields on the phase space preserve the chosen one form.
The Lie algebra on which the lifted vector fields will close is the Poincaré
algebra itself if the conformal factor is function of a Casimir. In particu-
lar, if the conformal factor is function of the Casimir p2 = pµp

µ, then, on
the submanifold Σm it becomes actually a constant. This means that the re-
quirement of Poincaré invariance for the potential one-form on T ∗R4 selects a
particular contact form θm on Σm which is unique apart from a multiplicative
constant.

It is worth noticing that both θ0 and the submanifold pµpµ = m2 are
manifestly Poincaré invariant.

Having obtained a contact structure out of the Klein-Gordon equation,
let us now introduce the Jacobi bracket associated with it. As one can see
from the definition (3.83) in appendix B, this bracket is entirely defined in
terms of the exterior differential d and the contact one-form θm, hence, being
these ingredients invariant with respect to the Poincaré group, the Jacobi
bracket itself will be fully invariant with respect to Poincaré group.

As explained in appendix B, one may write the Jacobi bracket in terms of
a suitable pair (ΛΣ, Γ). At this purpose, let us consider the following tensor
fields on T ∗R4

ΛΣ =

(
gµν − pµpν

m2

)
∂

∂pµ
∧ ∂

∂xν
(2.79)

and

Γ =
pµ

m2

∂

∂xµ
. (2.80)

It is easy to verify that even if we have used a set of coordinate functions
of the full phase space, say (xµ, pµ), these two tensors are actually written in
terms of vector fields which are tangent to the submanifold Σm and therefore
belong to the tensor fields built out of the tangent bundle of Σm. This
follows because both of them vanish when contracted with the differential of
the Casimir function.

Direct computations show that these two tensors satisfy all the properties
discussed in appendix B. Therefore one can introduce the following bracket
on the set of differentiable functions on Σm:

[f, g] = ΛΣ(df, dg) + fLΓg − gLΓf . (2.81)
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According to this bracket, for instance, the four spacetime coordinate func-
tions do not commute. At the quantum level they would not describe local-
ization on space-time. Indeed one gets the following commutation relations

[xρ, xσ] =
xρpσ − xσpρ

m2
(2.82)

[pρ, xσ] = gρσ (2.83)

[pρ, pσ] = 0 . (2.84)

Let us point out once more that both tensors fields ΛΣ and Γ are invariant
under the Poincaré group P . Therefore the associated Lie algebra p acts as
an algebra of derivations for the Jacobi bracket and maps the subalgebra of
functions which are invariant under Γ into itself. Because p also preserves ΛΣ

it is also an algebra of derivations for the Poisson subalgebra associated with
ΛΣ and, consequently, when the bivector field is not degenerate it may be
realized in terms of Hamiltonian vector fields associated with the conventional
generators Mν

µ = xµp
ν − xνpµ and pµ.

The corresponding Hamiltonian vector fields in the sense of the Jacobi
structure are the vector fields

Xρσ = qρ
∂

∂xσ
− qσ

∂

∂xρ
+ pρ

∂

∂pσ
− pσ

∂

∂pρ
(2.85)

Xµ =
∂

∂xµ
, (2.86)

and they coincide with the evaluation on the submanifold Σm of the gener-
ators of the canonical action of the Poincaré group on T ∗R4 with respect to
the symplectic structure ω = dθ0.

It would be possible to realize this algebra also in terms of Hermitian
operators, acting on square integrable functions on space-time. The physical
interpretation of this realization, however, is not straightforward and it is
connected with the definition of a time-operator in Quantum Mechanics, see
[49].

Two final remarks before ending this digression. Firstly, this construction
is quite general and could be dealt with in general abstract terms and for
scalar operators not restricted to be second order. It would also be possible
to consider Dirac-like operators by using the formulation in terms of Dirac-
Kahler differential operators on differential forms (for more details see Ref.
[50]).

Secondly, it is possible to introduce the same ingredients on the tangent
bundle TR4. However the geometrical structure of the tangent bundle does
not allow for the definition of a one form in a natural way and a Lagrangian
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function is required in order to derive the analogue of the canonical Liou-
ville one-form θ0. In particular, coming back to the covariant description of
relativistic particles, one may consider on TR4 the Lagrangian

L =
√
gµνvµvν ,

where gµν is the Minkowski metric tensor. With this Lagrangian it is possible
to associate the following one form [51, 41]

θL =
∂L
∂xµ

dxµ =
gµνv

ν

L
dxµ .

On the submanifold Σ, defined by the equation gµνv
µvν = 1, the pull-back

of θL to Σ defines a contact structure. The computations are analogous to
the ones already presented in this paragraph: it is enough to replace pµ with
vµ and fix m2 = 1.

2.3.3 Beyond Peierls

After previous digressions, in this last paragraph we will adapt Peierls idea in
order to get a Jacobi bracket. Once more the starting point is the definition
of an action functional. Since we are interested in the description of test
particles moving in a metric space, we will consider the following action
functional:

S[γ] =

∫ s1

s0

√
gµνvµvνds , (2.87)

which describes geodesical motion of massive particles with mass m = 1.
Euler-Lagrange equations associated with the action functional (2.87) are

d

ds

(
gµν ẋ

ν

L

)
= 0 (2.88)

and a solution is a unparametrized geodesic, which for flat Minkowski space
is given by an equivalence class of lines with constant velocities. For what
is needed in the following part one can represent a solution by means of its
momenta, which are

gµν ẋ
ν

L
= kµ .

Following Peierls one selects a reference solution γ0 and linearize Euler-
Lagrange equations around it. Considering the action functional (2.87) one
obtains the following Jacobi operator acting on a variation δγ

Jγ0 [δγ] =
1

L
(gµν − kµkν)

d2

ds2
δγν(s) =

1

L
Pµν

d2

ds2
δγν(s). (2.89)
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Variations which are in the kernel of this operator (i.e. for variations
which solve Jacobi equation) actually define the tangent space to any of the
parametrized geodesic in the equivalence class of the solution γ0. As the
scalar product

gµνδγ
µγ̇ν = 〈δγ, γ̇〉 (2.90)

satisfies the equation
d2

ds2
(〈δγ, γ̇〉) = 0 , (2.91)

it follows that 〈δγ, γ̇〉 = as+ b with a, b two constants. Therefore a solution
of Jacobi equation for the variations can be always decomposed into the
orthogonal sum:

J(s) = J⊥(s) + (as+ b)γ̇ (2.92)

and J⊥(s) is such that 〈J⊥, γ̇〉 vanishes. Let us notice that this decomposi-
tion is possible only for time-like or space-like geodesics because in this case
〈γ̇, γ̇〉 = const 6= 0. Light rays satisfy 〈γ̇, γ̇〉 = 0 and the component J⊥ will
have a non vanishing projection along γ̇.

Let us fix now a given parametrization, for instance we will use proper
time. This choice amounts to put 〈γ̇, γ̇〉 = 1. Therefore solutions J of Jacobi
equation which are compatible with this “gauge” choice satisfy the following
condition 〈

d

ds
J, γ̇

〉
=

d

ds
〈J, γ̇〉 = 0 ,

which implies that 〈J, γ̇〉 is a conserved quantity along the geodesic. This
allows to define the following one form on the space of geodesics:

Θ(γ)[J ] = 〈γ̇, J〉 (2.93)

which defines a contact structure on the space of parametrized geodesics with
〈γ̇, γ̇〉 = 1 [40]. In particular the component J⊥(s) are in the kernel of this
one form, or in other words they are the contact elements relative to this
contact structure.

Let us now consider the following difference:

Jµ1 Pµν
d2

ds2
Jν2 −

d2

ds2
Jµ1 PµνJ

ν
2 =

d

ds

(
Jµ1 Pµν

d

ds
Jν2 −

d

ds
Jµ1 PµνJ

ν
2

)
. (2.94)

The left hand side of this equation vanishes when evaluated on variations
Jµ which are solution of Jacobi equation, which implies the conservation of
the expression in round brackets on the right hand side. This conserved
quantity defines a two form Ω on the space of geodesics and one immediately
realizes that this two form is degenerate, the kernel being made of variations
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J(s) = (as+ b)γ̇(s). Therefore when one restricts this two form to a contact
element we get a non degenerate antisymmetric bilinear operator.

A simple argument allows to show that this two-form is actually the dif-
ferential of the one form Θ. Indeed if one fixes a given value of the parameter,
for instance s = 0, each geodesic can be associated with its initial conditions{
γµ(s = 0), d

ds
γµ(s = 0)

}
≡ {xµ, vµ} and a solution J(s) of the Jacobi equa-

tion with the initial conditions
{
Jµ(s = 0), d

ds
Jµ(s = 0)

}
≡
{

∂
∂xµ

, ∂
∂vµ

}
. In

these coordinates the one-form Θ is given by

Θ = gµνv
µdxν ,

whereas the two form Ω is written as

Ω = Pµνdv
µ ∧ dxν = (gµν − vµvν)dvµ ∧ dxν .

Since vµdv
µ = 0 on the submanifold vµv

µ = 1, Ω coincide with the differ-
ential of Θ. Actually from this expression one can immediately notice the
relationship with previous construction. The constraint that has been intro-
duced in the previous paragraph can be seen as the constraint for the initial
conditions of the solutions of a set of differential equations which come from a
variational principle. Then the procedure outlined in this section permits to
transport the geometrical structure of the initial conditions along the whole
geodesic obtaining a description which does not require any splitting into
space and time.

Up to now the contact structure has been defined. In order to write a
Jacobi bracket we will adapt Peierls’ idea to this setting. Indeed let us con-
sider a functional A[γ] defined on the space of geodesics. One can associate
with this functional a function on the finite dimensional manifold of the ini-
tial conditions. However it is possible to avoid the splitting into space and
time which is associated with the choice of a Cauchy surface and one can
define a bivector field according to the procedure described in the previous
sections. Therefore one can use the functional A to set a new variational
principle where the new action functional is given by S + λA. If one looks
for solutions which are perturbations of a given solution γ0 of the unmodified
Euler-Lagrange equation, one gets the Jacobi equation with a source term,
that is

1

L[γ0]
Pµν [γ0]

d2

ds2
δAγ

ν(s) = − δA
δγµ

. (2.95)

Then we should select a solution δ̃γ
ν

A(s) given in terms of the commutator
Green function G̃µν(s− s′) [43]

δ̃γ
ν

A(s) =

∫
R
ds′G̃νµ(s− s′) δA

δγµ
(s′) .
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Since the Jacobi operator has a kernel it is not possible to invert the linearized
equation. However one can look for a right inverse of this operator, i.e. one
can look for fundamental solutions satisfying the following equation

1

L
Pµν [γ0]

d2

ds2
G(±)νρ(s, s0) = P ρ

µ [γ0]δ(s, s0) . (2.96)

Eventually one gets the following commutator Green function

G̃µν(s, s′) = LP µν [γ0](s− s′) , (2.97)

which is defined up to elements which are in the kernel of the Jacobi operator.
When one restricts this operator to solutions that belong to a contact element
it is no more degenerate and it coincides with the inverse of the two form
Ω, for any possible choice of the right inverse G̃µν(s, s′). Therefore this is a
possible bivector Λ which can be used in the definition of a Jacobi bracket.

Let us now come back to the contact structure Θ. The corresponding
Reeb field (see Appendix B) is given by the solution of the Jacobi equation
J(s) = γ̇ as can be proven by a direct computation:

Θ(γ)[γ̇] = 〈γ̇, γ̇〉 = 1 .

Eventually one can write a Jacobi bracket between two functionals A, B
according to the following formula

[A , B] (γ) =

∫
R

∫
R
dsds′

δA

δγµ
(s)G̃µν(s− s′) δB

δγν
(s′)+

+

∫
R

∫
R
dsds′A(s)γ̇µ(s′)

δB

δγµ
(s′)−

∫
R

∫
R
dsds′B(s)γ̇µ(s′)

δA

δγµ
(s′) . (2.98)

This formula represents a generalization of the Peierls bracket in the form
of a Jacobi bracket. The appearance of the vector field along the geodesics
is reminescent of the eleventh generator considered by Dirac [33]. A Pois-
son subalgebra is given by the set of functionals which are invariant under
reparametrization of the geodesic, which are the functionals, say A, for which∫

R
dsγ̇µ(s)

δA

δγµ
(s) = 0 .

As an example one can compute the commutation relations between two
functionals of the form

A =

∫
R
xµδ(s− s1)ds B =

∫
R
xνδ(s− s2)ds
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and the result is

[A , B] (γ) = P µν(s1 − s2) + xµ(s1)kν − xν(s2)kµ

For s1 = s2 one gets that

[A , B] (γ) = xµkν − xνkµ

which coincides with expression found in the previous paragraph, showing
once more that space-time “positions” do not commute in this setting.
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Chapter 3

Hamilton-Jacobi Approach to
Potential Functions in
Information Geometry

In this final chapter we will describe how it is possible to define a “canoni-
cal” potential function by means of a complete solution of a Hamilton-Jacobi
equation which is associated with a suitable dynamical system [52].
Potential functions are a generalization of the divergence functions which
have been introduced in information geometry in order to define the concept
of relative entropy. Given a manifold with a metric tensor g and a sym-
metric tensor of order three T , a potential function is a two point function
which contains all the information on this geometric structure. In particular
by means of an algorithm it is possible to recover both tensors g and T and
consequently a pair of dual connections which play a relevant role for instance
in estimation theory (for an introduction to the methods of information ge-
ometry and the corresponding applications see [24, 25]).
After an introductory section in which we will shortly present some concepts
of information geometry, the remaining part of this chapter will be devoted
to the definition of the canonical potential function mentioned above. Then
some aspect of such an approach will be further discussed.

3.1 An Introduction to Information

Geometry

In this fist section we will give a short introduction of the basic concepts of
information geometry which will be used in the rest of the chapter. Among
the pioneers of this approach to satistics there is Shun-Ichi Amari and the
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most of the contents of this introduction comes from his book [24].
Information geometry began as the geometric study of statistical estima-

tion. This study involves the interpretation of probability distributions over
a measurable set as points of a manifold and consequently all the methods de-
velopped in differential geometry can be used to analyze statistical problems.
Let us start with some definitions.

Let us consider a measurable set (χ,B)1, where χ is a set and B is the
algebra of all its measurable subsets [53]. A probability density is a function
p : χ→ R such that

p(x) ≥ 0, ∀x ∈ χ (3.1)∫
χ
p(x)dµ = 1 , (3.2)

where dµ denotes the given measure on χ2.
The space of all probability densities can be equipped with the structure of

a smooth infinite dimensional manifold (see [54]) called statistical manifold.
However as far applications to estimation theory are concerned one can limit
himself to the study of finite dimensional submanifolds, called statistical
models. It is possible to build a statistical model by means of a smooth
injective map which associates a probability density on χ with any point ξ
of a manifold of parameters Ξ. An element of this model, therefore, will be
a parametrized probability density pξ(x), where ξ ∈ Ξ.

An example is the space of normal distributions where χ = R and ξ ≡
(µ, σ) ∈ Ξ = R × R+. A normal distribution is a probability density on R
parametrized as follows:

p(µ,σ)(x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (3.3)

This manifold can be equipped with a metric tensor gF , called Fisher-Rao
matric, which is invariant with respect to diffeomorphisms of χ. and plays a
relevant role in inference problems (see [25] for a more recent review on the
applications of information geometry). The components of gF in a coordinate
system

{
ξk
}

are written as

gkl(ξ) = Eξ[∂k log(pξ)∂l log(pξ)] =

∫
χ

p(x)∂k log(pξ(x))∂l log(pξ(x))dµ ,

(3.4)

1I will use the same symbol χ for both discrete and continuous sets. In case of a finite
set the symbol

∫
has the meaning of a sum over the points of the set.

2In a more general treatment one should consider probability measure dp absolutely
continuous with respect to the given measure dµ. Consequently the probability density
p(x) is the Radon-Nikodym derivative of the measure dp with respect to dµ.
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where Eξ[·] denotes the expectation value with respect to the probability
distribution associated with the point ξ ∈ Ξ.

Remark 8 More generally Fisher-Rao metric is invariant with respect to
a wider class of transformation called sufficient statistics (see [24]). This
theorem was proven by Cencov in [55] in the case of finte measure spaces χ
and extended to the space of all probability densities on a compact manifold
with boundary in [54].

Another tensor of interest for the applications of information geometry
to inference problems is a symmetric tensor T of order three, called skewness
tensor, which in coordinate has the following components

Tjkl(ξ) = Eξ[∂j log(pξ)∂k log(pξ)∂l log(pξ)] . (3.5)

By means of this symmetric tensor is possible to build a family of dual
torsion-less connections called α-connections. A pair (∇,∇∗) defines a pair
of dual connections with respect to a metric tensor g iff the following equality
is satisfied:

LX (g(Y, Z)) = (g(∇XY, Z)) + (g(Y,∇∗XZ)) , (3.6)

for any vector field X, Y, Z. Here LX denotes the Lie derivative with respect
to the vector field X and ∇X is the covariant derivative with respect to the
vector field X associated with the connection ∇. According to this definition
the only self-dual torsionless connection is the Levi-Civita connection.

The Christoffel symbols of a α-connection can be written as follows:

Γ
(α)
jkl = Γ

(0)
jkl −

α

2
Tjkl , (3.7)

where Γ
(0)
jkl are the Christoffel symbols of the Levi-Civita connection associ-

ated with the Fisher-Rao metric (3.4). The pair of connections (∇(α),∇(−α))
forms a pair of dual connections with respect to Fisher-Rao metric.

From a more abstract point of view it is possible to define a statisti-
cal model as a triple (Ξ, g, T ) where Ξ is a manifold the points of which
parametrize a family of probability densities, g is a metric tensor and T is a
symmetric tensor of order three.

It is possible to prove (see for instance [56, 24]) that the geometrical
structure of every statistical model can be completely encoded in a two-
point function S : Ξ×Ξ→ R called contrast function. This is a distance-like
function such that:

S(ξ1 , ξ2) ≥ 0 ∀ (ξ1, ξ2) ∈ Ξ× Ξ, (3.8)
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S(ξ1 , ξ2) = 0 iff ξ1 = ξ2 . (3.9)

Here, the first Ξ is thought of as the manifold of initial points whose coor-
dinates are denoted by qin, and the second Ξ is the manifold of final points
whose coordinates are denoted by qfin. If S is at least C3 it follows that (see
[56] for more details):

∂S

∂qjin

∣∣∣∣
qin=qfin

=
∂S

∂qjfin

∣∣∣∣∣
qin=qfin

= 0 . (3.10)

The metric g and the tensor T are recovered from it as follows:

∂2 S

∂qjin∂q
k
in

∣∣∣∣
qin=qfin

=
∂2 S

∂qjfin∂q
k
fin

∣∣∣∣∣
qin=qfin

= − ∂2 S

∂qjfin∂q
k
in

∣∣∣∣∣
qin=qfin

= gjk , (3.11)

∂3S

∂qlin∂q
k
fin∂q

j
fin

∣∣∣∣∣
qin=qfin

− ∂3S

∂qlfin∂q
k
in∂q

j
in

∣∣∣∣∣
qin=qfin

= Tjkl . (3.12)

It is important to note that S is never unique, and this leads to the need
for the definition of a contrast function which is canonical in some suitable
sense [57].

3.2 A Canonical Potential Function

After introducing some necessary vocabulary we will present in this section
a recent proposal [52] by Ciaglia et al. They suggest to interpret the task
of finding a canonical potential function for the statistical model (Ξ , g , T )
in the context of Hamilton-Jacobi theory associated with a particular La-
grangian built directly from the metric g and the symmetric tensor T . Note
that the dynamical approach to potential functions presented here is purely
geometric in the sense that it relies only on the geometrical structure of Ξ.
This means that Ξ needs not to be a statistical manifold endowed with the
Fisher-Rao metric and the canonical skewness tensor of information geome-
try, but it could be a generic manifold endowed with a generic metric tensor
g and a generic skewness tensor T . This is particularly useful with respect to
quantum mechanics, where quantum states are probability amplitudes and
not genuine probability distributions, and where, for invertible mixed states,
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there is an infinite number of possible generalizations of the Fisher-Rao met-
ric3 ([58], [59]).

The fact that S is a two-point function allows to read the problem of find-
ing a canonical contrast function on a statistical manifold as the Hamilton-
Jacobi problem associated with suitable Lagrangian and Hamiltonian func-
tions. Indeed, let us consider a statistical model (Ξ, g, T ), let α 6= 0 be a
real number, and let us define the following Lagrangian function

Lα(q, v) =
1

2
gjk(q)v

jvk +
α

6
Tjkl(q)v

jvkvl . (3.13)

A complete solution Sα of the Hamilton-Jacobi equation associated with this
Lagrangian is a potential function for our statistical model in the sense that
it allows to recover the geometric structure of the manifold as follows:

∂2 Sα

∂qjfin∂q
k
in

∣∣∣∣∣
qin=qfin

= −gjk , (3.14)

∂3Sα

∂qlin∂q
k
in∂q

j
fin

∣∣∣∣∣
qin=qfin

− ∂3Sα

∂qlfin∂q
k
fin∂q

j
in

∣∣∣∣∣
qin=qfin

= 2αTjkl . (3.15)

Equation (3.15) is slightly different from equation (3.12), consequently,
the name potential function has been chosen instead of contrast function for
Sα because Sα allows to recover the geometrical structures of the statistical
manifold. Notice further that Sα does not need to be positive semidefinite,
while a contrast function must be so.

Remark 9 In the following, the term “contrast function” will be used for
a two-point function satisfying the conditions given in equations (3.8) and
(3.9). The term “potential function” will be employed for a generic two-point
function by means of which it is possible to recover the geometrical structure
of a statistical manifold (Ξ, g, T ) using a suitably defined procedure, such as
that given by equations (3.14) and (3.15).

Note that it is possible to write the Lagrangian (3.13) in intrinsic form
as follows:

Lα = Lg +
1

3
LαΓLg , (3.16)

3These are metric tensors satisfying the so-called monotonicity property, i.e., the scalar
product they induce on tangent vectors does not increase under the action of completely
positive trace-preserving (CPTP) maps.
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where Lg is the metric Lagrangian associated with g and αΓ is the second
order vector field [41] associated to the affine connection∇α (3.7). By looking
at this expression one can notice that this Lagrangian can be considered as
a sort of first-order approximation of a more complete function L̃α which
also includes all successive Lie derivatives with respect to the vector field Γ,
shortly:

L̃α = eτ LαΓLg = (Φα
τ )∗ Lg , (3.17)

where Φα
τ is the flow of the second order vector field αΓ on the tangent

bundle TΞ of the statistical manifold Ξ. However, only (3.16) contributes to
the determination of metric and skewness tensors, as it will be proven in the
following.

Since Sα is the generating function of a canonical transformation, the
following relations are valid:

pin
j = −∂Sα

∂qjin
, (3.18)

pfin
j =

∂Sα

∂qjfin

, (3.19)

where
{
pin
j

}
(resp.

{
pfin
j

}
) are the canonical momenta associated to qjin’s

(resp. qjfin’s).
Furthermore, the momenta pj can be expressed in terms of the Lagrangian

function as:

pj =
∂L

∂vj
, (3.20)

in particular, for the Lagrangian under investigation one gets:

pj = gjk(q)v
k +

α

2
Tjkl(q)v

kvl . (3.21)

From this, it follows that:

∂Sα

∂qjin
= −pin

j = −gjk(qin)vkin −
α

2
Tjkl(qin)vkinv

l
in , (3.22)

where the vjin’s must be expressed in terms of the initial and final positions.
The link between initial and final positions (qin, qfin) and the initial veloc-
ity (vin) is provided by the dynamical trajectories γc associated with the
Lagrangian L. The Euler-Lagrange equations associated with L are:
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(
gjk(q) + αTjklv

l
)
v̇k = − gΓjklv

lvk+

−α
6

(
∂Tjkl
∂qm

+
∂Tjlm
∂qk

+
∂Tjkm
∂ql

− ∂Tklm
∂qj

)
vkvlvm , (3.23)

where vj = dqj

dt
and v̇j = dvj

dt
. A series expansion of γc(t) = (q1(t) , · · · , qn(t))

around t = 0 yields:

qj(t) = qjin + t
dqj

dt

∣∣∣∣
t=0

+
t2

2

d2qj

dt2

∣∣∣∣
t=0

+O(t3) . (3.24)

One knows that vin = dqj

dt

∣∣∣
t=0

, so that naming qjfin := qj(1), it is possible to

write:

vjin = qjfin − q
j
in −

1

2

dvjin
dt

∣∣∣∣∣
t=0

, (3.25)

where higher order terms in the expansion have been neglected. Since vin

is function of qin, qfin, one can express the derivatives with respect to qfin in
terms of the derivatives of vin and viceversa. Indeed4:

∂

∂qjfin

=
∂vkin
∂qjfin

∂

∂vkin
, (3.26)

∂2

∂qkfin∂q
j
fin

=
∂2vlin

∂qkfin∂q
j
fin

∂

∂vlin
+
∂vlin
∂qjfin

∂vrin
∂qkfin

∂

∂vrin

∂

∂vlin
, (3.27)

and all these expressions need to be evaluated on the diagonal qfin = qin.
Note that the condition qfin = qin is equivalent to the fact that the dynamical
trajectory is qj(t) = qjin, and thus, according to the equations of motion, this
corresponds to vin = 0.

Equation (3.23) can be written as follows:

v̇l = −αT ljkvkv̇j− gΓ
l
kjv

jvk−α
6
glj
(
∂Tjkr
∂qm

+
∂Tjrm
∂qk

+
∂Tjkm
∂qr

− ∂Tkrm
∂qj

)
vkvrvm .

(3.28)
If one supposes that v̇j is an analytic function of {vj} in a neighbourhood

of vj = 0, it is possible to write:

4Note that, at this level, formula (3.26) and (3.27) are valid for every dynamical curve
γ.
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v̇k =
∞∑
m=0

n∑
j1,··· ,jm=1

akj1···jmv
j1 · · · vjm . (3.29)

By inserting this expression into equation (3.23) one gets the coefficients

ak0 = 0 , (3.30)

akj1 = 0 , (3.31)

akj1j2 = −gΓkj1j2 , (3.32)

and so on.
Therefore v̇j is a function of order O(|v|2) and higher order derivatives

{v̈j, · · · } will be at least of order O(|v|3). These results can be put into
equation (3.25) to obtain

vjin = qjfin − q
j
in +

1

2
gΓ

j
klv

k
inv

l
in +O(|v|3) . (3.33)

Deriving this expression with respect to qfin and then evaluating it at
vi = 0 one has

∂vki
∂qjfin

∣∣∣∣∣
qin=qfin

= δkj , (3.34)

∂2vli
∂qkfin∂q

j
fin

∣∣∣∣∣
qin=qfin

= gΓ
l
jk . (3.35)

Eventually one has:

∂2Sα

∂qkfin∂q
j
in

∣∣∣∣∣
qin=qfin

= −
∂pin

j

∂vkin

∣∣∣∣
vin=0

= −gjk , (3.36)

∂3Sα

∂qlfin∂q
k
fin∂q

j
in

∣∣∣∣∣
qin=qfin

= − gΓ
r
kl

∂pin
j

∂vrin

∣∣∣∣
vin=0

−
∂2pin

j

∂vlin∂v
k
in

∣∣∣∣
vin=0

= −gΓjkl − αTjkl .

(3.37)

From them it follows immediately that the metric tensor is derived from
the metric Lagrangian only, whereas information about the connection de-
pends on the “interaction term”, as it should be since quadratic terms alone
cannot contribute to third order derivatives. In particular, when α = 0 the
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Christoffel symbols of the Levi-Civita connection associated to the metric g
are obtained.

In order to extract the symmetric tensor from the potential function Sα
it is necessary to take derivatives in a different order, according to equation
(3.15). The main difference with respect to the previous description is the
fact that

∂Sα

∂qjfin

= pfin
j , (3.38)

which is the canonical momentum at the extreme γ(t = 1) = qfin.
Following the procedure just outlined, one has to express the dependence

of vfin on the variables (qin, qfin). This relation is provided by the dynamics,
which is reversible. Then it follows that

vjfin = qjfin − q
j
in −

1

2
gΓ

j
klv

k
finv

l
fin +O(|v|3) . (3.39)

Eventually the following result is valid:

∂2Sα

∂qkin∂q
j
fin

∣∣∣∣∣
qin=qfin

= −
∂pfin

j

∂vkfin

∣∣∣∣∣
vfin=0

= −gjk , (3.40)

∂3Sα

∂qlin∂q
k
in∂q

j
fin

∣∣∣∣∣
qin=qfin

= − gΓ
r
kl

∂pfin
j

∂vrfin

∣∣∣∣∣
vfin=0

+
∂2pfin

j

∂vlfin∂v
k
fin

∣∣∣∣∣
vfin=0

= −gΓjkl + αTjkl .

(3.41)

From equations (3.14) and (3.15) it follows that Sα is actually a potential
function for the statistical model (Ξ, g, T ). Note that Sα needs not to be
positive as a contrast function would be, however this is not an obstruction
in determining metric and skewness tensors. Indeed it is sufficient that Sα
has a local extreme on the diagonal qin = qfin (or v = 0), and it is true in
this case as shown above, by calculating the Hessian matrices (3.36), (3.40).
Furthermore, as already noticed, one could also think to add other interaction
terms to the basic Lagrangian (3.16), and by a suitable choice of the coupling
constants it is possible to make the contrast function positive definite.

3.3 Some Comments

This section will be dedicated to the discussion of some aspects related to
this approach for defining canonical potential functions.
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Let us start pointing out the connection between the potential function
Sα defined here and the canonical contrast function defined on self-dual sta-
tistical model ([24]). A self-dual manifold is a statistical model for which the
symmetric tensor T identically vanishes, so that the associated connection is
the self-dual Levi-Civita connection ∇g associated with the metric g.

For self-dual manifolds, a canonical contrast function Sd exists which is
given by:

Sd(qin ,qfin) =
1

2
d2(qin ,qfin) , (3.42)

where d2(qin , qfin) is the square of the Riemannian geodesic distance associ-
ated with the metric g on M.

Applying the procedure outlined in previous section to the case of self-
dual manifolds, it is clear that the derived potential function is precisely
the canonical contrast function Sd defined above. To see this, recall that
the metric Lagrangian Lg associated with the metric tensor g, and all of its
functions F (Lg) with F analytic, give rise to the same dynamical trajectories
([41]). Furthermore, Lg and F (Lg) are all constants of the motion for the
dynamics. Denoting with γc the geodesic connecting qin = γc(0) and qfin =
γc(1), this implies that:

IF (Lg)(qin ,qfin) :=

∫ tfin

tin

F (Lg) dt = F (Lg)|γc(t) . (3.43)

Now, the Riemannian geodesic distance d(qin , qfin) is given by:

d(qin ,qfin) =

∫ tfin

tin

√
2Lg dt , (3.44)

and thus:

d2(qin ,qfin) =

(∫ tfin

tin

√
2Lg dt

)2

=
(√

2Lg

)2
∣∣∣∣
γc(t)

=

= 2Lg|γc(t) = 2

∫ tfin

tin

Lg dt = 2 ILg(qin ,qfin) (3.45)

It is immediate to realize that the Hamilton characteristic function associated
with the Lagrangian Lα = Lg is precisely the canonical contrast function of
equation (3.42).

A physically interesting example of self-dual manifold is given by the
manifold P(H) of pure states of quantum mechanics. As it is shown in [60],
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a meaningful notion of statistical distance between pure states can be defined
by means of the concepts of distinguishability and statistical fluctuations in
the outcomes of measurements. It turns out that this two-point function on
pure states coincides with the Riemannian geodesic distance associated with
the Fubini-Study metric, so that the statistical structure determined by this
two-point function makes P(H) a self-dual manifold. Consequently, we can
apply our procedure and conclude that the statistical distance introduced by
Wotters coincides with the Hamilton principal function associated with the
metric Lagrangian of the Fubini-Study metric on P(H). The relevance of the
statistical structure on P(H) emerging from Wotter’s statistical distance is
enforced by the results of [61, 62], where it is shown that the set of pure states
of quantum mechanics does not admit a dually flat statistical structure.

Now, consider the statistical model (Ξ , g , T ), where Ξ = R+, g = 1
ξ2 ,

gΓ = −1
ξ

is the Christoffel symbol of the Levi-Civita connection and T = − 2
ξ3 .

This manifold arises as the statistical model associated to the exponential
distributions

p(x , ξ) = ξ e−xξ ξ, x > 0 . (3.46)

The metric g and the tensor T are then obtained by:

g =

∫ +∞

0

p(x , ξ)

(
d log(p)

dξ

)2

dx , (3.47)

T =

∫ +∞

0

p(x , ξ)

(
d log(p)

dξ

)3

dx . (3.48)

The “deformed” Lagrangian function L with respect to the connection ∇
reads:

Lα =
v2

2ξ2
− α

3

v3

ξ3
, (3.49)

where Lg = v2

2ξ2 is the metric Lagrangian. It is clear that Lα is a function of

Lg, specifically, it is Lα = Lg+ 2
√

2α
3

(Lg)
3
2 . Consequently, the solutions of the

Euler-Lagrange equations associated with the metric Lagrangian Lg, i.e., the
geodesics of g, are solutions of the Euler-Lagrange equations associated with
the Lagrangian Lα, and the explicit expression of the dynamical trajectories
γc(t) = ξ(t) is:

ξ(t) = ξin e
vin
ξin

t
. (3.50)
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A complete solution of the Hamilton-Jacobi problem for L is given by:

Iα(γc) =

∫ tfin

tin

Lα (γc(t) , γ̇c(t)) dt , (3.51)

where the curve γc has fixed extreme points ξin = γc(tin) and ξfin = γc(tfin),
and integration is performed between tin = 0 and tfin = 1. In this case, since
the Lagrangian Lα is a constant of the motion, one gets:

Iα(γc) =
v2

in

2ξ2
in

− α

3

v3
in

ξ3
in

. (3.52)

The link between ξfin, ξfin and vin can easily be extracted form the explicit
expression of γc(t), indeed:

vin = ξin ln

(
ξfin

ξin

)
, (3.53)

and thus, the contrast function S reads:

Sα(ξin , ξfin) =
ln2
(
ξfin

ξin

)
2

− α

3
ln3

(
ξfin

ξin

)
. (3.54)

An explicit calculation gives:

∂2Sα
∂ξfin∂ξin

∣∣∣∣
ξin=ξfin≡ξ

= − 1

ξ2
, (3.55)

∂3Sα
∂ξfin∂ξfin∂ξin

∣∣∣∣
ξfin=ξin≡ξ

=
2α + 1

ξ3
= −gΓ− αT , (3.56)

∂3Sα
∂ξfin∂ξin∂ξin

∣∣∣∣
ξfin=ξin≡ξ

=
1− 2α

ξ3
= −gΓ + αT , (3.57)

showing that Sα is a potential function for the statistical model (Ξ , g , T ) of
exponential distributions.

The statistical structure of Ξ can be alternatively derived starting with
the Kullback-Leibler divergence function SKL:

SKL(ξin , ξfin) =

∫ +∞

0

p(x , ξin) ln

(
p(x , ξin)

p(x , ξfin)

)
dx = ln

(
ξin

ξfin

)
+
ξfin

ξin

− 1 .

(3.58)
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Kullback-Leibler divergence function plays an important role in information
theory since it defines the mutual information of two probability distribu-
tion. As it is clear, the potential function Sα in equation (3.54) does not
coincide with the Kullback-Leibler divergence. This is not surprising since,
for a given statistical model, there are infinitely many potential (contrast)
functions generating the same statistical structure. However, it is possible to
read the Kullback-Leibler divergence SKL as the Hamilton principal function
IKL associated with a suitably defined Lagrangian. At this purpose, let us
perform the following diffeomorphism between Ξ = R+ and Θ = R:

ξ 7→ y = ln(ξ) . (3.59)

This diffeomorphism gives rise to a diffeomorphism between Ξ×Ξ and Θ×Θ:

(ξin , ξfin) 7→ (yin = ln(ξin) , yfin = ln(ξfin)) . (3.60)

The Kullback-Leibler divergence SKL becomes:

SKL (yin , yfin) = e(yfin−yfin) − (yfin − yin)− 1 . (3.61)

Now, consider the following Lagrangian on TΘ:

LKL(y , u) = eu − u− 1 , (3.62)

and let us calculate the Hamilton principal function associated with LKL.
Since LKL depends only on the velocity coordinate u, it is an alternative La-
grangian for the 1-dimensional free-particle on N = R ([41]). Consequently,
the dynamical trajectories of the system coincide with the geodesics of the
Euclidean metric, that is, they are straight lines γc(t) = vint + yin. Setting
tin = 0 , tfin = 1, the connection between yin , yfin and vin is easily seen to be
vin = yfin−yin. Furthermore, LKL is a constant of the motion, and thus, it can
be brought out from the integral defining the Hamilton principal function:

IKL (yin , yfin) = LKL (yin , vin(yin , yfin)) = e(yfin−yfin) − (yfin − yin)− 1 . (3.63)

Confronting equations (3.61) and (3.63), one can conclude that the Hamil-
ton principal function associated with LKL is precisely the Kullback-Leibler
divergence SKL as claimed.

Let us point out now an interesting connection between the Lagrangian
LKL associated with the Kullback-Leibler divergence of equation (3.58) and
the Lagrangian Lα associated with the potential function of equation (3.54).
At this purpose, let us apply the tangent lift of the diffeomorphism given by
equation (3.59) to the Lagrangian Lα of equation (3.49):
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Lα(y , u) =
u2

2
− α

3
u3 . (3.64)

Now, let us perform a series expansion of LKL around u = 0:

LKL(y , u) =
u2

2
+
u3

6
+O(u4) . (3.65)

Confronting equations (3.64) and (3.65) one immediately sees that, upon
taking α = −1

2
, the Lagrangian Lα is precisely the third order approximation

of LKL.
This line of reasoning can be pushed a little further, and show that, if

the Kullback-Leibler divergence SKL generating the statistical structure of a
statistical manifold (Ξ , g , T ) is the Hamilton principal function associated
with a Lagrangian LKL, then the Lagrangian Lα proposed here is the third
order approximation of LKL up to a constant factor, and provided one choose
α = −1

2
.

Let us consider a statistical model (Ξ , g , T ) and the Kullback-Leibler
divergence SKL generating the statistical structure of Ξ. Let us assume
that SKL admits a Lagrangian LKL such that SKL is the Hamilton principal
function associated with LKL. Assuming LKL analytic in v as in the previous
section, an expansion of LKL in a power series of the velocity vector v around
v = 0 gives:

LKL = LKL|v=0 +
∂LKL
∂vj

∣∣∣∣
v=0

vj +
∂2LKL
∂vj∂vk

∣∣∣∣
v=0

vjvk

2!
+

+
∂3LKL

∂vj∂vk∂vl

∣∣∣∣
v=0

vjvkvl

3!
+O(v4) .

Let us now examine the terms of the expansion up to the third order.
Concerning the first order term, SKL must have a minimum on the di-

agonal qin = qfin of Ξ× Ξ. Therefore, recalling equations (3.18) and (3.10),
and expressing the derivatives with respect to vj by means of the derivatives
with respect to qjfin, one has:

∂LKL
∂vj

∣∣∣∣
v=0

= − ∂SKL

∂qjin

∣∣∣∣
qin=qfin

= 0 . (3.66)

This equation implies that LKL is at least of second order in v. Consequently,
the analysis of the previous section for the functional dependence between
v and qfin stemming from the Euler-Lagrange equations can be analogously
repeated in order to give the first order relation:
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∂qjfin

∂vj

∣∣∣∣∣
v=0

= δjk . (3.67)

This result, together with equations (3.10), (3.11) and (3.66), allows to see
that the second order term of LKL becomes:

∂2LKL
∂vj∂vk

∣∣∣∣
v=0

= − ∂2SKL

∂qrfin∂q
j
in

∣∣∣∣∣
qin=qfin

∂qrfin

∂vk

∣∣∣∣
v=0

= gjk (3.68)

Once obtained the second-order term of the Lagrangian, one can proceed in
the analysis of the functional dependence between v and qfin and find that:

∂2qlfin

∂vk∂vj

∣∣∣∣
v=0

= −gΓljk . (3.69)

Consequently, the third order term of the Lagrangian is:

∂3LKL
∂vj∂vk∂vl

∣∣∣∣
v=0

= − ∂3SKL

∂qrfin∂q
n
fin∂q

j
in

∣∣∣∣∣
qin=qfin

(
∂qrfin

∂vk
∂qnfin

∂vl

)∣∣∣∣
v=0

+

− ∂2SKL

∂qrfin∂q
j
in

∣∣∣∣∣
qin=qfin

∂2qrfin

∂vl∂vk

∣∣∣∣
v=0

= − ∂3SKL

∂qjin∂q
k
fin∂q

l
fin

∣∣∣∣∣
qin=qfin

−g Γjkl = −Tjkl
2

,

(3.70)
where, in the last equality, the following fact has been used:

∂3SKL

∂qjin∂q
k
fin∂q

l
fin

∣∣∣∣∣
qin=qfin

= gΓjkl +
Tjkl
2

, (3.71)

which is formula 4 of Lemma 2.1 in [56].
Collecting the results, one can write:

LKL = LKL|v=0 + gjk
vjvk

2!
− Tjkl

2

vjvkvl

3!
+O(v4) , (3.72)

from which it follows that, choosing α = −1
2
, the Lagrangian Lα differs from

the third order approximation of LKL only by the constant factor LKL|v=0

as claimed. It would be very interesting to understand the conditions under
which the Kullback-Leibler divergence of a given statistical model is the
Hamilton principal function of some suitably-defined Lagrangian.

This appears to be relevant in the context of quantum information ge-
ometry of mixed states ([24] Chapter 7). Here, the quantum counterpart of
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the Fisher-Rao metric has been studied extensively by Petz and coworkers
([58], [59] and references therein), who found that there is an infinite-number
of metrics providing a meaningful generalization of the classical Fisher-Rao
metric. Furthermore, unlike the classical case, there is no preferred definition
for a skewness tensor T . This means that there is a good amount of freedom
in the choice of a statistical structure on the space of quantum states. The
usual way in which a statistical structure is defined is to start considering a
generalization of some classical divergence function, and then derive a metric
g and a tensor T on the space of quantum states. Interestingly, it is possible
to use well known examples of quantum relative entropies as quantum diver-
gence functions ([63]). As it is clear, in this quantum setting the statistical
structure of the space of quantum states depends on the explicit form of the
quantum divergence one starts with. Now, it has been shown above that
the tensors g and T of a statistical manifold, being it classical or quantum,
are completely encoded in the first four terms of the expansion of the La-
grangian associated with a divergence function, therefore, it is reasonable to
argue that there must be some other geometrical informations hidden in the
divergence function that are not fully captured by g and T alone. However
the dynamical characterization of the quantum divergences stemming from
the Hamilton-Jacobi approach outlined here can be frutifully exploited to
better understand the relations between the quantum divergences, the sta-
tistical structure they induce, and the geometrical structure of the space of
quantum states.

Lastly this dynamical perspective naturally paves the way to an interest-
ing interchange of tools and methods between information geometry and the
theory of dynamical systems. For instance, the “unfolding-reduction” atti-
tude towards dynamical systems clearly illustrated in [17] could be a powerful
technique in the search of potential functions. Let us briefly comment on this
point.

Let us consider a two dimensional sphere embedded into R3 through the
map iS2 : S2 → R3. A local expression of this map is given by

x1 = sin θ cosφ
x2 = sin θ sinφ
x3 = cos θ

, (3.73)

where θ ∈ ]0, π[ and φ ∈ ]0, 2π[. By means of this immersion it is possible to
pull-back covariant tensors on R3 to S2.

Let us consider the following statistical model: R3 equipped with the
Euclidean metric g = δjkdx

j ⊗ dxk and the skewness tensor T = dx1⊗ dx1⊗
dx1+dx2⊗dx2⊗dx2+dx3⊗dx3⊗dx3. According to the prescription outlined
in previous section a canonical potential function is

79



S(xin, xfin) = δjk(x
j
fin−x

j
in)(xkfin−xkin)+

α

6

(
(x1

fin − x1
in)3 + (x2

fin − x2
in)3 + (x3

fin − x3
in)3
)
.

By means of the previous immersion one can pull back this potential to S2

obtaining the following function

SS2((θ0, φ0), (θ1, φ1)) =
1

2
(sin θ0 sin θ1 cos(φ1 − φ0) + cos θ0 cos θ1) +

+
α

6

(
(sin θ0 cosφ0 − sin θ1 cosφ1)3 + (sin θ0 sinφ0 − sin θ1 sinφ1)3 + (cos θ0 − cos θ1)3

)
.

A direct computation shows that this is a potential function on the subman-
ifold S2 and it generates a metric tensor gS2 and a skewness tensor TS2 which
coincide with the pull-back to S2 of the metric and skewness tensors on R3.
Indeed

gS2 = dθ ⊗ dθ + (sin θ)2 dφ⊗ dφ , (3.74)

TS2 = −
(
cos3 φ cos3 θ + sin3 φ cos3 θ − sin3 θ

)
dθ ⊗ dθ ⊗ dθ−

− cos2 θ sin θ sinφ cosφ(cosφ− sinφ)dθ ⊗ dθ ⊗ dφ+

+ sin2 θ cos θ sinφ cosφ(cosφ+ sinφ)dθ ⊗ dφ⊗ dφ+

+ sin3 θ(sin3 φ− cos3 φ)dφ⊗ dφ⊗ dφ . (3.75)

This simple example shows that in some cases it is possible to obtain a
tensor which is no more constant, the metric tensor on the sphere, starting
from an Euclidean space, and the potential on the Euclidean space induces a
potential on the submanifold. However one could also invert this procedure.
If one starts from a manifold with a non constant tensor it is possible to en-
large this manifold to a larger space equipped with a constant metric tensor:
this is the meaning of the word “unfolding” in such a context.
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Conclusions and Outlooks

Hamilton-Jacobi theory and the theory of canonical transformations are the
central themes of this thesis which allow to put in contact all the topics which
have been discussed in the previous pages. First chapter has been devoted
to Quantum Mechanics, the second has focused on covariant description of
particles and fields mechanics whereas the subject of last chapter has been
information theory. Different motivations have suggested to investigate the
role of these geometrical methods in all these distinct situations, leading to
the results presented in the previous chapters.

The connection between Hamilton-Jacobi theory and Quantum Mechan-
ics roots back to the foundations: Bohr and Sommerfeld, for instance, in-
troduced the first quantization rules by looking at action-angle variables
of completely integrable systems. Furtheromore WKB method has shown
the connection between phases of wave functions and solutions of suitable
Hamilton-Jacobi equations. However in this chapter two different aspects
have been accented. From one side it has been presented how to define
classical-like completely integrable dynamics by reducing a quantum systems
to a subset of states which has a manifold structure. We could summarize as
follows: “dequantization” as a reduction procedure from linear to nonlinear
evolution, along with a “quantization” considered as an unfolding procedure
to associate a linear system out of a nonlinear one. On the other hand vari-
ous attempts of defining variational formulation of a Quantum dynamics have
been illustrated, both in particle and fields dynamics. Here a “Langrangian-
like” formulation allows for a covariant description which avoids the splitting
into time and space.

As far as covariant description of fields dynamics is concerned we limited
our analysis to a more geometrical interpretation of Peierls bracket. Since
this bracket involves fields evaluated at different space-time points, it has
been reasonable to investigate the relationship between this formulation and
the one obtained through a canonical transformation from T ∗M toM×M,
as the one generated by Hamilton principal function (7).

Similarly divergence functions in information theory share some of the
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the properties characterizing Hamilton principal functions. Indeed in the last
chapter we have shown that actually a potential function can be obtained as
the Hamilton principal function associated with a given dynamical system
built out of the geometrical ingredient contained in a statistical model.

Of course the results presented in this thesis are not the end of the story.
Many questions can now be raised and further investigations related to the
contents of the previous chapters would be interesting from many points of
view.

For instance the relationship between divergence functions and Hamil-
ton principal functions permits the introduction of techniques coming from
Lagrangian mechanics in information theory. This might also lead to a new
way of interpreting relative entropies according to a more dynamical perspec-
tive. Perhaps one could use relative entropies to formulate proper variational
principle relevant for thermodynamics instead of thermostatic.

As far as Peierls bracket is concerned new developments are now allowed.
From one side one should better understand what happens if the action
functional may not be written in terms of a density. From another side it
would be very interesting to have a deeper look at the relationshp between
contact structures and constrained dynamical systems, in particular gauge
theories.

Finally, the idea of using systems of Hamilton-Jacobi equations seems
to be interesting in order to preserve covariance. Further investigations are
necessary in order to understand its applicability in the case of general rela-
tivity and a comparison with the approach by Bergmann and Komar, briefly
outlined in the introduction, could be helpful to achieve this goal.
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Appendix A: A Short
Introduction to the Geometry
of First Jet Bundles

In this appendix we will introduce some basic notions on the geometric struc-
tures which characterize the first jet bundle J1E which we have employed
throughout the second chapter of this thesis. The contents of this appendix
are collected from the book [64].

Let us consider a fibre bundle π : E → M and a point p ∈M. Let ψ, φ
be two local sections of the bundle E. ψ and φ are said to be 1-equivalent at
p iff

φ(p) = ψ(p) (3.76)

∂φa

∂xµ

∣∣∣∣
p

=
∂ψa

∂xµ

∣∣∣∣
p

, (3.77)

for some adapted coordinate system (ua, xµ). The equivalence class contain-
ing φ is called the 1-jet of φ at p and it is denoted by j1

pφ.
Even if this definition is based on the use of local section, the equivalence

relation is not influenced by the given choice of coordinate system. Indeed
the following lemma is valid:

Lemma 1 Lemma Let (E, π,M) be a bundle and p ∈M. Suppose that the
two sections φ, ψ satisfy φ(p) = ψ(p). Let (xµ, ua) and (yν , vb) two coordinate
system around φ(p). If

∂ua ◦ φ
∂xµ

∣∣∣∣
p

=
∂ua ◦ ψ
∂xµ

∣∣∣∣
p

,

∀1 ≤ µ ≤ m and ∀1 ≤ a ≤ n, then

∂vb ◦ φ
∂yν

∣∣∣∣
p

=
∂vb ◦ ψ
∂yν

∣∣∣∣
p

.
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Proof 1 From the chain rule and the hypotheses it follows that:

∂vb ◦ φ
∂yν

∣∣∣∣
p

=
∂vb ◦ φ
∂xµ

∣∣∣∣
p

∂xµ

∂yν

∣∣∣∣
p

=

(
∂vb

∂xµ

∣∣∣∣
φ(p)

+
∂vb

∂ua

∣∣∣∣
φ(p)

∂ua ◦ φ
∂xµ

∣∣∣∣
p

)
∂xµ

∂yν

∣∣∣∣
p

=

=

(
∂vb

∂xµ

∣∣∣∣
ψ(p)

+
∂vb

∂ua

∣∣∣∣
ψ(p)

∂ua ◦ ψ
∂xµ

∣∣∣∣
p

)
∂xµ

∂yν

∣∣∣∣
p

=
∂vb ◦ ψ
∂yν

∣∣∣∣
p

. (3.78)

In reference [64]it is proven that the set J1E of all 1-jets of sections of
E form a finite-dimensional smooth manifold and an atlas on J1E can be
constructed in terms of an atlas on the bundle E.

Definition 1 Let (E, π,M) be a bundle and let (U, u) be an adaped coordi-
nate system on E where u = (xµ, ua). The induced coordinate system (U1, u1)
on J1E is defined as

U1 =
{
j1
pφ : φ(p) ∈ U

}
u1 = (xµ, ua, uaµ)

where xµ(j1
pφ) = xµ(p), ua(j1

pφ) = ua(φ(p)) and uaµ(j1
pφ) =

∂φa

∂xµ

∣∣∣∣
p

.

Furthermore it is possible to equip this manifold with two structures of
fibre bundles, one with base manifold E, the other with base manifold M.
These two bundle structures are given in terms of the following surjective
projections:

π1,0 : J1E → E

j1
pφ → φ(p)

and

π1 : J1E → M
j1
pφ → p

In particular it is possible to prove the following theorems (a proof is con-
tained in [64]):

Theorem 1 The triple (J1E, π1,0, E) can be given the structure of an affine
bundle modelled on the vector bundle π∗(T ∗M)⊗V E5 over the base manifold
E, in such a way that for each adapted chart (U, u) on E the map

tu : π−1
1,0(U) → U × Rnm

j1
pφ →

(
φ(p), uaµ(j1

pφ)
)

is an affine local trivialisation.
5The space V E is the space of vertical tangent vectors to the bundle E.
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Theorem 2 If (E, π,M) is a bundle, then (J1E, π1,M) is a bundle.

Example 1 Let us consider the trivial bundle E = R2 × R, with global
coordinates (x1, x2;u). The corresponding global coordinates on J1E are
(x1, x2;u;u1, u2). To each 1-jet j1

pφ where p = (p1, p2) ∈ R2 there corre-
sponds an inhomogeneous linear map ψ̄ : R2 → R defined as follows:

ψ̄(q) = φ(p) + u1(j1
pφ)(q1 − p1) + u2(j1

pφ)(q2 − p2) . (3.79)

It is possible to associate to the map ψ̄ a section ψ = (idR2 , ψ̄) of the bundle
E and from the definition it is easy to verify that j1

pφ = j1
pψ. Therefore the

jet j1
pφ is a coordinae-free construction which contains the same information

on the derivatives of a section φ as its first order Taylor polynomial ψ̄.

Example 2 Let E be the trivial bundle R×M with local coordinate functions
given by (t; qa). Sections of this bundle are curves ofM and consequently the
first jet j1

t0
γ of a curve γ is a tangent vector ot the point γ(t0). Therefore the

manifold J1E ' R× TM, where TM is the tangent bundle to the manifold
M. A set of coordinate functions of J1E are written as (t; qa; q̇a).

With this interpretation a section Φ of the bundle (J1E, π1,0, E) can be
interpreted as a vector field on E and has coordinate representation

Φ = Xa(t, qa)
∂

∂qa
.

Corresponding to each local section φ of the bundle (E, π,M) there is a
uniquely determined local section of the bundle (J1E, π1,M) which is called
the first prolongatioin j1φ of the field φ.

Definition 2 Given the bundle (E, π,M) and a local section φ of E, the
first prolongation j1φ of φ is the local section of the bundle (J1E, π1,M)
defined by

j1φ(p) = j1
pφ .

It is possible to define the first prolongation of bundle morphisms of first
jet bundles over diffeomorphic manifolds: this is related to the description of
point symmetries in Lagrangian mechanics. However we will not enter into
these details because we have not used these concepts in chapter 2.

Example 3 Let E be the trivial bundle (E = R2 × R, pr1,R2) with coordi-
nates (x1, x2;u). If a section φ is defined as

φ(x1, x2) = (x1, x2;x1 sinx2)

then the first prolongation j1φ is written as

j1φ(x1, x2;x1 sinx2, sinx2, x1 cosx2) .
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Analogously it is possible to associate to a vector field X on E the firs
prolongation X1 of X which is a vector field on the first jet bundle J1E. It
is possible to interpret this construction as the infinitesimal version of the
first prolongation of a section and more generally of a suitable bundle mor-
phism. However in this appendix we will consider only the first prolongation
of vertical vector fields. For more details see [64].

Let us start from the two bundles (J1E, π1,M) and (V E, νπ,M). The
vertical bundle (V J1E, νπ1 ,M) of the former and the first jet bundle
(J1V E, (νπ)1,M) of the latter are canonically diffeomorphic.

Theorem 3 There is a canonical diffeomorphism i1 : J1V E → V J1E
which projects to the identity on M.

The coordinate corespondence between J1V E and V J1E can be given as
follows. An element ξ in V J1E can be written as

ξ = ξa
∂

∂ua

∣∣∣∣
j1pφ

+ ξaµ
∂

∂uaµ

∣∣∣∣
j1pφ

.

The corresponding element in J1V E is written in terms of a section φ of E
and a vertical vector field over E satisfying i1(j1

p(X ◦ φ)) = ξ. in coordinate

j1
p(X ◦ φ) =

(
p;Xa(φ(p)),

d

dxµ
Xa(φ(p))

∣∣∣∣
j1pφ

)

where
dXa

dxµ

∣∣∣∣
j1pφ

=
∂Xa

∂xµ

∣∣∣∣
φ(p)

+ ubµ(j1φ)
∂Xa

∂ub

∣∣∣∣
φ(p)

is called the total derivative

of Xa. Therefore the coordinate representation of the diffeomorphism i1 is

ξa = Xa(φ(p)) and ξaµ =
dXa

dxµ

∣∣∣∣
j1pφ

.

The diffeomorphism i1 can be used to prolong vertical vector field on E to
give vertical vector field on J1E. So suppose that X is a vertical vector field
on E; the pair (X, idM), where idM is the identity map on M, can be seen
as a bundle morphism between (E, π,M) and (V E, νπ,M). Therefore the
first prolongation of this bundle morphism is the map j1X : J1E → J1V E
and the map i1 ◦j1X is a map from J1E to V J1E. Therefore i1 ◦j1X defines
a vertical vector field X1 on J1E.

If X = Xa ∂
∂ua

then

X1 = Xa ∂

∂ua
+
dXa

dxµ
∂

∂uaµ
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and if γ is the flow of X, j1γ (defined as j1γ(p, t) = j1
pγt) is the flow of X1.

A final operation on the jet bundle J1E that we will introduce in this
appeendix is the notion of vertical lift. Starting from a covector η ∈ T ∗M
and a vertical tangent vector ζ on E it is possible to define a vertical vector
tangent to the bundle (J1E, π1,0, E). This is the content of the following
theorem:

Theorem 4 Let us consider a point j1
pφ ∈ J1E, a covector η ∈ T ∗pM and a

vertical tangent vector ζ ∈ Vφ(p)E. Let W be a neighbourhood of p ∈M and
let γ : W × R→ E satisfy [t→ γ(p, t)] = ζ6 and j1

p(q → γ(q, 0)) = j1
pφ. Let

f ∈ C∞(M) satisfy f(p) = 0 and dfp = η. Then the new tangent vector[
t→ j1

p(q → γ(q, tf(q)))
]

denoted by η •j1pφ ζ is a vertical tangent vector on J1E which does not depend
on the choice of f and γ.

If η = ηµdx
µ and ζ = ζa ∂

∂ua
he vertical tangent vector η •j1pφ ζ can be written

as

η •j1pφ ζ = ηµζ
a ∂

∂uaµ
. (3.80)

From this vertical lift operation it is possible to define a vector-valued
one-form Sω which associates with a tangent vector ξ ∈ Tj1pφJ

1E a canonical
vertical tangent vector Sω(ξ). The definition of this canonical vertical tangent
vector requires the introduction of other elements which are not necessary for
the following discussion and consequently we will give directly the expression
of Sω in a coordinate system; for more details see [64]. The vector-valued
one form Sω can be written as follows:

Sω = ων(u
a − uaµdxµ)⊗ ∂

∂uaν
, (3.81)

where ω = ωµdx
µ is a one-form on M. In order to avoid the explicit depen-

dence on the one-form ω one can introduce a new tensor field S of type (2, 1)
such that

C(S ⊗ ω) = Sω

where C(S ⊗ ω) denotes the contraction of the the tensor S ⊗ ω. However,
when M is orientable with a given volume form Ω it is possible to replace
the tensor S with a vector-valued m-form

SΩ = C(S ⊗ Ω) , (3.82)

6The symbol [γ(t)] denotes the equivalence class of curves which γ belongs to and
consequently defines a tangent vector.
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which in coordinates can be written as

SΩ = (ua − uaµdxµ) ∧ i∂νΩ⊗
∂

∂uaν
.

This vector-valued m-form allows to recover the vector-valued one-form Sω
and therefore the definition of vertical lift.
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Appendix B: Basic Definitions
on Contact Manifolds

Contact manifolds are usually presented as the odd-dimensional counterpart
of sympectic manifolds. If one looks from the dual point of view of func-
tions [65], the space of functions on a symplectic manifold can be equipped
with a canonical Poisson bracket whereas the space of functions on a con-
tact manifold can be endowed with a “natural” Jacobi bracket. The unique
role of the Jacobi bracket originates from a theorem by Kirillov which ex-
amines the most general Lie bracket one may define on the algebra of func-
tions when an additional locality reuirement is assumed,locality meaning that
supp ([f, g]) ⊆ supp(f) ∩ supp(g). Let us begin with some definitions.

On some (2n+1)-dimensional manifoldM, a differential form θ defines a
contact strucure if θ ∧ (dθ)n 6= 0, i.e., it is a volume element. However if one
multiplies such a form by a never vanishing function the result is another one
form satisfying the same condition. Therefore a contact structure is actually
defined as an equivalence class of one forms related by multiplication by a
never vanishing function. By means of this contact one form hyperplanes
of the tangent space to the manifold which are called contact elements are
selected (for more details see Ref. [32]).

This arbitrariness may be reduced by imposing invariance requirements,
for instance invariance with respect to the Poincaré group.

A manifold M endowed with a contact structure, is called a contact
manifold. Given a contact manifold it is possible to define a Lie algebra
structure on the space of functions by means of the following formula

[f, g] θ ∧ (dθ)n = (n− 1)df ∧ dg ∧ θ ∧ (dθ)n−1 + (fdg− gdf)∧ (dθ)n . (3.83)

This bracket is clearly local by construction, and satisfies the Jacobi identity

[ f , [ g , h ] ] = [ [ f , g ] , h ] + [ g , [ f , h ] ]

which expresses the property of defining a derivation of the Lie product. It
should be stressed that the bracket only depends on the one form.Therefore
it will possess all the invariance properties enjoyed by θ.
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To make contact with the usual definition of Jacobi bracket one defines a
vector field Γ (also called Reeb vector field) and a bivector field Λ with the
help of θ and dθ, satisfying the following properties

iΓθ ∧ (dθ)n = (dθ)n (3.84)

iΛθ ∧ (dθ)n = nθ ∧ (dθ)n−1 . (3.85)

Previous bracket may be given now in the more conventional form by setting

[f , g] = Λ(df, dg) + fLΓg − gLΓf , (3.86)

where LΓ stays for the Lie derivative along Γ. Jacobi identity in this case
corresponds to the following requirements on the pair (Λ,Γ):

[Λ,Λ]S = 2Γ ∧ Λ (3.87)

LΓΛ = 0 (3.88)

where the bracket [·, ·]S is the Schouten brackets on the algebra of multivctors
on a manifold (see Ref. [66]).

Any function is associated with a first-order differential operator

X̃f = Λ(df, ·) + fΓ− LΓf ,

and it is worth pointing out that the identity function is not mapped onto 0
but gives the vector field Γ.

Notice that Leibniz rule is replaced by

[f, gh] = [f, g]h+ g [f, h]− [f, 1] gh

which explains the difference between Jacobi brackets and Poisson brackets.
This generalized Leibniz rule says that the bracket is actually associated
with a bidifferential operator instead of a bivector field like in the case of the
Poisson brackets.

In general one defines the Hamiltonian vector field, Xf , associated with
the function f , to be the vector field

Xf = Λ(df, ·) + fΓ , (3.89)

and this association is a homomorphism of Lie algebra, i.e.

[Xf , Xg] = X[f,g] .

On the subalgebra of functions f such that LΓf = 0, the Jacobi bracket
becomes a Poisson Bracket.

Eventually let us notice that the definition (3.86) of a Jacobi structure by
means of a bivector field Λ and a vector field Γ satisfying properties (3.87) and
(3.88) is independent from the existence of a underlying contact manifold.
It is worth noticing that this definition also shows that a Jacobi bracket is
unrelated to the dimensions of the manifold.
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