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Chapter 1
Introduction

The increasing adoption of semantic technologies and the corresponding in-
creasing complexity of application requirements are motivating extensions to the
standard reasoning paradigms and services supported by such technologies. This
thesis focuses on two of such extensions: nonmonotonic reasoning and inference-
proof access control.

Concerning the former, expressing knowledge via general rules that admit
exceptions is an approach that has been commonly adopted for centuries in areas
such as law and science, and more recently in object-oriented programming and
computer security. The experiences in developing complex biomedical knowledge
bases reported in the literature show that a direct support to defeasible properties
and exceptions would be of great help.

Concerning access control, there is ample evidence of the need for knowl-
edge confidentiality measures. Ontology languages and Linked Open Data are
increasingly being used to encode the private knowledge of companies and public
organizations. Semantic Web techniques facilitate merging different sources of
knowledge and extract implicit information, thereby putting at risk security and
the privacy of individuals. But the same reasoning capabilities can be exploited
to protect the confidentiality of knowledge.

Both nonmonotonic inference and secure knowledge base access rely on non-
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2 Chapter 1. Introduction

standard reasoning procedures. This thesis is mainly about the design and real-
ization of these algorithms in a scalable way (appropriate to the ever-increasing
size of ontologies and knowledge bases), by means of a diversified range of opti-
mization techniques. The thesis is organized as follows:

• Chapter 2 introduces the nomenclature, key ideas and definitions that are
used in the rest of thesis. First the foundations of ontology languages – de-
scription logics (DLs) – their syntax and semantics, expressiveness as well
as some relevant reasoning tasks are presented. Then, we briefly describe
the W3C standardized language OWL (Web Ontology Language) under-
pinned by DLs. In section 2.4 we discuss different algorithmic approaches
to reasoning with knowledge bases formalized with such languages. Finally,
we give an overview over the most important state-of-the-art optimizations
that are essential for achieving well-performing reasoning systems in prac-
tice.

• Chapter 3 introduces the two extensions of the standard reasoning paradigms
this thesis focuses on. In particular, Section 3.1 contributes to the practical
support of nonmonotonic inferences in description logics by introducing a
new semantics expressly designed to model priority-based overriding. In
this way, we obtain a formalism with nice logical and computational prop-
erties that constitutes an appealing solution to a large class of application
needs. Section 3.2 introduce a new confidentiality model, sensitive enough
to detect several novel attacks to the confidentiality of knowledge bases
(KB), and a method for constructing secure KB views. Safe approxima-
tions of the background knowledge exploited in the attacks are identified
that can be used to reduce the complexity of constructing of such views.

• Chapter 4 introduce optimization techniques for reasoning in DL N. Mod-
ule extraction algorithms can quickly select the axioms of a knowledge base
that must be considered in order to answer any query formulated in a
given signature of interest. We investigate the use of module extractors
[Sattler et al., 2009] to focus reasoning on relevant axioms only. The ap-
proach is not trivial (module extractors are unsound for most nonmonotonic
logics, including circumscription, default and autoepistemic logics) and re-
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quires an articulated correctness proof. We further address cases in which
module extraction techniques should be improved. Currently, module ex-
traction methods are less effective when the knowledge base has nonempty
ABoxes; this phenomenon is amplified in the nonmonotonic description
logic DL N, where reasoning requires repeated classifications of the knowl-
edge base. We meet this point by introducing (and proving the correctness
of): a “conditionally correct” module extractor for nonempty ABoxes. We
further introduce a new algorithm for query answering, that is expected to
exploit incremental reasoners at their best. Incremental reasoning is cru-
cial as DL N’s reasoning method iterates consistency tests on a set of KBs
with large intersections. While the assertion of new axioms is processed
very efficiently, the computational cost of axiom deletion is generally not
negligible. The optimistic reasoning method described in Section 4.3 is ex-
pected to reduce the number of deletions. Such optimizations are validated
experimentally through systematic scalability tests on large KBs with more
than 30K axioms. Speedups exceed 1 order of magnitude. For the first
time, response times compatible with real-time reasoning are obtained with
nonmonotonic KBs of this size. A test case generator introduced in Sec-
tion 4.1.2 and its novel validation method constitute a further contribution
of this thesis.

• Chapter 5 illustrates SOVGen, a first implementation of the knowledge base
confidentiality model that has been specialized to deal with a concrete e-
health application. In order to maximize performance, we design several
optimization techniques – module extraction and ad-hoc conjunctive query
evaluation – and assess them experimentally by using realistic electronic
health records that refer to real world biomedical ontologies (eg. SNOMED-
CT). Considering that secure views are constructed off-line, performance
analysis shows that SOVGen is already compatible with practical use in
this application scenario.

• Chapter 6 summarizes the contribution of this thesis and discuss some
interesting directions for further research.

The contents of the thesis have been partially published in several papers:
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• [Bonatti et al., 2015a, Bonatti et al., 2017] report the new semantics for
overriding in DLs in Section 3.1 of Chapter 3.

• [Bonatti et al., 2015c, Bonatti et al., 2015d] partially report the optimiza-
tion techniques presented in Chapter 4.

• [Bonatti et al., 2014, Bonatti et al., 2015b] report the optimization tech-
niques presented in Chapter 5.

I was the primary author for Publications [Bonatti et al., 2015a,
Bonatti et al., 2017] in which I contributed somewhat to the theoretical aspects
by validating the definitions and theorems fixing a few drawback and errors
but more heavily in practical implementation and evaluation of the theoreti-
cal framework. The publications [Bonatti et al., 2015c, Bonatti et al., 2015d,
Bonatti et al., 2015b] contain the main personal contributions described in Chap-
ters 4 and 5 which contain in part work that is under revision. For publication
[Bonatti et al., 2014] I was responsible for the implementation and experimental
evaluation (and write-up thereof) of the algorithms central to the work.



Chapter 2
Preliminaries

The aim of this chapter is to introduce the nomenclature, key ideas and def-
initions that are used in the rest of thesis. We first present the foundations of
description logics languages (DLs), their syntax and semantics, expressiveness
as well as some relevant reasoning tasks. Then, we briefly describe the W3C
standardized language OWL (Web Ontology Language) underpinned by DLs. In
Section 2.4 we discuss different algorithmic approaches to reasoning with knowl-
edge bases formalized with such languages. Finally, we give an overview over
the most important state-of-the-art optimizations that are essential for achieving
well-performing reasoning systems in practice.

We assume the reader to be familiar with the basic definitions for First Or-
der Logic (FOL) and the associated model-theoretic semantics. For a detailed
presentation of the main topics concerning DLs we refer the reader to "The De-
scription Logic Handbook, Theory, Implementation, and Applications (2nd ed.)"
[Baader et al., 2010].

2.1 Description Logics

Description logics are a family of knowledge representation formalisms that
provide means to model the relationships between entities in a concrete domain

5



6 Chapter 2. Preliminaries

of interest. Generally speaking, they constitute decidable fragments of first-order
logic or slight extensions thereof. The two base features that distinguish them
from FOL are: (i) a special more concise and variable free syntax particularly
suitable to provide high level model primitives; and (ii) the existence of practical
decision procedures for key inference problems.

The basic building blocks of DLs are:

• a set NC of concept names, also called atomic concepts, that correspond
to unary predicates in FOL and are used to describe sets of objects char-
acterized by some common properties;

• a set NR of role names, also called atomic roles, corresponding to binary
predicates in FOL and are used to describe relationships between objects;
and possibly

• a set NI of individual names, also called individuals, that correspond to
FOL constants, and are used to denote concrete objects in a domain of
interest.

Syntactically, the vocabulary of DLs is obtained starting form the countably
infinite sets NC , NR and NI with the help of particular logical symbols called
constructors which allow to inductively define complex concepts and roles. The
expressive power of a description logic can be identified by the different sets of
concept and role constructors it allow. In the following A, B will range over
concept names, C and D over (possibly compound) concepts, R and S over roles,
and a, b, d and e over individual names.
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Table 2.1. Syntax and semantics of DL constructs.

Syntax Semantics Identifier

Concepts :

Top > ∆I

Bottom ⊥ ∅

Nominals {a} {aI } O

Full negation ¬C ∆I \ CI C

Conjunction C uD CI ∩DI

Disjunction C tD CI ∪DI U

Existential

restriction
∃R.C {d ∈ ∆I | ∃e ∈ ∆I .[(d, e) ∈ RI ∧ e ∈ CI ]} E

Universal

restriction
∀R.C {d ∈ ∆I | ∀e ∈ ∆I .[(d, e) ∈ RI → e ∈ CI ]}

Self restriction ∃R.Self {d ∈ ∆I | (d, d) ∈ RI ]}

Qualified ≤ nR.C {d ∈ ∆I | #{e ∈ ∆I .[(d, e) ∈ RI ∧ e ∈ CI ]} ≤ n}

number ≥ nR.C {d ∈ ∆I | #{e ∈ ∆I .[(d, e) ∈ RI ∧ e ∈ CI ]} ≥ n}

restriction = nR.C {d ∈ ∆I | #{e ∈ ∆I .[(d, e) ∈ RI ∧ e ∈ CI ]} = n} Q

Roles :

Universal role U ∆I ×∆I

Inverse role R− {(d, e) | (e, d) ∈ RI } I

Similar to any other logic, the formal semantics of description logics is given
in a model-theoretic way by an interpretation1 I = (∆I , ·I ), where the domain
∆I is a non-empty set of individuals and the interpretation function ·I maps
each concept name A ∈ NC to a subset AI of ∆I , each role name R ∈ NR to
a binary relation RI on ∆I , and each individual name a ∈ NI to an individual
aI ∈ ∆I . The extension of ·I to some common compound concepts and roles is
inductively defined as shown in the third column of Table 2.1, where #S denotes
the cardinality of a set S. Most DLs provide two special concepts ⊥ (the empty
concept) and > (the concept under which everything falls) as shortcuts for Cu¬C
and C t ¬C, where C is some arbitrary concept.

A description logic axiom is a well-formed variable-free formula that uses
some special logical operators. The most common type of axioms, their syntax

1Interpretations might be seen as potential "states of the world" or different "realities".
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and semantics are listed in Table 2.2. As usual, concept equivalence axioms
C ≡ D are defined as an abbreviation for C v D and D v C. In more expressive
DLs one is also allowed to specify certain restrictions w.r.t. roles called role
characteristics axioms. An exhaustive list of such kind of axioms, their syntax
and semantics is provided in Table 2.3. The actual types of axioms available
depend on and characterize the description logic in question but all DLs feature
concept inclusion axioms between atomic (or possibly complex) concepts.

Table 2.2. Syntax and semantics of DL axioms.

Syntax Semantics Identifier

TBox :

Concept inclusion C v D CI ⊆ DI

Concept equivalence C ≡ D CI = DI

ABox :

Concept assertion C(a) aI ∈ CI

Role assertion R(a, b) (aI , bI ) ∈ RI

RBox :

Role inclusion R v S RI ⊆ SI H

Role equivalence R ≡ S RI = SI

Complex role inclusion R1 ◦ R2 v S RI
1 ◦ R

I
2 ⊆ S

I

Role disjointness Disj(R,S) RI ∩ SI = ∅

Table 2.3. Syntax and semantics of Role characteristic axioms.

Syntax Semantics Identifier

Role characteristic :

Functionality Func(R) ∀d ∈ ∆I , #{e ∈ ∆I | (d, e) ∈ RI } ≤ 1} F

Transitivity Trans(R) (R+)
I

= RI

Reflexivity Refl(R) ∀d ∈ ∆I , (d, d) ∈ RI R

Irreflexivity Irrefl(R) ∀d ∈ ∆I , (d, d) 6∈ RI

Symmetry Symm(R) {(b, a) ∈ RI | (a, b) ∈ RI }

Asymmetry Asym(R) {(b, a) 6∈ RI | (a, b) ∈ RI }
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Historically one of the first DLs to be studied in depth was the so-called At-
tributive Language with complement (A L C ), which support the typical Boolean
constructors, namely concept intersection (u), concept union (t), full negation
(¬), existential restriction (∃) and universal restriction (∀). The A L C concepts
are defined by the following grammar, where R ranges over role names:

C,D ::= A | > | ⊥ | ¬C | C uD | C tD | ∃R.C | ∀R.C ,

The terminological knowledge of A L C can be expressed with General Concept
Inclusions (GCI) of the form C v D and concept equivalence axioms C ≡ D. As
for the representation of assertional knowledge A L C allows for concept C(a)

and role assertions R(a, b).

The description logic languages follow a well-established naming convention.
Based on A L C we obtain the names for a number of others more expressive DLs
by concatenating the identifiers for the used constructors and axiom types (see
the last column of Table 2.1 and 2.2). For example, a DL that extends A L C

by a constructor that allows for inverse roles is called A L C I . To refer to a
DL where we additionally allow for role inclusion axioms of the form R v S

we simply insert H in the name following the alphabetical order (A L C H I ).
Note that some exceptions of the general naming rules exist, e.g. the DL that
extend A L C by axioms for the definition of transitive roles is called S . For
more expressive DLs such as S ROI Q [Horrocks et al., 2006], we additionally
have the identifier R that stands for a range of role constructors, namely complex
role inclusions, reflexivity, asymmetry, role disjointness and local reflexivity Self
concept constructor and the universal role; the identifier O for nominal concepts
and Q for arbitrary qualified number restrictions.

Unfortunately, already the DL A L C is non deterministic, i.e. due to the
presence of the t-constructor it can be necessary to perform a case-by-case anal-
ysis for reasoning. As a consequence, all the more expressive DLs have a worst-
case complexity for the reasoning time, which is at least exponential in the input
size. However, in order to assure usability of reasoning systems in practice,
often simpler, less expressive languages with specific computational properties
are considered. In particular, tractability in such lightweight DLs is maintained
imposing syntactical restrictions that disallow the representation of disjunctive
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information. For example, the logic E L supports only >, u, and ∃. Its exten-
sion E L ⊥ supports also ⊥. The logic E L ++ further adds concrete domains
and some expressive role inclusions [Baader et al., 2005a]. The logic DL-liteR
[Calvanese et al., 2005] supports inclusions shaped like C v D and C v ¬D,
where C and D range over concept names and unqualified existential restrictions
such as ∃R and ∃R− with R ∈ NR. E L ++ and DL-liteR, respectively, consti-
tute the foundation of the OWL2 profiles OWL2-EL and OWL2-QL. Both play
an important role in applications; their worst-case complexity for the standard
reasoning tasks is polynomial and therefore they can be used to model large
amount of terminological and assertional knowledge (the same holds for some
extensions of DL-liteR, see [Artale et al., 2009]). In the following we introduce in
more detail the basic DLs which are essential for describing the (new) optimiza-
tion techniques and prove their correctness.

2.1.1 E L Family of Description Logics

Based on the original description of the DL E L ++ in [Baader et al., 2005a,
Baader et al., 2008], we now define the syntax and semantics of two members
of the E L family of description logics that we consider throughout this thesis.
Additionally, we define typically used restrictions for the combination of the dif-
ferent axioms, which are necessary to ensure tractability for the main inference
problems.

Syntax and Semantics of the Description Logic E L +
⊥

The logic E L +
⊥ extends E L with the bottom concept and a restricted form of

role-value maps. We start by providing some preliminary definitions needed to
formally define the syntax and semantics of E L +

⊥.

Definition 2.1.1 (Restricted role-value-maps [Baader, 2003a]). A role-
value-map is an expression of the form R1 ◦ ... ◦Rm v S1 ◦ ... ◦Sn where m,n ≥ 1

and R1, ..., Rm, S1, ..., Sn are role names. We say that this role-value-map is
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restricted if m = 2 and n = 12.

Definition 2.1.2 (Role inclusions). Let R1 ◦ ... ◦ Rm v S where m ≥ 1 be a
restricted role-value-map. We call this restricted role-value-map:

• a role inclusion (RI) if m = 1;

• a complex role inclusion for m = 2.

Definition 2.1.3 (Syntax of Individuals, Concepts and Roles in E L +
⊥).

Let NC, NR and NI be countable infinite and pairwise disjoint sets of concept
names, role names and individual names. We call Σ = (NC,NR,NI) a signature.
The set of E L +

⊥ − concepts is the smallest set build inductively over symbols of
Σ following the grammar:

C,D ::= A | > | ⊥ | C uD | ∃R.C ,

where A ∈ NC and R ∈ NR.

Note, that together with the concept names, > and ⊥ are also referred to as
atomic concepts.

Definition 2.1.4 (E L +
⊥ Knowledge base) A knowledge base K B is is a tuple

of the form (T ,R,A ), where T is a TBox, A an ABox and R an RBox. A
(general) TBox is a finite set of general concept inclusions (GCIs) C v D and
emphgeneral concept equivalences (GCEs) C ≡ D. An ABox is a finite set of
concept assertions C(a) and role assertions R(a, b). An RBox is a finite set of
role inclusion R v S and complex role inclusion axioms R1 ◦R2 v S.

Definition 2.1.5 (Definitorial TBox3) An axiom is called a definition of A if
it is of the form A v D or A ≡ D, where A is an concept name. It is unique if T

contains no other definition of A, and it is acyclic ifD does not refer either directly
or indirectly to A. A TBox T is called definitorial if it contains only unique,

2Note that the restriction m = 2 is not really necessary. All complexity results would still
hold if on the left-hand sides are allowed compositions of m ≥ 1 roles for an arbitrary m.
However, the restriction n = 1 is crucial (cf. [Baader, 2003a]).

3Also called acyclic or unfoldable in the literature.
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acyclic definitions. Given a definitorial TBox T , concept names occurring on the
left-hand side of a definition are called defined concepts, whereas the others are
called primitive.

From a computational point of view, definitorial TBox are interesting since they
usually allow for the use of simplified reasoning techniques. Consequently, rea-
soning w.r.t. such TBoxes is often of a lower complexity than reasoning w.r.t.
general TBoxes.

Several remarks regarding the expressivity of E L ++ are in order. First, the
presence of the ⊥-concept make it possible to express concept disjointness, which
for two concepts C and D is equivalent to stating that C u D v ⊥. RIs on
the other hand generalize several means of expressivity important in ontology
applications:

• role hierarchies R v S can be expressed as R v S;

• role equivalences R ≡ S can be expressed as R v S and S v R;

• transitive roles can be expressed as R ◦R v R;

• left-identity rules can be expressed as R ◦ S v S;

• right-identity rules can be expressed as R ◦ S v R.

An interpretation I for E L +
⊥ is defined in the usual way. I is called a model

of a concept C if CI 6= ∅. If I is a model of C, we also say that C is satisfied
by I . Additionally, if δ ∈ CI we also say that δ is in the extension of C.

Definition 2.1.6 (Semantics of E L +
⊥ Axioms and Knowledge bases) Let

I = (∆I , ·I ) be an interpretation, then I satisfies (i) a GCI C v D if CI ⊆
DI , (ii) an assertion C(a) if aI ∈ CI , (iii) an assertion R(a, b) if (aI , bI ) ∈ RI ,
(iv) a role inclusion R v S if RI ⊆ SI , and a complex role inclusion R1◦R2 v S
if R1

I ◦R2
I ⊆ SI . Then, I is a (classical) model of a TBox T (resp. an ABox

A , RBox R) if I satisfies all the axioms of T (resp. A , T ). We say that I

satisfies K B if it satisfies both T , A and R. In this case we also say that I

is a model of K B and write I |= K B.
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A knowledge base is consistent if it has at least one model, otherwise it is incon-
sistent. We say that an axiom α is a consequence of a knowledge base K B, or
also that K B entails α and write K B |= α, if every model of K B is a model
of α. In an extreme case in which a knowledge base is inconsistent, every axiom
is entailed, i.e. holds vacuously in all of the (zero) interpretations that satisfy
the knowledge base. Such a knowledge base is clearly of no utility, so avoiding
inconsistency is a key task during modeling.

Syntax and Semantics of the Description Logic E L ++

The description logic E L ++ extends E L +
⊥ with nominals, a restricted form of

concrete domains, range restrictions and reflexive roles, i.e., role inclusions of the
form ε v R [Baader et al., 2005a, Baader et al., 2008].

A nominal concept is a singleton, i.e. a concept with a single instance. In
particular, nominals make it possible to capture assertional knowledge with TBox
axioms: C(a) can be rewritten {a} v C and R(a, b) is equivalent to {a} v ∃R.{b}.
The identity of two individuals can as well be expressed as {a} v {b}, and their
distinctness as {a} u {b} v ⊥. If necessary, the unique name assumption for
individual names can be enforced by explicitly stating the distinctness for all
relevant individual names a and b.

The concrete domain constructor provides an interface to the so-called con-
crete domains, which extend the description logic by specific predicates with
built-in interpretations, such as strings, decimals, integers. In practice, it is often
useful to directly refer to concrete data values from fixed domains. For instance,
a lot of application scenarios require representing personal information such as
names, ages, citizenships, etc. Formally, a concrete domain D is a pair (∆D ,PD)

where ∆D is a set of values and PD is a set of predicate names. Every p ∈ P

is associated with an arity n and extension pD ⊆ (∆D)n. The link between the
logic and concrete domain is established through a set of feature names NF. For
each feature name f ∈ NF and interpretation function I , fI is a partial function
from ∆I to ∆D .

Example 2.1.7 (Rational numbers Q [Baader et al., 2005a]) The set of
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rational numbers Q can be formalized with a concrete domain Q = (Q,PQ) that
has as its domain the set of rational numbers Q and its set of predicates PQ

consists of the following predicates:

• a unary predicate TQ with (TQ)
Q = Q;

• a unary predicates =q and >q for each q ∈ Q;

• a binary predicate =;

• a binary predicate +q for each q ∈ Q, with (+q)
Q = {(q′, q′′) ∈ Q2 |

q′ + q = q′′}.

The range restrictions are a very important special case of universal value re-
strictions, a constructor heavily used in some large biomedical ontologies (eg.
the thesaurus of the US national cancer institute (NCI)).

Definition 2.1.8 (Syntax of Individuals, Concepts and Roles in E L ++).
Let NC, NR, NI, P and NF be countable infinite and pairwise disjoint sets of
concept names, role names, individual names, predicate names and feature names.
We call Σ = (NC,NR,NI,NF) a signature. The set of E L ++ − concepts is the
smallest set build inductively over symbols of Σ following the grammar:

C,D ::= A | > | ⊥ | {a} | C uD | ∃R.C | p(f1, ..., fk)

where A ∈ NC, R ∈ NR, p ∈P and f1, ..., fk ∈ NF.

Definition 2.1.9 (Semantics of Individuals, Concepts and Roles in E L ++).
An interpretation I = (∆I , ·I ) consists of a non empty set of individuals ∆I ,
the domain of I and an interpretation function ·I which maps each concept
name A ∈ NC to a subset AI of ∆I , each role name R ∈ NR to a binary relation
RI on ∆I , each individual name a ∈ NI to an individual aI ∈ ∆I , and each
feature name f ∈ NF to a partial function fI from ∆I to ∆D The extension of
·I to arbitrary compound concepts and roles is inductively defined as follows:
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>I = ∆I

⊥I = ∅

{a}I = {aI }

(C uD)I = CI ∩DI

(∃R.C)I = {d ∈ ∆I | ∃e ∈ ∆I .[(d, e) ∈ RI ∧ e ∈ CI ]}

p(f1, ..., fk)I = {x ∈ ∆I | ∃y1, ..., yk ∈ ∆Dj : fI
i (x) = yi for 1 ≤ i ≤ k

∧ (y1, ..., yk) ∈ pD}.

Definition 2.1.10 (E L ++ Knowledge base) A knowledge base K B is is a
tuple of the form (T ,R,A ), where T is a TBox, A an ABox and R an RBox.
A (general) TBox is a finite set of general concept inclusions (GCIs) C v D

and emphgeneral concept equivalences (GCEs) C ≡ D. An ABox is a finite
set of concept assertions C(a) and role assertions R(a, b). An RBox is a finite
set of (complex) role inclusions (RIs) R1 ◦ R2 v S, domain restrictions (DRs)
dom(R) v C, and range restrictions (RRs) ran(R) v C. A special case of RIs
also allowed is ε v R.

Definition 2.1.11 (Semantics of E L ++ Axioms and Knowledge bases)
Let I = (∆I , ·I ) be an interpretation, then I satisfies an axiom α, written
I |= α, as defined in the following:

I |= C v D if CI ⊆ DI

I |= C(a) if aI ∈ CI

I |= R(a, b) if (aI , bI ) ∈ RI

I |= R1 ◦R2 v S if R1
I ◦R2

I ⊆ SI

I |= dom(R) v C if RI ⊆ CI ×∆I

I |= ran(R) v C if RI ⊆ ∆I × CI

Then, I is a (classical) model of a TBox T (resp. an ABox A , RBox R) if I

satisfies all the axioms of T (resp. A , T ). We say that I is a model of K B if
it is a model of both T , A and R.

Please, note that the DL E L ++ may be equipped with more than one concrete
domains simultaneously, say D1, ...,Dn. In such case we generally assume that
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∆Di , ...,∆Dj = ∅ for 1 ≤ i < j ≤ n. Furthermore, if we want to stress the use
of particular concrete domains D1, ...,Dn we write E L ++(D1, ...,Dn) instead of
E L ++. Unfortunately, unrestricted use of concrete domains may have dramatic
effects on the decidability and computational complexity of the underlying DL.
In order to assure tractability and completeness of the standard reasoning task
in E L ++, we need to restrict the concrete domains to be p-admissible.

Definition 2.1.12 (P-admissible concrete domains)A concrete domain D =

(∆D ,PD) is p-admissible iff:

1. satisfiability and implication in D are decidable in polynomial time;

2. D is convex: if a conjunction of atoms of the form p(f1, ..., fk) for p ∈PD 4

implies a disjunction of such atoms, then it also implies one of its disjuncts.

Consider the concrete domain Q defined in Example 2.1.7. Q is p-admissible. In
fact polynomiality of reasoning in Q can be shown by reduction to linear program-
ming and convexity has been proved in [Baader et al., 2005b]. Therefore E L ++

allows Q.

To avoid intractability, we also need to impose a restriction on the structure
of RBoxes. If we allow for arbitrary combinations of role inclusions and range
restrictions we may easily run into decidability issues. For an RBox R and role
names R and S we write R |= R v S iff R = S or R contains role inclusions
R1 v R2, ..., Rn1

v Rn with R = R1 and S = Rn. Furthermore, we write R |=
ran(R) v C if a role name S exists such that R |= R v S and ran(S) v C ∈ R.
Now, to restrict intricate interplay between role inclusions and range restrictions
we require that if a RI R1 .̇..Ṙn v S, n ≥ 1, implies a role relationship (a, b) ∈ SI ,
then the RR on S do not impose new concept memberships of b. Formally, we
have:

If R1 .̇..Ṙn v S ∈ R with n ≥ 1 and R |= ran(S) v C, then R |= ran(Rn) v C
4If p ∈ PD , then the E L ++-concept p(f1, ..., fk) can be viewed as an atomic first-order

formula with variables f1, ..., fk. Thus, it makes sense to consider Boolean combinations of
such atomic formulae, and to talk about whether such a formula is satisfiable in the first-order
interpretation D , or whether one such formula implies another one in D .
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In the reminder of the thesis, we assume that E L ++ knowledge bases comply
with the presented restrictions.

2.2 Reasoning Tasks and Their Reducibility

A distinguished feature of the logic-based knowledge representation formalisms
is the emphasis on reasoning as a central service: reasoning allows to derive im-
plicitly represented knowledge from the knowledge that is explicitly represented
in the knowledge base. In order to be able to query this implicit knowledge one
can use reasoners that provide a range of inference services for the computation
of specific reasoning tasks. In this section we will review typical tasks that can
be performed with DL knowledge bases and that require sophisticated reasoning.
We can see that some of those tasks can be reduced to others which alleviates
the task of creating tools performing those tasks.

• Consistency Checking: Given a knowledge base K B, is K B consis-
tent? A knowledge base K B is consistent (also called satisfiable) if there
exists (at least one) interpretation I = (∆I , ·I ) that is a model of K B,
i.e., I |= K B.

• Satisfiability Checking: Given a knowledge base K B and a concept
C, is C satisfiable w.r.t. K B (K B 6|= C v ⊥)? A concept C is called
satisfiable if it may contain individuals, i.e. there is a model I = (∆I , ·I )

of K B for which the extension of C is nonempty, formally: CI 6= ∅ for
I |= K B.

• Subsumption Checking: Given a knowledge base K B and two concepts
C and D , is C subsumed by D, written C v D, w.r.t. K B (K B |= C v
D), i.e., for every interpretation I = (∆I , ·I ) of K B such that I |= K B

it is also the case that CI ⊆ DI . If the subsumption holds, we also say
that D subsumes C. Furthermore, for a subsumption C v D, we refer to
C as the subsumee and to D as the subsumer.

• Instance Checking (or Retrieval): Given a knowledge base K B, a
concept C and an individual a, is a an instance of C w.r.t. K B (KB |=
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C(a)), i.e., for every interpretation I = (∆I , ·I ) of K B such that I |=
K B it is also the case that aI ∈ CI .

Please note that the reasoning tasks so far are described for concepts, but they
can obviously be defined also for roles. For example, sometimes, the term instance
retrieval is also used for roles. In that case we are interested whether a pair of
individual names (a, b) is an instance of a certain role R, i.e., if (aI , bI ) ∈ RI

for every model I of K B. Historically, however, primarily the reasoning tasks
for concepts have been considered and we also refer to the concept-based one in
the following if we mention the reasoning tasks without any further specification.

For DLs that allow for nominals and the ⊥ concept, these reasoning tasks
can be reduced to each other. Consistency checking can be regarded as the main
reasoning service. In practice, for logics where it is possible to have inconsistent
knowledge bases, consistency checking is performed before any other reasoning.
This is due to the principle of explosion, for which an inconsistent knowledge base
entails every statement, which renders any derived information useless. As an
example, lets consider the DL E L ++, the other three standard reasoning tasks
are reducible to consistency checking as follows: A concept C is unsatisfiable
with respect to K B if and only if K B ∪ {C(a)} is inconsistent for some fresh
individual name a; A concept C is subsumed by D with respect to K B if and
only if the K B∪{C(a)}∪{Du{a} v ⊥} is inconsistent for some fresh individual
name a; An individual a is an instance of a concept C with respect to K B if
and only if the K B ∪ {C u {a} v ⊥} is inconsistent.

A prototypical reasoning task that generalizes all these reasoning tasks is often
considered in practice: given a knowledge base, it can be queried by checking
whether some axiom is necessarily true. More precisely, testing if > v ⊥ holds is
equivalent to inconsistency checking, C v ⊥ to unsatisfiability checking, C v D

to subsumption checking and C(a) to instance checking. It can be formalized as
follows:

• Entailment Checking: Given a knowledge base K B and an axiom α,
K B entails α (KB |= α), if for every interpretation I = (∆I , ·I ) of K B

such that I |= K B it is also the case that I |= α.
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Entailment checking can also be reduced to consistency checking by extending
the knowledge base with a counter example of the axiom that has to be queried.
If the extended knowledge base is inconsistent then the axiom is obviosly entailed.

Furthermore, DLs support inference patterns which occur in many intelli-
gent information processing applications, and that are also used by humans to
structure and understand the world: classification of concepts and individuals.
Classification of concepts (called classification) determines the subsumption rela-
tionships between the concepts occurring in a given knowledge base, thus allowing
to organize the concepts in a subsumption hierarchy. Classification of individuals
(called realization), on the other hand, determines whether a given individual
is an instance of a certain concept. It thus provides useful information on the
properties of an individual. Classification and realization are considered higher
level reasoning tasks as they require a range of computations:

• Classification: Given a knowledge base K B, compute all subsumptions
between atomic concepts in K B, i.e., all the axioms A v B for which the
concepts A and B occur in K B and K B |= A v B. The subsumption
hierarchy can be obtained by a transitive reduction, i.e., by removing all
axioms that represent indirect subsumption relations, i.e. axioms of the
form A1 v A2 for which a concept B exist such that K B |= A1 v B and
K B |= B v A2.

• Realization: Given a knowledge base K B as input, compute all instances
of (atomic) concepts i.e., all axioms A(a), where the individual a and the
concept A occurs in K B and for which K B |= A(a).

Obviously, the higher level reasoning tasks can be performed by checking the
entailment K B |= A v B (resp. K B |= A(a)) for any pair A, B of concept
names (resp. any concept name A and an individual a). However, such naive
reduction amounts to quadratically many entailment checks and, therefore, can
be impractical. Rather, one has to devise optimal deduction procedures that
exploit the properties of the subsumption relation and prove their correctness
with respect to the above specification.

The reasoning tasks described above are often referred to as standard reason-
ing tasks as they all are concerned with determining logical consequences. Beyond
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those deductive tasks, there are also non-standard reasoning tasks such as in-
duction [Lehmann, 2009], unification [Baader and Narendran, 2001], conjunctive
query answering [Lutz, 2008, Lutz et al., 2009], explanation [Horridge et al., 2008],
where the goal is somewhat different. In the following, we briefly describe con-
junctive query answering as the other tasks are not in the focus of this thesis.

Conjunctive Query Answering

Querying KBs plays a central role in data-intensive applications. In these set-
tings, instance retrieval is seen as a rather weak form of querying in some as-
pects. Although possibly complex concepts can be used as queries one can only
query for tree-like relational structure, i.e., a DL concept cannot express ar-
bitrary (cyclic) structures. Conjunctive queries (CQs) are well known in the
database community [Chandra and Merlin, 1977] and constitute an expressive
query language with capabilities that go far beyond the standard instance re-
trieval. In terms of first-order logic, the CQs are formulae from the positive
existential fragment. Existentially quantified variables in a query are also called
non-distinguished variables, whereas the free (or answer) variables are called dis-
tinguished. For an example, consider a knowledge base that contains the assertion
∃hasDaughter.∃hasDaughter(anne), which informally states that the individual
anne has a daughter who has a daughter and hence, that anne is a grandmother.
For this knowledge base, anne is clearly an answer to the conjunctive query
hasDaughter(x, y) ∧ hasDaughter(y, z), with a single distinguished variable x.
If all variables in the query are non-distinguished, the query answer is just true
or false and the query is called a Boolean query. Given a knowledge base K B

and a Boolean CQ q, the query entailment problem is deciding whether q is true
or false w.r.t. K B, i.e., whether each model of K B provides for a suitable
assignment for the variables in q. If a CQ contains distinguished variables, the
answers to the query are all those tuples of individual names for which K B

entails the query that is obtained by replacing the free variables with the indi-
vidual names in the answer tuple. The problem of finding all answer tuples is
known as conjunctive query answering. Note that in general, solving this task
is way harder than querying a classical database, as the considered DL models
may be infinite in both size and number. Furthermore, conjunctive query answer-
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ing is not polynomially reducible to any of the other standard reasoning tasks
treated above (the worst-case complexity for the problem is usually way harder,
cf. [Lutz, 2008]).

Similar to the query languages for classical databases (e.g., SQL), query lan-
guages for knowledge bases that allow to obtain all the consequences provided
by the presented reasoning tasks also exist. Nowadays SPARQL, constitute a de
facto standard when it comes to conjunctive query answering. SPARQL orig-
inates as a query language for RDF, where the evaluation of queries is based
on simple (sub)graphs pattern matching. The recently standardized SPARQL
1.1 extension provides the so-called entailment regimes for which also implied
consequences of OWL 2 ontologies w.r.t. the Direct Semantics are taken into
consideration. Unfortunately, the new standard is still not fully supported by
the consolidated query engines. In particular, it is typically only implemented in
specific reasoning systems or as black-box extension of reasoning systems, where
this more sophisticated reasoning task is reduced to the standard ones. For ex-
ample, the OWL-BGP is a framework for reducing SPARQL queries5 to standard
reasoning tasks for OWL API compatible reasoners.

2.3 Relationship to the Web Ontology Language

The Web Ontology Language (OWL) is a knowledge representation language
developed by the World Wide Web Consortium (W3C) working group. The
underpinning logic is based on the very expressive DL S ROI Q. Defining
semantics via translation into DL allows OWL to exploit well-established results
from DL research regarding decidability and complexity of key inference problems
and to reuse the available highly optimized DL reasoners inside OWL applications
- thus accomplishing the main design goal of the language [Heflin, 2004]. The
latest version of the OWL specification as standardized in 2009 is called OWL 2
[Rudolph et al., 2012].

The main building blocks of OWL are very similar to those of DLs. An
OWL ontology indeed consists of the same basic elements of a DL knowledge

5More precisely, the basic graph patterns of SPARQL queries (BGPs) are parsed into OWL
entities thus enabling their assessment under the OWL Direct Semantics Entailment Regime.
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base with some minor renaming. In particular, concepts are called classes and
roles are called properties. As in standard DL, OWL classes may be names or
complex expressions built up from simpler classes and properties with the help of
a set of constructors. The set of constructors supported by OWL together with
the corresponding DL syntax is summarized in Table 2.4. However, compared
with the defined syntax of S ROI Q, OWL provides additional constructors as
"syntactic sugar", i.e., they can be conceived as shortcuts for which we would
require several DL constructs to represent the same restriction.

Table 2.4. OWL constructors.

Constructor DL Syntax DL Example

ObjectComplementOf ¬C ¬Male

ObjectIntersectionOf C1 u ... u Cn Human u Female

ObjectUnionOf C1 t ... t Cn Male t Female

ObjectSomeValuesFrom ∃R.C ∃hasChild.Student

ObjectAllValuesFrom ∀R.C ∀hasChild.Female

ObjectOneOf {a1...an} {anne, elijah}

ObjectHasValue ∃R.{a} ∃hasDestination.{Italy}

ObjectHasSelf ∃R.Self ∃loves.Self

ObjectMinCardinality ≤ nR.C ≤ 1 hasChild.Male

ObjectMaxCardinality ≥ nR.C ≥ 3 hasChild.Female

ObjectInverseOf R− hasParent−

Besides classes defined by the ontology, OWL further specifies a range of
datatypes (mostly taken from the RDF specification [Carroll and Klyne, 2004]
and the set of XML Schema Datatypes [Sperberg-McQueen et al., 2012]) that
can be used in someV aluesFrom, allV aluesFrom, and hasV alue restrictions.
Datatypes are unary predicates with a built-in interpretation that can be seen as
a simplified version of the so-called concrete domains (see Section 2.1.1 for defini-
tions). Mainly used in practice are basic datatypes such as xsd:string, xsd:integer,
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xsd:double, xsd:boolean interpreted as the set of all strings, integer, decimal and
Boolean values. Some important remarks regarding datatype modeling are in
order. First, OWL strictly distinguishes object properties, i.e. properties that
relate pairs of individuals, from data properties, i.e. properties that relate indi-
viduals to values from some datatype. Moreover, to further improve the ease of
use and clarity, OWL constructs that relate to individuals have names prefixed
by “Object" in contrast to those that relate to datatypes prefixed by “Data”. Fi-
nally, although the constructors listed in Table 2.4 are described for classes, they
can obviously be formulated also for datatypes (except from the local reflexivity
one).

Table 2.5. OWL axioms.

Axiom DL Syntax Example

SubClassOf C1 v C2 Mammal v Animal

EquivalentClass C1 ≡ C2 Woman ≡ Human u Female

DisjointClasses C1 u C2 v ⊥ Man uWoman v ⊥

ClassAssertion C(a) Woman(anne)

ObjectPropertyAssertion R(a, b) hasChild(anne, christine)

SameIndividual {a} ≡ {b} {turing} ≡ {alan_turing}

SubObjectPropertyOf R1 v R2 hasParent v hasAncestor

EquivalentObjectProperties R1 ≡ R2 hasBrother ≡ hasMaleSibling

DisjointObjectProperties Disj(R1, R2) Disj(hasMother, hasFather)

As already mentioned, OWL ontologies consists of a set of axioms. Table 2.5
provides a list of axioms supported by OWL. Moreover, OWL also allows char-
acteristics of object properties to be asserted as well as functionality of data
properties. Please note that the OWL specification features much more axiom
types than the ones defined in S ROI Q knowledge bases. However, as far as the
purely logical axioms are concerned, again all these axioms can be considered as
syntactic sugar. For example, in OWL we can express that a set of classes is pair-
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wise equivalent with a single axiom of the form EquivalentClasses(C1, ..., Cn)

while we would need a set of concept equivalence axioms of the form Ci ≡ Cj for
1 ≤ i < j ≤ n to represent it in S ROI Q.

Aside from the logical features, OWL ontologies further consider a number of
other aspects relevant in practice that are not covered in DL knowledge bases at
all. For example, OWL provide means of naming an ontology and an importing
mechanism that make it possible to refer to other relevant ontologies. An OWL
reasoner should therefore be able to load all imported ontologies and consider the
contained axioms for reasoning. Other important extra-logical features include
non-logical axioms to declare identifiers, and the possibility to add a vast range
annotations to OWL axioms similar to comments in a programming language. If
not stated otherwise, in the reminder of this thesis we will use the term ontology to
simply refer to a document created in OWL, modeling knowledge of an application
domain that is relevant for reasoning. Thereby, we will consider it to be equivalent
with the arguably more appropriate term knowledge base.

The current OWL 2 standard support several serialization formats for OWL
ontologies, e.g., the Manchester Syntax [Patel-Schneider and Horridge, 2012] or
the OWL/XML serialization format [Parsia et al., 2012]. The notation used
above is known as the Functional Style Syntax (FSS), since expressive features
are written like function symbols in prefix notation [Patel-Schneider et al., 2012].
Moreover, OWL ontologies are often serialized in the RDF/XML format
[Motik and Patel-Schneider, 2012], which maps the axioms of an OWL
ontology to triples in graphs of the Resource Description Framework (RDF)
[Raimond and Schreiber, 2014]. Among all those options, FSS represents the
data model of OWL more closely, whereas RDF/XML is primary exchange syntax
since it is the only mandatory to be supported by all OWL 2 applications. In order
to provide compatibility with RDF, the OWL ontologies can be interpreted with
the so-called OWL 2 RDF-Based Semantics [Schneider, 2012], which is slightly
different in some aspects from the OWL 2 Direct Semantics [Grau et al., 2012],
i.e., the model-theoretic semantics of Description Logics, even though both lead
to the same consequences in many practical cases. An OWL 2 ontology that
adhere to certain structural restrictions which essentially ensure that it can be
translated into a S ROI Q knowledge base is typically called OWL 2 DL ontol-
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ogy and interpreted with the OWL 2 Direct Semantics. On the contrary, the term
OWL 2 Full refer to OWL 2 ontologies that do not abide by any syntactic con-
straints and consequently can only be interpreted under the OWL 2 RDF-Based
Semantics.

In addition to OWL 2 DL and OWL 2 Full, OWL 2 further specifies the
so-called OWL2 Profiles [Motik et al., 2012] that offer favourable computational
properties for certain application scenarios. For this purpose, OWL 2 DL is
already too large, since it only admits reasoning algorithms that run in worst-case
nondeterministic double-exponential time. Each profile is defined as a language
fragment of OWL 2 DL and trades off different aspects of OWL’s expressive
power for efficiency of reasoning and/or implementational benefits.

The OWL 2 EL profile is tailored for applications employing very large but
lightweight ontologies that consist mainly of terminological data. This profile
captures the expressive power used by many such ontologies, in particular in the
life sciences, e.g, SNOMED-CT, the NCI thesaurus, and Galen. The EL acronym
reflects the profile’s basis in the EL family of description logics and most specifi-
cally in the DL E L ++ for which the basic reasoning problems can still be solved
in worst-case polynomial time with respect to the size of the ontology. Dedicated
reasoning algorithms for this profile are available and have been demonstrated to
be implementable in a highly scalable way.

The profile OWL 2 QL is aimed at applications that use very large volumes of
instance data, and where query answering is the most important reasoning task.
OWL 2 QL enables data (assertions) stored in a standard relational database
system to be queried through an ontology via a simple rewriting mechanism, i.e.,
by rewriting the query into an SQL query that is then answered by the RDBMS
system, without any changes to the data. Ontological information is merely used
in a query preprocessing step to augment the expressivity of a relational query
language. The approach is known as Ontology Based Data Access (OBDA).
The logical underpinning for OWL 2 QL is provided by the DL-Lite family of
description logics and more precisely by DL-liteR for which sound and complete
conjunctive query answering can be performed in LogSpace (more precisely, AC0

with respect to the size of the data). As in OWL 2 EL, polynomial time algorithms
can be used to implement the basic reasoning problems.
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OWL 2 RL is aimed at applications that can trade the full expressivity of the
language for scalability and efficiency of reasoning, as well as RDF(S) applica-
tions that need some added expressivity. Instance retrieval is the most important
inference task in the profile. Applications often involve a large amount of explicit
facts, which are augmented by a set of TBox axioms that is much smaller (typi-
cally by at least one order of magnitude). This situation is common for ontologies
that are obtained by crawling the Semantic Web, but it is also typical for OBDA
applications. The design of OWL 2 RL is inspired by Description Logic Pro-
grams, i.e., DLs that are syntactically restricted in such a way that axioms could
also be read as rules in first-order Horn logic without function symbols6. Due to
this characteristic, DLP-type logics can be considered as kinds of rule languages
(hence the name OWL 2 RL) contained in DLs. Polynomial time reasoning algo-
rithms for the standard reasoning tasks in OWL 2 RL can be implemented using
rule-extended database technologies operating directly on RDF triples.

As mentioned earlier in this section, the ability to use DL reasoners to provide
reasoning services for OWL applications was one of the motivations for basing the
design of OWL on a DL. Different ontology design tools, both “academic” and
commercial, now exploit the correspondence between OWL and S ROI Q in
order to support ontology design and maintenance by, for instance, highlighting
inconsistent classes and implicit subsumption relationships. Examples of such
editors include Protege7 and TopBraid Composer8. The OWL API library9 is
the de-facto standard for creating and manipulating OWL ontologies nowadays.
It is a Java-based framework with support for the different OWL 2 serialization
formats that further provides a direct interface for reasoning systems. This en-
ables a uniform and simple use of reasoners and supports, among others, the
basic reasoning tasks (cf. Section 2.2).

6In practice this is accomplished by allowing different syntactic forms for subconcepts and
superconcepts in concept inclusion axioms.

7protege.stanford.edu/
8http://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
9http://owlapi.sourceforge.net/
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2.4 Algorithmic Approaches to DL Reasoning

A variety of reasoning techniques can be used to solve the reasoning prob-
lems introduced in Section 2.2. The majority of them originate from well-known
approaches for theorem proving in the setting of First Order Logic. However, in
contrast to FOL for which sound, complete and terminating reasoning methods
does not exists, approaches to reasoning in Description Logics aim at providing
sound and complete decision procedures. In order to understand why this is
important, consider that a trivial sound and incomplete algorithm answers NO
to every input, while a trivial unsound but complete algorithm answers YES to
every input. Clearly, both can be seen as irrelevant if not taken together. More-
over, the adopted reasoning techniques have to be adapted in order to guarantee
termination.

Most state-of-the art OWL reasoners for expressive DLs, such as Pel-
let [Sirin et al., 2007], FaCT++ [Tsarkov and Horrocks, 2006], and HermiT
[Glimm et al., 2014], use tableau based methods first introduced by Schmidt-
Schaubßand Smolka [Schmidt-Schaubßand Smolka, 1991]. Although a wide range
of optimization techniques have been developed for these systems due to their
long availability and usage, they are not always applicable in practice, e.g. in
presence of very large knowledge bases. In order to address scenarios in
which tableau algorithms perform poorly, other approaches have been inves-
tigated. Successful examples in this respect are the consequence-based satura-
tion approaches (for sub-Boolean DLs) [Kazakov, 2009, Kazakov et al., 2014] and
some works based on resolution [Hustadt et al., 2007, Kazakov and Motik, 2008,
Motik and Sattler, 2006].

In this section, we present the most relevant reasoning techniques for DLs and
briefly discuss their practical applications.

2.4.1 Tableau Based Calcoli

In the following we will concentrate on knowledge base consistency because,
as we have seen in Section 2.2, this is a very general problem to which for more
expressive Description Logics all the others can be reduced. For example, a
concept C is subsumed by a concept D with respect to a knowledge base (T ,
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R,A ) if (T , R,A ∩ {(C t¬D)(x)}) is inconsistent, where x is a new individual
name. Note that forming the concept C t ¬D obviously relies on having full
negation in the logic.

Tableau algorithms try to prove the consistency of a knowledge base K B =

(T ,R,A ) by constructing a model of K B. A tableau is a graph which represents
such a model, with nodes corresponding to individuals and edges corresponding
to relationships between individuals. A typical algorithm start with the concrete
situation described in A and try to construct a tableau, by inferring the existence
of additional individuals or constraints on individuals implied by the axioms in
T and R. The inference mechanism consists of applying a set of expansion rules.
For any given language Ł, a different set of expansion rules is defined. Generally,
there is one to one correspondence between the expansion rules and the logical
constructs of Ł. The algorithm terminates either when no further inferences are
possible, or when contradictions have been detected. Non-determinism is dealt
with by exploring all possible expansions.

In order to illustrate the main ideas behind the tableau procedures,
a tableau algorithm for A L C knowledge base consistency is presented below
[Baader et al., 1996, Baader et al., 2010]. We assume concepts to be in negation
normal form (NNF) that is with negations only applying to concept names. An
arbitrary A L C concept can be converted to negation normal form by pushing
negations inwards using a combination of equivalences and de Morgan’s laws:
¬∃R.A ≡ ∀R.¬C and ¬∀R.C ≡ ∃R.¬C. The algorithm works on a data structure
called completion forest10, i.e., a labeled directed graph each node of which is the
root of completion tree. Each node x in the graph is labeled with a set of concepts
(x), whilst each edge 〈x, y〉 is labeled with a set of role names (〈x, y〉). When a
concept C is in the label of a node x (C ∈ (x)) it represents a model in which
the individual corresponding to x is in the extension of C. Furthermore, when
an edge 〈x, y〉 is labeled with R (R ∈ (〈x, y〉)), it represents a model in which
the tuple corresponding to 〈x, y〉 is in the extension of R. A node y is called an
R-successor of a node x if there is an edge 〈x, y〉 labeled with R (and x is called a
predecessor of y); x is called an ancestor of y if x is the predecessor of y or there

10Since A L C has the so called forest model property, the model we aim to construct has
the form of a set of trees.
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exists some node z such that z is the predecessor of y and x is an ancestor of z.

Definition 2.4.1 (Clash) A completion forest contains a clash iif there is a
node x such that

• ⊥(x) ⊆ (x), or

• {C,¬C} ⊆ (x) for some concept C.

Table 2.6. Tableaux expansion rules for A L C

u-rule if 1. C1 u C2 ∈ (x)

2. {C1, C2} 6⊆ (x)

then set (x) = (x) ∪ {C1, C2}

t-rule if 1. C1 t C2 ∈ (x)

2. {C1, C2} ∩ (x) = ∅

then set (x) = (x) ∪ {C} for some C ∈ {C1, C2}

∃-rule if 1. ∃R.C ∈ (x)

2. x has no R-successor y with C ∈ (y),

then create a new node y with (〈x, y〉) = R and (y) = {C}

∀-rule if 1. ∀R.C ∈ (x)

2. there is an R-successor y of x with C 6∈ (y),

then set (y) = (y) ∪ {C}

v-rule if 1. C1 v C2 ∈ T

2. C2 t ¬C1 6∈ (x)

then set (x) = (x) ∪ {C2 t ¬C1}

For A L C knowledge base K B = (T ,A ), the completion forest FA ini-
tially contains a root node xa, with L(xa) = {C | a : C ∈ A }, for each individual
name a occurring in A , and an edge 〈xa, xb〉, with (〈xa, xb〉) = {R | (a, b) : R ∈
A }, for each pair (a, b) of individual names for which the set {R | (a, b) : R ∈ A }
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is not empty. The algorithm proceeds by exhaustive application of the expansion
rules shown in Table 2.6. The rules syntactically decompose the concepts in node
labels resulting either in extending node labels or in adding new leaf nodes and
edges, thereby explicating the structure of a model for K B. Notice how each
rule consists of a precondition and an action, where the action is only applied
if the precondition is met. For example, if C1 u C2 ∈ (x), and either C1 6∈ (x)

or C2 6∈ (x), then the u-rule adds C1 and C2 to (x); if ∃R.C ∈ (x), and x does
not yet have an R-successor labeled with C, then the ∃-rule generates a new
R-successor node y of x with (y) = {C}. In contrast to the other rules, the
t-rule is non deterministic: if there is a disjunctive concept C1 t C2 ∈ (x) and
neither C1 ∈ (x) nor C2 ∈ (x), then either C1 or C2 is added to (x). In practice,
the algorithm may need to explore all possible choices of rule application. It
backtracks and tries to apply some of the (non-deterministic) expansion rules in
a different way if a clash, is detected, i.e., if the same individual must satisfy
obviously conflicting constraints. Searching non-deterministic expansions is the
main cause for poor performance of tableaux procedures.

In case of non-empty TBox, the v-rule takes care that each node of the com-
pletion graph indeed satisfies all axioms of T . However, the expansion process,
as it is, may not terminate in presence of GCIs. In order to guarantee cycle
detection a technique called blocking is used. Intuitively, a node X can become
blocked when the sub-tree rooted in x will be “similar” to the sub-tree rooted in
some predecessor y of x. In A L C , a form of blocking known as subset blocking
is used.

Definition 2.4.2 (Subset Blocking) A node x is blocked if it is either directly
or indirectly blocked. A node x is indirectly blocked if an ancestor of x is blocked.
A node x is directly blocked if an ancestor y of x exists such that (x) ⊆ (y) and
none of its ancestors is blocked.

Termination is regained by suitably modifying the set of the expansion rules: a
new precondition is added that prevent application of each rule to an individual
x if it is blocked. Blocking can also lead to a more complex correspondence
between the completion forest and a model of the knowledge base. In particular,
a branch that contains a directly blocked node x represents an infinite branch
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with a regular structure in the corresponding model. More precisely, the section
between the blocker and the blocked node x in the branch must be repeated or
“unraveled” which typically leads to infinite models [Horrocks and Sattler, 1999].

A completion forest is fully expanded when none of the expansion rules can be
applied. If a fully expanded and clash-free completion forest can be found, then,
one can use it to build a model that witnesses the consistency of the knowledge
base so the algorithm returns "K B is consistent". Otherwise, the obtained
completion forest contains an obvious inconsistency, and thus does not represent
a model, so the algorithm answers "K B is inconsistent".

The tableau based decision procedure for the consistency of general A L C

knowledge bases described above runs in worst-case nondeterministic double ex-
ponential time (due to the fact that the algorithm is searching trees of worst-case
exponential depth). By reusing intermediate search results a similar algorithm
can be made to run in exponential time [Donini and Massacci, 2000]. However,
this introduces a substantial overhead which turns out not always useful in prac-
tice.

The algorithm can be simplified if T is definitorial. In this case, reasoning
with a knowledge base K B = (T ,A ) can be reduced to the problem of reasoning
with a knowledge base with an empty TBox by recursively unfolding the concepts
used in the ABox axioms: for a concept nameA, defined in T by an axiomA ≡ D,
all occurrences of A in A can be replaced withD; for a concept name A, defined in
T by an axiom A v D, all occurrences of A in A are substituted with the concept
A′ uD, where A′ is a new concept name not occurring in K B that represents
the unspecified characteristics that differentiate A from D. The consistency of
the resulting knowledge base is independent of the axioms in T . Used in this
way, static unfolding has the advantage that it avoids unnecessary application of
v-rule to every individual name x and TBox axiom, and the resulting search of
different possible expansions. The procedure, however, can lead to an exponential
increase in the size of the ABox [Nebel, 1990]. In practice, it is much more
efficient to retain the structure of the knowledge base for as long as possible, and
to take advantage of it during consistency checking. This can be done by using
lazy unfolding [Lutz, 1999, Baader et al., 2010], i.e., concepts are only unfolded as
required by the progress of the consistency checking algorithm. For the tableau
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algorithm, this means that a defined concept A is only unfolded when it occurs
in a label of a node. In general, lazy unfolding can be achieved by the additional
tableau expansion rules described in Table 2.7. As in the case of static unfolding,
v-rule is no longer required11. Used in this way, lazy unfolding additionally avoids
unfolding of irrelevant subconcepts, either because a non-deterministic expansion
choice leads to a complete and clash free tree, or because a contradiction is
discovered without fully expanding the tree.

Table 2.7. Lazy unfolding rules

U1-rule if 1. A ∈ (x) and A ≡ C ∈ T

2. C 6∈ (x)

then set (x) = (x) ∪ {C}

U2-rule if 1. ¬A ∈ (x) and A ≡ C ∈ T

2. ¬C 6∈ (x)

then set (x) = (x) ∪ {¬C}

U3-rule if 1. A ∈ (x) and A v C ∈ T

2. C 6∈ (x)

then set (x) = (x) ∪ {C}

The tableau algorithm can be easily extended to deal with a wide range of
other DLs (see [Baader and Sattler, 2001] for an overview). Extending the al-
gorithm to deal with new features is mainly a matter of adding expansion rules
to deal with the new constructors (e.g., number restrictions), and more sophis-
ticated clash and blocking condition in order to preserve both soundness and
termination when using an extended rule set. A range of worst-case optimal
tableau algorithms have also been proposed for several expressive DLs, such as
SHIO [Nguyen, 2014], S H OQ [Nguyen and Golinska-Pilarek, 2014], and even
S H OI Q [Duc et al., 2012]. Note though that other variants of tableau algo-
rithms are usually used for actual implementations of reasoning engines due to

11Blocking is also no longer required as the rest of the rules only introduce concepts that are
smaller than the concept triggering the rule application.
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the fact that it is often not clear how important optimizations, such as depen-
dency directed backtracking can be adapted such that they can be used with
these worst-case optimal algorithms.

2.4.2 Completion and Consequence Based Saturation
Procedures

Instead of building (counter)models for subsumption relations, saturation-
based procedures derive logical consequences for a given knowledge base by ex-
haustively applying specific inference rules. Such approaches are mainly em-
ployed for DL languages that can be handled deterministically in the sense that
only one model has to be considered for the computation of reasoning tasks. In
particular, important examples of saturation algorithms are the polynomial-time
completion-based and consequence-based procedures for the OWL 2 EL profile.
Even though both variants are closely related and can be converted into one
another, distinction is necessary mostly due to presentational differences.

The first completion-based saturation procedures has been developed
for E L with terminological cycles [Baader, 2003b], GCIs and role hierar-
chies [Brandt, 2004]. These results were further extended to the DL E L ++

[Baader et al., 2005a], and the support of reflexive roles and range re-
strictions [Baader et al., 2005a, Baader et al., 2008]. In addition, it is shown in
[Baader et al., 2005a, Baader et al., 2008], that basically all other additions of
typical DL constructors to E L ++ make subsumption w.r.t. general TBoxes
EXPTIME-complete. A completion-based algorithm for a given knowledge base
K B = (T ,R,A ) proceeds in three steps: it first normalizes the TBox T and
RBox R; then translate the normalized T and R into a graph representation
and finally complete the graph using a set of completion rules. Note that the
algorithm actually classifies, i.e., it simultaneously computes all subsumption re-
lationships between the concept names occurring in T .

An E L +
⊥ knowledge base is in normal form if it only contains concept inclu-

sions of the following forms:

C v D, C v ∃R.D, C1 u C2 v D, ∃R.D v C.

and all role inclusions are of the form R1 v R2 or R1 ◦ R2 v S. Any K B
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can be transformed into normalized one K B’ that is conservative extension of
K B, i.e. induce the same models of K B, by repeatedly replacing complex
concept and role expressions with fresh concepts and role names and adding
the corresponding equivalences, followed by subsequent simplifications. Such a
normal form can easily be computed in polynomial time and does not increase
the size of T and R more than polynomially (cf. [Baader et al., 2005b]). Next,
the algorithm build a classification graph G = (V, V × V, S,R) where:

• V is the set of concept names occurring in the normalized TBox including
{>,⊥};

• S labels nodes with set of concept names in V ;

• R labels edges with sets of role names occurring in the normalized TBox
and RBox.

The intuition is that these sets make implicit subsumption relationships explicit
in the following sense:

• B ∈ S(A) implies A v B,

• T ∈ R(A,B) implies A v ∃T.B.

Initially, S(A) = {A,>} for all nodes A ∈ V and R(A,B) = ∅ for all edges
(A,B) ∈ V × V . The labels of nodes and edges are then extended by applying
the rules of Figure 2.8 until no more rule applies. The fact that subsumption
in E L +

⊥ can be decided in polynomial time is an immediate consequence of the
following observations:

1. The rules can only be applied a polynomial number of times, and each rule
application is polynomial.

2. When no more rules are applicable, then A v B iff B ∈ S(A).

Thus the algorithm already classifies, i.e., it simultaneously computes all sub-
sumption relationships between the concept names occurring in T . Furthermore,
this is done in one pass compared to approaches which reduce each subsumption
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to a separate consistency check, e.g. tableaux, which explains why such algo-
rithms are used to efficiently handle (very) large knowledge bases.

In contrast to completion-based, a deduction rule in a consequence-based
procedures has the shape

α1, ..., αn
α

where α1, ..., αn are axioms of the underlying logic. Derived consequences α are
also represented as axioms. Hence, the input knowledge base is not required to
be normalized. For example, consider a knowledge base K containing axioms
A v B and B v C , the consequence A v C of K can be derived by such
procedure with an appropriate deduction rule.

Table 2.8. Completion rules specific to E L +
⊥ knowledge bases 12

CR1 if D ∈ (C), D v E ∈ K B, and E 6∈ (C)

then (C) = (C) ∪ {E}

CR2 if D1, D2 ∈ (C), D1 uD2 v D ∈ K B, and D 6∈ (C)

then (C) = (C) ∪ {D}

CR3 if E ∈ (C), E v ∃R.D ∈ K B, and (C,D) 6∈ (R)

then (R) = (R) ∪ {(C,D)}

CR4 if (E,C) ∈ (R), D1 ∈ (C), ∃R.D1 v D2 ∈ K B, and D2 6∈ (E)

then (E) = (E) ∪ {D2}

CR5 if (C,D) ∈ (R), ⊥ ∈ (D), and ⊥ 6∈ (C)

then (C) = (C) ∪ {⊥}

CR6 if (C,D) ∈ (R), R v S ∈ K B, and (C,D) 6∈ (S)

then (S) = (S) ∪ {(C,D)}

CR7 if (E,C) ∈ (R1), (C,D) ∈ (R2), R1 ◦R2 v S ∈ K B, and (E,D) 6∈ (S)

then (S) = (S) ∪ {(E,D)}
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A consequence-based algorithm for E L +
⊥ [Kazakov et al., 2014] – at the core

of the OWL 2 EL reasoner ELK.
In [Kazakov, 2009] Kazakov extend the approach to the more expressive Horn

fragment Horn-S H I Q (known as the CB reasoner). Further extensions to
DLs with non-deterministic features have been proposed in [Simančík et al., 2011]
(A L C H ), [Simancik et al., 2014] (A L C I ) and more recently for A L C H I

in [Kazakov and Klinov, 2014]. The main idea behind these extended consequence-
based procedures is to saturate all non-deterministic branches (as opposed to
tableaus which performing case-by-case analysis). The consequences are only
those subsumptions that can be derived regardless of the choices made in the
application of the deduction rules. It is however not completely clear whether
such approaches can scale well for arbitrary knowledge bases that make a fre-
quent use of non-deterministic languages features. Moreover, to the best of our
knowledge,a saturation procedure that is capable of handling DLs that allow for
inverse roles and cardinality restrictions does not (yet) exist.

2.4.3 Automata Based Approaches

Automata based approaches can as well be used to decide the basic rea-
soning problems for DLs with the tree model property. The basic idea is to
devises a translation from a knowledge base K B into an appropriate tree au-
tomata A such that A accepts exactly the tree models of K B. The problem of
knowledge base satisfiability will then be reduced to the emptiness test for the
employed automaton model to A . The complexity of the algorithm obtained
this way depends on the complexity of the translation and the complexity of the
emptiness tests. Thus various instances of the automata based approach dif-
fer not only w.r.t. the DL under consideration, but also w.r.t. the employed
automaton model. For instance, the satisfiability of A L C knowledge bases
can be decided using an alternating tree automata within exponential time13

[Calvanese et al., 1999, Lutz and Sattler, 2000]. For very expressive description
logics additional acceptance conditions may be needed such as the Büchi condi-

12A subset of the E L ++ completion rules presented in [Baader et al., 2005a].
13A polynomial translation into alternating tree automata is possible, however, the emptiness

test is exponential in the size of the obtained automaton.
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tion [Thomas, 1990]14. Note that although optimal worst-case decision procedure
exist for different DLs, they are usually used to establish upper bound complexity
results since implementations on average require an exponential encoding of the
knowledge base (thus being impractical).

2.4.4 Resolution Based Approaches

The procedures based on resolution – a general theorem-proving method for
first-order logic (see, e.g., [Bachmair and Ganzinger, 2001]) – are closely related
to the consequence-based saturation algorithms. Similarly, resolution also works
by deriving new clauses that are consequences of the original axioms. Over the
years, it has been used as a decision procedure for different FOL fragments, modal
logics and more recently for DLs. The resolution-based procedures for descrip-
tion logics [de Nivelle et al., 2000] translate DL axioms into first-order clauses
(disjunctions of literals) and apply specific resolution strategies which guarantee
that only a bounded number of clauses can be derived (thus ensuring termination)
and, in many cases, even optimal complexity. In particular, a worst-case opti-
mal resolution-based procedure has been defined for the expressive DL S H I Q

and implemented in the reasoner KAON2 [Hustadt et al., 2008]. An extension to
S H OI Q has been proposed in [Kazakov and Motik, 2008].

Despite being theoretically optimal, resolution-based procedures seem not to
be able to compete in practice with modern consequence-based and tableau rea-
soners. For instance, KAON2 failed to classify any medical ontology in a reported
evaluation [Mendez and Suntisrivaraporn, 2009]. The most plausible explanation
seems to be that, despite optimizations, resolution still produces many unneces-
sary consequences.

14The Büchi automata acceptance condition requires the occurrence of infinitely many final
states in every path.





Chapter 3
Nonstandard Reasoning Services

3.1 The Nonmonotonic Description Logic DL N

The ontology languages at the core of the semantic web — like RDF and OWL
— are based on description logics (DLs), that are fragments of first-order logic
or slight extensions thereof, such as fix-point logic. Therefore, DLs inherit lim-
itations of these well-established formalisms that include monotonicity, and the
consequent inability to design knowledge bases (KBs) by describing prototypical
instances whose general properties can be refined later, with suitable exceptions,
that is, incrementally. This natural formulation approach has been commonly
adopted for centuries in areas such as law and science, and more recently in
programming and computer security.

For instance, many laws are formulated by adding new norms whose articles
may contradict some of the articles of a previous norm. The result is a combi-
nation of old and new articles. The mechanism is similar to overriding in object
oriented programming (OOP) languages: in law, recent norms override (part of)
the old ones; in OOP the definitions in subclasses override any conflicting binding
belonging to superclasses. Biologists have adopted prototypical properties and
exceptions since the early days of this science. There is an obvious reason: In
biology, virtually all universal properties admit some exception. For instance,

39
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the human body has a rather precise structure: the heart is usually located in
the left-hand half of the body. Still there are exceptional individuals, with so-
called situs inversus, whose heart is located on the opposite side. Eukaryotic cells
are those with a proper nucleus, by definition. Still they comprise mammalian
red blood cells, that in their mature stage have no nucleus.1 Another appli-
cation of nonmonotonic DLs stems from the recent development of policy lan-
guages based on DLs [Uszok et al., 2003, Finin et al., 2008, Zhang et al., 2009,
Kolovski et al., 2007]. DLs nicely capture role-based policies and facilitate the
integration of semantic web policy enforcement with reasoning about semantic
metadata which is often needed to check policy conditions. However, in order
to formulate standard default policies such as open and closed policies2, conflict
resolution methods such as denials take precedence, and authorization inheritance
with exceptions, it is necessary to adopt a nonmonotonic semantics (see the sur-
vey [Bonatti and Samarati, 2003] for more details).

Historically important frame systems such as LOOM (one of the ancestors
of description logics) supported default properties and nonmonotonic reason-
ing.3 These features were lost in the formalization process that led to the
development of DLs. One of the major obstacles to the deployment of solu-
tions based on nonmonotonic DLs is constituted by their high computational
complexity (see the survey in [Bonatti et al., 2009b, Ch. 7] and the results in
[Bonatti et al., 2011b]), combined with the absence of effective optimization tech-
niques. Some of the most effective optimizations of DL reasoning, such as
tableaux caching and dependency-directed backtracking [Baader et al., 2010], rely
on the monotonicity of classical DLs. Given the large size of semantic web on-
tologies and RDF bases, it is mandatory that reasoning in nonmonotonic DLs is
extremely efficient, possibly feasible in polynomial time. Unfortunately, to the
best of our knowledge no nonmonotonic extension except for S ROE L (u,×)RT

[Giordano and Dupré, 2016] do preserve the tractability of low-complexity DLs
[Cadoli et al., 1990, Bonatti et al., 2009a]. Usually, the complexity of nonmono-
tonic DL reasoning is significantly more complex than reasoning in the underlying,

1All of these examples are introduced and discussed in [Rector, 2004, Stevens et al., 2007].
2If no explicit authorization has been specified for a given access request, then an open policy

permits the access while a closed policy denies it.
3http://www.isi.edu/isd/LOOM/documentation/LOOM-DOCS.html

http://www.isi.edu/isd/LOOM/documentation/LOOM-DOCS.html
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monotonic DLs.

Another problem is that none of the standard nonmonotonic semantics pro-
duces exactly the set of expected consequences, and this can be verified on a range
of rather simple examples (details will be given in Section 3.1.7). Circumscrip-
tion, Default logic, Autoepistemic logic, Rational closure, all have complementary
strengths and weaknesses that make it difficult to propose a single nonmonotonic
extension as the reference semantics of nonmonotonic inheritance and overriding
in description logics. In several cases, some natural, desirable inferences are miss-
ing for subtle reasons that are quite difficult to track,4 and would make it hard
for a knowledge engineer to formulate and validate complex knowledge bases.

Supporting default attributes and exceptions was important enough to look
for alternative representation methods, based on classical DLs. The simplest ex-
amples can be dealt with by means of ontology design patterns [Rector, 2004,
Stevens et al., 2007]. Unfortunately, these solutions do not scale to more com-
plex examples with multiple exception dimensions, as discussed in [Rector, 2004]:
The number of additional concepts introduced by the patterns may grow expo-
nentially. Moreover, such auxiliary concepts must constitute a partition of the
original concept, which requires computationally expensive constructs such as
disjunction. Consequently, even if a given knowledge base belongs to some low-
complexity fragment (e.g., some OWL2 profile), its nonmonotonic extension is
generally not tractable.

After extensive investigations, and in vain attempts to find a proper way
to address the application requirements discussed above by means of standard
nonmonotonic semantics, we came to the conclusion that a new semantics is
needed, tailored to nonmonotonic inheritance and overriding. Ideally, the se-
mantics should be easy to grasp, its inferences should be reasonably predictable,
and its complexity should be comparable to the complexity of the underlying
monotonic description logic. Nonmonotonic features should be applicable also to
important domains such as biomedical ontologies that push automated reasoning
technology to its limits. A related desideratum is that nonmonotonic inferences
should be implementable by re-using as much as possible the well-engineered
tools and engines available for semantic web reasoning, in order to exploit all

4Cf. Section 3.1.7.



42 Chapter 3. Nonstandard Reasoning Services

the sophisticated optimization techniques developed across decades of research
on automated reasoning, as well as the standardization efforts carried out so far.

We select a few, well identified nonmonotonic features and design a seman-
tics that provides a satisfactory support to those features, in the sense that it
makes some recurrent representation and inference patterns easy to formulate
and implement. In particular, we do not aim at covering all potentially interest-
ing forms of nonmonotonic reasoning5. We focus on analogues of what McCarthy
calls communication and database storage conventions, and policy representation
[McCarthy, 1986]. In the communication and database storage convention per-
spective, nonmonotonic constructs are meant to factorize the common features
of a majority of individuals and confine explicit detailed axiomatization to a re-
stricted number of exceptional individuals in order to reduce the size and cost
of knowledge bases and improve their readability. Similarly, from the policy
representation perspective, the goal is a concise and neat, possibly incremental
formulation of a policy that is best described by factorizing some general rules,
and refining them with suitable exceptions.

A distinguishing aspects of the new approach is a prototype oriented seman-
tics. In the examples taken from biomedical domains, policies, etc., the default
properties associated to a concept A describe a typical member of A. We will
call such a member a prototype.6 The prototypical features of A are expected to
be subject to overriding in some of the concepts B subsumed by A (the default
properties specific to B may be inconsistent with those of A), but every single
prototype, in our reference scenarios, is internally coherent, that is, the default
properties that characterize a prototype are consistent with the classical axioms
of the knowledge base.

On the contrary, the artificial examples occurring in the literature (especially
5A non-exhaustive list of such additional requirements and mechanisms taken from the lit-

erature comprises: preserving as many of the KLM axioms as possible; giving defeasible inheri-
tance an independent philosophical foundation (e.g. probabilistic); defining overriding through
complex criteria such as argumentation, or predicates over inclusion paths (as in inheritance net-
works); restricting entailment to the invariant consequences across a set of “admissible” priority
orderings; maximizing the number of satisfied default properties; defining normal individuals
through an absolute, global normality ordering, independent from any given concept C.

6To be precise, unlike the prototypes dealt with in philosophy that might not exist in the
real world due to their degree of perfection, the prototypes introduced in the above domains
typically correspond to a number of real instances. This is coherent with the utilitarian view
underlying McCarthy’s conventions [McCarthy, 1986].
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the reductions adopted in proving lower complexity bounds) make massive use
of inconsistent prototypes: one of the most frequent axiom patterns comprises
one or more conflicting, nonmonotonic axioms with the same priority. From a
practical perspective—in the light of our reference scenarios—such prototypes
may be regarded as an abuse of nonmonotonic constructs.

Circumscription, Default logic, and Autoepistemic logic, deal with inconsis-
tent prototypes by maximizing the number of satisfied nonmonotonic axioms.
Intuitively, it is like identifying all optimal repairs of the inconsistent prototype
and computing the inferences that hold for all repairs. Of course, in writing a
knowledge base that models a concrete scenario, computing the invariants across
all repairs is not necessarily the right approach. There may be a single meaning-
ful application dependent way of removing the inconsistency, and the knowledge
engineer should be involved in deciding how to repair the prototype.

Example 3.1.1 Consider the famous Nixon’s diamond :

1. Quakers are normally pacifist;

2. Republicans are normally not pacifist;

3. Nixon is both a quaker and a republican.

Here the concept Nixon is associated to an inconsistent prototype consisting of
the properties “pacifist” and “not pacifist” by multiple inheritance. When the
above statements are formalized, multiple circumscription models exist, as well
as multiple default extensions or autoepistemic expansions. Some satisfy the first
statement and make Nixon a pacifist, while others apply the second statement and
make Nixon not a pacifist. Each of these models (or extensions, or expansions)
corresponds to an optimal repair of the prototype where Nixon satisfies exactly
one of the two nonmonotonic axioms. However, history tells us that only one
of them actually holds. Since the above properties of Quakers and Republicans
are perfectly symmetric, this problem cannot be resolved by the logic: Choosing
the right set of properties satisfied by Nixon is a knowledge engineer’s task. She
can fix the prototype by overriding the properties that should not be inherited,
e.g. by stating that Nixon is not a pacifist. The knowledge engineer might even
decide that individuals may exhibit a mix of pacifist and non-pacifist behavior,
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so that who is a Quaker and a Republican should not be forced to be definitely
a pacifist or definitely not a pacifist in all models (or extensions, or expansions)
of the knowledge base. Of course, such decisions must start from the awareness
that some concept (e.g. Nixon, or Quaker-and-Republican) has been inadvertently
associated to an inconsistent prototype. If a nonmonotonic semantics hides this
“inconsistency” by repairing it, then the whole repair process can possibly remain
unnoticed by the knowledge engineer .

The rationale behind highlighting inconsistent prototypes is even clearer in ontol-
ogy merging activities, as illustrated by the next example, due to [Rector, 2004].

Example 3.1.2 Suppose a knowledge engineer is merging two ontologies that
describe the anatomy of humans and mice, respectively. In the former ontology,
the body has one prostate with three lobes, while in the latter ontology bodies
have five prostates, none of which has lobes. Now consider the union of the two
ontologies. The nonmonotonic semantics introduced so far in the literature would
resolve the conflict between the prostate axioms by allowing each body to have
either a single prostate with three lobes, or five prostates with no lobe; no conflict
resolution strategy would extend the knowledge base signature. However, in this
case, extending the signature is exactly what should be done: it would be better
to notify the conflict to the knowledge engineer, who could then refine the concept
Body by introducing two subclasses: HumanBody and MouseBody, each satisfying
the corresponding prostate axiom.

According to the above discussion, in the new semantics inconsistent proto-
types will be regarded as knowledge representation errors. Identifying inconsis-
tent prototypes is considered as a debugging step analogous to detecting incon-
sistent concepts. Knowledge engineers are responsible of deciding how to repair
a certain prototype. Only the conflicts that can be settled by a clear priority
relation between nonmonotonic axioms shall be resolved by the logic.

Another important feature of DL N is that the semantics do not maximize the
sets of normal instances; this prevents the undesirable closed-world assumption
effects discussed in Section 3.1.7.

To the best of our knowledge no other nonmonotonic DL has all of the above
features. —actually, the overriding mechanism is novel, despite its simplicity, and
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contributes of the unique computational properties of DL N. The final result is
that DL N is the only nonmonotonic description logic that enjoys all of the
following properties:

• it yields the expected inferences in all the applicative examples, avoiding
undesired side-effects and common shortcomings

• it supports ontology engineering by highlighting inconsistent prototypes;

• it achieves the above goals without increasing the computational complexity
of the classical reasoning tasks such as subsumption and instance checking,
concept consistency checking, and knowledge base consistency checking; to
the best of our knowledge, DL N is the first nonmonotonic description logic
that preserves the tractability of the above tasks over the E L family and
the DL-lite family.

In this section we introduce the syntax and the semantics of the new logic of
overriding called DL N. Section 3.1.2 illustrate the behavior of DL N in a number
of examples inspired by the intended applications of the new logic (Section 3.1.2).
Automated reasoning in DL N is carried out by means of the reduction to clas-
sical description logics introduced in Section 3.1.3.Then, in Section 3.1.5, we
resume the technical analysis of the new logic and show some semantic and log-
ical properties of DL N. Section 3.1.6 focuses on some guidelines for the usage
DL N, including representation methodologies, and elimination techniques for
constructs that are extensively used in DL N but are not supported by all de-
scription logics. Finally, in Section 3.1.7, DL N is compared in detail with the
other major nonmonotonic description logics and design patterns 3.1.7. Proofs
are omitted in order to improve readability. The interested reader can refer to
[Bonatti et al., 2015a] for more details.

3.1.1 Knowledge Bases, Defeasible Inclusions, and
Overriding

Let DL be any classical description logic language, and DL N be the exten-
sion of DL with a new type of concept expressions NC for each DL concept C,
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called normality concepts, meant to denote the normal or prototypical instances
of C.

A DL N interpretation I = 〈∆I , ·I 〉 is any extension of a classical inter-
pretation of DL such that NCI ⊆ CI . In other words, DL N interpretations
treat each normality concept NC as a new concept name that satisfies NC v C.

Definition 3.1.3 [DL N Knowledge base] A DL N knowledge base is a disjoint
union K B = S ∪D where:

• S is a finite set of DL N axioms called strong or classical axioms (that
may possibly comprise both inclusions and assertions)

• D is a finite set of defeasible inclusions (DIs), i.e. expressions C vn D

where C is a DL concept and D a DL N concept.

The informal meaning of C vn D is: “the normal instances of C are instances
of D, unless stated otherwise”. By means of a set of DIs C vn Di (1 ≤ i ≤ n)
every concept C can be associated to a set of prototypical properties D1, . . . , Dn.
A normal instance x of C should then conform to these properties unless stated
otherwise, that is, unless a group of strong axioms and higher priority DIs forces
x to satisfy ¬Di, for some i = 1, . . . , n. An alternative informal statement of the
semantics of C vn D is: “by default, a normal member of C should satisfy D”.

Note that normality concepts and DIs are utilitarian constructs meant to
factorize properties that hold for most of the entities modeled in the knowledge
base, so as to minimize the amount of knowledge that must be explicitly encoded.
Then the role of normality concepts and DIs is analogous to the role of inheritance
and overriding in object oriented languages.

A pre-model of K B is a DL N interpretation I that satisfies all the axioms
of its strong part S . As usual, if I is a pre-model then we write I |= S , and
if a sentence α is satisfied by all the pre-models of K B then we say that α is a
logical consequence of S and write S |= α. We will slightly abuse notation and
write K B |= α as an equivalent of S |= α, and C vK B D as an equivalent of
S |= C v D.

In order to define the semantics of DIs, some intermediate steps are required.
Let δ = (C vn D), then its left-hand side C and its right-hand side D are denoted
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respectively by pre(δ) and con(δ). An individual x in a DL N interpretation I

satisfies δ iff either x 6∈ pre(δ)I or x ∈ con(δ)I . A normality concept NC satisfies
δ in I iff all the elements of NCI satisfy δ. The set of normality concepts that
satisfy δ in I will be denoted by satI (δ) and defined formally as:

satI (δ) = {NC | ∀x ∈ NCI , x 6∈ pre(δ)I ∨ x ∈ con(δ)I } .

It frequently happens that a concept NC cannot simultaneously satisfy two con-
flicting DIs. In that case, a choice is made using a priority relation over DIs.

A priority relation is a strict partial order ≺ such that the intended meaning of
δ1 ≺ δ2 is “δ1 has higher priority than δ2” and, in case of conflicts, it is preferable
to sacrifice the lower priority DI δ2. While the results reported in this section
apply to all priority relations, from now on we will assume that ≺ is determined
by specificity (unless stated otherwise):

δ1 ≺ δ2 iff pre(δ1) vK B pre(δ2) and pre(δ2) 6vK B pre(δ1) . (3.1)

In the above definition, the specific properties of pre(δ1) may override those of
the more general (less specific) concept pre(δ2).

In each intended model I of K B, a concept NC should satisfy a DI δ ∈ K B

unless the cost of having NC satisfy δ is unacceptable, i.e. if satisfying δ implies
that either NC becomes inconsistent or some higher priority δ′ ∈ K B must be
invalidated. Under these circumstances δ can be ignored for NC, and we say that
δ is overridden in NC/I . Since higher priority DIs, in turn, can be ignored if
they are overridden, the formal definition of overriding is formulated in a recursive
fashion:

Definition 3.1.4 [Overriding w.r.t. K B, function ovd ] Let I be a DL N in-
terpretation. A DI δ is overridden in NC/I (w.r.t. a knowledge base K B) iff
there exists no pre-model J of K B satisfying all of the following conditions:

1. NC ∈ satJ (δ),

2. NCJ 6= ∅,

3. for all δ′ ∈ K B such that δ′ ≺ δ, satI (δ′) \ ovdK B(I , δ′) ⊆ satJ (δ′) .
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where ovdK B(I , δ′) denotes the set of all normality concepts ND such that δ′

is overridden in ND/I w.r.t. K B. In order to improve readability, K B will
be omitted whenever clear from context.

In other words, δ is not overridden in NC/I iff there exists a model J of the
strong part of K B that represents an acceptable way of making NC satisfy δ:
Indeed, by condition 1, NC satisfies δ in J ; by condition 2, NC is consistent in
J ; finally, by 3, all of the non-overridden, higher priority DIs of K B satisfied in
I by some ND are also satisfied in J by the same ND (i.e., no higher priority
DI is sacrificed, unless it is overridden).

The above recursive definition is well defined since the notion of overriding
for δ depends only on the overriding of δ′ ≺ δ. In fact, if δ has maximal priority,
then condition 3 is vacuously satisfied, so δ is not overridden iff there exists
a pre-model J of K B satisfying 1 and 2. Note also that, according to this
definition of overriding, a DI δ can be blocked only by higher priority DIs. In
particular, it is possible that none of the “acceptable improvements” J provides
a global solution by satisfying also all δ′ ∈ K B incomparable with δ (i.e. δ′ 6≺ δ
and δ 6≺ δ′). As a consequence, DL N solves only the conflicts that can be
settled by the priority relation ≺. This is a characterizing feature of DL N that
distinguish it from the other nonmonotonic description logics (based on default
logic, MKNF, circumscription, etc.) where a nonmonotonic axiom/rule ν can
contribute to blocking an incomparable axiom/rule ν′, which leads to complex
conflict resolution procedures. This however is not appropriate to the inheritance
with overriding approach adopted by DL N.

Example 3.1.5 The phrase situs inversus refers to humans whose heart is lo-
cated on the right-hand side of the body, differently from typical humans whose
heart is on the opposite side. If we agree that no heart can be simultaneously
located on both sides, then a simple axiomatization in (E L ⊥)N is:

Human vn ∃has_heart.∃has_position.Left (3.2)

SitusInversus v Human (3.3)

SitusInversus v ∃has_heart.∃has_position.Right (3.4)

∃has_heart.∃has_position.Left u ∃has_heart.∃has_position.Right v ⊥ .(3.5)
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We are going to show that in all DL N-interpretations I , (3.2) is not overridden
in NHuman and is overridden in N SitusInversus, due to (3.4).

The above knowledge base K B contains one DI δ = (3.2), so the preference
relation ≺ is irrelevant in this example. Moreover, δ has maximal priority in
K B, so we only have to consider conditions 1 and 2 of Def. 3.1.4, as explained
above. Note that a DL N-interpretation J satisfies condition 1 of Def. 3.1.4 iff
J |= NC v ¬pre(δ) t con(δ). Therefore, conditions 1 and 2 of Def. 3.1.4 are
satisfied by a pre-model of K B iff there exists a DL N-model J of

S ∪ {NC v ¬pre(δ) t con(δ)}

such that NCJ 6= ∅, where S = {(3.3), (3.4), (3.5)} is the strong part of K B.

First, let us focus on NC = NHuman. According to the above discussion, (3.2)
is not overridden in NHuman/I iff there exists a DL N-model J of

S ∪ {NHuman v ¬Human t ∃has_heart.∃has_position.Left}

such that NHumanJ 6= ∅. Such a DL N-model obviously exists: for example, take
a J where SitusInversusJ = ∅, all the instances of HumanJ have their heart
on the left-hand side of the body, and NHumanJ = HumanJ 6= ∅. This confirms
that (3.2) is not overridden in NHuman/I .

On the contrary, conditions 1 and 2 cannot be possibly satisfied for NC =

NSitusInversus, because (3.4), (3.5) imply that NSitusInversus and the right-
hand side of (3.2) are disjoint; therefore NSitusInversus (which is subsumed by
Human) cannot satisfy (3.2) in J unless NSitusInversusJ = ∅ (which violates
condition 2). It follows that (3.2) is overridden in NSitusInversus/I , for all
I .

Example 3.1.6 The eukaryotic cell example is slightly different from the situs
inversus example. If we decide to regard fully developed mammalian red blood
cells (that have no nucleus) as standard mammalian red blood cells, then we have
to introduce two conflicting DIs with different priority. The encoding in A L C N
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is:

EukCell vn ∃ has_nucleus (3.6)

MamRedBldCel v EukCell (3.7)

MamRedBldCel vn ¬∃ has_nucleus . (3.8)

By (3.7), specificity yields (3.8) ≺ (3.6), that is, (3.8) has higher priority than
(3.6). We are going to show that for all DL N-interpretations I , none of the
two DIs is overridden in NEukCell/I , while (3.6) may be overridden by (3.8) in
NMamRedBldCel/I .

Since (3.8) is a maximal priority default, the analysis of where it is overridden
can be carried out by analogy with the analysis of (3.2), in the previous example.
In particular, (3.8) is overridden in NEukCell/I iff there exists no DL N-model
J of

S ∪ {NEukCell v ¬MamRedBldCel t ¬∃ has_nucleus}

such that NEukCellJ 6= ∅, where S = {(3.7)}. Such a J exists: take any
DL N-interpretation where no eukaryotic cells have a nucleus, and NEukCellJ =

EukCellJ 6= ∅. It follows that (3.8) is not overridden in NEukCell/I . The
reader may easily check in a similar way that (3.8) is not overridden in
NMamRedBldCel/I , either.

Next we show that the low-priority DI (3.6) is not overridden in NEukCell/I .
Take a DL N-model J of (3.7) (i.e. a pre-model of K B) where:

• EukCellJ 6= ∅;

• all the instances of EukCell have a nucleus;

• MamRedBldCelJ = ∅.

The second and first bullet, respectively, ensure that J satisfies conditions 1
and 2 of Def. 3.1.4 for δ = (3.6) and NC = NEukCell. The last bullet ensures
that the high-priority DI (3.8) is satisfied by all normality concepts; this entails
condition 3 of Def. 3.1.4. It follows that (3.6) is not overridden in NEukCell/I .

Finally, consider NMamRedBldCel and an arbitrary DL N-interpretation I .
There are two possibilities:
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1. NMamRedBldCel satisfies (3.8) in I . Then it is not possible to find any
J satisfying the conditions of Def. 3.1.4 for δ = (3.6). To see this, ob-
serve that in no pre-model J of K B, NMamRedBldCel can satisfy both
DIs and be nonempty. However, satisfying (3.8) is necessary to satisfy
condition 3 of Def. 3.1.4 for δ′ = (3.8). Therefore, (3.6) is overridden in
NMamRedBldCel/I .

2. NMamRedBldCel does not satisfy (3.8) in I . Then, take a DL N-interpretation
J of K B such that:

• MamRedBldCelJ = EukCellJ 6= ∅;

• all the instances of MamRedBldCel and EukCell have a nucleus;

• for all NC 6= NMamRedBldCel, NCJ = ∅.

The second and first bullet, respectively, ensure that J satisfies condi-
tions 1 and 2 of Def. 3.1.4 for δ = (3.6) and NC = NMamRedBldCel. The
last bullet ensures that the high-priority DI (3.8) is satisfied by all nor-
mality concepts different from NMamRedBldCel. From this fact, and since
NMamRedBldCel does not satisfy (3.8) in I , it follows that all the nor-
mality concepts that satisfy (3.8) in I , satisfy it also in J , so condition
3 of Def. 3.1.4 is satisfied. We conclude that (3.6) is not overridden in
NMamRedBldCel/I .

Summarizing, (3.6) may or may not be overridden in NMamRedBldCel/I depend-
ing on whether NMamRedBldCel satisfies (3.8) in I .

The requirement that non-overridden DIs should be satisfied by normality con-
cepts (while overridden DIs can be ignored) naturally leads to the following notion
of DI satisfaction:

Definition 3.1.7 [DI satisfaction] A DL N interpretation I satisfies a DI δ
(w.r.t. a knowledge base K B) iff for all normality concepts NC, either δ is
overridden in NC/I , or NC ∈ satI (δ). If I satisfies δ w.r.t. K B then we write
I |=K B δ.

Now the notion of DL N model can be defined for a full K B simply by
stating that all the members of K B must be satisfied:
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Definition 3.1.8 [DL N model] A DL N interpretation I is a DL N model of
K B iff I is a pre-model of K B and for all DIs δ ∈ K B, I |=K B δ.

Let ε be either a DL N sentence (assertion or inclusion) or a DI. If ε is satisfied
by all the DL N models of K B, then we say that ε is a DL N consequence of
K B and write

K B |≈ ε .

3.1.2 Examples

We start with some examples where all conflicts (if any) are resolved by speci-
ficity. Most nonmonotonic description logics agree on these examples. The first
one is a simple representation of the situs inversus example mentioned in the
introduction.

Example 3.1.9 Consider again Example 3.1.5 (situs inversus). Recall that for
all DL N-interpretations I , the unique DI of K B, (3.2), is satisfied by NHuman

and overridden in N SitusInversus.

As a first consequence, NHuman must satisfy (3.2) in every DL N-model of
K B (by definition), that is, all the instances of NHuman are either not humans
(which is impossible, by definition of DL N-interpretations) or members of the
concept ∃has_heart.∃has_position.Left. As a consequence, one can derive
that the heart of standard humans is located on the left-hand side of the body:

K B |≈ NHuman v ∃has_heart.∃has_position.Left . (3.9)

Moreover, since the DL N models of K B are also classical models of its strong
axioms, by (3.4) we have that the instances of SitusInversus have their heart
on the opposite side:

K B |≈ SitusInversus v ∃has_heart.∃has_position.Right . (3.10)

This yields no inconsistency, since (3.2) is overridden in NSitusInversus/I ,
for all models I . Similarly, SitusInversus violates the properties of standard
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humans without making the knowledge base inconsistent:

K B |≈ SitusInversus v ¬∃has_heart.∃has_position.Left . (3.11)

Moreover, as a classical consequence of the above inferences, one can further
conclude that people with situs inversus are not standard humans:

K B |≈ SitusInversus v ¬NHuman . (3.12)

Since DL N cautiously refrains from applying (3.2) to all humans, in order to
avoid inconsistencies with inferences like (3.11), (3.9) cannot be strengthened:

K B 6|≈ Human v ∃has_heart.∃has_position.Left .

Indeed, there are exceptions to the above subsumption. Obviously, K B, NHuman,
and NSitusInversus are all consistent: K B 6|≈ NHuman v ⊥ and K B 6|≈
NSitusInversus v ⊥.

In some nonmonotonic logics, an exceptional concept like SitusInversus,
that does not satisfy some of the standard properties of a more general concept,
like Human, inherits none of the default properties of Human, including those that
are consistent with the specific properties of SitusInversus (such as having a
nose).7 The next example shows that this limitation, sometimes called inheritance
blocking, does not affect DL N’s inheritance.8

Example 3.1.10 Extend Example 3.1.9 with the additional DI:

Human vn ∃has_organ.Nose . (3.13)

This DI has maximal priority and can be analyzed analogously to (3.2). It is
easy to see that (3.13) is overridden neither in NHuman nor in NSitusInversus,

7Such logics are discussed in the related work section.
8From now on, in the examples, we do not spell out the details of how inferences are derived

(with the exception of Example 3.1.11). Section 3.1.3 contains the reductions to classical logic
that support those inferences.
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therefore both of the following inferences are valid:

K B |≈ NHuman v ∃has_organ.Nose ,

K B |≈ NSitusInversus v ∃has_organ.Nose .

In other words, the property of having a nose is inherited even if (3.9), (3.11),
and (3.12) make SitusInversus exceptional w.r.t. Human.

Example 3.1.11 Consider Example 3.1.6 (eukarotic cells) and recall that for all
DL N-models I of K B, neither (3.6) nor (3.8) are overridden in NEukCell/I ,
(3.8) is not overridden in NMamRedBldCel/I , and (3.6) is overridden in
NMamRedBldCel/I 9. Then, in all such I , NEukCell satisfies both DIs, while
NMamRedBldCel satisfies only (3.8).

The result is that standard eukaryotic cells have a nucleus while standard
mammalian red blood cells do not have a nucleus, as required:

K B |≈ NEukCell v ∃has_nucleus

K B |≈ NMamRedBldCel v ¬∃has_nucleus .

Since NEukCell must satisfy both DIs, it follows by classical inferences that

K B |≈ NEukCell v ¬MamRedBldCel ,

that is, mammalian red blood cells are abnormal eukaryotic cells. %qed

The next example shows how to use DL N to encode access control policies
(which is another of the intended applications of nonmonotonic description logics
mentioned in the introduction). It is also an example of multiple levels of excep-
tion: the requests of blacklisted staff are exceptional staff requests, that in turn
are exceptional user requests.10

9Since I is a DL N-model of K B, and (3.8) is not overridden in NMamRedBldCel/I ,
NMamRedBldCel must satisfy (3.8) in I , and in this case (3.6) is necessarily overridden in
NMamRedBldCel/I , as shown in Example 3.1.6.

10Recall that inferences are justified by the translation into classical DLs given in Sec-
tion 3.1.3.
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Example 3.1.12 We are going to axiomatize the following natural language
policy:

• In general, users cannot access confidential files.

• Staff can read confidential files.

• Blacklisted users are not granted any access. This directive cannot be
overridden.

Note that each of the above directives contradicts (and is supposed to override)
its predecessor in some particular case. Authorizations can be reified as objects
with attributes subject (the access requester), target (the file to be accessed),
and privilege (such as read and write). Then the above policy can be encoded as
follows in A L C :

Staff v User (3.14)

Blklst v User (3.15)

∃subj.User u ∃target.Confidential vn ¬∃privilege (3.16)

∃subj.Staff u ∃target.Confidential vn ∃privilege.Read (3.17)

∃subj.Blklst v ¬∃privilege (3.18)

By (3.14), specificity yields (3.17) ≺ (3.16), that is, (3.17) has higher priority
than (3.16). With the usual analysis, it can be seen that (3.16) is not overridden
in

N(∃subj.User u ∃target.Confidential);

it is overridden in

N(∃subj.Staff u ∃target.Confidential) and N∃subj.Blklst .

Moreover, (3.17) is not overridden in N(∃subj.User u ∃target.Confidential),
nor in N(∃subj.Staff u ∃target.Confidential); it is overridden only in

N∃subj.Blklst .
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Thus we get the expected policy behavior:

1. Normally, access requests involving confidential files are rejected, if they
come from generic users:
K B |≈ N(∃subj.User u ∃target.Confidential) v ¬∃privilege;

2. Normally, read operations on confidential files are permitted if the request
comes from staff:
K B |≈ N(∃subj.Staff u ∃target.Confidential) v ∃privilege.Read;

3. Blacklisted users cannot do anything (3.18), so, in particular:
K B |≈ N∃subj.Blklst v ¬∃privilege.

The next example illustrates an inconsistent prototype, due to an unresolvable
conflict between DIs with incomparable priorities. Most nonmonotonic logics
tacitly solve this conflict and fail to highlight the inconsistency.

Example 3.1.13 Consider the following variant of Nixon’s diamond, expressed
in A L C N:

Quaker vn Pacifist , (3.19)

Republican vn ¬Pacifist , (3.20)

RepQuaker v Republican u Quaker . (3.21)

The two DIs here are not comparable under specificity, that is: (3.19) 6≺ (3.20)

and (3.20) 6≺ (3.19). Then both DIs have maximal priority, and their overriding
status shall be analyzed independently, by analogy with the unique DI of the
situs inversus example. Both (3.19) and (3.20) can be individually satisfied by
NRepQuaker, without making it inconsistent. Then none of them is overridden
in NRepQuaker. It follows that NRepQuaker must satisfy both DIs, consequently

K B |≈ NRepQuaker v ⊥ ,

that is, RepQuaker is associated to an inconsistent prototype. A knowledge en-
gineer can now repair it in several possible ways, for instance:
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1. by adding RepQuaker vn Pacifist, which resolves the conflict in favor of
(3.19);

2. by adding RepQuaker vn ¬Pacifist, which resolves the conflict in favor of
(3.20);

3. by changing the axiomatization of behavior so as to permit three alternative
attitudes: Pacifist, NonPacifist, and Mixed.

Note that even if the prototype of RepQuaker is inconsistent, the knowledge
base is consistent, as well as many normality concepts. In particular, we have
K B 6|≈ NQuaker v ⊥ and K B 6|≈ NRepublican v ⊥.

Example 3.1.14 Consider again Example 3.1.2. Suppose that the axiomatiza-
tion of bodies and prostates in the two given ontologies has been done with DIs,
so as to accommodate exceptional individuals:

Body vn (= 1 has_organ.Prostate) , (3.22)

Body vn (= 5 has_organ.Prostate) . (3.23)

In the union of the two ontologies the above DIs have the same priority, so
they cannot override each other. As a consequence, NBody must satisfy both, in
all models of K B, therefore K B |≈ NBody v ⊥ . This makes the unresolved
conflict between the two DIs visible to the knowledge engineer. The inconsistency
is confined to NBody; K B is consistent.

3.1.3 A Syntactic Characterization of |≈

Automate reasoning in DL N is based on a syntactic characterization of |≈.
More precisely, |≈ can be reduced to classical reasoning over a DL knowledge
base where DIs are converted into classical axioms. For this purpose, one need
to select among the infinitely many concepts NC a finite set Σ of normality
concepts that are relevant to the queries of interest. Such concepts are regarded
as additional concept names in the resulting classical knowledge base. In order to
encode DIs in classical logic, we assume that DL supports concept intersection
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(u) on the left-hand side of inclusions.11

Let Σ be a finite set of normality concepts that comprise at least all the
normality concepts explicitly occurring in K B plus any concepts needed for con-
structing the queries of interest.12 As a special case, Σ may be exactly the set of
normality concepts occurring either in K B or in the given query.

Let DL Σ denote the language obtained by extending DL with the normality
concepts of Σ (treated like new concept names).

For all DIs δ and all normality concepts NC the classical translation of δ w.r.t.
NC is defined as follows:

δNC =
(
NC u pre(δ) v con(δ)

)
.

Note that I |= δNC holds iff NC ∈ satI (δ) .
Next, for all sets of DL axioms S ′ and all DIs δ, let S ′ ↓≺δ denote the result

of removing from S ′ all the axioms δNC
0 such that δ0’s priority is not higher than

δ’s:
S ′ ↓≺δ= S ′ \ {δNC

0 | NC ∈ Σ ∧ δ0 6≺ δ} .

Finally, let δ1, . . . , δz be an arbitrary linearization of (D ,≺), which means
that {δ1, . . . , δz} = D and for all i, j = 1, . . . , z, if δi ≺ δj then i < j.

Now the classical knowledge base K BΣ corresponding to K B can be defined
with the following inductive construction (where i = 1, 2, . . . , z):

S Σ
0 = S ∪

{
NC v C | NC ∈ Σ

}
(3.24)

S Σ
i = S Σ

i−1 ∪
{
δNC
i | NC ∈ Σ and S Σ

i−1 ↓≺δi ∪{δ
NC
i } 6|= NC v ⊥

}
(3.25)

K BΣ = S Σ
z . (3.26)

Note that the first step in constructing K BΣ extends S with the axioms NC v C

implicitly satisfied by DL N’s semantics. The construction then proceeds by processing
the DIs δi ∈ D in decreasing priority order; if adding δi to the higher priority δj ≺ δi

that have been previously selected does not make NC inconsistent, as stated by (3.25),

11The restriction rules out a single notable description logic, namely DL-liteR.
12Queries can be subsumption queries (C v D), instance checking queries (C(a) or R(a, b)),

concept consistency queries (that can be formulated through subsumptions like C v ⊥), and
knowledge base consistency queries (that can be expressed through > v ⊥).
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then δNC
i is included in K BΣ, otherwise δNC

i is discarded (overridden).
It can be proved that the above translation into classical reasoning yields a faithful

account of subsumption and assertion checking in DL N.

Theorem 3.1.15 Let K B be a DL N knowledge base, α be a subsumption or an as-
sertion in DL N, and let Σ be any finite set of normality concepts including all NC that
occur in K B ∪ {α}. Then

K B |≈ α iff K BΣ |= α.

To better illustrate the reduction to classical reasoning we apply it to the example
introduced in Section 3.1.1.

Example 3.1.16 Consider again Example 3.1.9 (situs inversus). In order to infer the
standard properties of humans let Σ = {NHuman}. The classical translation K BΣ of
K B consists of (3.3)–(3.5) (i.e. the strong part S of K B) plus the two inclusions
NHuman v Human and δNHuman

1 , where δ1 is (3.2), so δNHuman
1 equals:

NHuman u Human v ∃has_heart.∃has_position.Left . (3.27)

From these axioms we get the following inferences:

K BΣ |= NHuman v ∃has_heart.∃has_position.Left ,

K BΣ |= SitusInversus v ∃has_heart.∃has_position.Right ,

K BΣ |= SitusInversus v ¬∃has_heart.∃has_position.Left ,

K BΣ |= SitusInversus v ¬NHuman ,

that entail the corresponding nonmonotonic inferences (3.9), (3.10), (3.11), (3.12), by
Theorem 3.1.15.

Overriding in DL N can then be checked by means of K BΣ and classical reasoning:

Lemma 3.1.17 Let I be a DL N interpretation that satisfies K BΣ. For all normality
concepts NC ∈ Σ, and for all DIs δ (not necessarily occurring in K B),

δ is overridden in NC/I iff K BΣ ↓≺δ ∪{δNC} |= NC v ⊥ .

Interestingly, the above characterization of overriding does not depend on I . For this
reason, from now on, we drop the model and say simply “δ is overridden in NC”, mean-
ing that δ is overridden in NC/I for all DL N models I of K B.
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A characterization of DI inference in terms of classical reasoning can also be pro-
vided:

Theorem 3.1.18 For all DIs δ, K B |≈ δ iff for all normality concepts NC,

either K BΣ ↓≺δ ∪{δNC} |= NC v ⊥ or K BΣ |= δNC ,

where Σ contains NC and all the normality concepts ND occurring in K B.

Unfortunately, Theorem 3.1.18 cannot be immediately applied in practice to infer
DIs because it requires the inspection of all the infinitely many, possible normality
concepts13. A decision method for N-free14 knowledge bases and DI queries is already
coNP-hard for very simple DL such as the ∃-free fragment of (E L⊥)N, that is also a
fragment of DL-liteN

horn. Finding a decision method for unrestricted knowledge bases
and DIs is an open problem. This however is not an issue as a closer look reveals that all
of our motivating scenarios are covered by Theorem 3.1.15. In particular the complexity
of nonmonotonic inference for α that range over subsumptions and assertions in a E L

++N knowledge base remains PTIME:
Assumption: in the following results, either ≺ is determined by specificity, as for-

malized by (3.1), or the input comprises an extensional description of ≺ ; in this case,
checking whether δi ≺ δj has linear cost.

Theorem 3.1.19 Let K B range over E L ++N knowledge bases, and α range over
E L ++N subsumptions and assertions15. Then checking K B |≈ α is in PTIME.

Similar results hold for all DL whose subsumption problem is tractable, provided that
u can occur in the left-hand side of inclusions (so as to enable the transformation of
K B into K BΣ). Another logic with this property is DL-liteHorn [Artale et al., 2009].
More tractable cases can be found in [Artale et al., 2009, Table 2].
The complexity of more expressive description logics, whose inference problems are
ExpTime-complete16 is also preserved.

13A different normality concept correspond to each of the infinitly many complex concepts
that can be contructed in the reference DL .

14A knowledge bases is N-free if it contains no occurrences of any normality concepts.
15Concept satisfiability will not be explicitly dealt with, because it can be naturally reduced

to the complement of subsumption checking in the usual way: C is satisfiable w.r.t. K B (i.e.
there exists a DL N model I of K B such that CI 6= ∅) iff K B 6|≈ C v ⊥. Similarly, K B
consistency will not be dealt with, because it can be reduced to checking whether K B |≈ > v ⊥.

16Comprise all the logics lying between A L C N, on one side, and S H OQN, S H I ON, or
S H I QN on the other side.
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Theorem 3.1.20 Let DL be a description logic whose subsumption problem is in Ex-
pTime, and let α range over subsumptions and assertions in DL N. Then deciding
K B |≈ α in DL N is in ExpTime, too. Moreover, if DL ’s subsumption problem is
ExpTime-complete then so is deciding K B |≈ α.

As far as the description logic underlying OWL2 is concerned: S ROI Q’s inference
belongs to a nondeterministic complexity class, so:

Theorem 3.1.21 Deciding K B |≈ α in S ROI QN is in PN2ExpTime if α ranges over
subsumption and assertion queries.

Next we characterize the complexity of N-free DI inference.

Theorem 3.1.22 17 Let K B range over (E L⊥)N knowledge bases, and δ range over
(E L⊥)N DIs. Then checking K B |≈ δ is coNP-hard. Similarly for DL-liteN

horn knowl-
edge bases and DIs. The theorem still holds if the input K B and δ are N-free and
∃-free.

For description logics, whose inference problems are ExpTime-complete, the non-
deterministic search performed by the polynomial time Turing machine with ExpTime
oracle can be turned into an ExpTime deterministic search, that preserves the cost of
the oracle’s tests; so we immediately obtain:

Theorem 3.1.23 Let DL be a description logic whose subsumption checking problem
is in ExpTime, and suppose that deciding ≺ has the same complexity. Then N-free
DI inference in DL N is in ExpTime, too. Moreover, if DL ’s subsumption checking
problem is ExpTime complete, then so is N-free DI inference in DL N.

In particular, if ≺ is specificity, then N-free DI inference is ExpTime-complete for
all the logics ranging from A L C N to any of S H OQN, S H I ON, or S H I QN.

Finally, an upper complexity bound for S ROI QN can be given:

Corollary 3.1.24 N-free DI inference in the logic S ROI QN is in coNPN2ExpTime,
provided that deciding ≺ is in coNPN2ExpTime, too (which holds if ≺ is specificity).

The complete set of complexity results for the DL N logics are reported in Table 3.1.

17Note that the results of Theorem 3.1.19 and this theorem are non in conflict. The former
applies on subsumption and assertion inference, while the latter applies on DI inference.
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Table 3.1. Summary of complexity results

DL N complexity

DL
complexity

subsumption and
assertion
checking

knowledge base
and concept
consistency

N-free DI
inference

P P P coNP

ExpTime ExpTime ExpTime ExpTime

N2ExpTime PN2ExpTime PN2ExpTime coNPN2ExpTime

All results hold for specificity and other priority relations in PC , where
C is the complexity of subsumption in DL

3.1.4 Reasoning about Individuals

Some nonmonotonic description logics adopt two different approaches for reasoning
about TBoxes and ABoxes, e.g. [Casini and Straccia, 2013]. On the contrary, DL N

treat TBox and ABox reasoning in a uniform way. Recall that the default properties of
a concept C can be found by proving inclusions like NC v D, as shown in the examples
discussed so far. Similarly, the default properties of an individual a can be found by
proving inclusions N{a} v D.

Example 3.1.25 Extend the situs inversus example (Ex. 3.1.9) with an ABox contain-
ing

Human(Ann) ,

SitusInversus(Bob) .

Let δ1 be the unique DI in K B, that is, (3.2). Using (3.25) it is easy to check that
δ

N{Ann}
1 belongs to K BΣ, while δN{Bob}

1 does not, because the properties of SitusInversus
are inconsistent with δ1 (i.e. δ1 is overridden in the concept N{Bob}).

Accordingly, both N{Ann} and N{Bob} are satisfiable w.r.t. K BΣ, and the hearts
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of Ann and Bob are located where it should be expected:

K B |≈ N{Ann} v ∃has_heart.∃has_position.Left , (3.28)

K B |≈ N{Bob} v ∃has_heart.∃has_position.Right . (3.29)

It is worth noting that DIs only state what standard individuals look like; DIs do not
force any individual to be standard.18 Accordingly, a concept N{a} may happen to be
empty, when a contingently violates its default profile. An important advantages of this
approach is that if the prototype associated to a nominal {a} is inconsistent, then only
N{a} is inconsistent; the knowledge base remains globally consistent. This behavior
make it easier to identify inconsistent prototypes.

Of course, if N{a} is satisfiable w.r.t. K B (as it happens with N{Ann} and N{Bob}
in the above example), then a could be safely asserted to be normal by adding the as-
sertion N{a}(a) to K B. Note, however, that the queries N{a} v D simply constitute
an alternative way of inspecting particular models: these queries are consequences of
K B iff a belongs to D in all the DL N-models where a satisfies its default properties,
that is, N{a}(a) holds. So, an alternative phrasing of the query N{a} v D is: “if a is
normal, then it satisfies D”.

If a DL and its inference engine do not support nominals, then it may be necessary
to reduce the above problem to an inference problem that does not involve nominals.
In the rest of this subsection, we assume that

1. K B contains no nominals;

2. {a} is the only nominal contained in Σ, that is, for all N{b} ∈ Σ, b = a.

The transformation tr consists of two steps:

Definition 3.1.26 Let tr1(K BΣ) be the set of axioms obtained from K BΣ by re-
moving N{a} v {a}, and replacing each δN{a}

i with

δ
{a}
i = {a} u pre(δi) v con(δi) .

Let tr2(K BΣ) be the set of axioms obtained from tr1(K BΣ) by adding the assertion
F (a), where F is fresh concept name, and replacing each δ{a}i with δFi = F u pre(δi) v
con(δi) .

18This cautious behavior prevents undesired CWA effects, such as those reported in Sec-
tion 3.1.7.
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Since the translation is correct reasoning about nominals can be reduced to an instance
problem in a DL theory without nominals.

Theorem 3.1.27 K B |≈ N{a} v C iff tr(K BΣ) |= C(a).

3.1.5 The Logic of DL N

In the following we illustrate some logical properties of DL N. Obviously, DL N

extends classical logic, by definition:
If S |= α then S ∪D |≈ α .
The first two results show that concepts and axioms can be replaced by (classi-

cal) equivalents without affecting any inference. The first result holds for all priority
relations.

Theorem 3.1.28 Let S and S ′ be classically equivalent sets of inclusions and asser-
tions. Then, for all sets of DIs D,

1. I is a DL N model of S ′ ∪D iff I is a DL N model of S ∪D;

2. for all subsumptions / assertions /DIs ε, S ′ ∪D |≈ ε iff S ∪D |≈ ε.

The next theorem, instead, requires a mild assumption on priority relations. Roughly
speaking, ≺ should be insensitive to substitutions with logical equivalents:

Definition 3.1.29 A priority relation ≺ for K B is semantic iff δ1 ≺ δ2 and C ≡K B D

imply δ′1 ≺ δ′2, where each δ′i is obtained from δi by replacing some occurrences of C
with D.

Note that the specificity-based relation is a semantic priority relation.

Theorem 3.1.30 Suppose that C ≡ D is a (classically) valid equivalence and let K B

be a knowledge base obtained from K B by replacing some occurrences of C with D. If
≺ is semantic, then

1. I is a DL N model of K B iff I is a DL N model of K B;

2. for all subsumptions / assertions /DIs ε, K B |≈ ε̄ iff K B |≈ ε,

where ε̄ is obtained from ε by replacing some occurrences of C with D.

Note that the above two theorems are not redundant. The former allows for more
general restructuring of the strong part, while the latter supports replacements within
DIs.

Finally, concerning semantics, DL N preserves the finite model property:

Theorem 3.1.31 If DL enjoys the finite model property, then DL N enjoys it, too.
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3.1.6 Some Methodological Guidelines for KR&R in DL N

Disciplined usage of normality concepts

Although most of the results hold for unrestricted knowledge bases, the intended use
of the strong part S of K B is specifying classically valid axioms that do not involve
normality concepts, because such concepts are supposed to be defined by the DIs in D .
By adhering to this discipline, the so called canonical knowledge base is obtained:

Definition 3.1.32 A knowledge base K B = S ∪ D is canonical if S ⊆ DL (i.e.
normality concepts do not occur in the strong part of K B).

One of the interesting properties of canonical knowledge bases is that classical and
nonmonotonic inferences are neatly separated. By carefully formulating queries, it is
possible to distinguish valid consequences from nonmonotonic inferences:

Theorem 3.1.33 If K B = S ∪ D is a canonical DL N knowledge base, then for all
subsumption or assertions α ∈ DL , K B |≈ α iff S |= α.

Clearly, the thesis of Theorem 3.1.33 is not valid if K B is not canonical.
A related interesting property of canonical knowledge bases is that they preserve

classical consistency, in the following sense:

Theorem 3.1.34 Let K B = S ∪D be a canonical DL N knowledge base. Then K B

is satisfiable iff S is (classically) satisfiable.

Normal attributes for standard instances

One may wonder whether the attributes of a standard individual should be normal
as well. In general, this is not the case.

Example 3.1.35 Consider the following scenario: People are usually honest, and lawyers’
customers are people. However, lawyers’ customers cannot be assumed to be honest, by
default. They are more evenly distributed, and it would not be appropriate to assume
that they are not honest, either. Accordingly, from the knowledge base:

Lawyer v ∀customer.Person

Person vn Honest

DL N does not derive NLawyer v ∀customer.Honest. This happens for two reasons: (i)
nothing in the semantics forces roles to range over normal individuals only; (ii) atypical
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individuals may exist, since DL N does not induce any closed-world effects, as discussed
later.

However, as shown by the following example, having roles range over standard
individuals makes perfect sense in some scenarios. Most of the other nonmonotonic
description logics are unable to express such restrictions.

Example 3.1.36 The situs inversus example might be alternatively formulated by de-
scribing normal human hearts, and asserting that typically humans have normal human
organs:

HumanOrgan ≡ ∃has_organ
−.Human ,

HumanHeart ≡ HumanOrgan u Heart ,

Human v ∃has_organ.Heart ,

HumanHeart vn ∃has_position.Left , (3.30)

Human vn ∀has_organ.N HumanOrgan . (3.31)

The first DI (3.30) is not overridden in N HumanOrgan, so the second DI (3.31) makes the
organs of typical humans satisfy ¬HumanHeart t ∃has_position.Left. Consequently,
the above knowledge base yields the expected inference that the heart of typical humans
is placed on the left-hand side of the body:

K B |≈ NHuman v ∃has_organ.(Heart u ∃has_position.Left) .

More precisely, a nonmonotonic design pattern exists that given a knowledge base
K B = S ∪ D with (possibly defeasible) N-free ∀-restrictions Ci v[n] ∀Ri.Di (1 ≤ i ≤
n), further restricts each role Ri to the standard members of Di preserving the DIs in
D , that is, making role values standard only if the DIs in D permit to do so. This can
be accomplished by introducing in K B the new DIs δi = Ci vn ∀Ri.NDi (1 ≤ i ≤ n)
and setting their priorities as follows:

• the new DIs are compared with each other by means of specificity, as in (3.1);

• for each new DI δi and all δ ∈ D , let δ ≺ δi (i.e. the new DIs have lower priority
than all of the explicit DIs in K B).

In this way, if K B = {A v ∀R.B, B vn C}, then the new DI δ1 = A vn ∀R.NB
introduced by the design pattern makes it possible to entail K B |≈ NA v ∀R.C.
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Clearly, if the new DIs were not given lower priority than the explicit DIs, then in
examples like this an unresolvable conflict would arise between the DIs of K B and
those introduced by the design pattern; consequently NA would become inconsistent.

3.1.7 Comparison with Other Nonmonotonic DLs

In this section we assume the reader to be familiar with the nonmonotonic de-
scription logics compared with DL N. Their syntax and semantics can be found in
[Baader and Hollunder, 1995a, Baader and Hollunder, 1995b, Casini and Straccia, 2010,
Bonatti et al., 2011b, Donini et al., 2002, Giordano et al., 2013b].

Circumscribed Description Logics

In this section we compare DL N with the circumscribed DLs dealt with in
[Bonatti et al., 2011b], that can be regarded as a fragment of the more general frame-
work analyzed in [Bonatti et al., 2009b]. The syntax adopted in [Bonatti et al., 2011b]
supports defeasible inclusions; however, there are no normality predicates and each DI
C vn D affects directly the extension of C.

An important semantic difference between DL N and circumscribed DL is that
circumscription—roughly speaking—cannot create individuals. This happens because
the model preference relation at the core of Circumscription’s semantics makes two
models I and J comparable only if they have the same domain. This property has
subtle consequences that may be difficult to predict.

Example 3.1.37 Consider the following domain description:

1. All dentists have an assistant;

2. Normally, a dentist’s assistant is not a dentist;

3. Ann is a dentist.

The natural encoding of the above sentences is:

Dentist v ∃has_assistant ,

Dentist vn ∀has_assistant.¬Dentist , (3.32)

Dentist(Ann) .

From the above inclusions, one would expect the conclusion

Dentist v ∃has_assistant.¬Dentist. (3.33)
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Indeed, in A L C N, the consequence relation |≈ infers the corresponding subsumption

NDentist v ∃has_assistant.¬Dentist (3.34)

On the contrary, (3.33) is not entailed under Circumscription. The reason is a peculiar
counterexample I whose domain consists of a single individual d. The strong axiom
forces Ann to be the assistant of herself; then (3.33) is not satisfied by I . Since I

is comparable only with other models with the same domain, Circumscription cannot
“improve” I by introducing a new assistant that is not a dentist. The reason why DL N

does not suffer from this problem is that overriding is checked against models J that
may have a different domain. Since (3.32) can be satisfied by extending the domain, the
singleton interpretation I is discarded by DL N and (3.34) can be inferred. In order
to solve this well-known problem of Circumscription, in [Bonatti et al., 2011a] has been
suggested to introduce additional axioms to make the targets of existential restrictions
nonempty. In the dentist example, the additional axiom could be > v ∃aux.¬Dentist
(where aux is a fresh role name).

In order to adopt Circumscription, knowledge engineers must decide for each predicate
whether it should be fixed or variable. Fixed predicates cannot be affected by Cir-
cumscription, while variable predicates can. It has been proved that roles should not
be fixed, otherwise becomes undecidable [Bonatti et al., 2009b, Bonatti et al., 2011b].
As far as concepts are concerned, it has been observed that a closed-world assumption
(CWA) affect all variable concepts with some exceptional property. A variable concept
C may thus become empty or restricted to the only named individuals in the knowledge
base that belong to C [Bonatti et al., 2009b, Bonatti et al., 2010, Bonatti et al., 2011a].
Similar CWA effects are usually undesirable in DLs.

Example 3.1.38 Consider again the situs inversus example. This is a formulation in
Circumscribed E L⊥:

Human vn ∃has_heart.∃position.Left

SitusInversus v Human u ∃has_heart.∃position.Right

∃has_heart.∃position.Left u ∃has_heart.∃position.Right v ⊥ .

SitusInversus(Bob) .

If SitusInversus is variable, then Circumscription maximizes the set of individuals
satisfying Human vn ∃has_heart.∃position.Left by restricting SitusInversusI to
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{BobI }. The effects of this minimization become visible if we add properties to Bob.
For example, extend the ABox with Blond(Bob). Then Circumscription yields

CircF (K B) |= SitusInversus v Blond .

An obvious solution consists in making all concept names fixed. However, in this
case, some care must be taken, otherwise it might be impossible to define default at-
tributes at all, as shown in the following example.

Example 3.1.39 Consider a simplified policy example, where K B consists of the
single DI

UserRequest vn ∃decision.Deny .

If Deny is fixed, then Circumscription cannot infer UserRequest v ∃decision.Deny be-
cause there exists a model I of the circumscription of K B in which Deny is empty.
Since Deny is fixed, I can only be compared with other models where Deny is empty. It
follows that Circumscription cannot force ∃decision.Deny to be satisfied. This problem
can be addressed as shown in Example 3.1.37, by introducing additional axioms that
make Deny nonempty. Several of the examples in Section 3.1.2 show that DL N does
not exhibit any similar difficulties. Again, the reason is that overriding is defined in
terms of models that may have different domains.

In principle, Circumscription applies default properties to all individuals, including
the “implicit” that are not denoted by any constant name, and exist because of existential
quantification. However, this does not imply that in a concept ∃R.B role R ranges over
the normal instances of B; the behavior of Circumscription, in this respect, is essentially
context dependent and uncontrollable.

Example 3.1.40 Assume that all concept names are variable. Consider the K B

A v ∃R.B

B vn C ,

B′ v B

B′ vn ¬C ,

and the query Q = A v ∃R.C, which might be expected to hold because of the first
two inclusions. Circumscription maximizes the set of individuals satisfying both DIs by
making B′ empty and having all instances of B satisfy C; consequently, Q is entailed
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by K B. However, if K B is extended with any axiom that forces B′ to be nonempty
(such as > v ∃S.B′ or B′(a)), then in every model of K B, B contains some individual
that satisfies ¬C. Semantics lets R range freely over all the members of B, so Q does
not hold anymore. A similar behavior emerges when concept names are fixed.

So, with Circumscription, knowledge engineers have neither a direct way of restricting
the range of R to the normal instances of B, nor any way of preventing such restriction
when it is not appropriate. For this reason, Circumscription is not guaranteed to handle
correctly Example 3.1.35 and Example 3.1.36 (the result is context dependent).

Concerning conflict resolution, Circumscription deals with inconsistent prototypes
by fixing them in all possible ways.

Example 3.1.41 Consider again Example 3.1.1 (Nixon’s diamond). Using circum-
scribed E L⊥, it can be formalized as follows:

Quaker vn ∃has_behavior.Pacifist ,

Republican vn ∃has_behavior.NonPacifist ,

∃has_behavior.Pacifist u ∃has_behavior.NonPacifist v ⊥ ,

Nixon v Quaker u Republican .

Here Nixon is associated to an inconsistent prototype by multiple inheritance. Each
model of circumscribed K B corresponds to an optimal repair of the prototype where
Nixon satisfies exactly one of the above DIs. Therefore, Circumscription entails

Nixon v ∃has_behavior.Pacifist t ∃has_behavior.NonPacifist ,

and makes concept Nixon consistent. In DL N, instead, since the two DIs have the same
priority, the conflict is not resolved and DL N makes it evident as follows:

K B |≈ N Nixon v ⊥ .

We argued that the DL N conflict handling method is safer. It has also better com-
putational properties, as shown by Theorem 3.1.19 and the complexity analysis in
[Bonatti et al., 2011b]. In particular, E L ++N is tractable, while circumscribed E L⊥

needs further restrictions of various sort to reduce its complexity [Bonatti et al., 2011b].
A prototypical implementation for A L C O can be found in [Grimm and Hitzler, 2009].
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Default Description Logics

Some of the earliest nonmonotonic DLs are based on Default logic and prioritized
extensions thereof [Baader and Hollunder, 1995a, Baader and Hollunder, 1995b]. Un-
decidability issues led the authors of these papers to restrict the application of default
rules only to the individuals that are explicitly named in the knowledge base. This means
that the implicit individuals introduced by existential quantification are not subject to
nonmonotonic axioms. As a consequence, Default DLs cannot encode Example 3.1.36,
because the range of role has_organ consists of implicit individuals to which default
rules do not apply.

In case of conflicts between different default rules, Default logic adopts the repair-
like approach sketched in the introduction.

Example 3.1.42 In Default logic, Nixon’s diamond can be encoded with the following
default rules and axioms:

Quaker(X ) : M(∃has_behavior.Pacifist)(X )

(∃has_behavior.Pacifist)(X )

Republican(X ) : M(∃has_behavior.NonPacifist)(X )

(∃has_behavior.NonPacifist)(X )

∃has_behavior.Pacifist u ∃has_behavior.NonPacifist v ⊥ ,

(Quaker u Republican)(Nixon) .

There exist two default extensions, containing (∃has_behavior.Pacifist)(Nixon) and
(∃has_behavior.NonPacifist)(Nixon), respectively.

We have already discussed the potential drawbacks of this approach, in terms of repre-
sentation error repairs. Moreover—due to this behavior—it is not hard to see that even
if the underlying description logic is tractable (e.g. E L⊥), the complexity of credulous
reasoning is NP-hard, and the complexity of skeptical reasoning is coNP-hard while
DL N preserves tractability.

Autoepistemic Description Logics

Autoepistemic description logics [Donini et al., 2002] have many properties in com-
mon with the description logics based on Default logic. Hence, we provide only a brief
summary of their features highlighting the relationships between the two approaches.
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The autoepistemic approach is based on a version of MKNF (the logic of minimal
knowledge and negation as failure) where all interpretations have the same domain: a
denumerable set of constants called standard names. The examples of Section 3.1.7 can
be transformed into analogous examples for MKNF by replacing each default rule

α : Mβ

β

with the MKNF inclusion Kαu¬A¬β v Kβ, where K is an epistemic operator and ¬A

is essentially negation as failure.

The above nonmonotonic inclusions define the defeasible properties β of individuals.
Apparently, since the above inclusions need not be grounded on syntactic domains,
they apply to all individuals (including those that are not denoted by any constant
occurring in the knowledge base). However, the precondition Kα is very strong. Only
individuals that are denoted by a constant occurring in the knowledge base can satisfy
it, so in practice nonmonotonic rules apply only to such individuals, as it happens with
Default logic. It follows that Autoepistemic description logics cannot deal correctly
with Example 3.1.36 as well.

Conflict handling is based on repairs and may yield multiple models that correspond
to the alternative default extensions of default theories. It is not hard to see that the
computational complexity of subsumption is at least coNP-hard, even if the underlying
DL is tractable.

To the best of our knowledge, no prioritized version of Autoepistemic description
logics has been introduced so far.

Conditional Entailment

DL N exhibits a superficial syntactic similarity with conditional knowledge bases and
their conditional entailment semantics [Geffner and Pearl, 1992]. Conditional knowl-
edge bases are sets of classical sentences and defaults φ → ψ; these expressions are
syntactic analogues of strong inclusions and DIs, respectively. Given a priority relation
≺ over the set of defaults, the models of a conditional knowledge base are those that
maximize the set of satisfied defaults; such models are called ≺-preferred models. A
sentence is conditionally entailed by a knowledge base K B if it is satisfied by all the
≺-preferred models of K B, for all admissible preference orderings. A preference order-
ing is admissible iff each set of defaults in K B that is in conflict with another default
d ∈ K B, contains a default d′ ≺ d.

Conditional entailment has never been extended to description logics. For a fixed
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relation ≺, the models of circumscribed description logic with variable predicates—as
presented in [Bonatti et al., 2011b]—would be close analogues of ≺-preferred models;
however, it is not clear how to extend the propositional notion of admissible ordering to
this setting. This makes it more difficult to compare DL N and conditional entailment.
In particular, it is not possible to assess how a description logic based on conditional
entailment would handle Examples 3.1.35 and 3.1.36 (and, more generally, how much
control would be possible on the default properties of role ranges). The analogies with
circumscribed DLs raise the concern that a conditional description logic might inherit
Circumscription’s limitations, in this respect.

The proof theory of conditional entailment is argumentation, which is significantly
more complex than the simple iterative reduction to classical logic used for DL N sub-
sumptions and assertions. In the propositional case, the complexity of conditional
entailment is complete for the second level of the polynomial hierarchy, even if the
underlying monotonic logic is tractable [Eiter and Lukasiewicz, 2000].

The notion of admissible ordering, and conditional entailment’s quantification over
such orderings, have two effects: On the one hand, no explicit priority needs to be spec-
ified. The priority induced by admissible orderings is always grounded on specificity
(explicit priorities are more flexible). On the other hand, with this approach, speci-
ficity is determined by both strong and defeasible axioms. Sometimes, this notion of
specificity solves conflicts than cannot be resolved by the version based solely on strong
axioms.

Example 3.1.43 Consider two analogous knowledge bases, encoded as a conditional
knowledge base and a DL N knowledge base, respectively:

a → b A vn B

a → c A vn C

b → ¬c B vn ¬C .

Using conditional entailment’s priorities, the first default makes a more specific than
b, thereby giving itself and the second default higher priority than the third one. As
a consequence, conditional entailment yields a ⊃ c and solves the conflict between the
second and third defaults in favor of the former. On the contrary, in DL N, the three DIs
are all incomparable, as there are no strong inclusions. So the conflict is not resolved,
and K B |≈ NA v ⊥.

In other cases, our notion of specificity-based priority solves conflicts that conditional
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entailment cannot resolve.

Example 3.1.44 Consider the following two analogous knowledge bases, inspired by
the Nixon’s diamond, encoded as a conditional knowledge base and a DL N knowledge
base, respectively:

q → p Q vn P

r → ¬p R vn ¬P

true → q ∧ r > vn Q uR .

The conditional knowledge base is inconsistent, because no priority ordering is admissi-
ble, while the DL N knowledge base is consistent, and the last DI is overridden by the
other two, because it defines a default property for the less specific concept of all (>).

Note that the explicit priorities adopted in Circumscribed DLs, default DLs and
DL N are more flexible, as they are not necessarily confined to specificity, and allow
the encoding of nonmonotonic design patterns such as the default role range pattern
illustrated after Example 3.1.36. Nonetheless, making priorities depend on DIs, and
analyzing the consequences on the expressiveness and the complexity of DL N, are
interesting subjects for further research.

Rational Closure, Typicality

A first comparison with the description logics based on rational closure and typicality
derives from the analysis of the relationships between DI inference and the rational
closure properties [Lehmann and Magidor, 1992] — whose adaptation to our syntax is
illustrated in Figure 3.1 — that extend the KLM axioms for preferential entailment
[Kraus et al., 1990]. In Figure 3.1, each rule with premises δ1, δ2 and conclusion δ3

should be interpreted as follows:

If K B |≈ δ1 and K B |≈ δ2, then K B |≈ δ3. (3.35)

Theorem 3.1.45 Axiom (REF) is valid. Axiom (OR) holds if the priority relation is
specificity. Axioms (CT), (CM), (LLE), (RW), and (RM) are not valid.

Some of them are not valid in DL N, and hold only in the absence of overriding.
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(REF) C vn C Reflexivity

(CT) C vn D C uD vn E
C vn E

Cut (Cumulative Transitivity)

(CM) C vn D C vn E
C uD vn E

Cautious Monotony

(LLE) C vn E C ≡ D
D vn E

Left Logical Equivalence

(RW) C vn D D v E
C vn E

Right Weakening

(OR) C vn E D vn E
C tD vn E

Left Disjunction

(RM) C vn E C 6vn ¬D
C uD vn E

Rational Monotony

Figure 3.1. Rational closure axioms. Statements X v(n) Y should be interpreted
as K B |≈ X v(n) Y , for a fixed K B.
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A simple inspection of the proof of Theorem 3.1.45 shows that the rational clo-
sure properties that are not valid in DL N are in sharp contrast with the very idea
of specificity-based overriding. Consider (CT), first: a concept A more specific than
C may strongly satisfy ¬D so that C vn D is overridden in NA. Then, since NA is
not contained in D, C u D vn E cannot be applied to infer that the members of NA

satisfy E. As a consequence, there is no reason to infer that NA satisfies C vn E.
The following example instantiates this situation in a concrete representation domain,
showing that extending DL N with (CT) can lead to undesirable inferences.

Example 3.1.46 In several countries (e.g. Mexico, Norway and Brazil) military service
is mandatory for male citizens (except for special cases such as mental disorders). After
military training, citizens become reservists, and shall join the army again in case of
war. This can be formalized with the following DIs:

MaleCitizen vn HasMilitaryTraining (3.36)

MaleCitizen u HasMilitaryTraining vn Reservist . (3.37)

The exceptions to the above rules include minors:

MinorMaleCitizen v MaleCitizen (3.38)

MinorMaleCitizen v ¬HasMilitaryTraining . (3.39)

Axiom (3.39) should prevent (3.37) from being applied to minors, that is, it should not
be possible to conclude that N MinorMaleCitizen v Reservist (indeed, this is what
happens with DL N).

On the contrary, by applying (CT) to (3.36) and (3.37), one obtains:

MaleCitizen vn Reservist , (3.40)

whose right-hand side is consistent with the properties of MinorMaleCitizen formalized
by (3.38) and (3.39). Then (3.40) would not be overridden and it would be possible to
conclude that minors are normally reservists (N MinorMaleCitizen v Reservist).

Theorem 3.1.45’s argument for showing that (CM) does not hold is similar: A has
a top priority DI A vn ¬E that overrides the premise C vn E, thereby removing the
main reason for inferring C uD vn E. Analogously, in the counterexamples for (RW)
and (RM), the strong properties of A override the first premise of the inference rule.
Finally consider (LLE): in this rule, the problem is that the equivalence C ≡ D is
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assumed to be a defeasible inference by our semantics; therefore, in general, it can be
invalidated by overriding and, as a consequence, the conclusion of (LLE) is not logically
supported.

It is easy to see that overriding is indeed the only reason why some rational closure
properties fail. To see this, for all rules listed in Figure 3.1 with premises δ1, δ2 and
conclusion δ, consider the following weak interpretation:

For all normality concepts NX: if K B |≈ δ1, K B |≈ δ2, and neither δ1
nor δ2 are overridden in NX, then for all DL N-models I of K B, NX

satisfies the conclusion δ (i.e. NX ∈ satI (δ)).

In the next theorem, all of the above axioms hold under the weak (overriding free)
interpretation.

Theorem 3.1.47 All axioms in Figure 3.1 hold under their weak interpretation.

Recall that the reason why (LLE) is not valid, in general, under the strong interpretation
formalized by (3.35), is that the premise C ≡ D is a defeasible consequence. It was
meant to be a tautology in the original KLM axioms. Actually, (LLE) is valid under
the strong interpretation (3.35) not only if C ≡ D is a tautology, but also when it is a
strong consequence of K B, provided that the priority relation is semantic.

Theorem 3.1.48 Axiom (LLE) holds when the assumption C ≡ D is interpreted as
K B |= C ≡ D, and ≺ is semantic.

The logic A L C + Tmin [Giordano et al., 2009b, Giordano et al., 2013a,
Giordano et al., 2013b] features a typicality operator T analogous to N, that gives a
comparable degree of flexibility in specifying the default properties of role ranges (with
some exceptions, cf. Example 3.1.50 below). The equivalent of our DI C vn D isT(C) v
D, i.e. there is no special symbol for defeasible inclusions. The monotonic semantics of
the typicality operator is essentially a preferential semantics [Giordano et al., 2009b];
its nonmonotonic extension [Giordano et al., 2013b] is a minimal model semantics that
maximizes the extension of T. A L C + Tmin satisfies the KLM axioms (REF), (LLE),
(CM), and (OR) [Giordano et al., 2009b], and hence it formally differs from DL N

where (CM) is not universally valid (cf. 3.1.45). A stronger semantics satisfying
also rational monotony, originally introdiced in [Britz et al., 2008], is discussed in
[Giordano et al., 2013b, Sec. 7.2]; it is argued that this semantics is too strong and
yields undesirable results. In DL N, also (CM) yields undesirable results, which show
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that (CM) is not compatible with the notion of “overriding as plain inconsistency”
adopted in DL N.

In general, A L C + Tmin resolves conflicts like Circumscription does: In Exam-
ple 3.1.13 (reformulated in A L C + Tmin) it would be possible to conclude neither
T(RepQuaker) v Pacifist nor the alternative inclusion T(RepQuaker) v ¬Pacifist,
and T(RepQuaker) would be satisfiable. Only direct conflicts such as T(A) v C and
T(A) v ¬C would make T(A) inconsistent (so, in Example 3.1.14, T(Body) v ⊥ holds).
Another similarity with Circumscription is the CWA effect on exceptional concepts:

Example 3.1.49 The A L C + Tmin knowledge base

Whale v Mammal

T(Mammal) v ∃habitat.Land

T(Whale) v ¬∃habitat.Land

entails that there are no whales, that is: Whale v ⊥.

Similar effects may force role ranges to be normal.

Example 3.1.50 The above knowledge base entails T(Mammal) ≡ Mammal, and in this
case it is not possible to distinguish ∃R.T(Mammal) from ∃R.Mammal. In other words,
R’s ranges necessarily over typical instances.

Similarly to the other preferential semantics, A L C +Tmin is affected by inheritance
blocking. Here is an example.

Example 3.1.51 Consider the following variant of the penguins-and-birds example:

1. Penguins are birds;

2. Birds normally fly;

3. Birds normally have wings;

4. Penguins do not fly.

A L C +Tmin does not infer that penguins have wings; the property of not flying makes
penguins exceptional birds and prevents them from inheriting any of the prototypical
properties of birds [Giordano et al., 2013b, Sec. 7.3]. In DL N, overriding is selective,
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instead. Let K B be the natural encoding of the example:

Penguin v Bird

Bird vn Flying

Bird vn ∃has_wing

Penguin v ¬Flying .

It is not hard to see that K B |≈ N Penguin v ∃ has_wing, as expected.

Analogously, A L C + Tmin does not deal correctly with Example 3.1.36.

Similarly to conditional entailment, in A L C + Tmin priorities are implicit and
grounded in specificity. In the analogue of Example 3.1.43, namely,

T(A) v B T(A) v C T(B) v ¬C

A L C + Tmin is able to resolve the conflict: T(A) is satisfiable and T(A) v C is
entailed.

The computational complexity of reasoning in A L C + Tmin has been analyzed
in some selected cases. So far, tractable fragments have not been identified. Some
restricted fragments (called left local) fall within the second level of the polynomial
hierarchy [Giordano et al., 2009a, Giordano et al., 2012].

More nonmonotonic DLs based on rational closure can be found in
[Casini et al., 2013a, Casini et al., 2013b, Casini and Straccia, 2010]. Differently from
A L C + Tmin, they have a special inclusion operator for DIs but no equivalent of N.
They satisfy the Rational closure axioms and are subject to inheritance blocking, like
A L C + Tmin (Example 3.1.51 is not dealt with correctly). Moreover, they are not
able to infer any standard property about role values (Example 3.1.36 cannot be en-
coded). No tractable fragments are known; the available results show that complexity
is preserved only for ExpTime-hard logics.

These logics have been refined in [Casini and Straccia, 2013] to remove inheritance
blocking. The new approach has a syntactic nature (no model-theoretic semantics) and
is articulated in two stages:

• in the first stage, the knowledge base is converted into a boolean inheritance
network (introduced in [Casini and Straccia, 2013] itself); a set of nonmonotonic
inclusions is derived using the network; in general, some of these inclusions cannot
be derived by rational closure due to inheritance blocking;
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• in the second stage, rational closure is applied to the knowledge base extended
with the defeasible inclusions derived in the first stage.

With this method, the effects of inheritance blocking are limited, as the inheritance
networks recovers some of the missing inferences; for instance, in Example 3.1.51, this
logic can infer that penguins have wings. The Rational closure axioms are satisfied,
because the second stage performs a standard rational closure.

The two-stage logic has limited reasoning abilities on role ranges. For example, from
the purely classical knowledge base {A v ∃R.B, B v C}, the TBox construction of
[Casini and Straccia, 2013] does not yield the classical consequence A v ∃R.C because
strong axioms are internalized. This problem has been fixed in [Britz et al., 2013].
However, the solution does not suffice to infer A v ∃R.C from {A v ∃R.B, B vn C}.
We argued that this inference is not always desirable (Example 3.1.35); the point here
is that there is no obvious way of achieving it when it is desired (as in Example 3.1.36).
The authors of [Britz et al., 2013] leave this issue as an open problem.

Priorities are implicit and determined by specificity, similarly to conditional entail-
ment. Both logics resolve the conflicts in Examples 3.1.43 and 3.1.44 in the same way
and return the same inferences.

When specificity does not settle a conflict, the conflict is repaired, similarly to De-
fault and Autoepistemic logics, Conditional entailment, and A L C +Tmin; in particular,
in Examples 3.1.13 and 3.1.14, no inconsistency is reported.

In [Casini and Straccia, 2013, Appendix A], the two-stage logic is tried on a num-
ber of examples discussed by Sandewall [Sandewall, 2010]. In several of these examples,
strong inclusions are either absent or too scarce to prioritize DIs in DL N. Conse-
quently, DL N treats these examples similarly to Example 3.1.43: all DIs are mutually
incomparable, and conflicts cannot be resolved by overriding. In the other examples,
DL N yields the same results as the two-stage logic. There is one exception, namely
Example A.8, which appears to be intrinsically problematic. Sandewall proposes a few
alternative consequences, corresponding to different ways of resolving conflicts between
incomparable defaults. The two-stage logic derives none of them, while DL N detects
the unresolvable conflict by entailing a subsumption Nt v ⊥ [Bonatti et al., 2015a].

The complexity of the two-stage logic has been determined for the nonmonotonic
extension of A L C . Basically, the exponential overhead of nonmonotonic inferences
(partially due to a brute force search over all the possible permutations of the constants
occurring in the ABox, each of which may yield a different deductive closure) is ab-
sorbed by the ExpTime complexity of monotonic A L C reasoning. So far, no tractable
fragment has been identified.
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Probabilistic, Nonmonotonic Description Logics

These logics, introduced in [Lukasiewicz, 2008], extend classical DLs with condi-
tional constraints (D | C)[l, u] whose intended meaning is: “by default, the typical
instances of C belong to D with probability p ∈ [l, u]”. When l = u = 1, such con-
ditional constraints are reminiscent of DIs C vn D, however their behavior differs in
many respects.

First of all, probabilistic description logics exhibit some inferences with a paracon-
sistent flavor.19 For instance, the knowledge base

> v ∃R.A (3.41)

(¬A | >)[1, 1] (3.42)

has a model, even if (3.41) states that some instance of A exists, and (3.42) apparently
states that no individuals belong to A. The reason is that (3.42) applies only to a non-
denotable subset of individuals, that can be considered as typical individuals. Next,
consider the knowledge base with TBox

> v ∀R.{a} (3.43)

and a probabilistic ABox that asserts the following constraint on individual b

(∃R.A | >)[1, 1] (3.44)

and the following constraint on individual c

(∃R.¬A | >)[1, 1] . (3.45)

This knowledge base is consistent and entails both the constraint (∃R.({a}uA) | >)[1, 1]

for b, and (∃R.({a} u¬A) | >)[1, 1] for c, respectively. Note, however, that if b satisfied
∃R.({a} u A) and c satisfied ∃R.({a} u ¬A) at the same time, then a should satisfy
both A and ¬A (a contradiction). Therefore the two inferences about b and c should
be regarded as members of different deductive closures.

The “typical” individuals, i.e. those that are subject to conditional constraints, are
not allowed to occur in any axiom of the knowledge base. Accordingly, in the above
knowledge base, a must necessarily be a “classical” individual that is not subject to any

19Such contradictory inferences may be regarded as analogues of credulous inference in the
logics with multiple deductive closures, such as Default and Autoepistemic logics.
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conditional constraint (while DL N permits to use {a} in the left-hand side of DIs, for
all individuals a). This is an obstacle to applying defaults to role values. More generally,
it turns out that probabilistic DLs cannot reason about “normal” attribute values. For
instance, the probabilistic TBox

(∃R.A | >)[1, 1] (3.46)

(B | A)[1, 1] (3.47)

does not entail (∃R.B | >)[1, 1], that is, the default property (3.47) does not apply to
the values of role R in (3.46). Since normal individuals cannot be denoted in this logic,
there seems to be no way of restricting role values to typical individuals.

Probabilistic DLs induce CWA effects on exceptional classes. For example the knowl-
edge base

Whale v Mammal (3.48)

(∃habitat.Land | Mammal)[1, 1] (3.49)

(¬∃habitat.Land | Whale)[1, 1] (3.50)

entails (¬Whale | >)[1, 1], that is, there are no whales.

The conflicts that cannot be resolved by specificity result in either inconsistent
concepts or inconsistent knowledge bases. As a first example, consider the following
encoding of Nixon’s diamond:

(Pacifist | Quaker)[1, 1] (3.51)

(¬Pacifist | Republican)[1, 1] . (3.52)

This probabilistic TBox entails that no one is both a quaker and a repub-
lican: (¬(Quaker u Republican) | >)[1, 1]. If Quaker u Republican were forced to be
nonempty, e.g. by adding

(Quaker u Republican | >)[0.1, 1] , (3.53)

then the entire knowledge base would be inconsistent.

Priorities over conditional constraints are automatically derived based on a notion
of specificity, similar to those adopted by conditional entailment and rational closure.
They all behave in the same way on Examples 3.1.43 and 3.1.44.

Probabilistic DLs do not preserve tractability [Lukasiewicz, 2008, Thm. 6.4(c)].
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On the positive side, probabilistic DLs do not suffer from inheritance blocking (cf.
[Lukasiewicz, 2008, Example 4.17]), and satisfy suitable probabilistic variants of the
KLM axioms [Lukasiewicz, 2008, Thm. 4.19, 4.20].

Design Patterns

Let us apply the ontology design pattern (ODP) for exceptions to the Eukaryotic
Cell example, as illustrated in [Stevens et al., 2007, Fig. 8, 9]. Axiomatization details
follow the approach illustrated in [Rector, 2004, Sec. 2.1.3, 2.2]. The resulting knowledge
base, denoted by K B, consists of the following inclusions:

RedBldCel v EukCell (3.54)

MamRedBldCel v RedBldCel (3.55)

AvianRedBldCel v RedBldCel (3.56)

MamRedBldCel v ¬∃ nucleus (3.57)

AvianRedBldCel v ∃ status.Normal (3.58)

TypicalEukCell ≡ EukCell u ∃ status.Normal (3.59)

TypicalEukCell v ∃ nucleus (3.60)

ATypicalEukCell ≡ EukCell u ¬TypicalEukCell (3.61)

TypicalRBC ≡ RedBldCel u ∃ status.Normal (3.62)

ATypicalRBC ≡ RedBldCel u ¬TypicalRBC . (3.63)

Basically, the design pattern includes a complete axiomatization of all the primitive
biological concepts (3.54–3.58) plus a definition of the typical and atypical cases for
these concepts (3.59–3.63). Eukaryotic cells are partitioned into typical and atypical
instances; red blood cells span over both partitions, so they must be split into typical
and atypical instances as well.

The inference engine classifies avian red blood cells as typical red blood cells and
typical eukaryotic cells; it classifies mammalian red blood cells as atypical red blood cells
and atypical eukaryotic cells. Note that this is possible only if every concept is explicitly
associated to a property that determines its normality or abnormality, as in (3.57–3.58)
and (3.62). In other words, typical red blood cells do not automatically inherit the
properties of typical eukaryotic cells, and avian red blood cells do not automatically
inherit the properties of typical red blood cells. As a further example, if the single
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additional axiom
ReptileRedBldCel v RedBldCel (3.64)

were added to K B, then (without any further assertions about the normality of reptile
red blood cells, or their having a nucleus), ReptileRedBldCel would be classified neither
as TypicalEukCell nor as ATypicalEukCell.

The natural encoding of the above knowledge base in DL N, denoted by K B′,
consists only of:

• the strong axioms (3.54–3.57);

• the defeasible version of (3.60): EukCell vn ∃ nucleus.

The other axioms need not be included explicitly, because DL N is able to infer the
properties of typical and atypical eukaryotic cells without any further directions:

K B′ |≈ NAvianRedBldCel v ∃ nucleus K B′ |≈ NRedBldCel v ∃ nucleus .

Similarly, typical reptile red blood cells would automatically inherit the standard prop-
erty of eukaryotic cell:

K B′ ∪ {(3.64)} |≈ NReptileRedBldCel v ∃ nucleus

If the first ontology, K B, were queried for the entities that have a nucleus (i.e. the
concepts subsumed by ∃ nucleus), then the query would return:

TypicalEukCell, TypicalRBC, AvianRedBldCel .

Similarly, the DL N ontology K B′ would return:

NEukCell, NRedBldCel, NAvianRedBldCel .

Thus, DL N does support the factorization of common default properties, with a re-
markable reduction of additional axioms even in this simple example.

The ontology design pattern is vulnerable to some trivial errors [Rector, 2004,
Sec. 2.2]. If a concept A is subsumed by B1 and B2, and the typical instances of
B1 and B2 are modeled using the same status role, then the instances of A that are
typical with respect to B1 become typical also w.r.t. B2, and vice versa. A similar
problem may occur if K B is constructed as the union of two independently developed
knowledge bases. Clearly, DL N is not subject to the same vulnerabilities, since it needs
no such explicit flags.
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Next, we consider more complex scenarios. Rector introduces an example with mul-
tiple levels of exceptions (as in the policy example) in [Rector, 2004, Sec. 2.3]: it consists
in a drug knowledge base capable of keeping track of interactions and contraindications.
Rector writes:

[...] to be safe, we want to express interactions and contraindications at the
most general level possible and inherit them by default, to be overridden if
necessary.

Clearly, the ODP for exceptions does not help in this respect, as shown by the reptile
cells example: as new drug subtypes are added to the ontology, the knowledge engineer
must explicitly tell whether they are typical or atypical, or (equivalently) whether they
have the typical contraindication of their superclasses, otherwise the default contraindi-
cations are neither inherited nor overridden.

Using the ODP, a drug type A with contraindication X and a subtype B that shares
with A the same contraindication would be represented as follows:

B v A (3.65)

TypicalA ≡ A u ∃ status.Normal (3.66)

ATypicalA ≡ A u ¬TypicalA (3.67)

TypicalA v ContraindicationX (3.68)

B v ∃ status.Normal . (3.69)

Let K B1 be the above knowledge base. Now suppose a new contraindication Y for
A is discovered and must be included in K B1. There are three possible, alternative
approaches:

1. The new default contraindication is incrementally added to K B1:

TypicalA v ContraindicationY .

However, this formalization suffers from inheritance blocking (cf. Example 3.1.51):
for instance, any subtype of A that overrides contraindication X is an atypical A,
and hence it does not inherit contraindication Y, either. On the contrary, the
incremental approach would work perfectly well in DL N, that does not suffer from
inheritance blocking (it would be sufficient to add A vn ContraindicationY).

2. The partition of A into two classes (TypicalA and ATypicalA) is replaced by a
partition into four classes, corresponding to all the subsets of the default prop-
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erties that can be satisfied by a drug. With this approach, a drug is allowed to
inherit a subset of the contraindications for A. However, this approach introduces
an exponential number of additional concepts. Moreover, asserting that a drug
subtype C overrides contraindication X is not enough, because it does not tell the
classifier whether contraindication Y should be overridden, too.

3. Concept TypicalA is replaced by a set of partially overlapping concepts (i =

1, . . . , n, where n is the number of contraindications for A):

TypicalAi ≡ A u ∃statusi.Normal

TypicalAi v Contraindicationi .

This approach introduces only a linear number of new concepts. However, for each
drug type, the knowledge engineer should assert which properties ∃statusi.Normal
hold, otherwise the classifier cannot infer the corresponding contraindications.
Then the question is: what is the added value of this ODP? Would it be better
to directly assert which contraindications apply to each drug?

Accordingly, in [Stevens et al., 2007] it is stated that:

[The ODP for exceptions] suffices for simple exceptions. However, excep-
tions can be piled upon exceptions, eventually leading to a combinatorial
explosion. Worse still, some cells, such as muscle cells, have many nuclei.
This means we would have to model a three way split with zero, one or
many nuclei in a cell.

Finally, suppose a new subtype B′ of drug B is discovered, that does not have con-
traindication X. In DL N, this update can be handled incrementally, by extending the
knowledge base {B v A, A vn ContraindicationX} with:

B
′ v B

B
′ vn ¬ContraindicationX .

This update cannot be handled incrementally with the ODP: axiom (3.69) must be
retracted and replaced with the definition of TypicalB and ATypicalB.

Summarizing, DL N overcomes the following drawbacks of the ODP for exceptions:

1. the ODP cannot effectively factorize common default properties, nor achieve real
default inheritance;

2. the ODP does not support incremental refinements and extensions;
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3. the definitions of typical and atypical concepts make use of computationally ex-
pensive constructs;

4. the ODP tends to clutter the knowledge base with auxiliary concepts and roles;

5. the additional symbols introduce more error possibilities.

It should be remarked that all the other nonmonotonic DLs that do not suffer from
inheritance blocking share with DL N the same advantages over the ODP, with the
exception of tractability: all of the above examples fall within the tractable fragment
of DL N, while no tractable fragments are known for the other logics.

Rule-based Approaches

The frameworks that combine logic programming (or similar languages) and descrip-
tion logics typically support nonmonotonic constructs similar to negation as failure in
rule bodies. Some of these approaches are based on MKNF with standard domain
[Motik and Rosati, 2010] and hence can be compared with DL N as discussed in Sec-
tion 3.1.7. Others, such as [Eiter et al., 2008, Eiter et al., 2005], are based on a loose
semantic integration of rules and DLs. They follow the standard approach to conflict
resolution, analogous to considering all possible repairs. Therefore, tractability can only
be achieved by means of well-known syntactic restrictions developed in logic program-
ming, such as stratifiability, that prevent conflicts. In most rule-based systems, priorities
between nonmonotonic rules and specificity-based conflict resolution are not immedi-
ately supported. Some systems (such as DLV) attach weights to soft constraints and
compute models that maximize the weights of satisfied constraints [Leone et al., 2006].
All the approaches based on logic programming and answer set programming need rules
to be grounded on some syntactic domain. In [Eiter et al., 2008, Eiter et al., 2005] such
domain consists of the individual constants occurring in the knowledge base. Then
nonmonotonic rules do not apply to implicit individuals; this yields the same effects
discussed in Section 3.1.7.
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3.2 Secure Knowledge Base Views

There is ample evidence of the need for knowledge confidentiality measures
[Cuenca Grau, 2010]. Ontology languages and Linked Open Data are increasingly being
used to encode the private knowledge of companies and public organizations. Semantic
Web techniques make possible to merge different sources of knowledge and extract im-
plicit information, putting on risk security and privacy of individuals. Even the authors
of public ontologies may want to hide some axioms to capitalize on their formalization
efforts. Several approaches have been proposed in order to tackle the confidentiality
requirements that arise form these scenarios.

The most natural way of preserving confidentiality in a knowledge base K B is
checking that its answers to user queries do not entail any secret. Conceptually, the
queries of a user u are answered against u’s view K Bu of the knowledge base, where
K Bu is a maximal subset of K B that entails no secret. However, there exist attacks
that cannot be prevented this way. The user may exploit various sources of background
knowledge and metaknowledge to reconstruct the hidden part of the knowledge base.
In order to illustrate some possible attacks to this mechanism, let us formalize the
above naive confidentiality model (NCM)20. I consists of: the knowledge base K B

(K B ⊆ L ); a set of users U ; a view K Bu ⊆ K B for each u ∈ U ; a set of secrecies
Su ⊆ L for each u ∈ U . Secrecies are axioms that may or may not be entailed by K B;
if they do, then they are called secrets and must not be disclosed to u. Revealing that
a secrecy is not entailed by K B is harmless, cf. [Biskup and Bonatti, 2001].

A view K Bu is secure if and only if it does not entail any secret Cn(K Bu)∩Su =

∅. A view K Bu is maximal secure if it is secure and there exists no K such that
K Bu ⊂ K ⊆ K B and Cn(K) ∩ Su = ∅.

Attacks using background knowledge. Frequently, part of the knowledge about
the application domain is not axiomatized in K B, therefore checking that Cn(K Bu)∩
Su = ∅ does not suffice in practice to protect confidentiality. For example, suppose
that K Bu = {SSN (John, 12345 ), SSN (user123 , 12345 ), OncologyPatient(user123 )}
and there is only one secret Su = {OncologyPatient(John)}. K Bu does not en-
tail OncologyPatient(John), so according to the confidentiality model K Bu is secure.
However, it is common knowledge that a Social Security Number uniquely identifies
a person. As a consequence, the user can infer that John = user123 , and hence the
secret.

This example shows that incomplete axiomatizations, e.g. failing to model (inverse)

20This usage of term “model” is common in Security & Privacy.
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functionality constraints, may constitute a security vulnerability in the NCM. Indeed, if
K Bu encoded the uniqueness of SSN then K Bu would be recognized as insecure and
the attack would be blocked. In other examples, the additional knowledge used to infer
secrets may be stored in a public ontology or RDF repository, that opens the way to
automatize confidentiality violations.

Attacks to complete knowledge. Suppose an attacker knows that K B encodes
complete knowledge about a certain set of axioms. Then she might be able to reconstruct
some secrets from the “I don’t know” answers of a maximal secure view K Bu.

Example 3.2.1 Consider a company’s knowledge base that defines a concept Employee

and a role works_for that describes which employees belong to which of the n depart-
ments of the company, d1, . . . , dn. The K B consists of assertions like:

Employee(e) (3.70) works_for(e, di) (3.71)

where each employee e belongs to exactly one department di. A user u is authorized
to see all assertions but the instances of (3.71) with i = n, because dn is a special
department, devoted to controlling the other ones. So Su (the set of secrecies for u) is
the set of all assertions works_for(e, dn).

Here a unique maximal secure view K Bu exists which contains all the instances
of (3.70), together with all the instances of (3.71) such that i 6= n. It is easy to see
that K Bu is secure according to NCM because Cn(K Bu) ∩ Su = ∅. However, note
that works_for(e, dn) ∈ Cn(K B) iff Employee(e) ∈ Cn(K Bu) and for all i = 1, . . . , n,
works_for(e, di) 6∈ Cn(K Bu). In other words, the members of dn are all the employees
that apparently work for no department. Using this property (based on the knowledge
that for each employee e, K B contains exactly one assertion works_for(e, di)) and the
knowledge of the protection mechanism (i.e. maximal secure views), that we assume to
be known by attackers by Kerchoff’s principle21.

In practice, it is not hard to identify complete knowledge. A hospital’s K B is ex-
pected to have complete knowledge about which patients are in which ward; a company’s
K B is likely to encode complete information about its employees, etc.

Other approaches filter query answers rather than publishing a sub-
set of K B [Chen and Stuckenschmidt, 2009, Knechtel and Stuckenschmidt, 2010,

21"A cryptosystem should be secure even if everything about the system, except the key, is
public knowledge.", originally stated by Auguste Kerckhoffs, the principal was later reformu-
lated by Claude Shannon as "the enemy knows the system", i.e., "systems should be designed
under the assumption that the enemy will immediately gain full familiarity with them"
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Tao et al., 2010]. We call our abstraction of this method naive answer confidential-
ity model (NACM). It is obtained from the NCM by replacing the views K Bu ⊆ K B

with answer views K Ba
u ⊆ Cn(K B). The main difference is that K Ba

u is not re-
quired to be a subset of K B and conceptually K Ba

u may be infinite. K Ba
u is secure

iff Cn(K Ba
u) ∩ Su = ∅.

One may easily verify that NACM is vulnerable to the two kinds of attacks il-
lustrated for the NCM. Furthermore, it is also vulnerable to a third kind of attacks,
illustrated below.

Attacks to the signature. Suppose the user knows the signature of K B well
enough to identify a symbol σ that does not occur in K B. First assume that σ is a
concept name. It can be proved that:

Proposition 3.2.2 If K Ba
u is a maximal secure answer view and σ is a concept name

not occurring in K B, then for all secrecies C v D ∈ Su, K Ba
u |= C u σ v D iff

K B |= C v D.

The problem is that although Cuσ v D does not entail the secret inclusion C v D, still
a smart attacker knows that the former inclusion cannot be proved unless K B entails
also the latter (then maximal secure answer views generally fail to protect secrets). This
attack can be easily adapted to the case where σ is a role name. In practice, it is not
necessary to be sure that σ does not occur in K B. The attacker may make a sequence
of educated guesses (say, by trying meaningless long strings, or any word that is clearly
unrelated to the domain of the K B); after a sufficient number of trials, the majority
of answers should agree with the “real” answer with high probability. Rejecting queries
whose signature is not contained in K B’s signature mitigates this kind of attacks but
it leaks K B’s signature and it does not provide a complete solution. The attacker may
still guess a σ which is logically unrelated to C and D and carry out a similar attack.

In the following section we introduce a confidentiality model that takes both back-
ground knowledge and metaknowledge into account (Section 3.2.1) and defines a method
for computing secure knowledge views that generalizes some previous approaches. Sec-
tion 3.2.2 and 3.2.3 illustrate a safe approximation of the user’s background knowledge
and metaknowledge. Finally, in Section 3.2.5, the approach is compared with other
existing confidentiality preserving frameworks.



3.2 Secure Knowledge Base Views 91

3.2.1 A Meta-safe Confidentiality Model

A confidentiality model that makes the vulnerabilities illustrated above visible, by
taking into account background knowledge and metaknowledge was first introduced
in [Bonatti and Sauro, 2013]. The framework is compatible with any description logic
language L that enjoys compactness (needed by Theorem 3.2.21) and has decidable
reasoning problems (e.g., A L C , E L , S H I Q, etc.).

In the following, for all knowledge bases22 K ⊆ L , the logical consequences of K
will be denoted by Cn(K) (K ⊆ Cn(K) ⊆ L ). In particular, Cn(K) contains all the
subsumptions and assertions entailed by K (corresponding to subsumption and instance
checks, respectively).

A bk-model M = 〈K B, U, f, 〈Su,PKBu,BKu〉u∈U 〉 consists of a knowledge base
K B ⊆ L , a set of users U , plus:

• a filtering function f : ℘(L )×U → ℘(L ), mapping each knowledge base K and
each user u on a view f(K,u) ⊆ Cn(K);

• for all u ∈ U :

– a finite set of secrecies Su ⊆ L ;

– a set of axioms BKu ⊆ L , encoding the users’ background knowledge;

– a set of possible knowledge bases PKBu ⊆ ℘(L ) (users’ metaknowledge).23

The view of K B released to a user u is f(K B, u). PKB represents the knowledge
bases that are compatible with the user’s metaknowledge regardless of the choice of any
specific metalanguage.

Definition 3.2.3 A filtering function f is secure (w.r.t. M ) iff for all u ∈ U and all
s ∈ Su, there exists K ∈ PKBu such that:

1. f(K,u) = f(K B, u);

2. s 6∈ Cn(K ∪ BKu).

Intuitively, if f is safe according to Def. 3.2.3, no user u can conclude that any secret s is
entailed by the K B she is interacting with—enhanced with the background knowledge
BKu. More precisely, by point 1, K B and K have the same observable behavior, and
K is a possible knowledge base for u since K ∈ PKBu; therefore, as far as u knows, the

22Real knowledge bases are finite, but this restriction is not technically needed until Sec-
tion 3.2.3.

23In practice, bk-models are finite, and filterings computable, but no such assumption will be
technically needed until Section 3.2.3.
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knowledge base might be K. Moreover, by point 2, K and the background knowledge
BKu do not suffice to entail the secret s.

In the rest of the section we tacitly assume that no secret is violated a priori, that
is, for all secrets s ∈ Su there exists K ∈ PKBu such that s 6∈ Cn(K ∪ BKu).24 As a
consequence, there exists at least one secure f , namely, the constant filtering function
that always returns an empty set. In order to improve readability, we shall omit the
user u from subscripts and argument lists whenever u is irrelevant to the context.

The attacks discussed in the previous section can be easily formalized in this setting.
So, in general, the maximal secure views of NCM are not secure according to Def. 3.2.3.

Example 3.2.4 Example 3.2.1 can be formalized as follows: The set of secrecies S
is the set of all assertions works_for(e, dn); BK = ∅ and PKB is the set of all the
knowledge bases K that consist of assertions like (3.70) and (3.71), and such that for
each axiom Employee(e), K contains exactly one corresponding axiom works_for(e, di)

and vice versa. The filtering function f maps each K ∈ PKB on the maximal subset of
K that entails none of S’s members, that is, f(K) = K \ S (by definition of PKB).

Note that f is injective over PKB , so condition 1 of Def. 3.2.3 is satisfied only if
K = K B. So, if K B contains at least one secret, then the conditions of Def. 3.2.3
cannot be satisfied, that is, maximal secure views are not secure in this model. In-
deed, K B can be reconstructed from the secure view by observing that K B =

f(K B)∪{works_for(e, dn) | Employee(e) ∈ f(K B)∧∀i = 1, . . . , n,works_for(e, di) 6∈
f(K B)}. -

Similarly, the formalizations of the other attacks yield injective filtering functions.
Next, we define a secure filtering function. It is formulated as an iterative process

based on a censor. The censor is a boolean function that decides for each axiom whether
it should be obfuscated in order to preserve confidentiality. The censor’s role includes
deciding “secondary protection”, that is, which additional axioms—besides those that
entail a secret—should be obfuscated as well.

The iterative construction manipulates pairs 〈X+, X−〉 ∈ ℘(L ) × ℘(L ) that rep-
resent a meta constraint on possible knowledge bases: a knowledge base K satisfies
〈X+, X−〉 iff K entails all the sentences in X+ and none of those in X−. Formally,
Cn(K) ⊇ X+ and Cn(K) ∩X− = ∅.

Let PAX (the set of possible axioms) be the set of axioms that may occur in the
knowledge base according to the user’s knowledge, i.e. PAX =

⋃
K′∈PKB K

′. Let ν =

|PAX | + 1 if PAX is finite and ν = ω otherwise; let α1, α2, . . . , αi, . . . be an arbitrary

24Conversely, no filtering function can conceal a secret that is already known by the user.
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enumeration of PAX (i < ν).25 The secure view construction for a knowledge base
K in a bk-model M consists of the following, inductively defined sequence of pairs
〈K+

i ,K
−
i 〉i≥0 :

• 〈K+
0 ,K

−
0 〉 = 〈∅, ∅〉 , and for all 1 ≤ i < ν , 〈K+

i+1,K
−
i+1〉 is defined as follows:

– if censorM (K+
i ,K

−
i , αi+1) = true then let 〈K+

i+1,K
−
i+1〉 = 〈K+

i ,K
−
i 〉 ;-

– if censorM (K+
i ,K

−
i , αi+1) = false and K |= αi+1 then

〈K+
i+1,K

−
i+1〉 = 〈K+

i ∪ {αi+1},K−i 〉;

– otherwise let 〈K+
i+1,K

−
i+1〉 = 〈K+

i ,K
−
i ∪ {αi+1}〉 .

Finally, let K+ =
⋃
i<ν K

+
i , K

− =
⋃
i<ν K

−
i , and fM (K,u) = K+ .

Observe that the inductive construction aims at finding maximal sets K+ and K−

that (i) partly describe what does / does not follow from K (as K satisfies 〈K+,K−〉
by construction), and (ii) do not trigger the censor (the sentences αi+1 that trigger the
censor are included neither in K+ nor in K−, cf. the induction step).

In order to define the censor we need an auxiliary definition that captures all the
sentences that can be entailed from a given pair 〈X+, X−〉 analogous to those adopted
in the iterative construction enriched by the user’s background knowledge BK and
metaknowledge PKB : Let CnM (X+, X−) be the set of all axioms α ∈ L such that

for all K′ ∈ PKB such that K′ satisfies 〈X+, X−〉, α ∈ Cn(K′ ∪BK) . (3.72)

Consequently, the censor can be defined as follows: For all X+, X− ⊆ L and α ∈ L ,

censorM (X+, X−, α) =


true if there exists s ∈ S s.t. either s ∈ CnM (X+ ∪

{α}, X−) or s ∈ CnM (X+, X− ∪ {α});

false otherwise.

In other words, the censor checks whether telling either that α is derivable or that α is
not derivable to a user aware that the knowledge base satisfies 〈X+, X−〉, restricts the
set of possible knowledge bases enough to conclude that a secret s is entailed by the
knowledge base, the background knowledge BK and metaknowledge PKB .

Note that the censor obfuscates αi+1 if any of its possible answers entail a secret,
independently of the actual contents of K (the two possible answers “yes” and “no”
correspond to conditions s ∈ CnM (X+ ∪ {α}, X−) and s ∈ CnM (X+, X− ∪ {α}),

25Later it will become clear how to restrict the construction to finite sequences, by approxi-
mating PAX .
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respectively). In this way, roughly speaking, the knowledge bases that entail s are
given the same observable behavior as those that don’t. Under a suitable continuity
assumption on CnM , this enforces confidentiality:

Theorem 3.2.5 If CnM (K B+,K B−) ⊆
⋃
i<ν CnM (K B+

i ,K B−i ), then fM is se-
cure w.r.t. M .

3.2.2 Approximating Users’ Knowledge

Of course, the actual confidentiality of a filtering f(K B, u) depends on a careful
definition of the user’s background knowledge and metaknowledge, that is, BKu and
PKBu. If background knowledge is not exactly known, as it typically happens, then it
can be safely approximated by overestimating it. More background knowledge means
larger BKu and smaller PKBu, which leads to the following comparison relation ≤k
over bk-models:

Definition 3.2.6 Given two bk-models M = 〈K B, U, f, 〈Su,PKBu,BKu〉u∈U 〉 and
M ′ = 〈K B′, U ′, f ′, 〈S′u,PKB ′u,BK

′
u〉u∈U′〉, we write M ≤k M ′ iff

1. K B = K B′, U = U ′, f = f ′, and Su = S′u (for all u ∈ U);

2. for all u ∈ U , PKBu ⊇ PKB ′u and BKu ⊆ BK ′u.

Then a bk-model M can be safely approximated by any M ′ such that M ≤k M ′:

Proposition 3.2.7 If f is secure w.r.t. M ′ and M ≤k M ′, then f is secure w.r.t. M .

So, a generic advice for estimating BK consists in including as many pieces of relevant
knowledge as possible, for example:

(i) modeling as completely as possible the integrity constraints satisfied by the data,
as well as role domain and range restrictions and disjointness constraints;

(ii) including in BK all the relevant public sources of formalized relevant knowledge
(such as ontologies and triple stores).

While background knowledge is dealt with in the literature, the general metaknowl-
edge encoded by PKB is novel in [Bonatti and Sauro, 2013].

3.2.3 Approximating and Reasoning about Possible Knowl-
edge Bases

In the following, we focus on real world situations where the knowledge base K B

is finite and so are all the components of bk-models. Restricting PKBu to contain only
finite knowledge bases turns out to guarantee the decidability of fM .
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A language for defining PKB is a necessary prerequisite for the practical imple-
mentation of the framework and a detailed complexity analysis of the secure filtering
function fM . PKB can be expressed as the set of all theories that are contained in a
given set of possible axioms PAX 26 and satisfy a given, finite set MR of metarules like:

α1, . . . , αn ⇒ β1 | . . . | βm (n ≥ 0,m ≥ 0) , (3.73)

where all αi and βj are in L (1 ≤ i ≤ n, 1 ≤ j ≤ m). Informally, (3.73) means
that if K B entails α1, . . . , αn then K B entails also some of β1, . . . , βm. If r denotes
rule (3.73), then let body(r) = {α1, . . . , αn} and head(r) = {β1, . . . , βm}. A rule r
is Horn if |head(r)| ≤ 1. Sets of similar metarules can be succinctly specified using
metavariables that can be placed wherever individual constants may occur, i.e., as
arguments of assertions, and in nominals. A metarule with such variables abbreviates
the set of its ground instantiations: Given a K ⊆ L , let groundK(MR) be the ground
(variable-free) instantiation of MR where metavariables are uniformly replaced by the
individual constants occurring in K in all possible ways.

Example 3.2.8 Let MR =
{
∃R.{X} ⇒ A(X)

}
, where X is a metavariable, and let

K =
{
R(a, b)

}
. Then groundK(MR) =

{
(∃R.{a} ⇒ A(a)), (∃R.{b} ⇒ A(b))

}
.

A set of axioms K ⊆ L satisfies a ground metarule r, formally K |=m r, if either
body(r) 6⊆ Cn(K) or head(r) ∩ Cn(K) 6= ∅.

Example 3.2.9 Let A, B, C be concept names and R be a role name. The axiom set
K = {A v ∃R.B,A v C} satisfies A v ∃R ⇒ A v B | A v C but not A v ∃R ⇒ A v
B.

We write K |=m MR if K satisfies all the metarules in groundK(MR). Therefore the
formal definition of PKB now becomes:

PKB = {K | K ⊆ PAX ∧K |=m MR} . (3.74)

According to Prop. 3.2.7, PAX can be approximated in a conservative way. Two
alternative definitions are possible:

1. PAX 0 = K B (i.e., as a minimalistic choice only the axioms of K B are consid-
ered as possible axioms. By Prop. 3.2.7, this choice is safe also w.r.t. any larger
PAX where at least the axioms of K B are regarded as possible axioms);

26Differently from Section 3.2.1, here PKB is defined in terms of PAX .
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2. PAX 1 = K B ∪
⋃
r∈groundK B(MR) head(r).

Remark 3.2.10 The second definition is most natural when metarules are automat-
ically extracted from K B with rule mining techniques, that typically construct rules
using material from the given K B (then rule heads occur in K B).

Example 3.2.11 Consider again Example 3.2.1. The user’s metaknowledge about
K B’s completeness can be encoded with:

Employee(X )⇒ works_for(X , d1 ) | . . . | works_for(X , dn) , (3.75)

whereX is a metavariable. First let PAX = PAX 1 . The secure view fM (K B) depends
on the enumeration order of PAX . If the role assertions works_for(e, di) precede the
concept assertions Employee(e), then, in a first stage, the sets K B+

j are progressively
filled with the role assertions with di 6= dn that belong to K B, while the sets K B−j
accumulate all the role assertions that do not belong to K B. In a second stage, the sets
K B+

j are further extended with the concept assertions Employee(e) such that e does
not work for dn. The role assertions works_for(e, dn) of K B and the corresponding
concept assertions Employee(e) are neither in K B+ nor in K B−. Note that the final
effect is equivalent to removing from K B all the axioms referring to the individuals
that work for dn.

Next suppose that the role assertions works_for(e, di) follow the concept asser-
tions Employee(e), and that each works_for(e, di) follows all works_for(e, dk ) such
that k < i. Now all the assertions Employee(e) of K B enter K B+, and all axioms
works_for(e, di) with i < n − 1 enter either K B+ or K B−, depending on whether
they are members of K B or not. Finally, the assertions works_for(e, di) ∈ Cn(K B)

with i ∈ {n − 1, n} are inserted neither in K B+ nor in K B−, because the corre-
sponding instance of (3.75) with X = e has the body in K B+ and the first n − 2

alternatives in the head in K B−, therefore a negative answer to works_for(e, dn−1 )

would entail the secret works_for(e, dn) by (3.75). This triggers the censor for all asser-
tions works_for(e, dn−1 ). Summarizing, with this enumeration ordering it is possible
to return the complete list of employees; the members of dn are protected by hiding
also which employees belong to dn−1.

Finally, let PAX = PAX 0 . Note that in this case all possible knowledge bases
are subsets of K B, that contains exactly one assertion works_for(e, di(e)) for each
employee e. To satisfy (3.75), every K ∈ PKB containing Employee(e) must contain
also works_for(e, di(e)). It follows that fM must remove all references to the individuals
that work for dn, as it happens with the first enumeration of PAX 1.
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Definition 3.2.12 A bk-model M is canonical if for all users u ∈ U , PAX u is either
PAX 0 or PAX 1 and PKBu is defined by (3.74) for a given MRu. Moreover, M is in
a description logic DL if for all u ∈ U , all the axioms in K B, PKBu, BKu, and Su

belong to DL.

By definition the size of PAX 0 and PAX 1 is polynomial in the size of K B ∪MR,
therefore PKB is finite and exponential in the size of K B ∪MR. Finiteness implies
the continuity hypothesis on CnM of Theorem 3.2.5, and hence:

Theorem 3.2.13 If M is canonical, then fM is secure with respect to all M ′ ≤k M .

The complexity of constructing the secure view fM (K B) when the underlying
description logic is tractable, like E L and DL-lite, depends on the number of variables
in MR.

Lemma 3.2.14 If the axioms occurring in MR and K are in a DL with tractable sub-
sumption and instance checking, then checking K |=m MR is:

1. in P if either MR is ground or there exists a fixed bound on the number of distinct
variables in MR;

2. coNP-complete otherwise.

With Lemma 3.2.14, one can prove the following two lemmas.

Lemma 3.2.15 Let M range over canonical bk-models. If M , s, X+, and X− are in a
DL with tractable subsumption/instance checking, and the number of distinct variables
in MR is bounded by a constant, then checking whether s ∈ CnM (X+, X−) is:

1. in P if MR is Horn and PAX = PAX 1;

2. coNP-complete if either MR is not Horn or PAX = PAX 0.

Lemma 3.2.16 Let M be a canonical bk-model. If M , s, X+, and X− are in a DL
with tractable entailment problems, and there is no bound on the number of variables in
the metarules of MR, then checking s ∈ CnM (X+, X−) is:

1. in PNP if MR is Horn and PAX = PAX 1;

2. in Πp
2 if either MR is not Horn or PAX = PAX 0.
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The value of censor(X+, X−, α) can be computed straightforwardly by iterating the
tests s ∈ CnM (X+∪{α}, X−) and s ∈ CnM (X+, X−∪{α}) for all secrets s ∈ S. Since
the set of secrets is part of the parameter M of the filtering function, the number of
iterations is polynomial in the input and the complexity of the censor is dominated by
the complexity of CnM (). The latter is determined by Lemma 3.2.15 and Lemma 3.2.16,
so we immediately get:

Corollary 3.2.17 Let M be a canonical bk-model and suppose that M , X+, X−, and
α are in a DL with tractable entailment problems. If the number of distinct variables in
MR is bounded by a constant, then computing censor(X+, X−, α) is:

• in P if MR is Horn and PAX = PAX 1;

• coNP-complete if either MR is not Horn or PAX = PAX 0.

If there is no bound on the number of variables in the metarules of MR, then computing
censor(X+, X−, α) is:

• in PNP if MR is Horn and PAX = PAX 1;

• in Πp
2 if either MR is not Horn or PAX = PAX 0.

The overall complexity of filtering functions is given by:

Theorem 3.2.18 If M is a canonical bk-models in a DL with tractable entailment
problems, then computing fM (K B) is:

1. P-complete if the number of distinct variables in the rules of MR is bounded, MR

is Horn, and PAX = PAX 1;

2. PNP -complete if the number of distinct variables in MR is bounded, and either
MR is not Horn or PAX = PAX 0;

3. in PNP if the variables in MR are unbounded, MR is Horn, and PAX = PAX 1;

4. in ∆p
3 if MR is not restricted and PAX ∈ {PAX 0,PAX 1}.

Theorem 3.2.19 Computing fM (K B) over canonical M in a DL with ExpTime en-
tailment (e.g. A L C QO, A L C I O, A L C QI , S H OQ, S H I O, S H I Q), is
still in ExpTime.

Theorem 3.2.20 Computing fM (K B) over canonical M in S ROI Q(D) is in
coNPN2ExpTime.

The interested reader can refer to [Bonatti and Sauro, 2013] for further details and
formal proofs of the complexity results.
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3.2.4 Relationships with the NCM

The meta-secure framework can be regarded as a natural generalization of the NCM.
The main result—roughly speaking—demonstrates that the NCM model can be essen-
tially regarded as a special case of the meta-secure framework where PKB ⊇ ℘(K B)

and BK = ∅. In this case fM is secure even if M is not assumed to be canonical.

Theorem 3.2.21 Let M = 〈K B, U, fM , 〈Su,PKBu,BKu〉u∈U 〉. If PKB = ℘(K B),
BK = ∅, and K B is finite, then

1. CnM (K B+,K B−) =
⋃
i<ν CnM (K B+

i ,K B−i ).

2. For all enumerations of PAX , the corresponding fM (K B, u) is logically equiva-
lent to a maximal secure view K Bu of K B according to the NCM; conversely,
for all maximal secure view K Bu of K B (according to the NCM) there exists
an enumeration of PAX such that the resulting fM (K B, u) is logically equivalent
to K Bu.

3. fM is secure w.r.t. M and w.r.t. any M ′ = 〈K B, U, fM , 〈Su,PKB ′u,BK
′
u〉u∈U 〉

such that PKB ′ ⊇ ℘(K B) and BK ′ = ∅.

By this correspondence, one can immediately obtains complexity bounds for the
NCM from those for PAX 1 and Horn, bounded-variable MR.

3.2.5 Related Work

Early works focused on ontologies for security [Wishart et al., 2005, Blanco et al., 2008]
and policy encoding with description logics [Uszok et al., 2003, Kolovski et al., 2007].
The pros and cons of this approach and a comparison with Datalog as a language ex-
pressly related to the representation and reasoning tasks involved in policy authoring,
enforcement, and management have been discussed in [Bonatti, 2010]. The Datalog-
based approaches appear currently more powerful and mature than those based on pure
DLs, although the ongoing research on the latter, e.g. employing specifically designed
non monotonic DLs as , might change the picture in a near future.

The framework presented in this chapter has a different goal though: protect-
ing the confidentiality of knowledge. Some of the early approaches to this problem
focused on access control models for XML documents; the focus was on selecting
and encrypting portions of the document’s syntax tree without considering inference
mechanisms. [Fundulaki and Marx, 2004] introduce XPath 1.0 as a formal specifi-
cation language for XML access control policies and survey and formalize the se-
mantics of the existing approaches in the literature that were originally expressed in
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natural language [Bertino and Ferrari, 2002, Damiani et al., 2000, Damiani et al., 2002,
Gabillon and Bruno, 2002, Murata et al., 2003].

Early access control models for RDF triple stores, on the other hand, define
high-level specification languages that enable fine-grained control of access permis-
sions (at triple level) but do not deal with inference as well, e.g. [Abel et al., 2007,
Flouris et al., 2010]. In the following we briefly discuss the approaches that do.

Baader et al. [Baader et al., 2009], Eldora et al. [Eldora et al., 2011], and Knechtel
and Stuckenschmidt [Knechtel and Stuckenschmidt, 2010] attach security level labels to
axioms and users to determine which subset of the knowledge base can be seen by each
subject.

Instead of creating an exponentially many different sub-ontologies, one for every
user, a label for each consequence is derived in a way that a comparison between the
user and the consequence label determines whether the consequence is entailed form the
corresponding sub-ontology. Reasoning then generalizes to the task of finding so-called
boundary label for each implicit consequence of the ontology.

However, in [Baader et al., 2009, Eldora et al., 2011] axiom labels are not derived
from the set of secrets; knowledge engineers are responsible for checking ex post that
no confidential knowledge is entailed. In case of leakage, the labels can be modified
with a revision tool based on pinpointing [Baader and Peñaloza, 2010]. On the con-
trary, the mechanism presented in this chapter automatically selects which axioms
shall be hidden in order to produce a secure view. This issue is partially tackled in
[Knechtel and Stuckenschmidt, 2010], by a procedure to optimally repair a given axiom
labeling so that access restrictions defined in terms of queries can be enforced.

These works pursue the construction of maximal secure views so they are potentially
vulnerable to the attacks based on background and metaknowledge. Similar considera-
tions hold for [Tao et al., 2010] where secrecy-preserving query answering in E L K B

is based on the idea of constructing secrecy envelopes by inverting the tableau expansion
rules.

Chen and Stuckenschmid [Chen and Stuckenschmidt, 2009] propose an alternative
query rewriting approach for enforcing access restrictions in the context of SPARQL
queries, while the TBox is assumed to be completely public. Filter conditions are
automatically added to the user queries so to suppress such answers the user is not
supposed to see which results in removing some individuals entirely. In general, this
may be secure against metaknowledge attacks (cf. Example 3.2.11) but comes to a price:
usually more knowledge than necessary remains hidden. Furthermore, no methodology
is provided for selecting the individuals to be removed given a target set of secrets.
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In [Bao et al., 2007], K B is partitioned into a visible part K Bv and a hidden part
K Bh which contains the information that is sensitive from a privacy point of view. Con-
ceptually, this is analogous to axiom labeling in the above approaches. However, the con-
fidentiality methodology seems to work only under the assumption that the signatures of
K Bv and K Bh are disjoint. In particular, a strong safety reasoner prevents from dis-
close only consequence that can be drawn from the hidden knowledge alone. Formulae
implied by a combination of K Bv and K Bh are not considered. Certainly the axioms
of K Bh whose signature is included in the signature of K Bv cannot be protected in
general. A partition-based approach is taken in [Cuenca Grau and Motik, 2009], too.
The focus is on reusing ontologies with hidden content. In order to enable reasoning
on K Bv ∪K Bh without providing physical access, the axioms of K Bh are accessed
via an oracle (i.e., a limited query interface), thus allowing K Bv to import K Bh

“by query.” Some serious restrictions that preclude the existence of an import-by-query
algorithm include: the TBox of K Bv is not semantically modular w.r.t. the shared
signature; the presence of nominals in K B h and (atomic) roles in the shared signature.
It is also not discussed how to select the hidden part K Bh given a set of target secrets
which includes the issue of deciding secondary protection.

Similarly, in [Stouppa and Studer, 2009] only ex-post confidentiality verification meth-
ods are provided. In their framework the background knowledge is modeled it as a part
of the knowledge base while the equivalent of PKB is the set of all knowledge bases
that include a given set of publicly known axioms. Consequently, in some cases their
verification method is vulnerable to the attacks to complete knowledge, that are based
on more complex (conditional) metaknowledge (cf. Example 3.2.4 and Example 3.2.11)
that cannot be encoded in their framework.

In [Cuenca Grau and Horrocks, 2008] Cuenca Grau and Horrocks investigate knowl-
edge confidentiality from a probabilistic perspective: enlarging the public view should
not change the probability distribution over the possible answers to a query q that
represents the set of secrets. In [Cuenca Grau and Horrocks, 2008] users can query the
knowledge base only through a predefined set of views (the approach presented in Sec-
tion 3.2.1 place no such restriction, instead). As an analogue of our BK , they assume
that part of the TBox is visible. A probability distribution P over the set of knowledge
bases plays a role similar to metaknowledge. However, their confidentiality condition
allows P to be replaced with a different P ′ after enlarging the public view, so at a closer
look P does not really model the user’s a priori knowledge about the knowledge base
that should remain constant, differently from PKB . The authors consider also ontology
updates, however in that case confidentiality is enforced only if updates are restricted
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to an analogue of conservative extensions.

The framework adopted throughout the thesis is inspired by the literature on con-
trolled query evaluation (CQE).

CQE is a prominent formal framework for confidentiality enforcement. Sensitive
information is declaratively specified by means of a confidentiality policy and enforced
by a censor: when given a user query, a censor checks whether returning the answer
might lead to an information leakage, in which case it returns a distorted answer. Given
a user query, in general also dependent on the history and thus on the current view a
priori knowledge and the answers to previous queries, the censor computationally check
whether returning the answer might lead to an information leakage to determine the
need of a distortion. Then, as indicated by the outcomes of the checks, the censor form
the answer such that, from the user’s point of view, it remains indistinguishable what
the correct answer would have been. A censor following the basic refusal approach first
checks whether the correct answer could already be inferred from the current view; if
this is not the case, then the censor inspects both the query α and its negation ¬α:
if returning any of them would lead to a direct violation of the confidentiality policy,
then the answer is formed by weakening the correct answer into a tautology expressing
“tertium non datur” (which is abbreviated by a keyword mum and interpreted as a
refusal notification). A censor following the basic lying approach only inspects the
correct truth evaluation of the query sentence α regarding a stronger violation condition,
namely whether the disjunction of all policy elements would be entailed in order to
ensure consistent answers. A censor following the basic combined approach — refusal
and lying — first inspects the evaluation of the query α; if it would lead to a direct
violation then the censor additionally inspects the negation ¬α: if also that negation
would lead to a violation, then the answer sentence is formed by weakening the correct
answer into a tautology (or mum); otherwise the negation is returned as a lie.

The CQE paradigm was first proposed in [Sicherman et al., 1983] by Sicher-
mann et al. and was later studied by Biskup, Bonatti, Kraus and Subrahmanian
[Biskup and Bonatti, 2001, Biskup and Bonatti, 2004a, Biskup and Bonatti, 2004b], etc.
CQE in the context of incomplete databases was studied by Biskup and Weibert
[Biskup and Weibert, 2008]. These foundational works on CQE assume that both the
information in the system and user queries are represented in propositional logic. Early
works on non-propositional CQE are [Biskup and Bonatti, 2007, Biskup et al., 2010].

The method we presented is based on lies and/or refusals. Technically it uses lies,
because rejected queries are not explicitly marked by the special answer mum. How-
ever, the censor resembles the classical refusal censor, so the properties of fM are not
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subsumed by any of the basic CQE approaches. For instance, unlike the CQE methods
that use lies, fM (KB,u) encodes only correct knowledge (that is entailed by K B),
and it is secure whenever users do not initially know any secret while lies-based CQE
further require that no disjunction of secrets should be known a priori. Unlike the re-
fusal method, fM can handle cover stories because users are not told that some queries
are obfuscated. As an additional advantage, the method needs not to adapt existing
engines to handle nonstandard answers like mum. Finally, the CQE approaches do
not deal specifically with DL knowledge bases, metaknowledge, and related complexity
analysis. For an overview see [Biskup, 2016].

More recently CQE for ontologies has been studied in [Cuenca Grau et al., 2013,
Grau et al., 2014, Grau et al., 2015]. The framework is adaptation of the existing work
on CQE for incomplete databases based on a novel class of censors, called view-definable.
Background knowledge is formalized as an OWL 2 RL ontology and assumed to be fully
known to all users whereas a dataset formalized as a set of concept and role assertions
is assumed to be hidden. A confidentiality policy is represented as a set of assertions
logically entailed by the ontology and the dataset. Users access the system by means
of restricted query interface that allows to formulate arbitrary conjunctive queries.

The main idea behind view-defined censors, is to modify the dataset by anonymiz-
ing occurrences of constants and adding or removing facts, whenever needed27. Such
modified dataset constitutes an (anonymization) view that encodes the information in
the system relevant to the censor’s output for any user query. The authors adopt the
basic case of the CQE paradigm where the censor only filters out answers that could
lead to a policy violation. The focus is on optimal censors, which maximize answers to
queries while ensuring confidentiality of the policy. However optimal view-based censors
are not guaranteed to exist since the optimality requirement may lead to infinite views,
even for E L and ontologies. In [Cuenca Grau et al., 2013] Cuenca Grau at. all identify
a guarded fragment of OWL 2 RL for which these limitations can be circumvented.

In [Grau et al., 2014] the framework is further extended to arbitrary CQs as policies
rather than plain concept and role assertions and a novel class of censors, called obstruc-
tion censors. Obstruction censors are defined by a set of forbidden query patterns where
all answers instantiating such patterns should not be disclosed to users. Obstruction
censors do not require data modification and are well-suited for applications such as
OBDA, where data is managed by an RDBMS.

27View-defined censors may also require materialization of implicit data, and hence are well-
suited for applications where materialization is feasible; the approach presented in Section 3.2.1
does not impose similar restrictions.
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In [Grau et al., 2015] the authors compare the expressive power of obstruction with
that of view censors and establish their theoretical limitations. In particular, determin-
ing the existence of an optimal view is undecidable even for Datalog ontologies. On
the other hand, computing obstructions realizing optimal views for linear Datalog and
OWL 2 QL ontologies is possible in polynomial time.

The framework presented by Cuenca Grau et. al. in [Cuenca Grau et al., 2013,
Grau et al., 2014, Grau et al., 2015] can be seen as complementary to the approach
adopted in this thesis. In particular, access to external sources of background or meta-
knowledge knowledge is not taken in consideration. Consequently, their verification
method is vulnerable to the attacks presented in Section 3.2.

In [Grau and Kostylev, 2016] Cuenca Grau and Kostylev define notions of safe
and optimal anonymizations of RDF graphs for privacy-preserving data publishing
(PPDP)28 of Linked Data. In this context safety ensures that the anonymized data
can be published with provable protection guarantees against linking attacks, whereas
optimality ensures that it preserves as much information from the original data as pos-
sible, while satisfying the safety requirement. An anonymized RDF graph G can be
obtained from the original graph G0 by replacing some occurrences of IRIs in triples
with blank nodes. The sensitive information in G0 (referred to as a policy) is repre-
sented by a SPARQL query. Policy compliance ensures that the sensitive information
remains protected when the anonymized data is considered locally. However, It provides
no guarantee against disclosure once the anonymized data is released on the Web and
can be linked with arbitrary external sources.

To address this limitation an additional safety requirement that take account of the
dataset union, i.e. the merge of G with external graphs, is defined to ensure that G can
be released with provable protection guarantees against linkage attacks. This approach
is similar to how background knowledge is treated in [Bonatti and Sauro, 2013]. In order
to deal with situations when a dataset contains relations for which a smart attacker could
easily gather complete information (cf Example 3.2.4 and Example 3.2.11), the policy
compliance is evaluated under closed-world semantics as well.

Although, the framework appears to provide safety guarantees against linking at-
tacks and attacks to complete knowledge, it does not yet capture OWL 2 ontologies,
which are extensively used in applications to enrich the semantics of RDF graphs. The
introduction of such ontologies seem to lead to significant technical challenges, especially
in combination with closed-world semantics [Grau and Kostylev, 2016].

28PPDP refers to the problem of protecting individual privacy against disclosure while at the
same time ensuring that published dataset remains practically useful for analysis.



Chapter 4
Optimizing the Computation of
Overriding in DLs

In the previous chapter we introduced a new family of nonmonotonic Description
Logics (DLs), which supports normality concepts NC to denote the normal/
prototypical instances of a concept C, and prioritized defeasible inclusions (DIs)
C vn D that mean (roughly speaking): “by default, the instances of C satisfy D,
unless stated otherwise”, that is, unless some higher priority axioms entail C u ¬D; in
that case, C vn D is overridden. The prototypical instances of C are required to satisfy
all the DIs that are not overridden in C.

Given the negligible number of applications based on nonmonotonic logics deployed
so far, DL N has been designed to address real-world problems and concrete knowl-
edge engineering needs. Fortunately, at least in the biomedical domain, the literature
contains several extensive discussions of such needs and how nonmonotonic reasoning
may address them [Rector, 2004, Stevens et al., 2007]. A discussion of how nonmono-
tonic reasoning may address needs in (semantic web) policy formulation can be found in
[Woo and Lam, 1993]. As we have already seen in Section 3.1 distinguishing features
are: (i) DL N adopts the simplest possible criterion for overriding, that is, inconsistency
with higher priority axioms; (ii) all the normal instances of a concept C conform to the
same set of default properties, sometimes called prototype; (iii) the conflicts between
DIs that cannot be resolved with priorities are regarded as knowledge representation
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Table 4.1. Partial comparison with other nonmonotonic DL

CIRC DEF AEL TYP RAT PR

Features DL N

no inheritance blocking X X X X X X

no CWA effects X X X X X

fine-grained control on role ranges smtm X

detects inconsistent prototypes smtm X X

preserves tractability X(∗)

(*) It holds for subsumption, assertion checking, concept consistency, KB consistency.

errors and are to be fixed by the knowledge engineer (typically, by adding specific DIs).
No traditional nonmonotonic logic satisfies (i), and very few satisfy (ii) or (iii). DL N

behaves very well on applicative examples due to the following consequences of (i)–(iii)
(a comparison with other nonmonotonic DLs with respect to these features is summa-
rized in Table 4.1):1

No inheritance blocking : In several nonmonotonic logics a concept with exceptional
properties inherits none of the default properties of its superclasses. This phenomenon
is known as inheritance blocking.

Undesired Closed World Assumption effects: In some nonmonotonic DLs, an excep-
tional concept is shrinked to the individuals that explicitly belong to it; it may possibly
become inconsistent.

Control on role ranges: Unlike most nonmonotonic DLs, DL N axioms can specify
whether a role should range only over normal individuals or not.

Detect inconsistent prototypes: DL N facilitates the identification of all conflicts that
cannot be resolved with priorities (via consistency checks over normality concepts),
because their correct resolution is application dependent and should require human
intervention.

Besides solving the above issues, DL N is the first nonmonotonic DL known to
preserve the tractability of low-complexity DLs such as E L ++ and DL-lite (underlying
the OWL2-EL and OWL2-QL profiles). This opens the way to processing very large
nonmonotonic KBs within these fragments.

The attractiveness of the E L family in the context of this thesis is twofold: on the
one hand subsumption is decidable in polynomial time; on the other hand, its expres-
sive power is sufficient for many important applications of ontologies. In particular,

1The abbreviations CIRC, DEF, AEL, TYP, RAT and PR stand respectively for circum-
scribed, default, autoepistemic DLs, DLs of typicality, rational closure and probabilistic non-
monotonic DLs.
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E L ++ is well-suited for the design of life science ontologies, and many of todays largest
ontologies are formulated in this language. Examples include the Systematized Nomen-
clature of Medicine, Clinical Terms (SNOMED CT), the Gene Ontology that can be
seen as an acyclic E L TBox with one transitive role and large parts of the Galen Med-
ical Knowledge Base (Galen) and many Open Biomedical Ontologies (OBO), e.g. the
Chemical Entities of Biological Interest (ChEBI), the e-Mouse Atlas Project (EMAP),
the Foundational Model of Anatomy (FMA), the Fly Anatomy, and the Molecule Role
ontology to name a few. An emphasis is due on SNOMED CT which comprises about
four hundred thousand axioms and is the standardized clinical terminology adopted by
health care sectors in several countries (cf. Section 5.1.2).

Given the massive size of these ontologies, it is mandatory that reasoning in non-
monotonic DLs be extremely efficient. Unfortunately, asymptotic tractability alone,
does not suffice for practical purposes. For example, even the classification of the
SNOMED CT ontology computed by performing (quadratically many) subsumption
tests between every pair of its 300 000 concepts will take an estimated 25 000 hours
(almost 3 years) to compute all subsumptions, assuming that every test takes a con-
stant time, say just 1 millisecond. Clearly, reasoning over a nonmonotonic version of
SNOMED CT, although still polynomial, is harder and cannot be regarded as practical.

In this chapter we first describe a prototype implementation of DL N, together with
a preliminary, experimental scalability analysis carried out on many large KBs (with
more than 20K concept names and over 30K general concept inclusions). Currently
there are no “real” knowledge bases encoded in a nonmonotonic DL, because standard
DL technology does not support nonmonotonic reasoning. The nonmonotonic KBs en-
coded in the hybrid rule+DL system DLV-Hex [Drabent et al., 2009] are not suited to
our purposes because they do not feature default inheritance due to a restriction of
the language: DL predicates cannot occur in rule heads, so rules cannot be used for
encoding default inheritance. A systematic approach to transform selected classical sub-
sumptions into defeasible in existing ontologies is provided in [Casini et al., 2015]. The
approach relies on the presence of unsatisfiable classes occurring on the left hand side of
GCIs. The set of defeasible axioms for each ontology correspond precisely to the set of
axioms that “cause” the unsatisfiability of each of these classes. A critical observation
made by the authors is that incoherence in classical ontologies is usually the result of
erroneous modelling. Given the large emphasis placed on debugging incoherence in the
last decade, the number of unsatisfiable classes that elude a debugging phase is expected
to be rather low.2 As a consequence the nonmonotonic part of the modified ontologies

2An evidence of the truth of this assumption is provided by the average ratio of resulting
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results quite small and can hardly permit an in depth study of the overhead introduced
by nonmonotonic reasoning which. Then synthetic test cases are the only choice for
evaluating our algorithms. Test suites are obtained by suitably modifying two large
biomedical ontologies: the Gene Ontology and Fly Anatomy. From a methodological
point of view, we make an effort to validate the test case generator by analyzing the
structure of the synthetic knowledge bases and their classification.

As we shall see, although the preliminary results are promising, (so far, no other
implemented nonmonotonic logic has been tested on KBs of this size with compara-
ble results); still, as the amount of defeasible inclusions increase query response time
raises enough to call for improvements. In the rest of the chapter, we study different
optimization techniques to improve DL N query response time:

1. Many of the axioms in a large KB are expected to be irrelevant to the given query.
We investigate the use of module extractors [Martin-Recuerda and Walther, 2014,
Sattler et al., 2009] to focus reasoning on relevant axioms only. Note that module
extractors are unsound for most nonmonotonic logics, including circumscription,
default and autoepistemic logics.

2. We introduce a new algorithm for query answering, that is expected to exploit
incremental reasoners at their best. Incremental reasoning is crucial as DL N’s
reasoning method iterates consistency tests on a set of KBs with large inter-
sections. While the assertion of new axioms is processed very efficiently, the
computational cost of axiom deletion is generally not negligible. We introduce an
optimistic reasoning method that is expected to reduce the number of deletions.

We further contribute to the research on module extraction by improving it over
some problematic cases. More precisely, in Section 4.2.3 and 4.2.4 we introduce two
optimization methods that are not specific to DL N and apply also to classical DL
reasoning:

• a new module extraction algorithm that discards significantly more axioms in the
presence of nonempty ABoxes. This method is correct under the assumption that
the knowledge base is consistent; this hypothesis, in practice, is compatible with
some of the main intended uses of module extraction, such as importing selected
parts of already validated knowledge bases.

• parallel implementation of module extraction.

We prove the correctness of the new algorithms and evaluate the effectiveness of all
optimizations experimentally. Code and data can be found on: goo.gl/2UUgrr.

defeasible axioms that is reported to be of 8%, while the median ratio is only 1.5%.

goo.gl/2UUgrr
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4.1 Preliminary Experimental Analysis

This section introduces NMReasoner, a prototypical implementation of DL N based
on existing classical reasoners. A preliminary experimental performance analysis of
this prototype is included; it uses test cases with realistic size and the optimization
techniques supported by the underlying, classical reasoning engine. For the purpose,
synthetic test cases have been automatically generated in a principled way, as explained
in Section 4.1.2. Currently, no “real” nonmonotonic DL knowledge bases exist, since
mainstream DL technology does not support nonmonotonic inferences, and the available
implementations of nononotonic DLs can only handle knowledge bases with moderate
size.

4.1.1 NMReasoner

According to the theoretical framework, the engine consists of two modules. The first
one, hereafter called translation module, constructs the classical knowledge base K BΣ

corresponding to the given DL N knowledge base K B = S ∪ D . The second module
computes nonmonotonic subsumptions (sometimes called queries in the following). In
NMReasoner, Σ is the set of all normality concepts that occur either in K B or in a given
set of queries Q. Moreover, if no priority relation over DIs is provided in input (encoded
in an appropriate file), then specificity (3.1) is applied by default. Both modules call an
external classical reasoner for classification. For knowledge bases belonging to the E L

family of description logics we chose ELK [Kazakov et al., 2012, Kazakov et al., 2014,
Kazakov and Klinov, 2013], a particularly efficient, specialized engine. In this section
we use a version of NMReasoner that adopts no optimization technique besides those
natively supported by the underlying classical reasoner.

4.1.2 The Test Case Generator

We pursued two different approaches: (i) injecting fully synthetic random defeasible
inclusions in a given real world ontology; (ii) transforming a random set of strong concept
inclusions of a real world ontology into defeasible inclusions. Both approaches have been
applied to a version of the Gene Ontology3 (GO for short) published in 2006 and Fly
Anatomy (FLY)4, that has been extensively used in many performance experiments

3http://www.geneontology.org
4One of the largest ontologies listed at the OBO Foundry websites http://www.obofoundry.

org/.

http://www.geneontology.org
http://www.obofoundry.org/
http://www.obofoundry.org/
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[Baader et al., 2006, Delaitre and Kazakov, 2009, Mendez and Suntisrivaraporn, 2009,
Glimm et al., 2012, Kazakov, 2009, Sertkaya, 2011, Tsarkov et al., 2007].

Both ontologies are suitable for our purposes because of its size and domain (that
fit our application scenarios): they are large biomedical ontologies with GO featuring
20465 atomic concepts and 28896 concept inclusions and FLY 7797 atomic concepts
and 19137 concept inclusions. They can be encoded in E L ++, whose nonmonotonic
version E L ++N (as proved in Section 3.1.3) enjoys tractable inference problems.

Under approach (i), that is, random DI injection, given a classical TBox S , the
set of DIs D is generated as follows. First, the size of D is determined by a parameter
Synthetic-DI-rate as the ratio between the number of DIs and the number of CIs in S .
Then, iteratively, two atomic concepts A and B, and optionally a role R are randomly
chosen from the signature of S , and either A vn B or A vn ∃R.B is added to D . The
generator makes sure that no duplicates are generated, and that for each new DI δ,
pre(δ) v con(δ) is not classically entailed by S .

Under approach (ii), given a classical TBox S , a set of concept inclusions S′ ⊆ S

is randomly chosen and turned into D . The size of S′ (and D) is determined by a
parameter CI-to-DI-rate that specifies the ratio |S′|/|S |. Then all inclusions C1 v
C2 ∈ S′ are removed from S and the corresponding DIs C1 vn C2 are added to
D (here C1 and C2 may be compound concepts, in general). The priority relation
over D is specificity, as determined by the logical consequences of S before removing
the inclusions in S′, thus preserving as much as possible the semantics of the original
relations encoded in the ontology. The intended effect is a progressive transformation of
classical knowledge bases into purely defeasible knowledge bases, like those extensively
adopted in the literature on preferential and rational closures.

Under both approaches, in order to increase the probability of overriding (and hence
nonmonotonic behavior), some additional inconsistencies between DI conclusions can
be injected in the ontology. To do that, DI pairs (δ1, δ2) are randomly selected from D .
For each such pair, two arbitrary concepts C1 and C2 are picked from the superclasses
of con(δ1) and con(δ2) (respectively), and a new disjointness axiom C1 u C2 v ⊥ is
added to S . The test case generator makes sure that none of C1, C2, and S are made
inconsistent, by checking that the following conditions are satisfied in the extended
knowledge base: (i) con(δ2) 6v C1; (ii) con(δ1) 6v C2; (iii) C2 6v C1 and (iv) C1 6v C2.
Note that we intentionally refrain from asserting con(δ1)u con(δ2) v ⊥ directly, so that
the reasoning involved in checking whether a DI is overridden is generally nontrivial.
The generation of disjointness axioms is controlled by parameter DA-rate, that specifies
the ratio between the number of new disjointness axioms and |S |.
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Parameter Meaning

Synthetic-DI-rate percentage of fully synthetic DIs w.r.t. the number of CIs
CI-to-DI-rate percentage of CIs to be transformed DIs
DA-rate percentage of disjointness axioms w.r.t. the number of CIs
I-rate percentage of new distinct individuals
ABox-rate percentage of assertions w.r.t. the number of CIs
R-rate percentage of role assertions w.r.t. the number of all assertions
NC-rate percentage of DIs with normality concept within the scope of quantifiers

Figure 4.1. The main parameters of the test-case generator

The above test sets can be extended by adding random ABoxes to the nonmonotonic
versions of GO and FLY. To do that, a number of new distinct individuals is introduced
guided by a parameter I-rate as a ratio of |S|. The size of the ABox A is then determined
by a parameter ABox-rate as the ratio |A |/|S |. Finally, the amount of role assertions
in the ABox is controlled by a parameter R-rate specifying the ratio of role assertions
to |A |. Then, iteratively, two individuals a and b, two atomic concepts A and B, and
a role R are randomly chosen from the signature of S and A , and the assertions A(a),
B(b) and R(a, b) are added to A . The generator makes sure that no duplicates are
generated, A, B, and S ∪A are still classically consistent, and that each new assertion
is not already entailed by S∪A . When the required amount of role assertions is reached,
the generation keep on introducing random class assertions only until the desired total
number of assertions is injected.

The above test sets are N-free. A new set of experiments can be generated by ran-
domly introducing normality concepts in DIs, within the scope of quantifiers.5 Specif-
ically, ∃R.C is transformed into ∃R.NC. Their amount is controlled by a parameter
NC-rate specifying the ratio of modified DIs to DIs with quantifiers in D .

We estimate that the values of |Σ| considered for the generation (in the range be-
tween 50 and 250) are larger than what should be expected in practice, given the specific
role of explicit normality concepts, cf. footnote 5. Such values are also much larger than
in N-free experiments, where |Σ| is bounded by the query size.

5 So far, all the application examples that are not N-free satisfy this restriction, as apparently
the only purpose of explicit normality concepts is restricting default role ranges to normal
individuals, cf. Example 3.1.36 and the nomonotonic design pattern in Section 3.1.6.
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4.1.3 Experimental Results: Test Case Structure

A first analysis has been aimed at checking that synthetic test cases are not triv-
ial. For this purpose we inspected the structure of the DIs that actually apply to each
normality concept NC, which means that the DI’s left-hand side subsumes C. In partic-
ular, we measure the height of the priority hierarchy of applicable DIs, and how many
applicable DIs are overridden; the former quantity is related to the potential levels of
overriding, while the latter is more directly related to the nonmonotonic behavior that
actually occurs.

For all figures, every single reported value is obtained as the average over ten different
non monotonic ontologies and fifty different queries on each ontology, each of which
involved the construction of a different translation K BΣ (as Σ depends on the query).

Figure 4.2 and Figure 4.4 are devoted to generation approach (i). As the DA rate
grows, the figures report the percentage of overridden applicable DIs, plus the aver-
age and maximum height of the priority hierarchy of applicable DIs. Figure 4.3 and
Figure 4.5 report the same values for generation approach (ii).

These figures are reasonable, given GO’s and FLY’s structure. The length of the
longest path in GO’s classification (i.e. the maximum possible hierarchy depth) is 15,
and the average length 3.66. In the experiments concerning DIs obtained from strong
CIs (see Figure 4.3) the average (resp. maximal) depth of the applicable DIs hierarchy
range between 41% and 55% of the average (resp. 26,6% and 40% of the maximal) path
length in the original ontology, coherently with the random placement of normality
concepts in the hierarchy.

For fully synthetic DIs (Figure 4.2) these values are lower and vary between 34%
and 42% of the average length, and between 20% and 33,3% of the maximum length.

As expected, in Figure 4.3, each increment of the DA-rate causes an increment of
the percentage of overridden DIs. This relation is less evident in Figure 4.2, probably
due to the further randomness introduced by synthetic DI generation.

Similar considerations can be made for FLY based on Figure 4.4 and Figure 4.5.
The length of the longest path in FLY’s classification is 16, and the average length 2.39.
The depth of the DI priority hierarchy (which is related to the interference between
different DIs and, indirectly, the number of exception levels) ranges between 20% and
50% of the depth of FLY’s taxonomy. In particular, there is a reasonable amount of
overriding: the percentage of overridden DIs ranges from 34.44% to 66.68%, depending
on the amount of disjointness axioms (hence DI conflicts) contained in the KB.
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DA-rate Overridden/Applicable DIs Avg. Appl. DI Hierarchy Depth Max Appl. DI Hierarchy Depth

5% 83,55% 1,34 4

10% 84,13% 1,4 4

15% 91,17% 1,25 3

20% 91,47% 1,3 4

25% 87,64% 1,5 4

30% 88,33% 1,44 5

Figure 4.2. Values characterizing the experiments with variable DA-rate
(Synthetic-DI-rate=15%) in GO

DA-rate Overridden/Applicable DIs Avg. Appl. DI Hierarchy Depth Max Appl. DI Hierarchy Depth

5% 61,86% 2,03 6

10% 70,71% 1,96 6

15% 68,45% 2,01 5

20% 75,63% 1,71 5

25% 80,28% 1,54 4

30% 81,27% 1,55 6

Figure 4.3. Values characterizing the experiments with variable DA-rate (CI-to-
DI-rate=15%) in GO

DA-rate Overridden/Applicable DIs Avg. Appl. DI Hierarchy Depth Max Appl. DI Hierarchy Depth

5% 34,44% 6,26 13

10% 42,6% 6,6 12

15% 39,1% 6,55 11

20% 46,4% 6,44 12

25% 37,53% 6,49 12

30% 48,11% 6,38 12

Figure 4.4. Values characterizing the experiments with variable DA-rate
(Synthetic-DI-rate=15%) in FLY
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DA-rate Overridden/Applicable DIs Avg. Appl. DI Hierarchy Depth Max Appl. DI Hierarchy Depth

5% 37,95% 1,17 5

10% 55,56% 0,74 3

15% 57,03% 0,81 4

20% 57,32% 0,95 5

25% 65,98% 0,83 3

30% 66,68% 0,9 4

Figure 4.5. Values characterizing the experiments with variable DA-rate (CI-to-
DI-rate=15%) in FLY

CI-to-DI 05% 10% 15% 20% 25%

GO 12.35 24.12 34.47 41.96 49.92

FLY 4.22 7.97 11.95 14.42 17.46

Figure 4.6. Impact of |D | on performance (sec) – DA rate = 15%

4.1.4 Experimental Setup

The experiments were performed on an Intel i7-2630QM 2GHz machine with 18GB
RAM and Ubuntu 12.04.2 LTS. NMReasoner was run on Java 1.8 with the options
-Xms12G -Xmx12G -Xss4G to set the available RAM to 12GB and the stack memory
space to 4GB.

All test cases are modifications of GO and FLY according to approach (i) or (ii). Like
in the previous section, every single reported value is obtained as the average execution
time over ten different non monotonic ontologies and fifty different queries on each
ontology, each of which involved the construction of a different translation K BΣ. The
varying parameters are: CI-to-DI-rate, Synthetic-DI-rate, DA-rate, ABox-rate, I-rate,
R-rate and NC-rate.

4.1.5 Experimental Results: Performance Analysis

Figures 4.7 and 4.6 report the execution time of the translation stage as the amount
of DIs grows. In Figure 4.6, CI-to-DI-rate (the percentage of CIs that are transformed
into DIs) ranges from 5% to 25%, Synthetic-DI-rate is fixed to 0% (no fully synthetic DIs
are generated) and DA-rate to 15%. In Figure 4.7, Synthetic-DI-rate (the percentage
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Synthetic-DI 05% 10% 15% 20% 25%

GO 13.15 27.77 37.47 46.11 57.14

FLY 4.86 9.86 14.75 19.86 24.27

Figure 4.7. Impact of |D | on performance (sec) – DA rate = 15%

DA 05% 10% 15% 20% 25% 30%

GO 27.38 27.52 34.47 38.57 36.21 42.37

FLY 10.31 11.46 11.95 12.13 12.65 13.79

Figure 4.8. Impact of DAs on performance (sec) – CI-to-DI-rate = 15%

of fully synthetic DIs) ranges from 5% to 25%, CI-to-DI-rate is fixed to 0% and DA-
rate to 15%. In both cases, translation time increases linearly with the size of D , in
accordance to the linear increase in the number of classification problems that must be
solved to compute K BΣ. Translation is slightly faster over the test cases produced
with approach (i), probably because of the less complex structure of applicable defaults
(cf. Figures 4.2, 4.3, 4.4 and 4.5). Values of standard deviation do not exceed 2.36% in
Figure 4.6 and respectively 3.74% in Figure 4.7.

Figures 4.8 and 4.9 show the impact of disjointness axioms on the performance of
the translation phase. In Figure 4.8, CI-to-DI-rate is fixed to 15% and Synthetic-DI-rate
to 0%, while in the Figure 4.9 these values are switched. Translation time is obviously
affected by the additional strong disjointness axioms added to the ontology. However,
execution time grows less steeply and with less uniform derivative. This is even more
evident considering the standard deviation that ranges within 6.91% in the upper part
of Tables 4.8 and 4.9 and respectively 1.34% in the lower. As in the previous graphs,
fully synthetic DIs yield slightly longer execution times than approach (ii).

The experimental results reported in Figures 4.10 and 4.11 confirm the negative

DA 05% 10% 15% 20% 25% 30%

GO 33.34 35.63 37.47 42.05 43.03 47.03

FLY 12.93 14.01 14.76 15.94 16.60 17.69

Figure 4.9. Impact of DAs on performance (sec) – Synthetic-DI-rate = 15%
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impact of nonempty ABoxes on the performance of the translation phase. Adding
random assertions to the nonmonotonic versions of FLY and GO make the translation
time for CI-to-DI-rate = 15% and DA-rate = 15% raise more than 3 (and up to 10)
times (cf. the central column of Figure 4.8). As expected, effectiveness decreases when
the ABox is more “interconnected”, i.e. when the amount of role assertions increases
(role assertions tend to introduce more dependencies, because pairs of individuals are
always involved).

ABox role individuals
size assrt. ∼ 5000 ∼ 10000 ∼ 20000

∼5000 10% 95.99 104.90 97.33
20% 99.70 123.41 109.67
30% 112.75 123.60 132.67

∼10000 10% 123.98 145.46 153.94
20% 126.24 139.45 152.48
30% 129.74 145.25 166.24

∼20000 10% 133320 126.59 124.55
20% 135079 128.50 126.55
30% 138244 129.33 129.02

Figure 4.10. Impact of ABox on performance (sec) in GO – CI-to-DI-rate = 15%
DA-rate = 15%.

ABox role individuals
size assrt. ∼ 2000 ∼ 4000 ∼ 8000

∼2000 10% 27.32 30.46 30.68
20% 29.55 31.45 32.15
30% 28.29 31.96 32.99

∼4000 10% 35.42 45.03 49.83
20% 37.47 45.24 52.22
30% 41.49 51.37 92.09

∼8000 10% 47.01 65.11 71.49
20% 48.39 68.39 74.93
30% 60.57 99.65 92.58

Figure 4.11. Impact of ABox on performance (sec) in FLY – CI-to-DI-rate =
15% DA-rate = 15%.
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|Σ| 50 100 150 200 250

CI-to-DI

GO >30 min. >30 min. >30 min. >30 min. >30 min.

FLY >30 min. >30 min. >30 min. >30 min. >30 min.

Synthetic-DI

GO >30 min. >30 min. >30 min. >30 min. >30 min.

FLY >30 min. >30 min. >30 min. >30 min. >30 min.

Figure 4.12. Non N-free tests. Impact of normal roles ranges (sec) – DI rate =
25% DA rate = 15%.

The above test sets are N-free. The response times of the naive algorithm under
priority (3.1) for increasing values of |Σ| (that is directly related to the amount of
normality concepts occurring in K B) are listed in Table 4.12 . Unfortunately, in all
cases, the naive algorithm exceeded 30 min. timeout.

The substantial similarity between the results for generation approach (i) and those
for approach (ii) suggests that our test generation methods do not introduce any signif-
icant bias as far as translation phase scalability is concerned.

The overhead of the second phase (subsumption checking) is negligible, because the
translation phase constructs a classification of K BΣ as a byproduct, and subsumption
checking consists of a simple search in the classification graph. In all tests, query
evaluation time do not exceed 4 milliseconds. Detailed data are not reported, as the
effects of increasing the number of DIs is dominated by statistical fluctuations.

As a term of comparison, a single classification of the original GO takes approxi-
mately 0.4 seconds. The current translation time is significantly higher due to the large
number of classifications required for computing K BΣ. Note, however, that translation
time is compatible with off-line pre-computation of K BΣ for a suitable Σ, covering the
normality concepts that are expected to occur in the queries.

Incremental reasoning algorithms are quite effective in reducing translation time.
We tried ELK’s incremental reasoning facility [Kazakov and Klinov, 2013], supported
since distribution 0.4.0. Without incremental reasoning, the translation time for CI-to-
DI-rate = 15% and DA-rate = 15% raises more than 5 times. The preliminary results
obtained in this section for the performance of DL N inference are promising; still, as
defeasible inclusions approach 25% of the KB, an ABox is added and for non N-free
KBs query response time slows down enough to call for improvements. In the rest of
the chapter, we study optimization techniques to improve DLN query response time.
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4.2 Improving Module Extraction for

Nonmonotonic and Classical DLs

Module extraction algorithms, e.g. [Sattler et al., 2009, Grau et al., 2008,
Martin-Recuerda and Walther, 2014], can quickly select a subset of a given Description
Logic (DL) knowledge base that suffices to answer any query formulated in a given
signature of interest.

Roughly speaking, the problem of module extraction can be expressed as follows:
given a reference vocabulary Sig , a module is a (possibly minimal) subset M ⊆ K B

that is relevant for Sig in the sense that it preserves the consequences of K B that
contain only terms in Sig .

The interest in module extraction techniques is motivated by several ontology en-
gineering needs. We are interested in modularization as an optimization technique for
querying large ontologies: the query is evaluated on a (hopefully much smaller) module
of the ontology that preserves the query result (as well as any inference whose signature
is contained in the query’s signature).

A K B is said to be a conservative extension (CE) of K B′ if all consequences
of K B that can be expressed over Sig are also consequences of K B′. This logic-
based approach is theoretically sound and provides a desirable guarantee: reusing only
terms from Sig , it is not possible to distinguish between querying K B′ and K B.
However, the problem of deciding whether two knowledge bases entail the same ax-
ioms over a given signature is usually harder than standard reasoning tasks. Conse-
quently deciding whether K B′ is a CE of K B (for Sig) is computationally expensive
in general. For example, DL–Litehorn complexity grows from PTIME to coNP-TIME-
complete [Kontchakov et al., 2008]; for A L C , complexity is one exponential harder
[Ghilardi et al., 2006], while for A L C QI O the problem becomes even undecidable
[Lutz et al., 2007].

In order to achieve a practical solution, a syntactic approximation has been
adopted in [Sattler et al., 2009, Grau et al., 2008]. The corrisponding algorithm >⊥∗-
Mod(Sig ,K B) is defined in [Sattler et al., 2009, Def. 4] and reported in Algorithm 1
below. It is based on the property of ⊥-locality and >-locality of single axioms (line
15). An axiom is local w.r.t. Sig if the substitution of all non-Sig terms with ⊥ (resp.
>) turns it into a tautology.

The module extractor identifies a subset M ⊆ K B of the knowledge base and a
signature Sig (containing all symbols of interest) such that all axioms in K B \M

are local w.r.t. Sig . This guarantees that every model of M can be extended to a



4.2 Improving Module Extraction for
Nonmonotonic and Classical DLs 119

Algorithm 1: >⊥∗-Mod(Sig ,K B)

Input: Ontology K B, signature Sig
Output: >⊥∗-module M of K B w.r.t. Sig

// main
begin1

M := K B2
repeat3

M ′ := M4
M := >-Mod(⊥-Mod(M ,Sig),Sig)5

until M 6= M ′6
return M7

end8

function x-Mod(K B,Sig) // x ∈ {⊥,>}9
begin10

M := ∅, T := K B11
repeat12

changed = false13
forall α ∈ T do14

if α is not x-local w.r.t. Sig ∪ M̃ then15
M := M ∪ {α}16
T := T \ {α}17
changed = true18

until changed = false19
return M20

end21

model of K B by setting each non-Sig term to either ⊥ or >. Consequently, all queries
formulated with symbols in Sig can be answered using only M , instead of the entire
K B.

The function x-Mod(Sig ,K B) (lines 9-20), where x stands for > or ⊥, describes
the procedure for constructing modules of a knowledge base K B for each notion of
locality. Starting with an empty set of axioms (line 11), iteratively, the axioms α that
are non-local are added to the module (line 16) and, in order to preserve soundness, the
signature against which locality is checked is extended with the terms in α (line 15).
Iteration stops when a fix-point is reached.

Modules based on a single syntactic locality can be further shrinked by iteratively
nesting >-extraction into ⊥-extraction, thus obtaining >⊥∗-Mod(Sig ,K B) modules;
the resulting algorithm is shown in lines 2-7 of Algorithm 1.
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In general, module extractors are not correct under nonmonotonic semantics, be-
cause x-locality (x ∈ {⊥,>}) is insensitive to the dependencies between predicates
introduced by nonmonotonic inference.

4.2.1 Module Extraction for DL N

The naive construction of K BΣ evaluated in Section 4.1.5 must process all the
axioms in K BΣ

all = K BΣ
0 ∪ {δNC | δ ∈ D , NC ∈ Σ}. Here we optimize DL N infer-

ence by quickly discarding some of the irrelevant axioms in K BΣ
all using the notions

of >⊥∗-module and locality [Martin-Recuerda and Walther, 2014, Grau et al., 2008,
Sattler et al., 2009], that we extend to DIs as follows.

Definition 4.2.1 (Module, locality) A >⊥∗-substitution for K B and a signature
Sig is a substitution σ over
K̃ B \ Sig6 that maps each concept name on > or ⊥, and each role name on the
universal role or the empty role. A strong axiom α is σ-local iff σ(α) is a tautology.
A DI C vn D is σ-local iff C v D is σ-local. A set of axioms is σ-local if all of its
members are. A (syntactic) module of K B with respect to Sig is a set M ⊆ K B such
that K B \M is σ-local for some >⊥∗-substitution σ for K B and M̃ ∪ Sig .

Let ModDI(Sig ,K B) be the variant of the algorithm
>⊥∗-Mod(Sig ,K B) where the locality condition in line 15 is replaced by the one in
Def. 4.2.1 (that applies to DIs as well). Using the original correctness argument for
>⊥∗-Mod(Sig ,K B), it is easy to see that ModDI(Sig ,K B) is a syntactic module of
K B w.r.t. Sig according to Def. 4.2.1.

If K B contains no DIs, then Def. 4.2.1 is a rephrasing of standard syntactic notions of
modules and locality7, so

for all queries α such that α̃ ⊆ Sig , M |= α iff K B |= α. (4.1)

However, proving that >⊥∗-ModDI(Sig ,K B) is correct for full DL N is far from ob-
vious: removing axioms from K B using module extractors is incorrect under most
nonmonotonic semantics (including circumscription, default logic and autoepistemic
logic). The reason is that nonmonotonic inferences are more powerful than classical

5For efficiency, this test is approximated by a matching with a small set of templates.
6Both X̃ and sig(X) denote the signature of X.
7In particular, our minimal modules correspond to the>⊥∗-modules of [Sattler et al., 2009].
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inferences, and the syntactic locality criterions illustrated above fail to capture some of
the dependencies between different symbols.

Example 4.2.2 Given the knowledge base {> v A t B} and Sig = {A}, the module
extractor returns an empty module (because by setting B = > the only axiom in the
KB becomes a tautology). The circumscription of this KB, assuming that both A and
B are minimized, does not entail A v ⊥, while the circumscription of the empty module
entails it.

Example 4.2.3 Under the stable model semantics, the normal logic program

p ← ¬p, q

q ← ¬r

r ← ¬q

entails r, both credulously and skeptically. The module extractor, given Sig = {r},
removes the first rule (that becomes a tautology by setting p =true). The module does
not entail r skeptically anymore, and erroneously entails q credulously. Analogues of
this example apply to default and autoepistemic logic, using the usual translations.
They can be adapted to the extension of DL based on MKNF [Donini et al., 2002] and
default DL [Baader and Hollunder, 1995b].

Now we illustrate the correct way of applying >⊥∗-ModDI to a DL N K B = S ∪D

and a query α (subsumption or assertion). Let Σ be the union of α̃ and the set of
normality concepts occurring in K B. Let

M0 = ModDI(Σ,K B ∪NΣ) ,

where NΣ abbreviates {NC v C | NC ∈ Σ}. Let

M = (K BΣ
0 ∩M0) ∪ {δNC | δ ∈ D ∩M0, NC ∈ Σ}.

Example 4.2.4 Let K B be the knowledge base:

A v B (4.2)

A vn D u E (4.3)

B u C v A (4.4)

F vn A (4.5)

and α the query NA v D. M0 is calculated as follows: first, since no normality concept
occurs in K B, Σ is equal to the signature α̃ = {NA,D}.
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Algorithm 1 calls first the function ⊥-Mod(K B ∪NΣ,Σ). Notice that by replacing
C and F with ⊥, axioms (4.4) and (4.5) becomes a tautology. Consequently, it is easy
to see that the returned knowledge base is K B′ = {(4.2), (4.3), NA v A}.

Then, >-Mod is called on K B′ and Σ. Now, replacing B with > makes A v B a
tautology, so the resulting knowledge base is K B′′ = {(4.3),NA v A}. It is easy to
see that a fix point is reached and hence K B′′ is returned.

We shall prove that (K B ∩M0)Σ can be used in place of K BΣ to answer query α.
This saves the cost of processing K BΣ

all \M , that usually is even larger than K B \M0

because for each DI δ 6∈M0, all its translations δNC (NC ∈ Σ) are removed from M .

Lemma 4.2.5 M is a module of K BΣ
all w.r.t. Σ.

Proof. Since ModDI(·, ·) returns modules, (K B ∪NΣ) \M0 is σ-local, for some >⊥∗-
substitution σ for K B∪NΣ and M̃0∪Σ. So, for all axioms β in K BΣ

0 \M , β is σ-local
(as K BΣ

0 \M ⊆ (K B ∪NΣ) \M0). Moreover, for all β = δND ∈ {δNC | δ ∈ D , NC ∈
Σ} \M , it must hold δ ∈ D \M0 (by construction of M ), and hence δ is σ-local. Now
note that if σ(E v F ) is a tautology, then also σ(NDuE v F ) is a tautology, therefore
the σ-locality of δ implies the σ-locality of δND. It follows that all β in K BΣ

all \M are
σ-local.

Finally, note that sig(K BΣ
all) = sig(K B ∪NΣ) and M̃ ∪Σ = M̃0 ∪Σ, therefore σ

is also a >⊥∗-substitution for K BΣ
all and M ∪ Σ. It follows immediately that M is a

module of K BΣ
all w.r.t. Σ.

Lemma 4.2.6 If M is a module of K B w.r.t. a signature Sig and K B′ ⊆ K B, then
K B′ ∩M is a module of K B′ w.r.t. Sig.

Proof. If M is a module of K B w.r.t. Sig , then K B \M is σ-local for some >⊥∗-
substitution σ for K B and M̃ ∪ Sig . Let σ′ be the restriction of σ to the symbols
in

K̃ B
′
\ (M̃ ∪ Sig) = K̃ B

′
\ (sig(K B′ ∩M ) ∪ Sig).

Clearly, σ′ is a >⊥∗-substitution for K B′ and K̃ B
′
\(sig(K B′∩M )∪Sig). Moreover,

for all β ∈ K B′ \M , σ(β) = σ′(β), by construction, so K B′ \M is σ′-local. Then
K B′ ∩M is a syntactic module of K B′ w.r.t. Sig .

The relationship between (K B ∩M0)Σ and K BΣ is:

Lemma 4.2.7 K BΣ ∩M ⊆ (K B ∩M0)Σ ⊆ K BΣ .
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Proof. It suffices to prove by induction that for all i = 0, 1, . . . , |D |,

K BΣ
i ∩M ⊆ (K B ∩M0)Σ

i ⊆ K BΣ
i .

Here the sets (K B ∩M0)Σ
i are defined by replacing S with S ∩M0, and K B with

K B∩M0 in (3.24) and (3.25), while δi ranges over all the DIs in K B, not just D∩M0.
This formulation facilitates the comparison with K BΣ. By the condition in (3.25) ,
for all δi 6∈M0, (K B ∩M0)Σ

i = (K B ∩M0)Σ
i−1, so this def. is equivalent to building

(K B ∩M0)Σ using only D ∩M0.

Base case (i = 0):

K BΣ
0 ∩M = (S ∪NΣ) ∩M ⊆ (S ∩M ) ∪NΣ =

= (S ∩M0) ∪NΣ = (K B ∩M0)Σ
0 ⊆

S ∪NΣ = K BΣ
0 .

Induction step (i > 0): By induction hypothesis (IH)

K BΣ
i−1 ∩M ⊆ (K B ∩M0)Σ

i−1 ⊆ K BΣ
i−1 .

First suppose that δi 6∈ M0 (and hence for all NC, δNC
i 6∈ M ). Then K BΣ

i ∩M =

K BΣ
i−1 ∩M , (K B ∩M0)Σ

i = (K B ∩M0)Σ
i−1, and (by def.) K BΣ

i−1 ⊆ K BΣ
i . The

Lemma follows by IH.

Next assume that δi ∈ M0 and let NC be any normality concept in Σ. Note that
δNC
i ∈M . By IH,

(K BΣ
i−1 ∩M ) ↓≺δi ∪{δ

NC
i } ⊆ (K B ∩M0)Σ

i−1 ↓≺δi ∪{δ
NC
i } ⊆

⊆ K BΣ
i−1 ↓≺δi ∪{δ

NC
i } .

The leftmost term equals (K BΣ
i−1 ↓≺δi ∪{δ

NC
i }) ∩M ⊆ K BΣ

all , so by Lemmas 4.2.12
and 4.2.9 and (4.6), the leftmost term entails NC v ⊥ iff the rightmost does. It follows
that the middle term (K B ∩M0)Σ

i−1 ↓≺δi ∪{δ
NC
i } entails NC v ⊥ iff the other two

terms do. Then, δNC
i is added to (K B ∩M0)Σ

i iff δNC
i belongs to K BΣ

i ∩M and
K BΣ

i , and the Lemma follows using the IH.

As a consequence, the modularized construction is correct:

Theorem 4.2.8 (K B ∩M0)Σ |= α iff K BΣ |= α.
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CI-to-DI 05% 10% 15% 20% 25%

GO

naive 12.35 24.12 34.47 41.96 49.92
mod 00.26 00.28 00.29 00.32 00.34

FLY

naive 4.22 7.97 11.95 14.42 17.46
mod 00.13 00.15 00.17 00.19 00.21

Table 4.2. Impact of |D | on performance (sec) – DA rate = 15%

Synthetic-DI 05% 10% 15% 20% 25%

GO

naive 13.15 27.77 37.47 46.11 57.14
mod 0.48 0.83 1.47 2.76 4.66

FLY

naive 4.86 9.86 14.75 19.86 24.27
mod 0.40 1.19 2.51 4.61 7.25

Table 4.3. Impact of |D | on performance (sec) – DA rate = 15%

Proof. By Lemmas 4.2.12 and 4.2.9, and (4.6), K BΣ |= α iff K BΣ ∩M |= α. The
Theorem then follows by Lemma 4.2.7.

Experimental Analysis

In the following we analyse the performance of the module extraction for DL N

described in Section 4.2.1 according the experimental setup described in Section 4.1.4.
The test suites adopted are those introduced in Section 4.1.2 because they have been
proved to be nontrivial w.r.t. a number of structural parameters, including non classical
features like exception levels and the amount of overriding.

Tables 4.2 and 4.3 show the impact of the number of DIs on response time for the
two test suites, as DI rate ranges from 5% to 25%. The method Mod is slightly less
effective in the second suite probably due to some random defaults connecting unrelated
parts of the ontology, thereby hindering module extraction. In particular, Mod is on
average approximately 87 times faster (max. speedup 125) in the first suite, and 28 times
faster in the second (max. speedup 35). The additional conflicts induced by injected
disjointness axioms have moderate effects on response time (cf. Table 4.4 and 4.5 ).
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DA 05% 10% 15% 20% 25% 30%

GO

naive 27.38 27.52 34.47 38.57 36.21 42.37
mod 00.28 00.29 00.29 00.30 00.31 00.32

FLY

naive 10.31 11.46 11.95 12.13 12.65 13.79
mod 00.16 00.17 00.17 00.18 00.19 00.20

Table 4.4. Impact of DAs on performance (sec) – CI-to-DI-rate = 15%

DA 05% 10% 15% 20% 25% 30%

GO

naive 33.34 35.63 37.47 42.05 43.03 47.03
mod 1.26 1.35 1.47 1.51 1.60 1.66

FLY

naive 12.93 14.01 14.76 15.94 16.60 17.69
mod 2.23 2.50 2.52 2.61 2.82 2.98

Table 4.5. Impact of DAs on performance (sec) – Synthetic-DI-rate = 15%

Mod’s average response time across both test suites is 0.89 sec. for Gene Ontology and
1.41 sec. for Fly Anatomy, and the longest Mod response time has been 1.66 sec. and
2.98 sec. respectively. As a term of comparison, a single classification of the original
GO and FLY takes approximately 0.4 and 0.3 seconds.

The module extractor Mod has been assessed on the nonmonotonic versions of FLY
and GO extended with random ABoxes as well. As expected, Mod is more effective
when the ABox is less “interconnected”: role assertions tend to introduce more depen-
dencies, because they involve pairs of individuals; so Mod tends to be less effective as
the percentage of role assertions increases. Accordingly, effectiveness increases as the
ratio between the number of individuals and the number of assertions increases. The
experimental results reported in Figures 4.13 and 4.14 confirm the above intuitions.

The above test sets are N-free. We carried out a third set of experiments on the non
N-free suites as well. The response times of the naive algorithm and Mod are listed in
Table 4.6 and 4.7 for increasing values of |Σ| (that is directly related to the amount of
normality concepts occurring in K B). In all cases, the naive algorithm exceeded the
timeout. While the first test suite (CI-to-DI), Mod remains below 1 minute in all but
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ABox role individuals
size assrt. ∼ 5000 ∼ 10000 ∼ 20000

∼5000 10% 82% (17.10) 85% (15.32) 85% (14.27)
20% 78% (21.87) 84% (20.26) 82% (20.19)
30% 79% (23.40) 77% (2911) 76% (31.47)

∼10000 10% 76% (29.60) 72% (41.08) 76% (36.93)
20% 65% (43.97) 60% (56.32) 68% (49.14)
30% 61% (50.58) 59% (60.13) 60% (67.29)

∼20000 10% 41% (78.78) 40% (75.94) 39% (75.88)
20% 40% (80.80) 39% (77.20) 34% (83.76)
30% 30% (97.03) 37% (81.21) 31% (89.29)

Figure 4.13. Assessment of the module extractor in GO with non-empty ABox. The
numbers in parentheses near the speedups are the average reasoning times using Mod (in
sec.)

|Σ| 50 100 150 200 250

CI-to-DI

naive >30 min. >30 min. >30 min. >30 min. >30 min.
mod 2.70 8.59 16.95 28.16 42.04

Synthetic-DI

naive >30 min. >30 min. >30 min. >30 min. >30 min.
mod 186.5 414.5 696.6 1011.7 1411.8

Table 4.6. Impact of normal roles values (sec) on Gene Ontology – DI rate =
25% DA rate = 15%

one case for both ontologies; in the second suite (Synthetic-DI) it ranges between 186
seconds until exceeding 30 minutes. The reason of the higher computation times in the
second suite is that the extracted modules are significantly larger, probably due to the
random dependencies between concept names introduced by fully synthetic DIs.

DL N ’s module extractor proved to be very effective in speeding up nonmonotonic
reasoning. There are still some limitations, though. First, the underlying classical
⊥-module extractors in practice are not very effective in the presence of nonempty
ABoxes; this affects also the performance of the more general >⊥∗-module extraction
approach (see the next section for a definition). This phenomenon is amplified in the
nonmonotonic description logic DL N, where reasoning requires repeated incremental
classifications of the knowledge base. Furthermore, DL N ’s module extractor proved
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ABox role individuals
size assrt. ∼ 2000 ∼ 4000 ∼ 8000

∼2000 10% 80% (05.49) 83% (05.28) 83% (05.32)
20% 79% (06.34) 79% (06.75) 78% (06.94)
30% 75% (07.20) 76% (07.75) 75% (08.08)

∼4000 10% 63% (13.19) 69% (13.94) 70% (14.93)
20% 63% (13.93) 67% (14.77) 70% (15.86)
30% 67% (13.49) 71% (15.10) 81% (17.16)

∼8000 10% 68% (14.96) 69% (24.89) 53% (32.71)
20% 67% (15.98) 67% (25.09) 42% (35.05)
30% 72% (17.16) 71% (26.34) 34% (36.48)

Figure 4.14. Assessment of the module extractor in FLY with non-empty ABox. The
numbers in parentheses near the speedups are the average reasoning times using Mod (in
sec.)

|Σ| 50 100 150 200 250

CI-to-DI

naive >30 min. >30 min. >30 min. >30 min. >30 min.
mod 10.44 23.44 42.77 64.57 88.05

Synthetic-DI

naive >30 min. >30 min. >30 min. >30 min. >30 min.
mod 288.0 619.6 1020.0 1478.2 >30 min.

Table 4.7. Impact of normal roles values (sec) on Fly Anatomy – DI rate = 25%
DA rate = 15%

to be less effective for KBs that contain many explicit occurrences of the normality
concepts.

4.2.2 Iterated Module Extraction

In the previous section, it has been proved that all the queries whose signature is
contained in Σ can be correctly answered with the translation (K B∩M0)Σ, where M0

is a >⊥∗-module of K B ∪ {NC v C | NC ∈ Σ} w.r.t. Σ. Note that, by definition,
Σ contains all the NC ∈ sig(K B), as prescribed by the definition of K BΣ. Here we
reduce the size of Σ and the number of normality concepts to be processed by iterating
module extraction, and progressively discarding the normality concepts that turn out
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to be irrelevant to the given query.

First we recall the generalization to DL N of modules and locality. Basically, DIs
are treated like classical inclusions (cf. Definition 4.2.1).

Let ModDI(Sig ,K B) be the variant of >⊥∗-Mod(Sig ,K B) where the x-locality
test in line 15 is replaced with the corresponding σ-locality condition of Def. 4.2.1 (so as
to cover DIs). As argued, ModDI(Sig ,K B) returns a syntactic module of K B w.r.t.
Sig according to Def. 4.2.1. Moreover, if K B contains no DIs (i.e. it is a classical
knowledge base), then for all queries α such that α̃ ⊆ Sig ,

ModDI(Sig,K B) |= α iff K B |= α. (4.6)

We are finally ready to define the iterated module extractor. Given a query α (which
may be a subsumption or an assertion), and a canonical knowledge base K B = S ∪D ,
Nsig(α,K B) means the union of α̃ and all the normality concepts occurring in K B.
Formally, we have

Nsig(α,K B) = α̃ ∪ {NC | NC occurs in D} ,

Moreover, for a certain signature Sig, let

Ax(Sig) = {NC v C | NC ∈ Sig} .

Now, define the sequence of modules M [0],M [1], ... by letting

M [0] = K B ∪Ax(Nsig(α,K B))

and, for i > 0

M [i+ 1] = ModDI(Nsig(α,M [i]),M [i]) .

Finally, let M ∗ =
⋂
i M [i] and Sig∗ =

⋂
i Nsig(α,M [i]). We shall prove that (K B ∩

M ∗)Sig
∗
can be used in place of K BΣ to answer query α. This saves the cost of

processing K BΣ
all \M1, where

M1 = (K BΣ
0 ∩M ∗) ∪ {δNC | δ ∈ D ∩M ∗, NC ∈ Sig∗} (4.7)

A comparison of the new module (K B∩M ∗)Sig
∗
with the previous one, (K B∩M0)Σ,

shows that not only M ∗ is generally smaller than M0 (i.e. the translation applies to a
smaller knowledge base); also the set of normality concepts to be processed is smaller,
since Sig∗ ⊆ Σ. So the translation’s size reduction can be quadratic, in the best cases.
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Now we have to prove the correctness of iterated module extraction. Some auxiliary
lemmas are needed.

Lemma 4.2.9 If T is a module of K B w.r.t. a signature Σ and K B′ ⊆ K B, then
K B′ ∩ T is a module of K B′ w.r.t. Σ.

Proof. If T is a module of K B w.r.t. Σ, then K B \ T is σ-local for some >⊥∗-
substitution σ for K B and T̃ ∪ Σ. Let σ′ be the restriction of σ to the symbols
in

K̃ B
′
\ (T̃ ∪ Σ) = K̃ B

′
\ (sig(K B′ ∩ T ) ∪ Σ).

Clearly, σ′ is a >⊥∗-substitution for K B′ and K̃ B
′
\ (sig(K B′ ∩T )∪Σ). Moreover,

for all β ∈ K B′ \ T , σ(β) = σ′(β), by construction, so K B′ \ T is σ′-local. Then
K B′ ∩ T is a syntactic module of K B′ w.r.t. Σ.

Lemma 4.2.10 If T is a module of K B w.r.t. a signature Σ and Σ′ ⊆ Σ, then T is
a module of K B w.r.t. Σ′, too.

Proof. Let σ be a >⊥∗-substitution for K B for which K B \ T is σ-local w.r.t
T̃ ∪ Σ. Let σ′ be the extension of σ to the symbols in K̃ B \ (T̃ ∪ Σ′). Note that
σ′ differs form σ on the symbols in Σ \ Σ′, that can either be set to > or ⊥. Clearly,
σ′ is a >⊥∗-substitution for K B and K̃ B \ (sig(K B ∩ T ) ∪ Σ′). Now, consider all
β ∈ K B \ T . If β̃ ∩ (Σ \ Σ′) = ∅, σ(β) = σ′(β), by construction, so β is σ′-local.
Otherwise, β̃ ∩ (Σ \Σ′) 6= ∅ and β is σ-local w.r.t T̃ ∪Σ. By definition of locality, σ(β)

is a tautology for all possible interpretations of the symbols in Σ. In particular, β is
still a tautology interpreting the symbols in Σ \ Σ′ as either > or ⊥, so β is σ′-local.
Then K B′ ∩M is a syntactic module of K B′ w.r.t. Σ.

Lemma 4.2.11 M ∗ is a module of K B ∪Ax(Σ) w.r.t. Sig∗.

Proof. Observe that, being K B finite, there exist an n ≥ 0 such that for all m >

n, M [m] = M [n]. Furthermore, for all i = 0, ..., n we have M [i + 1] ⊆ M [i], by
construction (recall that the locality notion is monotonic). By definition of Nsig(α, ·)
we also have that α̃ ⊆ Nsig(α,M [i+ 1]) ⊆ Nsig(α,M [i]). It follows that

M ∗ =
⋂
i M [i] = M [n] (4.8)

Sig∗ =
⋂
i Nsig(α,M [i]) = Nsig(α,M [n]). (4.9)

Claim 1. For all i > 0, M [i] is a module of M [0] w.r.t. Nsig(α,M [i]).
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Proof of Claim 1. We prove the claim by induction.
Base case (i = 1):

M [1] = ModDI(Nsig(α,M [1]),M [0])

By construction M [1] = ModDI(Nsig(α,M [0]),M [0]). Since ModDI(·, ·) returns mod-
ules and Nsig(α,M [1]) ⊆ Nsig(α,M [0]), the case follows from Lemma 4.2.10.

Induction step (i > 1): By induction hypothesis (IH)

M [i] = ModDI(Nsig(α,M [i]),M [0]).

If M [i] is a module of M [0] w.r.t. Nsig(α,M [i]), then M [0] \M [i] is σ-local for some
>⊥∗-substitution σ for M [0] and Nsig(α,M [i]) ∪ M̃ [i] = M̃ [i] ∪ α̃. M [i + 1] is a
module of M [i] w.r.t. Nsig(α,M [i]), by construction, so M [i] \M [i+ 1] is σ′-local for
some >⊥∗-substitution σ′ for M [i] and Nsig(α,M [i]) ∪ M̃ [i+ 1] = M̃ [i+ 1] ∪ α̃. Note
also, that the containment relation between the modules implies:

(M [0] \M [i]) ∪ (M [i] \M [i+ 1]) = M [0] \M [i+ 1]

Let σ̄ be a substitution such that: (i) for all C,R 6∈ M̃ [i], σ̄(C) = σ(C) (resp. σ̄(R) =

σ(R)); (ii) for all C,R ∈ sig(M [i]\M [i+1]), σ̄(C) = σ′(C) (resp. σ̄(R) = σ′(R). Note,
that the substitution σ̄ is well defined as σ and σ′ domains have no elements in common
(σ′ is restricted to the symbols in M [i] \ {M [i+ 1]∪α}, while σ to M [0] \ {M [i]∪α}),
so their composition always exists. It is easy to see that for all β ∈ (M [0] \M [i]) ∪
(M [i] \M [i + 1]), β is σ̄-local for M [0] and Nsig(α,M [i + 1]) ∪ M̃ [i + 1]. The claim
follows using the IH.
The lemma is a direct consequence of (4.8), (4.9) and Claim 1.

Lemma 4.2.12 M1 is a module of K BΣ
all w.r.t. Sig

∗.

Proof. By Lemma 4.2.11, (K B ∪Ax(Σ)) \M ∗ is σ-local, for some >⊥∗-substitution
σ for K B ∪ Ax(Σ) and M̃ ∗ ∪ Sig∗. So, for all axioms β in K BΣ

0 \M1, β is σ-local
(as K BΣ

0 \M1 ⊆ (K B ∪ Ax(Σ)) \M ∗). Now, let β = δND 6∈ M1, where δ ∈ D and
ND ∈ Σ. We have to consider two cases (w.r.t. the def. of M1, see (4.7)):

1. δ ∈ D\M ∗, and hence δ is σ-local. Note that if σ(E v F ) is a tautology, then also
σ(ND uE v F ) is a tautology, therefore the σ-locality of δ implies the σ-locality
of all δND.

2. δ ∈ D∩M ∗ and ND ∈ Σ\Sig∗. It is easy to see that (Σ\Sig∗)∩(M̃ ∗∪Sig∗) = ∅
follows by construction, so σ(ND) = ⊥8 and δND is σ-local.

8Algorithm 1 assigns first ⊥ to the symbols not occurring in Sig∗.
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It follows that all β in K BΣ
all \M1 are σ-local. Finally, note that sig(K BΣ

all) =

sig(K B ∪Ax(Σ)) and M̃1 ∪ Sig∗ = M̃ ∗ ∪ Sig∗, therefore σ is also a >⊥∗-substitution
for K BΣ

all and M̃1 ∪Sig∗. It follows immediately that M1 is a module of K BΣ
all w.r.t.

Sig∗.

The relationship between (K B ∩M ∗)Sig
∗
and K BΣ is:

Lemma 4.2.13 K BΣ ∩M1 ⊆ (K B ∩M ∗)Sig
∗
⊆ K BΣ .

Proof. Redefine the steps (K B ∩M ∗)Sig
∗

i of the classical translation by replacing S

with S ∩M ∗, and K B with K B ∩M ∗ in (3.24) and (3.25), while δi ranges over all
the DIs in K B, not just D ∩M ∗. This formulation is equivalent to the original one
and facilitates the comparison with K BΣ.

Now it suffices to prove by induction that for all i = 0, 1, . . . , |D |,

K BΣ
i ∩M1 ⊆ (K B ∩M ∗)Sig

∗

i ⊆ K BΣ
i .

Base case (i = 0): Similar to the corresponding case of Lemma 4.2.7.

Induction step (i > 0): By induction hypothesis (IH)

K BΣ
i−1 ∩M1 ⊆ (K B ∩M ∗)Sig

∗

i−1 ⊆ K BΣ
i−1 .

First suppose that δi 6∈ M ∗ (and hence for all NC, δNC
i 6∈ M1). Then K BΣ

i ∩M1 =

K BΣ
i−1 ∩M1, (K B ∩M ∗)Sig

∗

i = (K B ∩M ∗)Sig
∗

i−1 , and (by def.) K BΣ
i−1 ⊆ K BΣ

i .
The Lemma follows by IH.

Next assume that δi ∈M ∗ and let Fi = {δND
i | ND ∈ Sig∗} and Gi = {δND

i | ND ∈
Σ \Sig∗}. By construction, K BΣ

i = K BΣ
i−1 ∪ (K BΣ

i ∩Fi)∪ (K BΣ
i ∩Gi). Note that

Gi ∩M1 = ∅ and Fi ⊆ M1, by def. of M1. Consequently, K BΣ
i ∩M1 = (K BΣ

i−1 ∩
M1) ∪ (K BΣ

i ∩Fi). Now, consider (K B ∩M ∗)Sig
∗

i = (K B ∩M ∗)Sig
∗

i−1 ∪ ((K B ∩
M ∗)Sig

∗

i ∩Fi) ∪ ((K B ∩M ∗)Sig
∗

i ∩ Gi). It is easy to see that also Gi ∩ (M ∗)Sig
∗

i = ∅
(in particular, for all ND ∈ Σ \Sig∗ we have σ(ND) = ⊥ and δND is σ-local), therefore
(K B∩M ∗)Sig

∗

i = (K B∩M ∗)Sig
∗

i−1 ∪((K B∩M ∗)Sig
∗

i ∩Fi). By IH for each δND ∈ Fi

we have:

(K BΣ
i−1 ∩M1) ↓≺δi ∪{δ

ND
i } ⊆

⊆ (K B ∩M ∗)Sig
∗

i−1 ↓≺δi ∪{δ
ND
i } ⊆

⊆ K BΣ
i−1 ↓≺δi ∪{δ

ND
i } .
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The leftmost term equals (K BΣ
i−1 ↓≺δi ∪{δ

ND
i })∩M1 ⊆ K BΣ

all , so by Lemmas 4.2.12
and 4.2.9 and (4.6), the leftmost term entails ND v ⊥ iff the rightmost does. It follows
that the middle term (K B ∩M ∗)Sig

∗

i−1 ↓≺δi ∪{δ
ND
i } entails ND v ⊥ iff the other two

terms do. Then, (K B ∩M ∗)Sig
∗

i ∩Fi = K BΣ
i ∩Fi. The Lemma follows using the

IH.

As a consequence, the modularized construction is correct:

Theorem 4.2.14 If sig(α) ⊆ Sig∗, then (K B ∩M ∗)Sig
∗
|= α iff K BΣ |= α.

Proof. By Lemmas 4.2.12 and 4.2.9, K BΣ ∩M1 is a module of K BΣ w.r.t. Sig∗.
Then K BΣ ∩M1 |= α iff K BΣ |= α. The theorem then follows from Lemma 4.2.7
and the monotonicity of |=.

Experimental Analysis

In the following we analyse the performance of the iterated module extraction for DL N

described in Section 4.2.2 according to the experimental setup described in Section 4.1.4.
Note that the first tests reported in Tables 4.2, 4.3, 4.4 and 4.5, and Figures 4.13
and 4.14 are N-free (normality concepts occur only in the queries), therefore the iterated
module extractor (here denoted by mod∗) yields the same result as Mod, since mod∗

immediately reaches a fix-point.
The iterative module extractor mod∗ shows its benefits in the test suites, illustrated

in Figures 4.15 and 4.16, where randomly selected DIs are modified by turning the
concepts C in the scope of role restrictions into the corresponding normality concepts
NC9. In these test cases, the size of Σ may grow up to 250 normality concepts. Since
for each DI δ the translation of K B must process an inclusion δNC for each NC ∈ Σ,
the computational cost of the naive translation grows significantly with |Σ|. The old
module extractor, mod, includes all of Σ in the relevant signature, so the extracted
modules are quite large and the computation time is considerably slower, compared to
the N-free examples in Tables 4.2 and 4.3. Figure 4.12 shows also that with mod∗,
DL N reasoning is more than one order of magnitude faster than using mod. This
remarkable result can be explained by the twofold benefits of reducing the size of Σ:
First, whenever some NC is eliminated from Σ, mod∗ can further reduce the module in
the next iterations. Moreover, as explained above, a smaller Σ reduces the number of
inclusions δNC processed in the translation (for each fixed DI δ included in the module).

9The explicit use of normality concepts in K B is needed precisely to restrict role range to
prototypical individuals, cf. Section 3.1.6.
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|Σ| 50 100 150 200 250

GO – CI-to-DI

mod 2.70 8.59 16.95 28.16 42.04
mod* 0.45 0.45 0.46 0.46 0.46

GO – Synthetic-DI

mod 186.5 414.5 696.6 1011.7 1411.8
mod* 8.18 10.45 15.29 20.45 28.30

Figure 4.15. Non N-free tests. Impact of normal roles ranges (sec) – DI rate =
25% DA rate = 15%.

|Σ| 50 100 150 200 250

FLY – CI-to-DI

mod 10.44 23.44 42.77 64.57 88.05
mod* 0.47 0.58 0.66 0.73 0.99

FLY – Synthetic-DI

mod 288.0 619.6 1020.0 1478.2 -
mod* 22.4 34.0 47.8 63.5 83.5

Figure 4.16. Non N-free tests. Impact of normal roles ranges (sec) – DI rate =
25% DA rate = 15%.
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For a discussion of additional benefits provided by mod∗, e.g., by eliminating most
normality concepts, it may enable the application of a new optimization technique,
please refer to Section 4.3.

4.2.3 A Module Extractor for ABoxes

The module extractor based on ⊥-locality (⊥-Mod, Algorithm 1) may be signifi-
cantly less effective when applied to (classical) knowledge bases with nonempty ABoxes
(cf. evidence has been provided in Section 4.2.1). The reason is that replacing an
assertion’s predicate with ⊥ (e.g. replacing A(c) with ⊥(c)) always produces an incon-
sistent axiom, therefore the module’s signature must contain all the predicate symbols
occurring in the ABox. In turn, this weakness of ⊥-Mod reduces the effectiveness of the
overall module extractor >⊥∗-Mod.

In this section we refine ⊥-Mod to address this problem. We call the resulting
module extractor conditional because it is correct under the mild assumption that K B

is consistent; if not, the fall-back solution is the original ⊥-Mod.

The refined module extractor, called ⊥-cMod, is recursively defined in terms of
⊥-Mod. For all classical K B with TBox T and ABox A , and all signatures Sig, let:

M0 = A0 = ∅

Mi+1 = ⊥-Mod(sig(Mi ∪Ai) ∪ Sig,T )

Ai+1 =
⋃
j>0 Ai+1,j , where

Ai+1,0 = ∅

Ai+1,j+1 = {α ∈ A | sig(α) ∩ sig(Mi+1 ∪Ai+1,j) 6= ∅} .

Finally, let ⊥-cMod(Sig,K B) =
⋃
i>0 Mi ∪Ai.

Note that at each step i, ⊥-Mod is applied only to the TBox, so the ABox does
not prevent axioms from being removed from the current module Mi. Then the ABox
is inspected to extend the module and its signature with the assertions that are syn-
tactically connected to Mi (which are gathered by the sequence 〈Ai,j〉j). Clearly the
non-decreasing sequences 〈Mi〉i and 〈Ai〉i reach a fix-point after a finite number of
steps, because K B is finite.
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Example 4.2.15 Consider the knowledge base K B0

A v B A(c), R(c, d)

B′ v C B′(d)

E v F E(a) .

Given Sig = {A}, we have

M1 = {A v B} A1 = {A(c), R(c, d), B′(d)}

M2 = M1 ∪ {B′ v C} A2 = A1

M3 = M2 A3 = A2 .

Then ⊥-cMod(Sig,K B0) = M3∪A3 = K B0\{E v F,E(a)}. Note that the standard
module extractor ⊥-Mod returns the entire K B0, because E cannot be consistently
replaced with ⊥ due to assertion E(a).

If K B is consistent and nominal-free, then ⊥-cMod(Sig,K B) enjoys the funda-
mental property of modules, that guarantees their completeness w.r.t. the queries that
can be formulated with Sig:

Theorem 4.2.16 Let K B be a consistent S ROI Q knowledge base with no nomi-
nals. Then each model of ⊥-cMod(Sig,K B) can be extended to a model of K B.

Proof. Let M = ⊥-cMod(Sig,K B), and let MT and MA denote M ’s TBox and
ABox, respectively. We may assume w.l.o.g. that K B does not contain the universal
role (cf. [Horrocks et al., 2006]).

Since K B is consistent, there exists a model I = 〈∆I , ·I 〉 of K B\MA. Note that
K B \MA contains none of the individual constants in M , because (i) K B is nominal-
free, and (ii) if some assertion α contains a constant c ∈ sig(MA), then α ∈ MA, by
definition of Ai+1,j+1.

Next, let J = 〈∆J , ·J 〉 be a model of M . We may assume w.l.o.g that the domains
of I and J are disjoint (∆I ∩∆J = ∅).

Claim: for all α ∈ T \MT (where T is K B’s TBox), α is ⊥-local w.r.t. Sig.
To prove the claim, note that for some index k, M = Mk ∪ Ak, and Mk = Mk+1.

By the properties of ⊥-Mod, it follows that all the α ∈ T \Mk are ⊥-local w.r.t. a
superset of Sig, hence w.r.t. Sig alone. Since T \Mk = T \MT , the claim immediately
follows.
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By the claim, J can be extended to a model J ′ of T ∪MA simply by setting
NJ ′ = ∅ for all concept and role names N in sig(K B) \ Sig.

Finally, it is easy to verify that the union K of I and J ′ is a model of K B, where
K is defined as follows:

∆K = ∆I ∪∆J ′

NK = NI ∪NJ ′ (for all predicate names N)

aK =


aJ ′ if individual constant a occurs in

M

aI otherwise.

The correctness of ⊥-cMod immediately follows:

Corollary 4.2.17 Let K B be a consistent S ROI Q knowledge base with no nomi-
nals. Then for all subsumptions and assertions α such that sig(α) ⊆ Sig,

K B |= α if and only if ⊥-cMod(Sig,K B) |= α .

The same idea can be applied to some K B with nominals. The prerequisite is that
the individuals in the module and those in the rest of the knowledge base should be
logically unrelated. In order to make this test practically feasible, it is approximated
by means of syntactic locality.

Theorem 4.2.18 Let K B be a consistent S ROI Q knowledge base, and let M =

⊥-cMod(Sig,K B). If no individual constant occurs both in M and in M ′ = >⊥∗-Mod(∅,K B\
MA) (where MA is M ’s ABox), then each model of ⊥-cMod(Sig,K B) can be extended
to a model of K B, and

K B |= α if and only if ⊥-cMod(Sig,K B) |= α .

Proof. Let T and A denote K B’s TBox and ABox, respectively. Let J be a model
of M and J ′ its extension to T ∪MA (cf. proof of Theorem 4.2.16).

Let I be a model of M ′ (we assume w.l.o.g. that ∆I∩∆J = ∅), and let σ be a >⊥∗-
substitution for K B and the signature of M ′ that makes all axioms in (K B\MA)\M ′
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σ-local (σ exists by the properties of >⊥∗-Mod). Extend I to I ′ as follows:

NI ′ =

 NI if predicate N occurs in M ′

σ(N)I otherwise

aI ′ =


aI if constant a occurs in M ′

x if a occurs neither in M nor in
M ′

where x is any member of ∆I . Finally, let K be the union of I ′ and J ′ (cf. proof
of Theorem 4.2.16). Since M and M ′ have no individual constants in common, K is
well defined. The reader may easily verify that K is a model of K B. This proves that
each model J of M can be extended to a model K of K B; it follows that K B |= α

if and only if ⊥-cMod(Sig,K B) |= α .

Experimental Analysis

The conditional module extractor ⊥-cMod for nonempty ABoxes has been assessed on
the test suites obtained by adding random ABoxes to the nonmonotonic versions of FLY
and GO. As expected, ⊥-cMod is more effective when the ABox is less “interconnected”:
if a same individual occurs in many assertions, then introducing in a module any of
the predicates occurring in those assertions causes the other predicates to be included,
too, by the definition of the sequences 〈Ai,j〉j . Accordingly, effectiveness increases as
the ratio between the number of individuals and the number of assertions increases.
Moreover, role assertions tend to introduce more dependencies, because they involve
pairs of individuals; so ⊥-cMod tends to be less effective as the percentage of role
assertions increases. The experimental results reported in Figures 4.17 and 4.18 confirm
the above intuitions.

Figures 4.19 and 4.20 provide further evidence in this sense in terms of the corre-
sponding reduction in the extracted module sizes when ⊥-cMod replaces ⊥-Mod.

We have also compared ⊥-cMod and OWL API’s ⊥-Mod over 16 classical KBs from
Oxford’s OBO repository. The initial signature has been selected with the following
methods: (i) the symbols occurring in one randomly selected assertion; (ii) those in a
randomly selected inclusion; (iii) n concepts, randomly selected from those occurring
in the KB, for n = 2, 5, 10. On average, the size of the modules extracted alternating
⊥-cMod and >-Mod is 15% of the size of the modules extracted by the classical >⊥∗-
Mod.
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Speedup of mod when ⊥-cMod replaces ⊥-Mod

ABox role individuals
size assrt. ∼ 5000 ∼ 10000 ∼ 20000

∼5000 10% 69% (05.25) 77% (03.58) 78% (03.10)
20% 63% (08.01) 76% (04.92) 76% (04.82)
30% 62% (08.85) 77% (06.56) 80% (06.34)

∼10000 10% 33% (19.86) 71% (12.03) 70% (11.03)
20% 30% (30.93) 66% (19.33) 68% (15.71)
30% 31% (35.08) 65% (21.12) 71% (19.36)

∼20000 10% 19% (60.68) 20% (66.68) 24% (57.54)
20% 16% (68.06) 18% (63.64) 15% (71.31)
30% 4% (93.18) 09% (74.01) 11% (79.45)

Figure 4.17. Assessment of the conditional module extractor in GO. The numbers in
parentheses near the speedups are the average reasoning times using ⊥-cMod (in sec.)

4.3 Optimistic Computation

The construction of K BΣ repeats the concept consistency check (3.25) over knowl-
edge bases (K BΣ

i−1 ↓≺δi ∪ {δ
NC
i }) that share a (possibly large) common part K BΣ

0 ,
so incremental reasoning mechanisms help by avoiding multiple computations of the
consequences of K BΣ

0 . On the contrary, the set of δNC
j may change significantly at

each step due to the filtering ↓≺δi . This operation requires many axiom deletions, which
are less efficient than monotonically increasing changes. The optimistic algorithm in-
troduced here (Algorithm 2) computes a knowledge base K B∗ equivalent to K BΣ in
a way that tends to reduce the number of deletions.

Phase 1 optimistically assumes that the DIs with the same priority as δNC
i do not

contribute to entailing NC v ⊥ in (3.25), so they are not filtered with ↓δi in line
7.Phase 2 checks whether the DIs discarded during Phase 1 are actually overridden by
applying ↓δi (lines 14 and 21 ). DIs are processed in non-increasing priority order as
much as possible (cf. line 7) so as to exploit monotonic incremental classifications.

The following theorem shows the correctness of Algorithm 2 in case the normality
concepts do not occur in K B, but only in the queries. In Section 3.1 we have called such
knowledge bases N-free. It is worth noting that the optimistic method is not generally
correct when K B is not N-free and |Σ| > 1, yet it may still be applicable after the
module extractor if the latter removes all normality concepts from K B.

Theorem 4.3.1 If K B is N-free, then Algorithm 2’s output is equivalent to K BΣ.
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Speedup of mod when ⊥-cMod replaces ⊥-Mod

ABox role individuals
size assrt. ∼ 2000 ∼ 4000 ∼ 8000

∼2000 10% 51% (02.71) 61% (02.06) 63% (01.98)
20% 44% (03.52) 53% (03.19) 52% (03.32)
30% 37% (04.56) 45% (04.24) 48% (04.19)

∼4000 10% 31% (09.11) 57% (06.06) 69% (04.67)
20% 33% (09.33) 46% (08.04) 54% (07.22)
30% 29% (09.53) 35% (09.80) 43% (09.80)

∼8000 10% 02% (13.70) 25% (18.73) 53% (15.43)
20% 00% (16.00) 16% (20.97) 42% (20.39)
30% 02% (16.81) 11% (23.40) 34% (24.02)

Figure 4.18. Assessment of the conditional module extractor in FLY. The numbers in
parentheses near the speedups are the average reasoning times using ⊥-cMod (in sec.)

Proof. First assume that Σ is a singleton {NC}. We start by proving some invariants
of lines 6-10.

Claim 1: K BΣ |= Π.
Claim 2: If, for some j < i, δNC

j ∈ K BΣ \Π, then K BΣ |= NC v ⊥.
We prove these two claims simultaneously. Both claims hold vacuously at the first

execution of line 6. Next, assume by induction hypothesis that they hold at line 6 in
some iteration; we have to prove that they still hold at the next iteration. There are
two possibilities: First suppose that for some j < i, δNC

j ∈ K BΣ \ Π. By Claim 2,
K BΣ |= NC v ⊥. This immediately implies that Claim 2 holds also at the next
iteration. Moreover, it implies Claim 1 because all members of Π have an occurrence of
NC in the left-hand side.

We are left the case in which

for all j < i, if δNC
j ∈ K BΣ then δNC

j ∈ Π. (4.10)

If the condition in line 7 is true, then Π is not changed, so Claim 1 must hold at the
next iteration. Otherwise, by (4.10),

K BΣ
0 ∪Π′ ⊇ K BΣ

i−1 ↓δi ∪{δ
NC
i } , (4.11)

and hence NC v ⊥ is not provable in (3.25), either. It follows that δNC
i belongs to both

Π (by line 8) and K BΣ (by (3.25)). This proves Claim 1 for iteration i.
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Module size reduction when ⊥-cMod replaces ⊥-Mod

ABox role individuals
size assrt. ∼ 2000 ∼ 4000 ∼ 8000

∼2000 10% 32.14% 42.54% 40.94%
20% 19.33% 24.88% 21.77%
30% 16.20% 10.08% 9.03%

∼4000 10% 12.23% 16.52% 20.53%
20% 9.80% 14.03% 15.20%
30% 6.63% 13.52% 16.84%

∼8000 10% 8.67% 8.49% 8.60%
20% 7.98% 7.48% 7.49%
30% 3.11% 4.48% 5.37%

Figure 4.19. Assessment of the conditional module extractor in GO. The numbers
represent the average module size reduction using ⊥-cMod (in sec.)

Concerning Claim 2, first suppose that the condition in line 7 is true; then either
Claim 2 remains vacuously satisfied, or δNC

i ∈ K BΣ \ Π. The latter (plus the def. of
K BΣ and the ind. hyp. of Claim 1) implies that K BΣ

0 ∪ Π′ is entailed by K BΣ. It
follows that K BΣ |= NC v ⊥ as well, which proves Claim 2 in this case. Finally, if the
condition in line 7 is false, then at line 8 δNC

i ∈ Π. Together with (4.10), this implies
that Claim 2 holds vacuously.

Claim 3: If K BΣ |= NC v ⊥ then K B∗ |= NC v ⊥.
Suppose not (we shall derive a contradiction). The assumption and Claim 1 imply

that there must be some δNC
k ∈ K BΣ \K B∗. Let δNC

i be the one with minimal k.
Using minimality, it can be proved that K BΣ

0 ∪ Π ↓δi= K BΣ
i−1 ↓δi , so the concept

consistency tests in lines 14 and 21 (the latter instantiated with j = i and D = C)
are equivalent to the one in (3.25). But then δNC

i ∈ K BΣ iff δNC
i ∈ K B∗, which

contradicts the assumption, so Claim 3 is proved.
Claim 4: If K BΣ |= NC v ⊥ then K B∗ ≡ K BΣ.
Note that K B∗ ⊆ K BΣ

0 ∪ Π ∪ {NC v ⊥} (cf. lines 11, 15, and 22). Clearly,
K BΣ |= K BΣ

0 ∪ Π ∪ {NC v ⊥} (by def., Claim 1 and the assumption), so K BΣ |=
K B∗. We are left to prove K B∗ |= K BΣ. By Claim 3, K B∗ |= NC v ⊥, and
this inclusion in turn entails all δNC

i ∈ K BΣ (cf. (3.24)). The other members of
K BΣ are those in K BΣ

0 , by definition, and K B∗ ⊇ K BΣ
0 (line 11). It follows that

K B∗ |= K BΣ, which completes the proof of Claim 4.
Claim 5: If K BΣ 6|= NC v ⊥ then K B∗ ≡ K BΣ.
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Module size reduction when ⊥-cMod replaces ⊥-Mod

ABox role individuals
size assrt. ∼ 2000 ∼ 4000 ∼ 8000

∼2000 10% 38.12% 46.58% 48.45%
20% 22.83% 27.52% 26.94%
30% 6.92% 7.49% 9.68%

∼4000 10% 15.66% 36.28% 43.92%
20% 9.33% 21.38% 26.68%
30% 1.33% 6.73% 8.46%

∼8000 10% 1.29% 10.49% 29.98%
20% 0.04% 7.29% 18.70%
30% 0.00% 1.43% 5.89%

Figure 4.20. Assessment of the conditional module extractor in FLY. The numbers
represent the average module size reduction using ⊥-cMod (in sec.)

Suppose that K BΣ 6|= NC v ⊥. Then, by the contrapositive of Claim 2 and
Claim 1, K BΣ

0 ∪ Π ≡ K BΣ, which further implies that the concept consistency tests
in lines 14 and 21 are equivalent to the corresponding test in (3.25). Then it can be
proved that if any of these tests were true, then also K BΣ |= NC v ⊥ because, by
Π’s construction, in that case δi must be in conflict with some other DI with the same
priority. However, K BΣ |= NC v ⊥ contradicts the assumption. It follows that all
tests in lines 14 and 21 are false, so K B∗ = K BΣ

0 ∪ Π, and we have already argued
that this knowledge base is equivalent to K BΣ. This completes the proof for |Σ| = 1.

For |Σ| > 1, note that the test in lines 7 and 14 (resp. 21) do not depend on any
δNE
k such that E 6= C (resp. E 6= D). Indeed, by ⊥-locality, all such δNE

k are local w.r.t.
the signature of K B∪{NC v ⊥}, so they can be removed without changing the result
of the concept consistency test [Sattler et al., 2009]. However, after their removal, the
concept consistency tests correspond to the ones for the singleton case Σ = {NC}, which
we have already proved correct.

4.3.1 Experimental Analysis

For each parameter setting, we report the execution time of: (i) the naive DL N

reasoner; (ii) the optimistic method introduced in Sec. 4.3 (Opt); (iii) the module
extraction method of Sec. 4.2 (Mod) using the module extraction facility of the OWL
API; (iv) the sequential execution of Mod and Opt, i.e. Algorithm 2 is applied to
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Algorithm 2: Optimistic-Method
Input: K B = S ∪D , Σ
Output: a knowledge base K B∗ such that K B∗ ≡ K BΣ

// Phase 1
compute a linearization δ1, . . . , δ|D| of D1
Π := ∅ // Π collects the prototypes2

∆ := ∅ // ordered list of all discarded δNC
i3

for i = 1, 2, . . . , |D | do4
for NC ∈ Σ do5

Π′ := Π ∪ {δNC
i }6

if K BΣ
0 ∪Π′ 6|= NC v ⊥ then7

Π := Π′8
else9

append δNC
i to ∆10

// Phase 2
K B∗ = K BΣ

0 ∪Π11
while ∆ 6= ∅ do12

extract from ∆ its first element δNC
i13

if (K BΣ
0 ∪Π) ↓≺δi ∪{δ

NC
i } 6|= NC v ⊥ then14

K B∗ := K B∗ ∪ {NC v ⊥}15

extract all δNE
k with E = C from ∆16

else17
// δNC

i is actually overridden
let δ := δi18

while ∆ contains some δND
j such that δ ≺ δj do19

extract from ∆ the first such δND
j20

if (K BΣ
0 ∪Π) ↓≺δj ∪{δ

ND
j } 6|= ND v ⊥ then21

K B∗ := K B∗ ∪ {ND v ⊥}22

extract all δNE
k with E = D from ∆23

let δ := δj24
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CI-to-DI naive opt mod mod+opt

Gene Ontology
05% 12.35 04.99 00.26 00.24
10% 24.12 09.49 00.28 00.26
15% 34.47 14.28 00.29 00.29
20% 41.96 19.70 00.32 00.31
25% 49.92 24.97 00.34 00.33

Fly Anatomy
05% 4.22 1.90 00.13 00.12
10% 7.97 3.78 00.15 00.14
15% 11.95 5.59 00.17 00.16
20% 14.42 7.34 00.19 00.18
25% 17.46 9.18 00.21 00.20

Table 4.8. Impact of |D | on performance (sec) – DA rate = 15%

Synthetic-DI naive opt mod mod+opt

Gene Ontology
05% 13.15 05.17 0.48 00.42
10% 27.77 09.85 0.83 00.64
15% 37.47 15.54 1.47 00.98
20% 46.11 21.16 2.76 01.54
25% 57.14 27.57 4.66 02.46

Fly Anatomy
05% 4.86 02.01 0.40 0.35
10% 9.86 03.97 1.19 0.67
15% 14.75 06.01 2.51 1.18
20% 19.86 08.59 4.61 2.15
25% 24.27 10.80 7.25 3.34

Table 4.9. Impact of |D | on performance (sec) – DA rate = 15%
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DA naive opt mod mod+opt

Gene Ontology
05% 27.38 13.29 00.28 00.27
10% 27.52 13.79 00.29 00.28
15% 34.47 14.28 00.29 00.29
20% 38.57 14.99 00.30 00.29
25% 36.21 15.64 00.31 00.30
30% 42.37 16.22 00.32 00.31

Fly Anatomy
05% 10.31 05.02 00.16 00.15
10% 11.46 05.38 00.17 00.16
15% 11.95 05.60 00.17 00.17
20% 12.13 05.85 00.18 00.17
25% 12.65 06.20 00.19 00.18
30% 13.79 06.51 00.20 00.19

Table 4.10. Impact of DAs on performance (sec) – CI-to-DI-rate = 15%

DA naive opt mod mod+opt

Gene Ontology
05% 33.34 13.74 1.26 00.86
10% 35.63 14.73 1.35 00.92
15% 37.47 15.54 1.47 00.98
20% 42.05 16.68 1.51 01.00
25% 43.03 16.86 1.60 01.06
30% 47.03 17.88 1.66 01.08

Fly Anatomy
05% 12.93 05.55 2.23 1.07
10% 14.01 05.84 2.50 1.14
15% 14.76 06.01 2.52 1.18
20% 15.94 06.30 2.61 1.22
25% 16.60 06.59 2.82 1.30
30% 17.69 07.01 2.98 1.36

Table 4.11. Impact of DAs on performance (sec) – Synthetic-DI-rate = 15%
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K B ∩M0. This combined method is correct by Theorem 4.3.1 and Theorem 4.2.14.
Table 4.8 and 4.9 shows the impact of the number of DIs on response time for the
two test suites, as DI rate ranges from 5% to 25%. The methods Mod and Mod+Opt
are slightly less effective in the second suite probably because random defaults connect
unrelated parts of the ontology, thereby hindering module extraction. In both suites,
Opt’s speedup factor (w.r.t. the naive method) is about two. On average, the combined
method yields a further 23% improvement over Mod alone; the maximum reduction
is 54% (2nd suite, Synthetic-DI-rate=25%, DA-rate=15%). The additional conflicts
induced by injected disjointness axioms have moderate effects on response time (cf.
Table 4.10 and 4.11). Mod+Opt’s average response time across both test suites is 0.7
sec., and the longest Mod+Opt response time has been 3.34 sec. Similar results have
been obtained on the test suites containing non-empty ABox. In all cases, the speedups
of Mod and Mod-Opt remain well above one order of magnitude.

Note, that in presence of non-N-free DL N knowledge bases Opt and Mod+Opt are
not applicable, in general. However, an additional benefit of mod∗ is that, by eliminating
most normality concepts, it may enable the application of the optimistic method Opt,
that is correct only when |Σ| = 1. Of course, the number of cases in which Opt becomes
applicable significantly depends on the K B structure. The combination of mod∗ and
opt has the following performance:

GO – CI-to-DI Opt is enabled in nearly all examples; the average speedup (when opt
is applicable) is 5%;

GO – Synthetic-DI
|Σ|=50: Opt enabled in 20% cases; speedup 38.33%;
|Σ|=100: Opt enabled in 10% cases; speedup 38.36%;
|Σ|=150: Opt enabled in 10% cases; speedup 34.61%;

FLY – CI-to-DI Opt enabled in 22% cases; speedup 7%;

FLY – Synthetic-DI Opt is never enabled.

It appears that in FLY concepts are more densely interconnected, which hinders the
removal of the normality predicates that do not occur in the query, hence the limited
applicability of Opt. The new random connections introduced by the completely random
DIs contained in the Synthetic-DI suite produce a similar effect.
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4.4 Summary

The module-based and optimistic optimizations introduced in this chapter are sound
and complete. In our experiments, the combined method (when applicable) and the
module-based method make DL N reasoning at least one order of magnitude faster
(and up to ∼780 times faster in some case).

The iterated module extractor, mod∗, brings major speedups that make DL N rea-
soning with a large number of explicit normality concepts feasible in practice.

The conditional module extractor for nonempty ABoxes, cMod, is very effective
when the ABox assertions are loosely interconnected, with speedups up to ∼ 75%. In
the current random DL N testbed, the advantages of cMod tend to disappear when
there are approximately 4 assertions per individual.

The conditional module extractor can be applied also to classical knowledge bases;
on an excerpt of the OBO repository, so far, the average reduction of module size is
promising (85%).

The query response times obtained with the N-free test suites or NC-rates up to 10%
(that in our opinion exceed what should be expected in practice, given the specific role
of explicit normality concepts) are compatible with real time DL N reasoning. Only the
random dependencies introduced by synthetic DIs, combined with numerous restrictions
of role ranges to normal individuals, can raise response time up to 83.5 seconds; in most
of the other cases, computation time remains below 30 seconds. This is the first time
such performance is reached over nonmonotonic KBs of this size: more than 20K concept
names and over 30K inclusions.10 Our approach brings technology closer to practical
nonmonotonic reasoning with very large knowledge bases.

10Good results have been obtained also for KBs with ∼5200 inclusions under rational closure
semantics [Casini et al., 2013a, Casini et al., 2014].



Chapter 5
Optimizing the Construction of
Secure Knowledge Base Views

In recent years, Semantic Web technologies have become increasingly used to en-
code sensible knowledge on individuals, companies and public organizations. The
most popular access control method protect sensitive data from unauthorized disclo-
sure via direct accesses. However, they fail to prevent indirect data disclosure that
may occur when sensitive information can be inferred from non-sensitive data and
metadata [Farkas and Jajodia, 2002]. Despite the difficulties to develop techniques to
detect potential inference vulnerabilities, no system can guarantee confidentiality of
data without them. As reasoning techniques make it possible to extract implicit in-
formation, any access control method that does not deal with inference fails to ensure
privacy [Abel et al., 2007, Flouris et al., 2010]. In particular, various sources of back-
ground knowledge can be exploited to reconstruct secrets. Background knowledge can
be knowledge of the domain of interest, e.g. auxiliary ontologies, as well as meta knowl-
edge about which kind of information the knowledge base is expected to represent. For
instance, suppose a hospital allows to know whether a patient has been hospitalized but
omits to reveal where, if she is in the infective disease ward. Since a hospital’s K B

is expected to have complete knowledge about which patients are in which ward, from
the fact that John has been admitted to the hospital and yet he does not appear to be
located in any ward, a user can reconstruct he is affected by some infection. In general,
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meta knowledge helps in preventing attacks to complete knowledge and attacks to the
signature.

To tackle the vulnerabilities arising from these scenarios, in Section 3.2 we provide
a fully generic formalization of background knowledge and metaknowledge, a confiden-
tiality model which neutralizes the inference-based attacks that exploit such knowledge,
and – since the user’s metaknowledge is not directly possessed by the knowledge engineer
– a rule-based methodology to safely approximate it.

Regarding complexity issues, for the confidentiality model has been shown that by
using Horn rules to encode the user’s meta knowledge, if the underlying DL is tractable,
then the filtering secure function is tractable too.1 Although such promising theoreti-
cal properties suggest that the framework can be practically used, they are still to be
assessed experimentally. In this chapter, we present SOVGen, a first prototype suited
for a concrete e-health scenario. In particular, extensional data is encoded in realistic
electronic health records conforming to the international standard HL7 v.3 - CDA Rel.2
We approximate the user’s background knowledge with the SNOMED-CT ontology, to-
gether with an ontology establishing the mapping between SNOMED-CT concepts and
ICD-9CM2 and LOINC3 codes that occur in the records. The user’s meta knowledge, on
the other hand, consists of (i) bridge metarules that permit to identify SNOMED-CT
concepts starting from the specific encoding of the records required by CDA, as well
as (ii) metarules that establish relationships between medications, diseases, medical
procedures, etc.

In Section 5.1.1 we will describe the abstract algorithm underlying SOVGen.
Section 5.2 and 5.3 introduce related optimizations. Sections 5.1.2 and 5.4 describe the
experimental settings and performance analysis, respectively. Section 5.5 concludes the
chapter.

5.1 Preliminary Experimental Analysis

This section introduces SOVGen, a prototypical implementation of the confidential-
ity model based on existing classical reasoners. A preliminary experimental performance
analysis of this prototype is included; it uses test cases with realistic size and the op-
timization techniques supported by the underlying, classical reasoning engine. For the

1Non-Horn metarules can be safely approximated with Horn metarules; the price to pay is
a loss of cooperativeness, i.e. a reduction of the information available to the user.

2http://www.who.int/classifications/icd/en/
3https://loinc.org/

http://www.who.int/classifications/icd/en/
https://loinc.org/
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purpose, synthetic test cases specifically designed to simulate the employment of the
confidentiality model in a concrete e-health scenario have been generated in a principled
way, as explained in Section 5.1.2.

5.1.1 SOVGen Abstract Algorithm

In this section we give a brief description of the abstract algorithm underlying
SOVGen, the prototypical implementation of the confidentiality model illustrated in
Section 3.2 based on Horn metarules.

By standard logic programming techniques, a minimal K ⊆ PAX satisfying the set
of metarules and the constraints K+ can be obtained with the following polynomial
construction:

K0 = K+ , Ki+1 = Ki ∪
⋃
{ head(r) | r ∈ groundKi

(MR) ∧ body(r) ⊆ Cn(Ki) } .

It can be proved that the sequence limit K|PAX | satisfies 〈K+,K−〉 as well if K|PAX |

does not entail an axiom in K−. Then, for all s ∈ S, s activates the censor iff s is a
consequence of K|PAX | ∪ BK . For further details refer to Section 3.2.

Algorithm 3 takes as input a knowledge base K B, a set of secrets S, a set of
metarules MR and the user’s background knowledge BK . The output is the set of
axioms that constitute a secure view for the user.

The sets MM and MG constitute a partition of MR based on the metarules’ type
(ground or containing metavariables). Iterating over the axioms α ∈ PAX (lines 6-23 ),
at each step K collects all the axioms of PAX that does not contribute to the entailment
of secrets. The repeat-until loop (lines 9-16 ) computes the deductive closure K

′
of K

under the set of metarules MR4. In particular, for each ground metarule (lines 10-
12 ) we evaluate a conjunctive query (encoded in line 11 ) in order to check if m body
is satisfied by the current K

′
. Similarly, for each metarule containing metavariables

(lines 13-15 ), we obtain all possible bindings for the metavariables in the body of m
by means of a conjunctive query evaluation (line 14 ). The sequence of steps described
above is iterated until a fix-point is reached (line 16 ). At this point the condition
Cn(K

′
) ∩K− = ∅ is verified (line 17 ). It is now possible to determine the value of the

censor for α. We first check that no secret is entailed from the minimal K (line 18 )
enriched with BK . Finally, we can safely include α in the view only if it is entailed by
K B (line 20 ). Otherwise, the set K− is updated (line 23 ).

4The result of Proposition 3.2.7 guarantees that considering only the minimal PKB is sound.
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Algorithm 3:
Data: K B, S,MR,BK .
K+
i ,K

−
i ← ∅;1

MM ← {ri|ri ∈ MR and ri metarule containing metavariables};2

MG ← {ri|ri ∈ MR and ri ground metarule};3

PAX ← K B ∪
⋃
r∈groundK B(MR) head(r);4

K ← BK ;5

forall α ∈ PAX do6

K ′ ← K ∪ {α};7

M ′G ←MG;8

repeat9

forall m ∈M ′G do10

if K ′ |= body(m) then11

K ′ ← K ′ ∪ {head(m)};12

forall m ∈MM do13

forall (a0, . . . , an) | K ′ |= body(m, [X0/a0, . . . , Xn/an]) do14

K ′ ← K ′ ∪ {head(m, [X0/a0, . . . , Xn/an])};15

until No element is added to K ′;16

if {β ∈ K− | K ′ |= β} = ∅ then17

if {s ∈ S | K ′ ∪ BK |= s} = ∅ then18

if K B |= α then19

K+ ← K+ ∪ {α};20

K ← K ′;21

else22

K− ← K− ∪ {α};23

return K+
i24

5.1.2 Experimental Settings

In this section we present synthetic test cases which have been specifically designed
to simulate the employment of SOVGen in a e-health scenario as part of the SmartHealt
2.0 Project5. In particular, each test case represents the encoding of sensitive data in a
CDA-compliant electronic health record. Clinical Document Architecture (CDA) is an
international standard for information exchange, based on the Health Level 7 Reference

5The main goal of SmartHealt 2.0 Project is promoting innovation in the National Health
System through the introduction of a new model of digital Healthcare.
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Information Model6 (HL7 RIM).
According to the theoretical framework each test case comprises four different com-

ponents: the ontology K B that contains confidential data to be protected; an ontology
MR encoding the user metaknowledge with a set of metarules; a set S of secrets; a series
of ontologies representing the user’s background knowledge BK .

KB generation

KB is generated as a set of assertions instantiating the PS ontology. PS encodes a
patient summary clinical document following the HL7 Implementation Guide for CDA
Rel.2 – Level 3: Patient Summary. As it can be seen in Figure 5.1, PS currently provide
a support for encoding information about (i) history of assumed medications; (ii) clinical
problem list including diagnosis, diagnostic hypothesis and clinical findings; (iii) history
of a family member disease; (iv) list of the procedures the patient has undergone; (v) list
of relevant diagnostic tests and laboratory data. Note that, according to the CDA stan-
dards a disease in the PS ontology is represented by a ICD-9CM7 code, pharmaceutical
products and procedures are represented by a SNOMED CT codes, while diagnostic
tests and laboratory data by LOINC8 codes. For example, <code code="64572001"
codeSystemName="SNOMED CT"/> stands for an instance of the SNOMED CT con-
cept Disease (SCT_64572001). The type of sections to be generated are randomly
chosen among those mentioned above. A disease (resp. product, procedure, test) code
to associate to the entries is chosen as a random leaf of the corresponding Disease (resp.
Pharmaceutical/biologic product, Procedure by site, Measurement procedure, Imaging)
concept of the SNOMED CT ontology. In case a disease code is needed, the ICD-9CM
code corresponding to the SNOMED CT one is retrieved and the equivalence is added
to a background knowledge ontology named EQIV-RL.

Metarule generation

The knowledge encoded in KB gives rise to several possible types of metarules. Bridge
metarules associate a ICD-9CM/SNOMED CT/LOINC code to the concept in the re-
spective ontology. For instance,

CD(C), dtpCode(C, 64572001), dtpCodeSystem(C, SNOMED-CT)

⇒ SCT_64572001(C)

6http://www.hl7.org/
7International Classification of Diseases, 9th Revision, Clinical Modification
8A universal code system for tests, measurements, and observations.

http://www.hl7.org/
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makes it possible to derive that a code instance C is in fact an instance of the Disease
concept in SNOMED CT.

The second type of metarules concerns the pharmaceutical products. The presence of a
drug in the history of medication use implies that the patient suffers (certainly or with
a great probability) from a specific pathology or has undertaken a specific procedure.
Consider the following example of metarule which says that the presence of a medicine
with active ingredient Phenytoin (SCT_40556005) indicates that the patient suffers
from some kind of Epilepsy (SCT_84757006):

Patient(P ), SubstanceAdministration(SA), Consumable(C), hasConsumable(SA,C),

ManufacturedProduct(MP ), hasManufacturedProduct(C,MP ), Material(M),

hasManufacturedMaterial(MP,M), SCT_40556005(CD), hasCode(M,CD)

⇒ ∃suffer.SCT_84757006(P )

The third type of metarules concerns the problems section. In particular the presence of
a diagnosis (resp. diagnostic hypothesis) indicates that the patient suffer (resp. possibly
suffer) a certain pathology.

Patient(P ), Section(S), hasCode(S,L− 11450− 4), Entry(E), hasEntry(S,E),

Act(A), hasAct(E,A), EntryRelationship(ER), hasEntryRelationship(A,ER),

Observation(O), hasObservation(ER,O), SCT64572001(CD), hasCode(O,CD),

SCTxyz(V ), hasV alue(O, V )

⇒ suffer(P, V )

Other types of metarules apply to the family history – e.g. a patient could be subject
to a family members’ disease – and the procedures section. For instance, the metarule

Patient(P ), Procedure(I), SCT_77465005(C), hasCode(I, C)⇒ subject(P,C)

allows to entail that the presence of an organ transplantation (SCT_77465005) in the
procedure section indicates that the patient is subject to transplantation.

Note that the generation of MR is not completely random for a part of the metarules.
In order to obtain a nontrivial reasoning, during the KB generation, together with the
creation of a section’ entry is also created one or more corresponding bridge metarules
and a metarule corresponding to the section in question. A second part of metarules are
constructed by randomly selecting appropriate SNOMED CT concepts as needed. The
adoption of such approach guarantees that at least part of the metarules are actually
fired during the secure ontology view generation. Furthermore, observe that there are
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<clinicalDocument>
<recordTarget>

<patientRole>
<patient> . . . </patient>

</patientRole>
</recordTarget>
<structuredBody>

<section> <code code=’10160-0’ codeSystemName=’LOINC’/> <!-- HISTORY OF MEDICATION USE -->
<entry> . . . </entry>

</section>
<section> <code code=’11450-4’ codeSystemName=’LOINC’/> <!-- CLINICAL PROBLEM LIST -->

<entry> . . . </entry>
</section>
<section> <code code=’10157-6’ codeSystemName="LOINC"/> <!-- FAMILY MEMBER DISEASES -->

<entry> . . . </entry>
</section>
<section> <code code=’47519-4’ codeSystemName=’LOINC’/> <!-- HISTORY OF PROCEDURES -->

<entry> . . . </entry>
</section>
<section> <code code=’30954-2’ codeSystemName="LOINC"/> <!-- RELEVANT DIAGNOSTIC TESTS -->

<entry> . . . </entry>
</section>

</structuredBody>
</clinicalDocument>

Figure 5.1. HL7 CDA Rel.2 Patient Summary

actually two levels of metarules, the bridge metarules constitute a precondition for the
activation of the others.

Secrets generation

The ontology S is randomly generated as a set of assertions of the types:

∃suffer.X(p) ∃possiblySuffer.X(p) ∃possibleSubject.X(p) ∃subject.Y (p)

where X (resp. Y ) is chosen as a random subconcept of the Disease (resp. Procedure)
concept of the SNOMED CT ontology.

Background knowledge

The background knowledge BK is approximated by means of the PS, SNOMED-CT
and the previously mentioned EQIV-RL ontologies.

5.1.3 Experimental Results: Performance Analysis

In this section we present a preliminary experimental performance analysis of a
naive implementation of the framework. Scalability evaluations have been carried out
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on synthetic test cases generated according the settings described in Section 5.1.2. The
size of K B is given by the parameter KB-size as the number of assertions occurring
in the ontology. Then, the size of MR, MR-rate, is the ratio between the number of
metarules and the number of assertions in K B. Finally, the size of S is determined by
the parameter S-rate that specifies the ratio |S|/|KB|.

The experiments were performed on an Intel Core i7 2,5GHz laptop with 16GB RAM
and OS X 10.10.1. SOVGen was run on Java 1.8 with the options -Xms8G -Xmx8G
-Xss4G to set the available RAM to 8GB and the stack memory space to 4GB.

As expected, given the amount of background knowledge (consider that SNOMED-
CT describes about 300K concepts), the computation time of the secure ontology views
exceeded a 30 minutes time out in all executions. Thus, the use of suitable optimization
techniques proves mandatory in order to achieve usability in practice.

5.2 Module Extraction for Background Knowledge

In recent years, OWL ontologies have been used in several countries to describe
electronic patient records (EPR). Patients’ data typically involves descriptions of human
anatomy, medical conditions, drugs, and so on. These domains have been described in
well-established reference ontologies such SNOMED-CT, GALEN, NCI, etc.

Such foreign medical ontologies are usually huge, so importing a whole ontology
would make the consequences of the additional information costly to compute. In
practice, therefore, one may need to extract a (ideally small) fragment M of the external
medical ontology - a module - that includes only the relevant background information,
i.e. describes just the concepts that are used in K B, S and MR.

We first recall the definition of modules in terms of locality:

Definition 5.2.1 (Locality-based Modules [Grau et al., 2008]) Let M and KB
be ontologies, and Sig a signature. We say that M is a ⊥-module (>-module) for Sig

in K B if K B \M is ⊥− local(>− local)w.r.t.M̃ ∪ Sig .

An important property of locality-based modules which determines their scope is
the following: suppose that M1 (M2) is a ⊥-module (>-module) for a signature Sig in
K B, thenM1 (M2) will contain all superconcepts (subconcepts) in K B of all concepts
in Sig :

Proposition 5.2.2 (Scope of a Module [Grau et al., 2008]) Let K B be a knowl-
edge base, A and B be concept names in K B∪{>}∪{⊥}, α := (A v B), β := (B v A),
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and MA ⊆ K B with A ∈ Sig. If MA is a ⊥-module in K B for Sig, then MA |= α iff
K B |= α, If MA is a >-module in K B for Sig, then MA |= β iff K B |= β.

As we have already seen in Section 4.2 the extraction of >-modules or ⊥-modules
may introduce symbols not in Sig that are potentially unnecessary. To make the module
as small as possible, we nest the extraction of >-module and ⊥-module until a fix-point
is reached. The module obtained at the end of this process still satisfies the module
coverage guarantee of Sig in K B:

Proposition 5.2.3 ([Sattler et al., 2009]) Let K B be a knowledge base, Sig a sig-
nature in K B, A and B be concept names in Sig, with {A,B} ⊆ Sig, α := (A v B),
and M ⊆ K B . If M is a >⊥∗-module in K B for Sig, then M |= α iff K B |= α,

Further important characteristic which make >⊥∗-modules suitable in our ontology
reuse scenario is that they are minimal self-contained9 and depleting10.

Proposition 5.2.4 ([Sattler et al., 2009]) Let K B, K B
′
be knowledge base and

Sig, Sig
′
be signatures.

1. If Sig ⊆ Sig
′
, then >⊥∗ −Mod(Sig ,K B) ⊆ >⊥∗ −Mod(Sig

′
,K B).

2. If K B ⊆ K B
′
, then >⊥∗ −Mod(Sig ,K B) ⊆ >⊥∗ −Mod(,K B

′
).

The above result easily implies the following proposition:

Proposition 5.2.5 Let K B, K B
′
be knowledge base and Sig a signature. Then

>⊥∗ − Mod(Sig ,K B) ∪ >⊥∗ − Mod(Sig ,K B
′
) ⊆ >⊥∗ − Mod(Sig ,K B ∪ K B

′
).

Moreover, there exists K B and K B
′
s.t. the above inclusion is strict.

Proof. Let M = >⊥∗ −Mod(Sig ,K B ∪ K B
′
), M1 = >⊥∗ −Mod(Sig ,K B) and

M2 = >⊥∗ −Mod(Sig ,K B
′
). The inclusion follows from K B ⊆ K B ∪K B

′
and

K B
′
⊆ K B ∪K B

′
applying Proposition 5.2.4 .

To prove the second part of the claim consider the following knowledge basses:
K B1 = {A v ∃R.C, C v B},
K B2 = {C v A},
and the signature Sig = {A, R}. We have >⊥∗ −Mod(Sig ,K B1) = {A v ∃R.C},

>⊥∗ −Mod(Sig ,K B2) = ∅, and >⊥∗ −Mod(Sig ,K B1 ∪K B2) = {A v ∃R.C, C v
A} ⊃ >⊥∗ −Mod(Sig ,K B1) ∪ >⊥∗ −Mod(Sig ,K B2).

9A module M ⊆ K B is self-contained if M preserve all the entailments over Sig ∪M , i.e.,
M is indistinguishable w.r.t. Sig ∪M from K B.

10A module M ⊆ K B is depleting if K B \M has no non-trivial entailments over Sig , i.e.,
if the set of axioms in K B \M is indistinguishable w.r.t. Sig from the empty set.
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As we have already discussed in Section 3.2.2 the background knowledge of a user can
be estimated collecting as many public sources of formalized relevant knowledge such as
ontologies and triple stores as possible. The larger the user background knowledge taken
in consideration during the secure view computation is, the smaller is the probability
that a secret can be leaked. Unfortunately, as the preliminary experimental analysis
reported in Section 5.1.3 have proved, higher safety guarantees may cost the practical
usability of the confidentiality model.

As a consequence, the presence of (very) large background knowledge bases (such
as SNOMED-CT) makes it desirable to apply a process of modularization designed to
reduce the time of secure view computation. In fact, many of the axioms in a large BK
are reasonably expected to be irrelevant to the given view.

The correct way to use locality-based module extractors [Sattler et al., 2009,
Grau et al., 2008] in order to make reasoning focus on relevant background knowledge
only is described below. Assume that the user background knowledge comprises a
set BK 1, . . . ,BKn of knowledge bases. We can extract the fragments relevant in the
construction of a secure view by:

1. building the logical union BK of the axioms occurring in the different BK i under
the standard semantics

2. extracting a >⊥∗-module from BK w.r.t. a signature Σ = K̃B ∪ S̃ ∪ M̃R

Performing step 1 corresponds in practice to importing all the different BK 1, . . . ,BKn

in a single background ontology BK . While it may seem more convenient, extracting
separately a >⊥∗−Mod(Σ,K Bi) from each BK i, this may result in missing some rel-
evant axioms as proved in Proposition 5.2.5. This may compromise the confidentiality
of the generated view11.

Experimental results (cf. Section 5.4) will show that the modules extracted are on
average two or three orders of magnitude smaller than the initial BK which drastically
improves performance.

5.3 Metarule Evaluation

The presence of technologies that permit native conjunctive query evaluation reveals
fundamental to efficiently process users’ metaknowledge. Unfortunately, the OWL rea-

11The incompleteness of the relevant background knowledge may prevent the detection of the
violation of some secrets in line 18 of Algorithm 3.
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soners publicly available do not offer native support 12.
Straightforward evaluation of metarules in the presence of metavariables with an

OWL reasoner would need to consider all possible ways of uniformly replacing metavari-
ables by individual constants occurring in the ontology. Thus, as the ontology ABox
grow, metarule evaluation can easily become unmanageable in terms of execution time.

Nowadays SPARQL13, constitute a de facto standard when it comes to conjunctive
query answering. It has been recently extended with the OWL Direct Semantics En-
tailment Regime in order to permit reasoning over OWL ontologies. Unfortunately, few
tools provide support to this new semantics. An important tool with this feature is
Apache Jena Semantic Web Toolkit14. A valid alternative to the consolidated SPARQL
engines seems to be OWL-BGP15, a relatively new framework for parsing SPARQL
basic graph patterns (BGPs) to OWL object representation and their assessment un-
der the OWL Direct Semantics Entailment Regime. OWL-BGP incorporates various
optimization techniques [Kollia and Glimm, 2013] including query rewriting and a so-
phisticated cost-based model16 for determining the order in which conjunctive query
atoms are evaluated. As we will see in Section 5.4 the performance of the query evalu-
ation module of SOVGen is unacceptable when Jena is used and not quite satisfactory
when OWL-BGP is adopted17.

As an alternative to the above frameworks for conjunctive query evaluation we pro-
pose an ad hoc module, called Metarule Evaluation Engine (MEE), that aims to take
advantage of the specific nature of the Horn metarules and incremental reasoning tech-
niques of ELK [Kazakov et al., 2012, Kazakov et al., 2014, Kazakov and Klinov, 2013].
In particular, for each α in the enumeration of PAX , the incremental reasoner is ex-
pected to restrict reasoning to the new inferences triggered by α without repeating the
inferences that involve only K+

i−1.
In order to simplify our description of the procedure employed we first need to

provide some formal definitions.

Definition 5.3.1 Let NC, NR and NI be the disjoint union of countably infinite sets of

12A partial exception of this rule is the Pellet reasoner. However, the Pellet’s query engine
– capable of answering only ABox queries – seems not to have been re-engineered for the last
few years.

13http://www.w3.org/TR/sparql11-overview/
14http://jena.apache.org/
15https://code.google.com/p/owl-bgp/
16The cost calculation is based on information about instances of concepts and roles extrapo-

lated from an abstract model built by reasoners that implement Tableaux reasoning algorithms.
17Note that evaluation of ground metarules results in SPARQL ASK query (line 11 of Alg.3),

while evaluation of metarules with metavariables in SPARQL SELECT query (line 14 of Alg.3).
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concept, role and individual names and VI a set of individual variables (called metavari-
ables). The set of individual terms consists of the disjoint union of NI and VI.

An axiom template τ has the form A(ta), R(ta, tb), where A is a concept name, R
a role name, ta and tb individual terms.

An axiom α is a subsumption A v B with A and B are concept names or an axiom
template that does not contain any metavarible.

A conjunctive query q is a finite set of axioms and axiom templates. If q contains
no axiom template we call it ground.

Definition 5.3.2 (Mapping) A mapping is a (partial) function : VI → NI. The
domain of a mapping µ is denoted by dom(µ). We say that two mappings µ1 and µ2

are compatible if for all variables x ∈ dom(µ1) ∩ dom(µ2) we have that µ1(x) = µ2(x).
The join of two compatible mappings µ1 and µ2 is the mapping µ = µ1 1 µ2 defined as
follows:

1. µ(x) = µ1(x) = µ2(x) if x ∈ dom(µ1) ∩ dom(µ2),

2. µ(x) = µi(x) if x ∈ dom(µi) and x 6∈ dom(µj), with i, j ∈ {1, 2} and i 6= j.

If U1 and U2 are two sets of mappings then with a slight abuse of notation we write

U1 1 U2 = {µ1 1 µ2 | µ1 ∈ U1, µ2 ∈ U2 and µ1 is compatible with µ2}.

Definition 5.3.3 Let I be a standard DL interpretation, K B a knowledge base and
q a query. A mapping µ is an answer for a query q w.r.t. a knowledge base K B,
written K B, µ |= q, if for each I s.t. I |= K B, I satisfies all ground instantiations
of the axiom templates of q obtained by replacing each x ∈ dom(µ) with µ(x). The set
of answers to a query w.r.t. to K B is given by ans(q,K B) = {µ | K B, µ |= q}.

Note, that for a query q = {τ1, τ2} ans(q,K B) = ans({τ1},K B) 1 ans({τ2},K B)

(follows directly from Definition 5.3.3).

Optimized algorithm for evaluation of a single metarule

Algorithm 4 describes the core of MEE, that is, the optimized procedure employed
for the evaluation of a single metarule. More precisely, Algorithm 4 takes as input a
knowledge base K′ and a metarule m, and returns the set of mappings µ such that
K′ |= µ(body(m)) (i.e. such that the corresponding instance of m fires).
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Algorithm 4:
Data: K ′,m ∈ MR
where K ′ is the same as in lines(11, 14) of Algorithm 3, and
body(m) = {α1, . . . , αn, τ1, . . . , τm} .

/* Evaluation of the ground part of the body. */

forall α ∈ {α1, . . . , αn} do1

if K ′ |= α then2

body(m)← body(m) \ {α};3

else4

return ∅;5

/* Evaluation of the non ground part of the body. */

U1 = ans({τ1},K ′);6

forall i = {2, . . . ,m} do7

Ui = Ui−1 1 ans({τi},K ′);8

if Ui = ∅ then9

return ∅;10

return Um;11

We first illustrate in more detail how ans(·, ·) is computed in lines 6, 8. If τ = A(x)

than it is possible to retrieve the solutions directly from the reasoner by using the
instance retrieval reasoning service for A.

Unfortunately, there are no reasoning services that permit to retrieve the instances
of a template R(x, y) where both x and y are variables. In that case the candidate
instances can be restricted to those compatible with the mappings computed for the
previous template. Therefore in the actual implementation of line 8 of Algorithm 4 the
computation of ans({τi},K′) is replaced with a computation of all ans({µ(τi)},K′) for
all µ ∈ Ui−1.

Line 4 perform another optimization: it prevents the same αi in the body of a
metarule m to be re-evaluated whenever another metarule m′ fires which could trigger
m in turn (so m’s body should be evaluated another time). This requires a change
in Algorithm 3: if the current α ∈ PAX is discovered to entail a secret and must
be retracted, then all the αi that have been removed from body(m) must be restored
because they might not be derivable anymore after the retraction. In particular, an else
clause with this purpose must be added to the if statement on line 18 of Algorithm 3.
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S-rate 05% 25% 50% 75% 100%

MEE 27 34 43 54 61

OWL-BGP 114 515 1619 2730 3805

Figure 5.2. View construction time with as the number of secrets increase (KB-
size=200, MR-rate=10%)

Ordering euristics

The evaluation of metarules with metavariables, comprises a preprocessing step that
partitions the axiom templates τ1, . . . , τm in the metarules body in sets of connected
components. Within a component, axiom templates share common metavariables, while
there are no metavariables shared between atoms belonging to different connected com-
ponents. Evaluating together templates belonging to non-related components increases
unnecessarily the amount of intermediate results, whereas it is sufficient to combine
the results for the single components. Furthermore, within each connected component,
the evaluation is performed in a precise order. The templates τi of the type A(x) are
processed first in order to restrict as much as possible the compatible mappings for
the metavariables occurring in the templates R(x, y) whose answers are not directly
computed by ELK’s native methods (cf. the implementation of line 8 of Algorithm 4,
discussed in the previous paragraph).

Another optimization of this type concerns the order in which the axioms α ∈ PAX
are evaluated in line 6 of Algorithm 3. It addresses the fact that checking whether
{β ∈ K− | K′ |= β} = ∅ (line 17 ) is time consuming, therefore it is convenient to
keep K− as small as possible. A simple analysis of the definition of the sequence
〈K+

i ,K
−
i 〉i≥0 (cf. Section 3.2.1) shows that the axioms α ∈ K B cannot possibly enter

K−, so by processing those α first, we keep K− empty until the first α 6∈ K B is
processed (consequently, in this first phase, the cost of the test in line 17 is negligible).

5.4 Performance Analysis

In the following we present a performance analysis of a version of SOVGen that
incorporates the optmization techniques introduced in Section 5.2 and 5.3. Scalabil-
ity evaluations have been carried out according the experimental setup described in
Section 5.1.3.

Given the amount of background knowledge (consider that SNOMED-CT describes
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MR-rate 05% 10% 15% 20% 25%

MEE 23 34 41 48 52

OWL-BGP 420 515 661 769 858

Figure 5.3. View construction time as the number of metarules increase (KB-
size=200, S-rate=25%)

KB-size 100 200 300 400 500

MEE 20 34 46 51 57

OWL-BGP 432 515 1063 1254 2136

Figure 5.4. View construction time as the size of KB increase (MR-rate=10%,
S-rate=25%)

about 300K concepts) the use of module extraction techniques improves the computation
time of two–three orders of magnitude at a cost of about 30 sec of overhead. As a
concrete example, for KB-size = 200, MR-rate = 20% and S-rate = 25%, the secure
view computation using the MEE module employs 35 sec if module extraction is used,
2198 sec otherwise.

In Figures 5.2–5.4 , the first (resp. second) row shows the experimental results
obtained by using MEE (resp. OWL-BGP) to evaluate metarules – no result for Jena is
reported as the execution time on all the test cases exceeded 1 hour time-out. Figure 5.2
reports the execution time as the amount of secrets grows. Both MR-rate and KB-size
are fixed, respectively to 10% and 200 assertions. Note that, MEE outperforms OWL-
BGP of 1–2 orders of magnitude. Figure 5.3 shows the impact of MR-rate on the
performance of the secure view construction when KB-size is fixed to 200 and S-size
to 10%. Here, MEE runs about 10 times faster than OWL-BGP. Finally, Figure 5.4
illustrate the way the execution time changes as the the size of K B increases. Again
MEE is 102 faster than OWL-BGP.

The reason why a relatively simple query answering engine like MEE outperforms
the others is that MEE does not restart reasoning from scratch at each step of the repeat-
until loop. The sequence of calls submitted to the ELK reasoner, exploit the incremental
classification facility of ELK. OWL-BGP, instead, re-computes its cost model at each
step, which slows down significantly answer computation.
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5.5 Summary

In Section 3.2 a confidentiality model has been introduced which adapts Controlled
Query Evaluation to the context of Description Logics, and extends it by taking into
account object-level and meta background knowledge. In this chapter, we have pre-
sented SOVGen, a first implementation of this methodology that has been specialized
to deal with a concrete e-health application. In order to maximize performance, we
have compared different reasoning tools and designed several optimization techniques.
Then, we assessed SOVGen experimentally by using realistic electronic health records
that refer to SNOMED-CT concepts, and Horn rules to represent meta knowledge. In
particular, we observed that (i) module extraction reduces the secure-view computation
time of several orders of magnitude, and (ii) the ad hoc (and relatively simple) answer
computation method adopted by the MEE metarule evaluator – that intensively exploits
ELK’s incremental reasoning facility – outperforms the other query evaluation engines
that rely on cost models. Whether these two approaches can be profitably combined is
an interesting direction for further research.

Considering that secure views are constructed off-line – so that no overhead is placed
on user queries – performance analysis shows that SOVGen is already compatible with
practical use in this application scenario.



Chapter 6
Conclusions and Future Work

The increasing adoption of semantic technologies and the corresponding increasing
complexity of application requirements are motivating extensions to the standard rea-
soning paradigms and services supported by such technologies. This thesis focuses on
two of such extensions: nonmonotonic reasoning and inference-proof access control.

Concerning the former, we focused on the novel logic DL N because it solves several
problems affecting previous approaches, and because it is flexible, that is, it is neutral
with respect to the inferences that are not always desired and gives knowledge engineers
the ability of switching those inferences on and off.

In Chapter 4 we introduced an implementation of DL N reasoning and several pos-
sible optimizations, that have been systematically assessed. Preliminary experimental
scalability tests (cf. Section 4.1.5) on a semi-naive implementation of DL N (relying
only on the optimization techniques of the underlying classical reasoner) yield promis-
ing results. Still, as defeasible inclusions rate grows, query response time slows down
enough to call for improvements. In Chapter 4 we introduce module-based and opti-
mistic optimizations that are sound and complete, where the latter applies only if the
knowledge base is N-free. In particular:

• Many of the axioms in a large KB are expected to be irrelevant to the given query.
In Section 4.2 we investigate the use of module extractors [Sattler et al., 2009,
Grau et al., 2008] in DL N in order to focus reasoning on relevant axioms only.
The approach is not trivial and requires an articulated correctness proof (module
extractors are unsound for most nonmonotonic logics).
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• In Section 4.3 we introduce a new algorithm for query answering, that is expected
to exploit incremental reasoners at their best. Incremental reasoning is crucial
as DL N’s reasoning method iterates consistency tests on a set of KBs with large
intersections. The main idea behind the optimistic reasoning method is to try to
reduce the number of retractions (an expensive class of operations in incremental
reasoning).

The experimental evaluation reported in Section 4.2.1 and 4.2.2 prove that module
extraction is highly effective in speeding up reasoning in DL N. Applying module
extraction makes DL N reasoning at least one order of magnitude faster (and up to
∼780 times faster in some case). The optimistic reasoning method speedup factor
(w.r.t. the naive implementation) is about two (cf. Section 4.3.1).

However, there are cases in which module extraction techniques should be improved.
Currently, such methods are less effective when the knowledge base has nonempty
ABoxes; this phenomenon is amplified in the nonmonotonic description logic DL N,
where reasoning requires repeated classifications of the knowledge base.

A new module extraction algorithm introduced in Section 4.2.3 constitutes a further
contribute to the research on module extraction. The algorithm discards significantly
more axioms in the presence of nonempty ABoxes and is not specific to DL N but
applies also to classical DL reasoning. The method is correct under the assumption
that the knowledge base is consistent; this hypothesis, in practice, is compatible with
some of the main intended uses of module extraction, such as importing selected parts
of already validated knowledge bases.

The experimental evaluation shows that the conditional module extractor for nonempty
ABoxes, is very effective when the ABox assertions are loosely interconnected, with
speedups up to ∼ 75%. In the current random DL N testbed, the advantages of cMod
tend to disappear when there are approximately 4 assertions per individual. As far as
the application to classical knowledge bases is concerned, on an excerpt of the OBO
repository, the average reduction of module size is promising (85%).

The test case generator adoperated in the experimental validation of the DL N

optimizations should be considered as a contribution of this thesis, as well. Its output
has been analyzed in depth to verify that the synthetic ontologies it constructs and their
classification are not trivial. The test case generator and the above validation criteria
will hopefully be of help for other researchers in this field, where real nonmonotonic
knowledge bases are not yet available.

To sum up, the query response times obtained in the extensive experimental analysis
with N-free test suites or NC occurring in up to 10% of the DIs (that in our opinion
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exceeds what should be expected in practice, given the specific role of explicit normality
concepts) are compatible with real time DL N reasoning. Only the random dependencies
introduced by synthetic DIs, combined with numerous restrictions of role ranges to
normal individuals, can raise response time up to 83.5 seconds; in most of the other
cases, computation time remains below 30 seconds. This is the first time a real-time
performance is reached over nonmonotonic KBs of this size: more than 20K concept
names and over 30K inclusions.

As a future work we plan to try different parallelization strategies, based on suitable
reorderings of the operations executed by Algorithm 1. There are further possible
optimizations for DL N, such as caching the translations used for previous queries. An
interesting open question is whether the sequences 〈Ai,j〉j can be refined so as to make
the conditional module extractor more effective on highly interconnected ABoxes.

Another topic that deserves further attention is nonmonotonic conjunctive query
answering (especially in the context of the DL-lite family). We expect the nice properties
of subsumption and instance checking in DL N to carry over to this class of queries.

Last but not least, we are progressively extending the set of experiments by covering
the missing cases and by widening the benchmark set, using real ontologies different
from GO and FLY as well as completely synthetic ontologies.

Concerning secure ontology view construction, we adopted the confidentiality model
introduced in [Bonatti and Sauro, 2013] that protects knowledge bases from attacks
based on background knowledge as well as metaknowledge. We introduced an imple-
mentation of secure view construction, called SOVGen, in Chapter 5.

A preliminary performance assessment proves that a naive implementation of se-
cure view construction is practically infeasible despite the theoretical tractability of the
approach. The experiments have been conducted on test cases specifically designed to
simulate the employment of the methodology in a concrete e-health scenario (cf. Sec-
tion 5.1.2). In particular, each test case represents the encoding of sensitive data in a
CDA-compliant electronic health record based on HL7 RIM and the user’s background
knowledge is in part approximated with the SNOMED-CT ontology.

In order to maximize performance, several optimization techniques have been de-
signed:

• The presence of very large background knowledge bases suggests to apply a pro-
cess of modularization designed to reduce the time of secure view computation.
In fact, many of the axioms in a large BK, e.g. consider SNOMED CT, are
reasonably expected to be irrelevant to a given view. The correct way to use
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locality-based module extractors [Sattler et al., 2009, Grau et al., 2008] in order
to make reasoning focus on relevant background knowledge only is illustrated in
Section 5.2.

• Processing of the users’ metaknowledge calls for technologies that permit native
conjunctive query evaluation. As an alternative to the few available frameworks,
in Section 5.3 we propose an ad hoc module that aims to take advantage of
the specific nature of the (Horn) metarules and incremental reasoning techniques
of the underlying classical reasoner [Kazakov et al., 2012, Kazakov et al., 2014,
Kazakov and Klinov, 2013].

Experimental evaluation of the optimized framework implementation based on Horn
metarules proved that: (i) module extraction reduces the secure-view computation time
of several orders of magnitude, and (ii) the ad hoc (and relatively simple) answer com-
putation method adopted by the proposed metarule evaluator – that intensively exploits
ELK’s incremental reasoning facility – outperforms the available query evaluation en-
gines that rely on cost models (i.e. OWL-BGP and Jena). Whether these two ap-
proaches can be profitably combined is an interesting direction for further research.
Considering that secure views are constructed off-line – so that no overhead is placed
on user queries – performance analysis shows that SOVGen is already compatible with
practical use in this application scenario.

As a future work, we aim to extend the system to general (meta)rules. A further
interesting direction is to extend the test set with ABoxes of significant size in order to
verify the efficiency of the conditional module extractor for nonempty ABoxes in the
context of a second non standard reasoning service.

The above discussion shows that reasoning in DL N and secure view construction
have in common two features: (i) they are applied to large or very large knowledge bases,
and (ii) they involve repeated calls to a classical reasoner over knowledge bases that are
related to each other: either they increase monotonically or they are rolled back to a pre-
vious state (e.g. when a defeasible inclusion is overridden or an axiom entails a secret).
Point (i) is effectively addressed by means of module extraction techniques, while point
(ii) needs efficient incremental reasoning algorithms. We have already pointed out some
interesting directions to extend module extraction methods. Concerning incremental-
ity, the available algorithms are designed for more general scenarios, especially as axiom
retraction is concerned. In particular they are designed for arbitrary retractions, while
our applications only require rollbacks, that could be implemented in more efficient
way. Specialized implementations of rollbacks may speed up both DL N reasoning and



167

secure view construction, and as such they constitute an interesting direction for further
research.
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