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NON STANDARD ABBREVIATIONS 

 

ABC: ATP-binding cassette 

ALI: air-liquid interface 

AONs: antisense oligonucleotides 

CF: Cystic Fibrosis 

CBAVD: congenital bilateral absence of vas deferens  

CFSPID: Cystic Fibrosis Screen Positive Inconclusive Diagnosis  

CFTR: Cystic Fibrosis Transmembrane Conductance Regulator  

CFTR-RD: CFTR-related disorders  

CFRD: CF-related diabetes 

Cl
- 
: chloride  

DIOS: distal intestinal obstruction syndrome  

DMSO: dimethyl sulfoxide 

ENaC: epithelial sodium channel 

ER: endoplasmic reticulum  

FEV1: forced expiratory volume in 1 second  

GAPDH: glyceraldehyde 3-phosphate dehydrogenase gene 

HDACi: histone deacetylase inhibitor    

HEK-293: Human Embryonic Kidney  

HNECs: human nasal epithelial cells  

IGT: impaired glucose tolerance  

IBMX: 3-isobutyl-1-methylxanthine 

MI: meconium ileus 

NBDs: nucleotide-binding domains  

NBS: newborn screening  

NECs: nasal epithelial cells 

PI: pancreatic insufficiency  

PKA: protein Kinase A 

PKC: protein Kinase C 

PS: Pancreatic sufficiency 

Real Time-PCR: real time polymerase chain reaction amplification 

RT-PCR: reverse transcriptase polymerase chain reaction amplification 

SCL: sweat chloride levels  

SPQ, M-440: 6-methoxy-N-(3-sulfopropyl) quinolinium  

STR: short tandem repeats 

TMDs: transmembrane domains  

3-bp: triple-base   

Ub: ubiquitin   

YFP: yellow fluorescent protein  
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ABSTRACT 

 

Cystic Fibrosis (CF) is an autosomal recessive disease caused by 

mutations in the cystic fibrosis transmembrane regulator (CFTR) gene. 

About 2000 mutations have been described so far. We set up the ex vivo 

model of human nasal epithelial cells (HNECs) to test the effect of novel 

mutations and to evaluate the effect of molecular therapies in cells from 

patients with CF bearing specific genotypes. We improved the sampling 

(by brushing), culture and analysis of HNECs using several techniques 

to study the effect of CFTR mutations. We performed 223 brushings 

from patients with CF and controls. Using cultured cells we: i) 

demonstrated the widely heterogeneous expression of CFTR in patients 

and in controls; ii) defined the splicing effect of a CFTR mutation; iii) 

assessed the CFTR gating activity of HNECs from patients bearing 

different mutations; iv) demonstrated that butyrate significantly 

enhances CFTR expression; v) described the genotype-phenotype 

correlation and the results of either in vitro and ex vivo studies 

performed on HNECs in a large group of patients with CF carrying 

CFTR complex alleles.  

According to our data we can conclude: 

1) the HNEC brushing is performed without anesthesia and it is well 

tolerated by children and adults; 

2) once sampled, HNECs may be stored up to 48 hours before culture. 

This allows multicenter studies; 

3) the HNECs culture is a suitable model to study the molecular effect of 

novel CFTR mutations and/or mutations of uncertain significance; 

4) the ex-vivo model of HNECs may be used to evaluate, before the use 

in humans, the effect of novel drugs on cells bearing specific CFTR 

mutations; 

5) our procedure may be used for the quantitative measurement of the 

CFTR gating activity of the HNECs from patients with different 

genotypes. It may help to classify: 

i) CF patients bearing two severe mutations, with an activity <10%;  

ii) CF patients bearing at least a mild mutation, with an activity of 10-

30%;  

iii) CF carriers (heterozygous subjects) with an activity between 40-

70%. 
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1. BACKGROUND 

 

1.1 Cystic Fibrosis 

Cystic Fibrosis (CF) is an autosomal recessive disease more frequent 

among Caucasians 
(1)

. It depends on mutations in the CFTR gene that 

encodes the CF transmembrane conductance regulator (CFTR) 

membrane protein, a cAMP-activated chloride (Cl
-
) channel 

(1)
. It is 

synthesized in the endoplasmic reticulum (ER) then is glycosylated at 

Golgi level and transported to the apical plasma membrane 
(1)

. 

More than 2000 mutations have been reported so far in alleles from 

patients with CF and with milder CFTR-related disorders (CFTR-RD) 
(1,2)

. However, only a few mutations have a clear molecular effect 

defined by functional studies (http://www.cftr2.org/index.php). 

Molecular analysis helps to confirm diagnosis, to identify carriers and to 

perform prenatal diagnosis in high-risk couples 
(3)

. It is based on the 

analysis of a commercial panel of the most frequent mutations with a 

detection rate of about 80% 
(4)

. The CFTR gene sequencing of the whole 

coding regions has a detection rate of about 95% 
(5,6)

. However, such 

procedures frequently detect mutations without a clear functional effect 
(7-9)

 and novel mutations for which complex in vitro procedures would be 

necessary to define the pathogenicity 
(10)

. In addition, complex alleles 

(i.e., more mutations on the same allele) further complicate the 

interpretation of molecular analysis 
(11,12)

. 

CF is a systemic disease. Its hallmarks include elevated sweat 

chloride levels (SCL), chronic bacterial infections of lower airways and 

sinuses, pulmonary inflammation, bronchiectasis and male infertility 

caused by obstructive azoospermia. Although CF is a systemic disease, 

the main cause of mortality is lung disease with opportunistic bacterial 

colonizations and neutrophil-dominated chronic inflammation 
(1)

. More 

than 80% of patients have pancreatic insufficiency (PI) requiring 

pancreatic enzyme supplementation while 10-15% have normal exocrine 

pancreatic function and show a milder disease. Typically, such latter 

patients have at least one CFTR mutation with a mild effect that is 

functionally dominant on the severe mutation 
(11,13)

. Moreover, an 

increasing number of patients is diagnosed as CFTR-RD 
(14)

. They show 

a later onset of symptoms often involving a single organ (i.e., 

pancreatitis, disseminated bronchiectasis, obstructive azoospermia 

secondary to congenital bilateral absence of vas deferens (CBAVD)) 
(15)

. 

Patients with CFTR-RD usually show borderline SCL and mutations 

causing a variable degree of protein dysfunction, some of which  in non-

coding regions 
(2,15-17)

. Furthermore, the spreading of newborn screening 

(NBS) reveals patients with discordance between immunoreactive 

trypsinogen, SCL, CFTR genotype and clinical phenotype. They are 

defined as Cystic Fibrosis Screen Positive Inconclusive Diagnosis 

(CFSPID) 
(18)

.  

Only symptomatic therapies are available to treat patients with CF 

even if novel molecular drugs become available in the last years 
(19)

. 

Such therapies, that may potentiate the activity or may correct 
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mislocalisation of the mutated protein, have an effect only in patients 

bearing specific mutations.  

We set up the sampling, culture and analysis of human nasal 

epithelial cells (HNEC). This ex vivo model was applied to study the 

effect of novel mutations (among which CFTR complex alleles) and to 

assess the effect of novel molecular therapies on cells from patients 

bearing specific mutations. 

 

1.2 CFTR structure and function 

CFTR was revealed as disease-gene of CF in 1989. It encodes a 

membrane protein belonging to the ATP-binding cassette (ABC) 

transporter superfamily that acts as a chloride channel and participates in 

the transport of other ions like sodium and bicarbonate in epithelial cells 
(1,20)

. The protein is expressed by the trachea, lung, pancreas and several 

tissues of the reproductive system 
(1,13,21).

 The CFTR has the same 

domain structure as other ABC transporters including: 

- two nucleotide-binding domains (NBD1 and NBD2), with ATP-

hydrolytic activity, in tandem with  

- two transmembrane domains (TMD1 and TMD2), each containing 

six membrane-spanning alpha helices and  

- a 200 aminoacid regulatory domain or “R” region, largely 

unstructured. The R-region lies between the first TMD and the 

second NBD, within the cytoplasm 
(20,22)

. It is phosphorylated by 

protein kinase A (PKA) and C (PKC) (Figure 1 - from Meng et al. 

2016). The two halves of CFTR (each including a NBD and a TMD) 

homodimerize to form the transporter 
(1, 23) 

 

The R-region contains several Protein Kinase A (PKA) 

phophorylation sites highly conserved in the phylogenesis 
(20,24)

. PKA is 

a cAMP-activated kinase that phosphorylates CFTR and such process is 

triggered by cAMP increase 
(20)

. The R-region blocks the NBDs from 

associating together keeping the channel in a closed conformation. 

Phosphorylation triggers a structural change that removes the R-region 

from its steric-interfering position and permits the dimerisation of NBD, 

causing a much larger conformational change 
(20)

. Then, the binding of 

ATP promotes channel opening while ATP hydrolysis and release of 

ADP and inorganic phosphate trigger channel closure 
(25,26)

. Recently, a 

more complex model involving the C-terminal region was proposed: the 

phosphorylation of the R-region causes a switch from NBDs interacting 

to C-terminal interacting region. So, the R-region acts as a global 

regulator of CFTR via its alternative interacting partners 
(27)

. 
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Figure 1: CFTR ATP binding and hydrolysis leads to channel opening triggering the 

flux of chloride ions (model proposed by Wang et al., from Meng et al. 2016). 

 

 

In healthy subjects, a complex of various proteins that includes 

scaffold proteins (among which NHERF1) and signaling molecules (like 

cAMP and protein kinases) maintains CFTR in its correct position on the 

cell membrane and permits its activity 
(1)

. In CF, the altered flux of ions 

and water into the lumen of bronchioles promotes bacterial infections 

and the influx of granulocytes into the airway lumen 
(1)

. 

The actin cytoskeleton is essential to maintain the epithelium 

integrity and the activity of the CFTR protein: actin filaments control 

cell morphology, the adherence to extracellular matrix and prevent  

apoptosis 
(1)

. The dysfunction of the CFTR protein causes the 

accumulation of sticky dehydrated mucus in various organs such as 

lungs, epididymis, biliary canalicula and pancreatic ducts. In the airways 

there is hyperabsorption of sodium and an abnormal ion and water flux 

consequent to decreased chloride secretion 
(28)

.  

CFTR protein is also involved in the tonic negative regulation of the 

epithelial sodium channels (ENaC) activity 
(29)

. The CFTR dysfunction 

triggers an increased ENaC activity. 

Other pathological processes have been described in the airway of 

patients with CF, such as the reduced fluid secretion by airway 

submucosal glands and the altered secretion of mucous glycoproteins 
(30)

, reduced antimicrobial properties due to pH alterations or to altered 

ions concentration promoting bacterial colonization 
(31,32)

.  

Chronic inflammation typically observed in patients with CF is 

characterized by high activity of cytokines (IL-1β, TNF-α, IL-8) in the 

bronchoalveolar lavage fluid and by a massive influx of granulocytes. 

This inflammatory response reduces the airway bacterial clearance 
(1)

. In 

the intestine, meconium ileus at birth and distal intestinal obstructive 

syndrome in adults are due to dehydration of the mucus and may cause 

gut obstruction that, in most patients, requires surgery. All these 

alterations define the widely heterogeneous expression of the disease 

with progressive dysfunction of several organs 
(1)

.    
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1.3 CFTR gene mutations and classes 
 More than 2000 CFTR mutations have been described so far in 

patients with classic CF and CFTR-RD 
(1,2)

. The most frequent mutation 

is p.Phe508del (F508del), found in about 66% of CF alleles worldwide. 

It is a class 2 mutation due to a triple-base (3-bp) deletion 
(1, 33)

, causing 

the loss of the codon for phenylalanine at residue 508 of the protein 

sequence 
(34)

.  

A frequency gradient of the F508del mutation is observed from 

northern to southern European populations 
(19)

. Similarly, the frequency 

of most CFTR mutations varies greatly between geographic areas such is 

the case for G551D 
(19)

 (Fig.2 A e B).   

 

 
 

Figure 2A: Distribution of F508del CFTR mutation. Percent of patients homozygous 

(green) or heterozygous (yellow) for 508del mutation in different countries and regions. 
AT: Austria, BE: Belgium, BY: Republic of Belarus, BG: Bulgaria, CH: Switzerland, 

CZ: Czech Republic, DE: Germany, DK: Denmark, ES: Spain, FR: France, GR: 

Greece, HU: Hungary, IE: Ireland, IL: Israel, IT: Italy, LV: Latvia,MD: Republic of 

Moldova, NL:The Netherlands, PT: Portugal, RS: Serbia, SE: Sweden, SI: Slovenia, 

UK: United Kingdom. AU: Australia, EU: Europe, US: United States of America, BR: 

Brazil, CA: Canada. (from Bell SC et al. 2015). 
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Figure 2B: Distribution of the G551D mutation. Percent of patients homozygous 

(dark) or heterozygous (light) for G551D mutation in different countries and regions. 

AT: Austria, BE: Belgium, BY: Republic of Belarus, BG: Bulgaria, CH: Switzerland, 

CZ: Czech Republic, DE: Germany, DK: Denmark, ES: Spain, FR: France, GR: 

Greece, HU: Hungary, IE: Ireland, IL: Israel, IT: Italy, LV: Latvia, MD: Republic of 

Moldova, NL:The Netherlands, PT: Portugal, RS: Serbia, SE: Sweden, SI: Slovenia, 

UK: United Kingdom. AU: Australia, EU: Europe, US: United States of America, BR: 
Brazil, CA: Canada. (from Bell SC et al. 2015). 

 

In most ethnic groups only 10 to 15 CFTR mutations occur with a 

allelic frequency >1%. All the other mutations are very rare, mostly 

occurring in a few or a single patient. The 2000 CFTR mutations have 

the following distribution: missense (42%); frameshift (15%), splicing 

(13%), nonsense (10%), large (3%) and in-frame (2%) 

deletions/insertions, and promoter (0.5%); 15% are presumably non-

pathological variants (www.CFTR.2.org) 
(19)

. CFTR mutations are 

classified in six different classes according to the functional effect 
(19)

.  

Class I mutations impair protein production. They include nonsense 

mutations (causing premature stop codons) that lead to mRNA 

degradation by nonsense-mediated decay. Examples of class I mutations 

are G542X (Britanny and Southern France), R1162X (Austria and 

Northern Italy), or W1282X (reaching a frequency of 48% among 

Ashkenazi Jews) 
(33)

. 

Class II mutations affect the protein processing generating a 

misfolded protein which is recognized and degraded by endoplasmic 

reticulum (ER) quality control retention system 
(19)

. 

Class III mutations impair the gating activity (e.g. G551D). 

Class IV mutations decrease Cl
-
 ion conductance (e.g. R334W). 

Class V mutations impair the splicing process generating variable 

percentages of aberrant and normal transcripts (e.g. 3272-26A>G). Their 

levels vary among patients and in different organs of each patient.  
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Class VI mutations decrease retention/anchoring to the cell 

membrane, often associated with decreased protein stability 
(19,35,36) 

(Figure 3). 
 

 

Figure 3: Classes of CFTR mutations. Class I mutations, that completely abolish 

protein production, often include mutations that generate premature stop codons. Class 

II mutations (including the most prevalent F508del) cause retention of a misfolded 

protein in the ER, and subsequent degradation in the proteasome. Class III mutations 

affect channel regulation, impairing channel opening (e.g. G551D). Class IV mutations 

exhibit reduced conduction that causes decreased flow of ions (e.g. R334W). Class V 

mutations cause significant reduction in mRNA and/or protein levels – albeit with 

normal function – often impairing the splicing (e.g. 3272 − 26A>G). Class VI mutants 
cause significant plasma membrane instability and include F508del when rescued by 

most correctors (rF508del) (from Amaral & Farinha, 2013). 

 

This classification helps strategies of molecular drug development 

aimed to correct the effect of specific mutations, but has several 

limitations: 

a) for most mutations it is not yet defined the class; 

b) some mutations have characteristics of more than one class. An 

example is the F508del which, in addition to the trafficking 

defect (class II), displays also a gating (class III) and a cell 

surface stability defect (class VI). Another example is the 

R117H, classified as class IV due to a slight decrease in channel 

conductance but is not a CF-causing mutation alone. Indeed, it 

leads to CF when it is in cis with 5T which alone is a class V 

mutation, but not a mutation alone, again. So, the real CF causing 

mutation is the complex allele [R117H-5T] which can be 

considered as a class IV-V mutation. 

In fact, the existence of complex alleles complicates the variability of 

the CF phenotype and the genetic counseling 
(11)

. They are poorly 

defined for the lack of functional studies. Complex alleles result from 

the combination of two or more CFTR mutations in cis (i.e., on the same 

allele) that usually have a pathogenic effect while each single mutation 

has a milder or none effect 
(11)

. So far, the following   

the p.[Arg74Trp;Val201Met;Asp1270Asn], 

the p.[Ile148Thr;Ile1023_Val1024del],  
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the p.[Arg117Leu;Leu997Phe] and  

the c.[1210-34TG[12];1210-12T[5];2930C>T] 
(11)

  

complex alleles were described in patients with CF, but functional 

studies on the effect of these mutations has been performed only in a few 

cases 
(11)

. 

 

1.4 Nasal epithelial cells 

Airway epithelial cells play a relevant role in the first line of 

antimicrobial defence: in fact, foreign particles and bacteria are trapped 

in mucus and are removed by coordinated cilia beating and/or coughing 
(36)

. Human airways extend from the nose to trachea, bronchi, 

bronchioles, and alveoli. Such epithelium includes a variety of cell types 

with specialized functions and their relative distribution varies in the 

different zones of the airways. The epithelium of the human airway is 

columnar. It lays on a basal membrane and is lined by a mucus layer 
(37)

. 

This epithelium is mainly constituted by ciliated cells. They are the main 

cell type in nasal, tracheal and bronchial epithelium (85±2%, 81±2%, 

and 83±2% respectively), whereas squamous cells dominated in 

pharyngeal epithelium (87±3%) 
(34)

.  Other epithelial cells include basal, 

goblet, serous and undifferentiated columnar cells; the relative 

proportion of these cells is roughly similar among the various sites 
(34).

 

Interestingly, Trapnell et al, (1991) demontrated a striking discontinuity 

in CFTR gene expression from nose to bronchus, with a sharp decrease 

at the pharynx, and return to the levels of the nose in trachea and 

bronchi. This pattern of gene expression is related to the number of 

ciliated cells at each site, consistent with the concept that the CFTR gene 

is highly expressed in ciliated cells 
(34)

. The bronchial epithelia of 

patients with CF is characterized by relatively less ciliated cells and a 

greater basal undifferentiated and secretory cells 
(37)

. While, no 

differences in the cells distribution were found in the nasal epithelium of 

patients with CF as compared to normal subjects.  

Primary human epithelial cells can be obtained from nasal turbinates, 

nasal polyps, trachea, bronchi or lung tissue specimens. However, such 

tissues frequently contain yeast, fungi, or bacteria and media for cultures 

should be supplemented with antibiotics for at least 3-5 days. Human 

airway epithelial cell cultures are useful to study cell biology, disease, 

and therapy related to respiratory tract diseases. Primary human airway 

epithelial cells recapitulate the characteristic pseudostratified 

mucociliary morphology and maintain most physiologic functions,  thus, 

represent an excellent model to study in vivo biology 
(38)

.   

 

1.5 Epithelial cell culture  

Different methods for primary human airway epithelial cell culture 

were used so far like submerged, suspension, floating, and air-liquid 

interface (ALI). These cultures reproduce the physiology of most in vivo 

conditions 
(36)

. Epithelial cells in culture show the characteristic 

epithelial morphology, i.e., they appear isodiametric and compacted in 

well-defined colonies with precise limits not spreading out of the 

colonies. Cells of some CF airway epithelial lines are fibroblast-shaped, 

aggregate in colonies with no precise limits and with cells spreading out 
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of the colonies. Epithelial cells express characteristic cytokeratins and 

form cell junctions typically observed in most epithelia in vivo. 

Monolayers formed by in vitro growth are real epithelial shetts that 

generate potential differences on both sides of the monolayer that can be 

easily measured. Primary cells are grown on collagen-coated dishes and 

usually on feeder layer. Most cells support only three to five passages 
(37)

.  

 

1.6 CFTR mutation-specific therapies 

The molecular effect of CFTR mutations is important for designing 

molecular treatments aimed to correct the defect (i.e. mutation-specific 

therapies) 
(19)

.  For istance, in class I, aminoglycoside antibiotics (e.g. 

gentamicin) and ataluren (PTC124) over-read the premature termination 

codons permitting the normal termination of the transcript ion. For Class 

II, chemical and molecular chaperones help to promote protein folding, 

allowing the mutant protein to avoid ER degradation and reach the cell 

membrane. These compounds have been called correctors (e.g. VX-809, 

VX-661). For class III mutations, CFTR channel activators defined 

potentiators, such as VX-770 (ivacaftor) had effect in vitro and in 

clinical trials in patients bearing at least one copy of the G551D 

mutation. For class IV mutations, the reduced conductance can be 

correct increasing the overall cell surface amount of the mutant protein 

with correctors, or enhancing the levels of channel activation (by 

potentiators). Class V mutations reduce normal protein levels often by 

affecting splicing and generating a variable percentage of aberrant and 

normal transcripts. Recent improvements in the use of antisense 

oligonucleotide (AONs) make this approach a very promising tool for 

the specific correction of splicing defects. Finally, compounds that 

enhance CFTR retention/anchoring at the cell surface partially correct 

the effect of class VI mutants. These include activators of Rac1 signaling 

which promote anchoring to actin cytoskeleton though  NHERF1 
(19)

.    
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2. AIM 

 

2.1 The model of HNECs obtained by nasal brushing  

About 2000 mutations have been reported so far in the disease 

gene in patients with CF or CFTR-RD 
(2)

. However, only for a few 

mutations the molecular effect has been defined with complex in 

vitro procedures 
(39)

. We set up the sampling (by brushing), culture 

and analysis of HNEC using several techniques that help to test the 

effect of CFTR mutations. We used this ex vivo model either to study 

the effect of novel mutations and to assess the effect of butyrate on 

CFTR expression on nasal cells from patients bearing specific 

mutations. 

 

2.2 The splicing effect of a CFTR mutation on HNECs by nasal  

brushing 

We collected samples of HNECs from a CF patient heterozygous 

for the 711+1G>A mutation, that was predicted to have an effect on 

the splicing of exon 5. The analysis was performed by RT-PCR, 

using primers that included CFTR exon 4, 5 and 6. Electrophoretic 

analysis of the cDNA amplicon showed that the 711+1G>A mutation 

caused the retention of intron 5 due to altered splicing. 

 

2.3 The CFTR gating activity in patients bearing different mutations 

To test the activity of the CFTR protein, we used the halide-

sensitive fluorescent system by the iodide-sensitive fluorescent 

indicator SPQ (Molecular Probes, Invitrogen, M440).  

 

                  2.4  The effect of butyrate on CFTR expression 

We treated cultured nasal epithelial cells from 5 controls and from 

20 patients with sodium butyrate to assess the effect of the molecule 

on the levels of CFTR expression. 

 

2.5 Genotype-phenoptype correlation and functional studies in CF   

patients bearing CFTR complex alleles 

Complex alleles result from two or more CFTR mutations in cis 

(i.e., on the same allele) that usually have a pathogenic effect while 

each single mutation has only a minor or none effect. So far, few 

subjects bearing  

the p.[Arg74Trp;Val201Met;Asp1270Asn],  

the p.[Ile148Thr;Ile1023_Val1024del],  

the p.[Arg117Leu;Leu997Phe] and  

the c.[1210-34TG[12];1210-12T[5]; 2930C>T]  

complex alleles were described 
(11) 

and a functional characterization 

of the effect of these mutations was performed in a limited number 

of cases. We studied a cohort of CF patients carrying CFTR complex 

alleles and described the genotype–phenotype correlation and the 

results of either in vitro and ex vivo studies performed on HNECs.  
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3. MATERIALS AND METHODS 

 

3.1 Subject population 

The study was approved by the Ethical Committee of the 

University of Naples Federico II. We performed nasal brushing to 

123 CF patients with different genotypes and 100 healthy controls 

after a complete ear-nose-throat evaluation. Among these, we 

performed a retrospective analysis of all patients in follow-up at 

twelve Italian CF centres and included all subjects who were 

homozygous or compound heterozygous for the following complex 

alleles:  

(1) p.[Arg74Trp;Val201Met;Asp1270Asn], n=8;  

(2) p.[Arg74Trp;Asp1270Asn],n=2;  

(3)p.[Ile148Thr;Ile1023_Val1024del],n=5;  

(4) p.[Arg117Leu;Leu997Phe], n=6;  

(5) c.[1210-34TG[12];1210-12T[5];2930C>T], n=3.  

Furthermore, we studied subjects homozygous or compound 

heterozygous for the following mutations:  

(1) (2) p.Asp1270Asn, n=2;  

(3) p.Ile148Thr,n=4; and  

(4) p.Leu997Phe, n=34.  

Finally, we studied obligate carriers heterozygous for the 

p.Ile148Thr (n=2);  

p.Leu997Phe (n=2) mutations and for the  

p.[Arg74Trp;Asp1270Asn] complex allele (n=2).  

We measured the CFTR gating activity on HNECs from 39 subjects 

and compared the data with those obtained from: (1) patients with 

CF with two class I–II mutations, n=8, and (2) carriers of class I–II 

mutations, n=4. 

 

3.2 Clinical data 

The diagnosis of CF, CFTR-RD and CFSPID was performed 

according to standard criteria 
(14,18,40)

. From each subject, we 

collected clinical and genetic data at diagnosis and during the follow-

up. SCL were analyzed using the Gibson and Cooke method 
(41, 

42,43,44)
. SCL <40 mmol/L were considered normal, between 40 and 

59 mmol/L were considered borderline and ≥60 mmol/L were 

considered pathological 
(42)

. The last best forced expiratory volume 

in 1 second (FEV1) was recorded for patients > 6 years. It was 

expressed as percentage of predicted value for age, according to 

standardized reference equations for spirometry and was performed 

when patient was free from pulmonary exacerbations 
(45)

. Given the 

interindividual variability of FEV1 and the evolution of lung damage 

with age, each patient was classified as severe or mild according to 

Schluchter et al. criteria that take into account both FEV1 value and 

age 
(46)

. For patients who had died, we considered the last available 

value. Pseudomonas aeruginosa chronic infection was defined 

according to the modified Leeds criteria 
(47)

. Pancreatic sufficiency 

(PS) was defined on the basis of at least two values of faecal 
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pancreatic elastase higher than 200 μg/g measured outside acute 

gastrointestinal diseases 
(48)

. Faecal pancreatic elastase was evaluated 

annually in patients with PS and at least 3 months before enrolment. 

Pancreatitis was defined according to the report from the 

international study group of pediatric pancreatitis 
(49)

. All patients 

performed annually a glucose tolerance test. CF-related diabetes 

(CFRD) was diagnosed according to the American Diabetes 

Association criteria 
(50)

. CF-associated liver disease was defined by 

clinical laboratory and instrumental evaluations as previously 

described 
(51)

. 

 

3.3 Molecular analysis of CFTR 

We screened all patients using a commercial panel of mutations 

with a detection rate for CF alleles of about 80% 
(4)

. Then, we tested 

for the most common rearrangements 
(6)

 and carried out gene 

sequencing (detection rate about 97% for classic CF) 
(52)

 in cases 

where one or both mutations resulted undetected after first-level 

analysis, according to European recommendations 
(53)

. All 

laboratories involved in this study participate to the national project 

on standardization and quality assurance for molecular genetic 

testing 
(54)

. For CFTR mutations, we used the nomenclature 

guidelines suggested by the Human Genome Variation Society.  

 

3.4 Nasal brushing 

Before sampling, the informed consent was required to all patients 

(legal guardian for minors), after a careful description of the aims of 

the study. All subjects underwent an ear-nose-throat evaluation. 

After nasal washings with saline in order to remove mucus (two 

washings per day in the week before and one washing immediately 

before the sampling), nasal brushing was performed by a soft sterile 

interdental brush with 2.5 to 3 mm bristles (Paro-Isola, Switzerland) 

scraping (Figure 4a) along the middle portion of the inferior 

turbinate by gentle backward–forward and rotatory movements 

(circular movement) in each nostril, under direct visualization, using 

a headlamp without decongestant or local anesthesia (Figure 4b). 

Patients were carefully monitored for vital and minor signs, comfort 

and pain. They were discharged on the same day. 
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Figure 4: a) an example of soft sterile interdental brush with 2.5 to 3 mm bristles 

(Paro-Isola, Switzerland) scraping; b) ENT specialist operator during execution of 

nasal brushing in a patient.  

   

3.5 Culture of nasal cells 

The sample from each nostril was immediately stored in a 15 mL 

tube containing 2.5 mL of RPMI 1640 medium, complemented with 

3% antibiotics. Cells were placed on Eppendorf Thermomixer, in 

agitation at 700 rpm for one hour to remove all cells from brushes. 

Cells were centrifuged at 2000 rpm for 20 minutes, supernatant were 

discarded and resuspended in serum-free bronchial epithelial cell 

growth medium BEGM (Clonetics, MD). Then, cells were placed in 

CELL T 25 flasks (Sarstedt Ltd, UK). At confluence of 60%, cells 

were passed in new flasks after count by Invitrogen (Italy) Cell 

Countess. Trypan blue exclusion test was used to establish total 

viable cell number and the percentage of viability. Nasal cells can be 

stored at 4°C up to 48 h before culturing (using the RPMI 1640 

medium), and this permits to collect the samples from patients 

followed in other centres. At the confluence of >80%, cells were 

treated with 5 mM of sodium butyrate for 24 hours (Figure 5). 
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Figure 5: an example of HNECs placed in CELL T 25 flasks (Sarstedt Ltd, UK) at 

5 days. 

 

3.6 Nasal cytology 

Epithelial cells include various types: ciliated, non-ciliated, 

striated and basal 
(55)

. Ciliated cells (our target) represent more than 

80% of cells obtained by nasal brushing; they have tall columnar 

shapes with distinct cilia. Non ciliated cells, including secretory 

goblet cells, have similar shape but no cilia; striated and basal cells 

are smaller with dense, round nuclei, strongly stained cytoplasms, 

and a high nuclear-cytoplasm ratio. In addition, leukocytes or 

inflammatory cells may be found in the brushing sample if the 

patient would have inflammatory conditions. We used May-

Grunwald-Giemsa stain of freshly obtained nasal cells to verify the 

presence of an adequate amount of ciliated cells and to exclude the 

presence of inflammatory cells. The freshly isolated human cells 

recovered from nasal brushings and spread on silane glass slides 

were stained by the May-Grunwald-Giemsa. After 5 minutes fixing 

in methanol, slides were immersed for 5 minutes in May-Grunwald’s 

standard stain (Fluka Chemie, Switzerland), freshly diluted with an 

equal volume of phosphate buffer pH 6.8 and then, without washing, 

immersed for 10 to 15 minutes in Giemsa stain (Merck, Germany) 

diluted with nine volumes of phosphate buffer pH 6.8. After 3-4 

rapid washes in phosphate buffer pH 6.8 and 2 to 5 minutes in water, 

slides were mounted with Entellan (Merck), covered with glass 

coverslips and dried for at least 1 hour before analysis. Samples on 

slides were evaluated for cell differential count and morphology 

using a conventional light microscope (Zeiss, Germany) (Figure 6).  

The culture of nasal epithelial cells helps to selectively expand 

epithelial ciliate cells. To verify that such cells maintain their 

phenotype after prolonged culture (> 20 days) we used the 

cytokeratin staining. The staining with anti- KRT18/cytokeratin-18 

(CK- 18; Abcam, Italy, ab52948) antibody was used to confirm 

epithelial cell purity, and that with anti-CD3+, (Abcam, ab5690), 
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CD4+ (Abcam, ab51312) or CD19+ (Abcam, ab25232) 1:500 

antibodies was used to exclude the presence of lymphocytes or other 

inflammatory cells. Moreover, the cells were treated with anti-Pan-

cytokeratin (C5992, Sigma Aldrich, Italy) 1:500 and MUC5AC 

(Abcam, ab3649) or MUC3B (Abcam, ab85006) 1:200 antibodies to 

exclude mucipar differentiation. 

 

 
 
Figure 6: an example of ciliated cell’s morphology stained by the May-Grunwald-

Giemsa at a conventional light microscope - magnification 1000X (Zeiss, 

Germany).   

 

3.7 Real-time PCR for quantitative analysis of CFTR mRNA 

Total RNA is isolated from HNECs using TRIzol (Invitrogen, 

Italy) as previously described 
(56)

. RNA concentration and purity is 

evaluated using a NanoDrop ND-1000 spectrophotometer; reverse 

transcription is carried out on 1 μg of total RNA resuspended in 

DEPC-treated nano pure water using QuantiTect Rev Transcription 

Kit (Qiagen, CA) according to the protocol by the manufacturer. To 

check the levels of CFTR transcript in nasal epithelial cell (NEC), 

relative quantification by Real-time PCR is performed in duplicates 

using LightCycler 480 Probes Master containing CFTR primers 

(Roche Italy) and a TaqMan CFTR probe (ID. Assay 102716). 

Amplification is carried out with the LightCycler 480 Systems for 

Real-Time PCR (Roche) with a two-step PCR protocol 
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(preincubation of 10 min at +95° C followed by 45 cycles of 

amplification: 95°C for 10 sec, 60°C for 25s, 72°C for 1s). mRNA 

quantification results are normalized using glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) gene (Roche, ID. Assay 

101128) as an endogenous control. 

 

3.8 RT-PCR analysis to assess the effect of splicing mutations 

Mutations within the exon-intron boundary were preliminarly 

analyzed by prediction softwares Alamut or NetGene2. Then, if the 

analysis predicted an alteration of the splicing pattern, we performed 

an electrophoretic analysis on cDNA obtained by RT-PCR from 

CFTR mRNA extracted from cultured nasal cells. We used different 

pairs of primers complementary to two (or more) subsequent exonic 

sequences. Using these primers, intronic DNA sequences retained in 

the mRNA due to the altered splicing (if present) were amplified, 

giving rise to one or more bands of greater size compared to the wild 

type. 

 

3.9 Quantitative analysis of CFTR channel activity on HNEC 

To test the activity of the CFTR protein, we used the halide-

sensitive fluorescent system. The iodide-sensitive fluorescent 

indicator, 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ, M-440) 

(Molecular Probes, Invitrogen,) was introduced into cells in a 

hypotonic solution of iodide buffer (in mM:130 NaI, 4 KNO3, 1 

Ca(NO3)2, 1 Mg(NO3)2, 10 glucose and 20 HEPES, pH 7.4) diluted 

1:1 with water and containing a final concentration of 10 μm SPQ. 

Nasal cells were loaded for 20 min at 37°C in a humidified chamber 

with 5% CO2. SPQ-loaded cells were then mounted on a LSM510 

Meta confocal microscope with a 37°C heated stage and perfused 

with iodide buffer. Changes in CFTR-mediated SPQ fluorescence 

were monitored at the 445 nm in response to excitation at 340 nm. 

Fluorescent is constantly measured by the passage between different 

solutions contain halide anions. Cells were initially perfused with 

iodide buffer followed by perfusion with nitrate buffer (NaI replaced 

with 130 mM NaNO3) with the addition of specific activators of 

CFTR channel as forskolin (20 μM) (Sigma Aldrich) and genistein 

(50 μM) (Sigma Aldrich). The peak iodide efflux rate was calculated 

in accordance with the Stern-Volmer relationship as follows: 

(Fo/F) - 1 = KCQ 

where F is the observed fluorescence, Fo is the fluorescence in the 

absence of a quenching anion, CQ is the concentration of the 

quenching anion, and K is the Stern-Volmer quench constant. The 

rates were calculated using SigmaPlot Version 7.1 for each mean 

fluorescence trace generated from the 50 cells examined per 

population per coverslip. 

 

3.10 HEK-293 Cell Culture 

Human Embryonic Kidney (HEK-293) cells were grown in    

DMEM supplemented with 10% FBS, 1% penicillin/streptomycin 
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(100 U/mL; 100 g/mL) and incubated in a humidified atmosphere 

of 5% CO2 at 37°C. 

 

3.11 Plasmid Constructs and lentiviral vector production 

The wild-type, N1303K and F508del CFTR coding sequences 

were amplified from pTracer plasmid, gently provided by Prof. 

Galietta (Genua, Italy). While, the genetic variation of interest either 

alone i.e., D1270N (D) or in different combinations, i.e.,  

[D1270N;V120M;R74W] (DVR); [D1270N;V120M] (DV), were 

introduced into the wild-type CFTR coding sequence using the 

QuikChange Multi Site-Directed Mutagenesis Kit (Agilent 

Technologies) and the designed primers, in accordance with the 

manufacturer’s protocol. All CFTR coding sequences, wild-type and 

all mutants, were cloned in the modified Lentiviral construct 

pMIRNA1 (SBI System Biosciences). This kind of plasmid is able to 

express the CFTR protein and the Yellow Fluorescent Protein (YFP 

gently provided by Prof. Galietta) 
(57)

 in an independent manner by 

the presence of a T2A sequence between YFP and CFTR coding 

sequence. Once checked by sequencing, the various CFTR constructs 

were packaged into VSV-G pseudotyped viral particles using the SBI 

pPACKH1 packaging plasmid mix. Both packaging and transduction 

of HEK293 cells were performed according to the manufacturer’s 

instructions.  

 

3.12 Western Blot analysis 

HEK-293 cells stably expressing wild-type and mutated CFTR 

proteins were lysed in Triton lysis buffer (TLB: 1% Triton, 25 

mmol/L Tris pH 7.4, 150 mmol/L NaCl) and protease inhibitors 

2mg/ml, (Complete EDTA-free Protease Inhibitor Cocktail (Roche) 

for 1 hour at 4°C. The protein concentration was quantified by the 

Bradford assay (Biorad). All protein extracts were heated at 37°C for 

20 minutes in SDS-PAGE solubilising buffer (57.85 mmol/L Tris 

HCl, 10% Glycerol, 2% SDS, 0.004% Bromophenol blue, pH 6.8) 

containing 125 mmol/L Dithiothreitol. 25 g of total proteins were 

loaded in each lane and separated by SDS-PAGE-electrophoresis on 

a gradient polyacrylamide gel at 100 V for 2 hour. Following 

electrophoresis, proteins were transferred overnight onto a immun-

Blot PVDF (Polyvinylidene Fluoride) (BIORAD) membrane. The 

policlonal anti-CFTR antibody (Cell Signaling Tecnologies #2269) 

(diluted 1:1000) was used for CFTR protein detection and the anti-

Tubulin TU-02 (Tubulin sc-8035, Santa Cruz Biotechnology) 

(diluted 1:4000) and the anti-GFP (GFP sc-81045, Santa Cruz) 

(diluted 1:2000) for western normalization and infection efficiency. 

Western blot quantification was performed using both ImageJ and 

Scion Image software. 

 

3.13 CFTR activity assay on HEK-293 cells. 

The HEK293 cells stably expressing the wild-type or mutant 

CFTR proteins were seeded in 96-well black microplates with a clear 

flat bottom (Corning Costar) until they reached the maximum 
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confluence. After two washes with PBS, then the 96-microplate with 

iodide-loading buffer (containing in mmol/L: 130 NaI, 3 KCl, 1 

CaCl2, 1 MgCl2 , 10 glucose and 20 HEPES, pH 7.4) was loaded in 

the Espire TM 2300 microplate reader for 20 minutes at 37 C° for 

fluorescence quenching. After substitution of the iodide-loading 

buffer with iodide-free buffer (same as the iodide loading buffer 

except NaCl replaced NaI) with  forskolin (Sigma) and IBMX 

() (Sigma) or DMSO as control, the 96-microplate was loaded 

in the Espire TM 2300 microplate reader for iodide efflux analysis. 

The rate of iodide efflux was calculated considering the maximal 

slope of the best fitting curve (fluorescence versus time). 

 

3.14 Statistical analysis  

For real-time PCR assay, the values of CFTR mRNA are reported 

as means +/- SD ratios to GAPDH housekeeping mRNA. Rate of 

chloride efflux measured in at least 50 cells for experiment. Mean ± 

SD of 3 experiments. Statistical significance was defined as p value 

of  < 0.05 vs control subject. 
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4. RESULTS 

 

4.1 Sampling and culture of HNECs  

We performed nasal brushing to 100 healthy volunteers and 123 

patients with CF (or carriers) with different CFTR genotypes. In all 

223 cases HNECs were obtained successfully, with any complication 

nor discomfort for subjects. The May-Grunwald-Giemsa staining 

(performed on 30 samples) confirmed the presence of adequate 

amounts of ciliated epithelial cells. In all cases we cultured the cells 

and in 208/223 (93.2%) cases we obtained a positive culture. Figure 

7 shows an example of the culture of HNECs at different days. In 

16/223 (6.8%) cases the cells did not expand due to the strong 

contamination with mucus or with a high number of keratinocytes. 

To avoid contamination, we modified our original protocol, and now 

before the sampling we: i) carefully verify the absence of any clinical 

condition potentially associated with a higher mucus production; ii) 

perform washings with physiological solutions (see materials and 

methods).  

To verify that the culture did not modify the phenotype of cells, 

we used a panel of anti-cytokeratin antibodies, specific for epithelial 

cells; we confirmed the same reactivity to antibodies of cultured cells 

at different days as compared to freshly sampled cells. Furthermore 

we assessed, by quantitative RT-PCR, the levels of CFTR transcript 

in cells before culture and at different days of culture until 20
th

 day 

(in ten different experiments), and no significant changes were 

observed (data not shown). Finally, we assessed the effect of storage 

of cells in transport medium before culture, and in 10 different 

experiments we demonstrated that cells can be stored at least 48 hrs 

at 4°C before a positive culture. 

 

 
 
Figure 7: an example of HNECs expansion at different days of culture. A: 3 days; 

B: 4 days; C: 7 days; D: 10 days. 
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4.2 Analysis of CFTR mRNA levels  

We analyzed, by quantitative RT-PCR, the levels of CFTR 

transcript as a ratio with the GAPDH housekeeping gene mRNA in 

samples from healthy subjects and from CF patients with different 

mutations (Figure 8); such analysis can be performed either on RNA 

from cultured cells and on RNA extracted from fresh sampled nasal 

cells entrapped in the brush before culture. The analysis showed a 

very heterogeneous basal expression of CFTR mRNA.  

 

 
 
Figure 8: quantitative RT-PCR analysis of CFTR mRNA levels expressed as a 

ratio to the housekeeping GAPDH mRNA. 1: control sample from a healthy 

subject; 2 to 7: samples obtained from CF patients with different CFTR genotypes. 

 

4.3 Treatment of HNECs with sodium butyrate  

Then, we treated cultured nasal epithelial cells of 5 controls and of 

20 patients with CF with sodium butyrate. The treatment enhanced  

CFTR mRNA levels in all cases (some examples are reported in 

Figure 9). 

 

 
 
Figure 9: effect of butyrate on CFTR mRNA expression. The figure shows the 

quantitative RT-PCR analysis of CFTR mRNA levels expressed as a ratio to the 
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housekeeping GAPDH mRNA in three samples of nasal epithelial non-treated 

(NT) and butyrate-treated cells (T). 

 

4.4 Analysis of the splicing effect of a CFTR mutation 

We studied a patient with CF compound heterozygous for the 

711+1G>A mutation, that was predicted by in silico analysis to 

cause the altered splicing of the exon 5. The analysis was performed 

by RT-PCR, using primers that included CFTR exons 4, 5 and 6. The 

electrophoretic analysis of the cDNA amplified product clearly 

showed that the 711+1G>A mutation impairs the splicing causing 

the retention of intron 5 (Figure 10). 

 

 
 
Figure 10: RT-PCR analysis of CFTR mRNA from a healthy control subject (1) 
and from a CF patient heterozygous for the 711+1G>A mutation (2). The mutation 

has a potential effect of altered splicing of the CFTR mRNA causing the retention 

of an intronic sequence that appears as an electrophoretic band with a higher 

molecular weight in addition to the normal band also present in the healthy subject. 

 

4.5 Gating activity of CFTR  

We analyzed the quantitative gating activity of CFTR in all the 

123 patients with CF or carriers. In all cases the analysis provided a 

clear result, and Figure 11 shows several examples: #1 is a healthy 

control subject (its activity is considered 100%); #2 and 3 are two CF 

patients with two severe mutations each (i.e., F508del/F508del for 

case #2 and G542X/4016insT for case #3): they show an activity of 

9.9% and 10.4% as compared to the control, respectively; case #4 is 

a CF patient with a severe and a mild CF mutation (i.e., 

W1282X/D1152H): he shows an activity of about 20.3%. Finally, 

case #5 is a heterozygous carrier of the severe G542X mutation: he 

showed an activity of 76.8%. Finally, patients bearing two severe 

mutations (like the F508del, the G542X, the 4016insTc38) have an 
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activity ≤10%. Such patients usually show classic CF with PI and 

altered SCL. While, patients with CF bearing at least a mild 

mutation, such as D1152H show an activity between 10% and 30%. 

Such patients may have mild CF with PS or CFTR-RD with 

borderline or slightly enhanced SCL. Carrier subjects have a gating 

activity of 40 to 75%. Of course, the quantitative analysis of CFTR 

in nasal cells can also assess, in the ex vivo model from patients 

bearing specific mutations, the effect of potential drugs like 

potentiators and/or correctors 
(19)

 or molecular therapies before their 

use in humans 
(58, 59)

. 

 

 
 
Figure 11: quantitative gating activity of CFTR. #1 is a healthy control subject 

(his activity is considered 100%); #2 and #3 are two CF patients compound 

heterozygous for two severe mutations each (i.e., F508del/F508del for case #2 and 

G542X/4016insT for case #3): they show an activity of 9.9% and 10.4% compared 

to the control, respectively; case #4 is a CF patient with a severe and a mild CF 

mutation (i.e., W1282X/D1152H) with 20.3% of activity. Finally, case #5 is a 

heterozygous carrier of the severe G542X mutation with an activity of 76.8%. 

 

4.6 Genotype-phenotype correlation in CF patients bearing CFTR 

complex alleles: 

  

p.[Arg74Trp;Val201Met;Asp1270Asn] and p.[Arg74Trp; 

Asp1270Asn] complex alleles and p.Asp1270Asn mutation 

We studied eight subjects compound heterozygous for the 

p.[Arg74Trp;Val201Met;Asp1270Asn] complex allele triple mutant 

(table 1). Six had a class I–II (severe) mutation in trans (i.e., 

p.Phe508del: three cases; p.Asn1303Lys: two cases and p.Ser1206*: 

one case) and two had in trans a mild CFTR mutation with higher 

residual activity (i.e., p.Asp1152His and p.Asp579Gly). Among the 

six patients compound heterozygous with a severe mutation, four  

were diagnosed as CF. These patients had altered SCL, PS, mild lung 

disease and none was colonised by P. aeruginosa; two patients had 

impaired glucose tolerance (IGT). The mean CFTR gating activity 
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on HNEC (assessed in three cases) was 11.2% (range 9.8–12.0%), 

significantly higher (p<0.001) as compared with the mean activity of 

6.9% found in eight patients with two class I–II mutations (figure 12 

and table 2). The two other patients (one with the severe p.Phe508del 

mutation and the other with the severe p.Ser1206* mutation in 

trans), aged 12 and 13 years, were diagnosed as CFTR-RD. One had 

normal SCL (i.e., 37 mmol/L) and the other had borderline levels. 

The CFTR gating activity on HNEC, tested in one patient, was 

15.0% (table1). The two remaining patients with the 

p.[Arg74Trp;Val201Met;Asp1270Asn] complex allele, carrying the 

p.Asp579Gly and the p.Asp1152His mutation in trans, were 

diagnosed as CBAVD at the age of 37 and 48 years, respectively. 

The patient carrying the p.Asp579Gly mutation had altered SCL 

(i.e.,118 mmol/L) despite the mild clinical course and a residual 

CFTR activity on HNEC of 19.1%; the other subject, carrying the 

p.Asp1152His mutation, had normal SCL and CFTR gating activity 

of 18.5% (table 1).  

Of the two subjects with the p.[Arg74Trp;Asp1270Asn] complex 

allele (double mutant), one was classified as CFTR-RD and had the 

c.[1210-34TG;12 1210-12T[5]] complex allele (a mild mutation) in 

trans. He had CBAVD, normal SCL and a CFTR gating activity on 

HNEC of 18.9% (table 1). The other, revealed by NBS, was 

previously defined as CFSPID and now classified as healthy at the 

age of 5 years old. Finally, we analysed the residual CFTR gating 

activity on HNEC from two carriers of the 

p.[Arg74Trp;Asp1270Asn] complex allele. They had values of 

92.6% and 94.0%, respectively. 

In the two subjects with the p.Asp1270Asn single mutant (in trans 

with a class I–II mutation) both clinical data and SCL were normal. 

The CFTR gating activity on HNEC, available for one of them, was 

44.0% (figure 12 and table 2).  

Furthermore, we studied in vitro either the CFTR protein by 

western blot and the CFTR gating activity in HEK293 cells 

transfected with the different mutants of the 

p.[Arg74Trp;Val201Met;Asp1270Asn] complex allele. Western blot 

analysis revealed two bands (figure 13). The C band corresponds to 

the mature, fully glycosylated protein, while the B band is the core-

glycosylated quite inactive protein. We calculated, for each mutant, 

the ratio between the C band and the total protein (band B+C). For 

the triple mutant, we obtained a ratio of 21%; the double mutant gave 

a ratio of 64% and, finally, the p.Asp1270Asn single mutant is 

associated with a ratio of 83% (figure 13). These data compare with 

a 58% and 40% ratio obtained for the severe p.Phe508del and 

p.Asn1303Lys mutants, respectively (figure 13). We then evaluated 

the CFTR activity, (figure 14) that was 38.6%, 42.8% and 45.4% of 

the wild type for the triple, the double and the single mutant, 

respectively. These data compare with the values of 2.9% and 0.2% 

obtained for the severe p.Phe508del and p.Asn1303Lys mutations, 

respectively.
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Table 1: Demographic and clinical data of subjects bearing the [p.Arg74Trp;p.Val201Met;p.Asp1270Asn] or the [p.Arg74Trp;p.Asp1270Asn] 

complex alleles or the p.Asp1270Asn mutation 
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Figure 12: Cystic fibrosis transmembrane conductance regulator (CFTR) gating activity measured on human epithelial nasal cells in several groups of 

subjects. The values obtained for each sample and the groups are reported in table 2 (from Terlizzi V. et al., 2016) 
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Table 2: CFTR gating activity measured on epithelial nasal cells in the following 

groups of patients: (A) CF with PI and two class I–II CFTR mutations; (B) CF with 

PI compound heterozygous for the [p.Ile148Thr;p.Ile1023_Val1024del] complex 

allele and a class I–II CFTR mutation; (C) CF with PS and compound 

heterozygous for a complex allele and a class I–II CFTR mutation; (D) CFTR-

related disorders; (E) healthy subjects compound heterozygous for a class I–II 
mutation and a sequence variation with no functional effect; (F) healthy subjects 

heterozygous for a class I–II mutation; (G) healthy subjects heterozygous for a 

sequence variation with no functional effect; and (H) subjects with a undefined 

diagnosis (from Terlizzi V, et al. J Med Genet 2016). 
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Figure 13: Western blot analysis of the cystic fibrosis transmembrane conductance 

regulator (CFTR) protein glycosylation in HEK293 cells stably expressing the wild 

type (1) or the mutant p.Phe508del (2), p.Asn1303Lys (3), p.[Arg74Trp; 

Val201Met;Asp1270Asn] (4), p.[Arg74Trp;Asp1270Asn] (5) and p.Asp1270Asn 

(6) proteins. Band C represents the mature, fully glycosylated protein, whereas 

band B represents the unglycosylated protein. The histogram shows the C/B+C 

ratio. The values are 1:98%, 2:58%, 3:4%, 4:21%, 5:65% and 6:86%. 

Molecular Weight of CFTR:165kDa. 
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Figure 14: (A) Changes of fluorescence of stimulated HEK293 cells stably 

expressing the wild type (wt) or the mutants p.Phe508del, p.Asn1303Lys, 

p.[Arg74Trp;Val201Met;Asp1270Asn](RDV), p.[Arg74Trp;Asp1270Asn] (RD) 

and p.Asp1270Asn (D) CFTR protein (mixture of 20 mM forskolin and 100 mM 

IBMX).The values were expressed as relative fluorescence F/F0, where F is the 

change in fluorescence with time and F0 is the minimum fluorescence. (B) The 

rate of fluorescence change was quantified from the maximal slope using the best 

fitting of the fluorescence change and was (1) wt: 100%, (2) p.Phe508del: 2.9%, 
(3) p.Asn1303Lys: 0.2%, (4) RDV: 38.6%, (5) DV: 42.8% and (6) D:45.4%. 
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p.[Ile148Thr;Ile1023_Val1024del] complex allele and 

p.Ile148Thr mutation 

We found five patients with the 

p.[Ile148Thr;Ile1023_Val1024del] complex allele (table 3). They  

had a class I–II severe mutation in trans (i.e., p. Phe508del: two 

subjects; p.Lys684SerfsX38: one subject; p. Asn1303Lys: one 

subject and p.Gly85Glu: one subject). All the five patients had 

classic CF with pathological SCL and PI; lung disease, assessed by 

FEV1% related to the age was mild (three cases) or severe (two 

cases). Three patients had CFRD and two had severe liver disease 

that was the cause of death (table 3). The mean CFTR gating activity  

on HNEC (available only for three patients) was 7.3% (range 6.5–

7.8%; figure 12 and table 2), not significantly different as compared 

with the mean value of 6.9% found in patients with CF with two 

class I–II (severe) mutations.  

All four subjects with the p.Ile148Thr mutation were compound 

heterozygotes with a class I–II mutation (severe) on the other allele. 

They were adults, asymptomatic and had normal SCL (table 3) and 

were identified by molecular analysis, being consanguineous of 

patients with CF. The CFTR gating activity on HNEC ranged from 

41.0% to 56.0% (figure 12 and table 2) i.e., comparable to that found 

in carrier subjects. Finally, two healthy subjects were revealed as 

heterozygous for the p.Ile148Thr mutation being partner of CF 

carriers. They had a CFTR activity on HNEC of 87.4% and 86.3%, 

respectively. 
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                            Table 3: Demographic and clinical data of subjects bearing the [p.Ile148Thr;p.Ile1023_Val1024del] complex allele or the p.Ile148Thr mutation 

                             (from Terlizzi V. et al. J Med Genet 2016) 
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p.[Arg117Leu;Leu997Phe] complex allele and p.Leu997Phe 

mutation 

We studied two siblings homozygous for the 

p.[Arg117Leu;Leu997Phe] complex allele (table 4). One is a female 

diagnosed as CF with PS (mild CF) at 48 years because of recurrent 

pneumonia and chronic colonization by P. aeruginosa. The CFTR 

gating activity on HNEC was 39.0% (figure 12 and table 2) thus in 

the range obtained in patients with mild CF or CFTR-RD. Her 

sibling is a 58-year-old male with CBAVD, and a SCL of 88 

mmol/L.  

Then, we studied two pairs of siblings compound heterozygous for 

the p.[Arg117Leu;Leu997Phe] complex allele and the pArg334Trp 

(1 sib-pair) or the p.Gly85Glu (the other sib-pair, table 2) mutations. 

All were affected by CF with PS (mild). The CFTR gating activity 

on HNEC, available only for one adult female (compound 

heterozygous for the p.Arg334Trp mutation), was 19.5% (figure 9 

and table 2), again in the renge of patients with mild CF. 

Moreover, we observed two subjects homozygous for the 

p.Leu997Phe mutation (table 4). The first has CBAVD with 

borderline SCL. The other, at the age of 21 years, has only chronic 

sinus disease with nasal polyposis (found at the age of 8 years old) 

and normal SCL. The CFTR gating activity on HNEC was 28.9% 

(range of mild CF). 

Eight patients compound heterozygous for the p.Leu997Phe and a 

class I–II  (severe) mutation and six patients compound heterozygous 

for the p.Leu997Phe and another (mild) mutation (table 4) had 

monosymptomatic CFTR-RD (CBAVD: nine cases; recurrent 

pancreatitis: three cases; isolated bronchiectasis: two). Six of them 

had borderline SCL and eight had normal SCL. In two patients from 

this group, both carrying a class I–II (severe) mutation on the other 

allele, the CFTR residual gating activity on HNEC was 24.8% and 

21.3%, respectively (again, the range of mild CF).  

Nine subjects (aged 2–5 years old) compound heterozygous for 

the p.Leu997Phe mutation and a class I–II (severe) mutation (four 

cases) or another (mild) mutation (five cases) had been classified as 

CFSPID. At present, all of them are asymptomatic (table 4) and have 

normal SCL.  

Nine other subjects (aged 31–46 years old) compound 

heterozygous for the p.Leu997Phe and a class I–II (severe) mutation 

(four cases) or another (mild) mutation (five cases) were classified as 

healthy, being all asymptomatic. Seven of such nine subjects had 

normal SCL, in two the SCL were borderline. The nine subjects had 

been identified for familiarity with patients with CF (six cases) or 

being partner of CF carrier subjects (three cases). For one of them, 

the CFTR activity on HNEC was 36.9% (also in this case, the range 

of mild CF).  

Finally, in two healthy subjects heterozygous for the p.Leu997Phe 

mutation the CFTR gating activity on HNEC was 86.4% and 78.9% 

(tables 2 and 4, and figure 12).  
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Table 4: Demographic and clinical data of subjects bearing the [p.Arg117Leu;p.Leu997Phe] complex alleles or the p.Leu997Phe 

mutation 
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Table 4 Continued  
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c.[1210-34TG;[12];1210-12T[5]2930C>T] complex allele 

We studied three patients with the c.[1210-34TG[12];1210-12T 

[5];2930C>T] complex allele in trans with a class I–II (severe) 

mutation (table 5). One was diagnosed as CF with PS (mild CF), a 

mild pulmonary disease despite P. aeruginosa colonization and 

pathologic SCL. Two other patients had CFTR-RD. The CFTR 

gating activity measured on HNEC was 18.5% in the patient with CF 

and 19.0% in one of the two patients with CFTR-RD (figure 12 and 

table 2), i.e., in the range observed in patients with mild CF or with 

CFTR-RD.  

Finally, a synopsis of CF clinical expression in patients with 

different CFTR complex alleles is reported in table 2.
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Table 5: Demographic and clinical data of subjects bearing the c.[1210-34TG[12];1210-12T[5];2930C>T] complex allele. 
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5. DISCUSSION 

 

5.1 Sampling and culture of HNECs 

Culture of HNECs resulted a contributory model to study the 

molecular effect of CFTR mutations and novel drugs in cells from 

patients bearing specific CFTR genotypes. Of course, the model can be 

used for all genetic diseases in which the disease-gene is expressed by 

HNECs. In the present study, we improved and validated the procedures 

for sampling and culture on a wide number of cases and set up 

procedures for the analysis of the molecular effect of CFTR mutations.  

The sampling was well tolerated by all 223 subjects studied, including 

about one third of pediatric patients; it does not need anesthesia nor 

hospitalization and (as we demonstrated during the study) it requires just 

several washings with saline in the days before the sampling. Of course, 

the sampling must be performed by a physician adequately trained in 

otolaryngology. Interestingly, we demonstrated that the transport 

medium permits to store the sampled cells before culture for up to 48 

hours, allowing the analysis of cells sampled from other centres. In fact, 

in the study of CF patients bearing complex alleles 
(11)

, HNECs sampling 

was performed in patients followed in centres from 12 italian regions 

and then analyzed in our Lab.  

The staining with May-Grunwald-Giemsa and with a panel of anti-

cytokeratin antibodies 
(38)

 confirmed that we effectively obtained and 

cultured HNECs without contamination by inflammatory cells. HNECs 

can be cultured up to 15 days, confirming a previous study by our group 

in which we assessed the effect of mannose binding lectin on several 

types of cells (among which HNECs) during senescence 
(56)

. 

Furthermore, in the present study we demonstrated that the culture does 

not modify the levels of CFTR expression. 

Various studies used human ex vivo models of CF. Main limitations 

are the invasiveness and the risk of most techniques to collect human 

cells, the small number of cells collected and the limited number, poor 

quality, and non representative nature of samples resulting from surgery 

(like nasal polypectomies or lung transplants). Brushing of the 

respiratory tract allows easy sampling of numerous, representative, well-

preserved and dissociated cells from the superficial mucosa. The group 

by Garratt et al., recently described the technique of bronchial brushing 

as a possible gold standard model of airway disease in CF. However, this 

sampling requires anaesthesia and less that 50% of samples were 

successfully cultured 
(55)

.  

Other authors suggested the model of porcine nasal epithelial cells in 

culture to study the pathogenesis of sinusitis, but this model is limited by 

the possibility to study transgenic pigs with only a single or few CFTR 

genotypes 
(60)

. Other Authors used cultured cells from nasal polyps for 

proteomic analysis
(61)

 but the limit of such model is that only a few 

patients with CF (about 10-15%) undergo surgery for nasal polyps 
(62)

.  

  

5.2 The study of CFTR mutations that impair the splicing process  

The HNECs model permits to study cells from patients bearing 

specific mutations defining the molecular effects of mutations of 
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uncertain significance. For example, mutations within exon-intron 

boundaries may affect the splicing process (more than two dozens CFTR 

mutations are known to impair the splicing process), and more recently it 

was observed that also missense mutations that do not change the amino 

acid may impair the splicing process 
(63)

. The study of the splicing effect 

of novel mutations would require a complex procedure to express the 

mutation in vitro followed by the mini-gene assay 
(63)

. This is a rather 

complex and expensive procedure not available for routine use. 

Conversely, the availability of nasal cells directly from the patient with 

the mutation to be characterised permits assess the splicing effect with a 

simple RT-PCR reaction followed by electrophoresis. This analysis can 

be performed on HNECs without culture. Using this approach we 

demonstrated the splicing effect of the 711+1G>T mutation confirming 

its pathogenicity. Using the same procedure, in a previous study our 

group defined the pathogenic effect on the splicing of three mutations 

(i.e., the 504C>G, the 621+16G>T and the 1341+45T>G) 
(2)

 while 

another study defined the splicing effect of the 712-1G>T and of the 

2789+5G>A mutations 
(64)

 demonstrating that the results obtained with 

this novel procedure fully match with those obtained with the classic 

minigene assay.  

   

5.3 The study of CFTR gene expression 

 Quantitative RT-PCR analysis can be performed either on cultured 

HNECs and on freshly sampled cells and permits to reveal the level of 

CFTR expression in each subject. Such approach can be used to define 

the effect of mutations in the promoter region, that are described with a 

increasing frequency in CF patients 
(16)

. Also in this case, a simple 

quantitative RT-PCR analysis of HNECs would avoid the complex and 

expensive procedure of in vitro expression and analysis of mutations in 

cell lines 
(16)

. However, our study demonstrated that the CFTR gene 

expression levels are highly heterogeneous either in normal subjects and 

in patients with CF, thus it will be necessary to study a large number of 

healthy subjects to obtain reference values.  

Quantitative RT-PCR analysis may be used also to assess the effect of 

potential drugs that may enhance gene expression, like butyrate. The 

mechanisms of butyrate action are multiple. It can modulate kinase and 

phosphatase proteins, stimulate microtubule and microfilament 

formation, and have regulatory effects on gene expression (including 

heat shock protein and alkaline phosphatase) 
(65, 66)

. Butyrate is part of 

the well-known class of histone deacetylase inhibitors (HDACi) with 

epigenetic effects. In fact, histone tail acetylation is believed to enhance 

the accessibility of a gene to the transcription machinery, whereas 

deacetylated tails are highly charged and believed to be tightly 

associated with the DNA backbone, thus limiting the accessibility of 

genes to transcription factors. So, butyrate can enhance CFTR expression 

by inhibiting deacetylation. In our laboratory, we already studied the 

effect of butyrate on the expression of the SLC26A3 gene in patients 

with congenital chloride diarrhoea, and to predict the patients that may 

benefit from the treatment 
(58)

. Actually, we are evaluating the effect of 

butyrate on CFTR expression and the results obtained in the present 
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study are very encouraging since the treatment of HNECs from either 5 

normal controls and from 20 patients with CF was invariably associated 

to a significant enhancement of CFTR expression. Once confirmed the 

effect of butyrate on a larger number of cases, it could be proposed as a 

therapeutic strategy, increasing CFTR expression in patients with CF 

that would be treated with potentiators  and activators.  

 

5.4 Quantitative analysis of CFTR gating 

The quantitative analysis of CFTR gating activity may contribute 

either to confirm the diagnosis of CF and to predict the severity of the 

phenotype. Even if our data are preliminary and have been obtained only 

in patients with several genotypes, the gating activity of CFTR shows 

several ranges:  

i) patients with two class I/II mutations (that are tipically 

classified as   severe mutations) like the F508del, the N1303K, 

the G542X and several complex alleles (see below), display a 

gating activity  <10%. Usually, such patients have classic CF 

with PI. 

ii) patients with one or both mild mutations, like the D1152H, 

show a gating activity between 10 and 30%. Such patients 

usually appear with mild CF and PS or with CFTR-RD. 

iii) carrier subjects display an activity between 40 and 70%. 

Thus, the analysis of CFTR activity would be performed 

prospectically in patients bearing rare mutations for which the effect is 

not well-defined and may help to predict the clinical expression of the 

disease. 

Of course, the analysis of CFTR gating activity on HNECs may be 

used in patients with CF that experience the treatment with novel drugs 

like activators or potentiators to assess the efficacy of the treatment 
(19)

. 

And finally, the analysis permits to assess the effect of novel drugs on 

cells bearing specific mutations before their use in humans 
(58,59)

 as our 

group recently experienced in patients with the rare congenital chloride 

diarrhea 
(67)

. 

Moreover, our was the first study on a large series of patients with 

CF bearing different CFTR complex alleles that were evaluated for the 

genotype-phenotype correlations and for the CFTR gating activity using 

the ex vivo model of HNECs. Among these mutations, the 

p.[Arg74Trp;Val201Met;Asp1270Asn] was found in eight patients. Six 

had a severe mutation in trans; four of them had mild CF and two had 

CFTR-RD. In two other patients, the mutations in trans were the 

p.Asp579Gly and p.Asp1152His that usually have a milder effect 
(68, 69)

. 

Both the patients had CBAVD, the same clinical expression previously 

found in four patients with the same complex allele in trans with mild 

mutations 
(70)

. Thus, the complex allele may be classified as a mild 

mutation and the clinical expression depends on the mutation in trans. 

This was confirmed by the mean CFTR gating activity on HNEC that 

resulted 11.2% in the patients with mild CF and 17.5% in those with 

CFTR-RD versus a mean of 6.2% (p<0.001) found in patients with CF 

and two class I–II severe mutations. A further confirmation to such data 

came from the in vitro expression study: the 
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p.[Arg74Trp;Val201Met;Asp1270Asn] construct causes a significant 

reduction in the processing of the mature protein (i.e., 21% of the 

normal), but it gives rise to a CFTR residual gating activity of 38%, 

while the severe mutations p.F508del and p.Asn1303Lys mutants had a 

residual activity of 2.9% and 0.2%, respectively.  

The p.[Arg74Trp;Asp1270Asn] complex allele (i.e., the double 

mutant), was found in two patients: the first is a child diagnosed as 

CFSPID,
(18)

 still asymptomatic at the age of 5 years old and the second is 

a patient with a normal SCL and CBAVD (with a residual CFTR activity 

on HNEC of 18.9%). Both the patients had a severe mutation in trans.  

These data indicate that the pathogenic effect of the double mutant is 

low (if any) in agreement with the report of two asymptomatic subjects 

with the same genotype 
(71)

. Similarly, the p.Asp1270Asn (single 

mutant) was found in trans with the severe p.Phe508del and the 

p.Asn1303Lys, respectively in two adults both asymptomatic with 

normal SCL. Such mutation has never been described in subjects with 

CF or CFTR-RD so far, while it was found with a high frequency in the 

general population, suggesting that it could be a polymorphism with no 

pathogenic effect 
(72)

. In agreement, either the 

[p.Arg74Trp;p.Asp1270Asn] complex allele and the p.Asp1270Asn 

mutation caused only a slight reduction in the synthesis of the mature 

protein (65% and 86%) in vitro and had a gating activity of 43% and 

45%, respectively. All these data indicate that the double mutant and the 

p.Asp1270Asn alone have no pathogenic effect 
(73)

. 

Our study revealed the p.[Ile148Thr;Ile1023_Val1024del] complex 

allele as a severe CFTR mutation. It was identified in trans with a class 

I–II severe mutation, in five patients with CF, pancreatic insufficiency 

and severe complications like diabetes and liver disease. The CFTR 

gating activity on HNEC was comparable with that observed in patients 

with CF with two class I–II mutations (<7.0%). While, the p.Ile148Thr 

mutation alone does not have a relevant pathogenic effect: in was found, 

in trans with a class I–II CFTR mutation, in four asymptomatic adults 

and, despite they had a severe mutation in trans, the gating activity of 

CFTR on HNEC ranged 41.0–56.0% (i.e., the same range of values 

observed in subjects heterozygous for a class I–II mutation). On the 

other hand, two healthy subjects heterozygous for the p.Ile148Thr (i.e., 

87.4% and 86.3%) had a gating activity of 87.4% and 86.3%, further 

confirming that the I148T has a minimal functional effect, confirming 

previous in vitro studies 
(70)

 and in agreement with the high frequency of 

the I148T in healthy subjects 
(72)

. Thus, we suggest that such mutation 

would not be tested in panels of mutations. 

Furthermore, we studied two siblings homozygous for the 

p.[Arg117Leu;Leu997Phe] complex allele. The first had CF with a mild 

clinical expression at 35 years old, while the sibling had CBAVD. Both 

the patients had altered SCL. Similarly, four other patients compound 

heterozygous for the complex allele and another CFTR mutation have 

mild CF with PS. The residual CFTR gating activity on HNEC of 39.0% 

in one of the homozygous patients and that of 19.5% in one of the cases 

compound heterozygous for the complex allele and the p.Arg334Trp 

indicates that the p.[Arg117Leu;Leu997Phe] acts as a mild mutation. 
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These data are in agreement with those of four patients, compound 

heterozygous for the p.[Arg117Leu;Leu997Phe] and a severe mutation 

that had a mild CF with PS in two cases and a more severe form of the 

disease with or without PI in two others 
(74)

.  

We found the single mutant p.Leu997Phe homozygous or in trans 

with a causing mutation either in patients with CFTR-RD (mainly 

CBAVD) and in healthy subjects, confirming previous reports 
(74, 75)

. 

Furthermore, some subjects classified as CFSPID after the NBS, resulted 

free from symptoms during the follow-up in the successive years, again 

in agreement with previous studies 
(76)

. The functional analysis of CFTR 

on HNEC was performed in two patients with CFTR-RD, both 

compound heterozygous for the p.Leu997Phe and a class I–II mutation: 

the activity was 21.3% and 24.8%, while the activity measured on an 

asymptomatic subject with the p.[Phe508del];[p.Leu997Phe] genotype 

was 36.9%. Thus, the p.Leu997Phe has a higher residual gating activity 

as compared with class I–II mutations, but with a wide variability. Other 

factors like environment and modifier genes contribute to modulate the 

disease’s symptoms of each CF patient. 

Finally, the c.[1210-34TG[12];1210-12T[5];2930C>T] complex allele 

was found in three patients. All of them had a severe mutation in trans. 

The first was diagnosed as CF since SCL were 87 mmol/L but the 

clinical expression of the disease was very mild. The two other patients 

were diagnosed as CFTR-RD. The CFTR gating activity of 18.5% and 

19.0% found in the CF and in one of the CFTR-RD patients, confirm 

that the c.[1210-34TG[12];1210-12T[5];2930C>T] complex allele is a 

mild mutation. These results agree with those reported in a patient 

compound heterozygous for the c.[1210-34TG[12];1210-

12T[5];2930C>T] complex allele and the p.Phe508del mutation that had 

a mild CF despite nasal potentials and monocyte functional assay were 

compatible with a CF phenotype 
(76)

.  
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6. CONCLUSIONS 

 

The ex vivo model of cultured HNECs may help to study the 

pathogenetic mechanism of specific CF mutations directly on cells from 

the patient and permits to study the effect of novel therapies. Based on 

our results, we conclude that: 

1) HNEC brushing can be performed without anaesthesia and is well  

tolerated by children and adults. It is slightly invasive, easily repeatable, 

and allows to sample a sufficient amount of representative, well-

preserved HNECs, suitable to apply a wide range of techniques; 

2) HNECs can be preserved for up to 48 hours before culture, thus 

allowing multicentre studies; 

3) HNEC culture is a useful model to study the molecular effects of 

novel CFTR mutations including complex alleles; 

4) the ex-vivo model of HNECs may be used to evaluate, before human 

use, the effect of new drugs on patients’ cells bearing specific CFTR 

mutations; these drugs can modulate the effect of CFTR mutations 

opening new therapeutic frontiers; 

5) our methodology is adequate for the quantitative measurement, by 

fluorescence, of the CFTR gating activity of patients HNECs with 

different genotypes helping to classify patients with severe or mild CF, 

CFTR-RD and carrier subjects.  

Moreover, our procedure would allow monitoring patients during 

drug treatment, and evaluating the real effects of new molecular 

therapies. 
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