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Two roads diverged in a yellow wood, 

And sorry I could not travel both 

And be one traveler, long I stood 

And looked down one as far as I could 

To where it bent in the undergrowth; 

Then took the other, as just as fair 

And having perhaps the better claim, 

Because it was grassy and wanted wear; 

Though as for that, the passing there 

Had worn them really about the same, 

 

And both that morning equally lay 

In leaves no step had trodden black 

Oh, I kept the first for another day! 

Yet knowing how way leads on to way, 

I doubted if I should ever come back. 

 

I shall be telling this with a sigh 

Somewhere ages and ages hence: 

two roads diverged in a wood, and I - 

I took the one less traveled by, 

And that has made all the difference… 

 

Robert L. Frost (1920) 

The road not taken  
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Abstract 

 

This doctoral research project aims to analyse complex processes of living cells 

using Digital Holographic Microscopy (DHM) as a three-dimensional (3D) imaging 

tool. DHM is a real-time, high-throughput, label-free and quantitative phase 

imaging technique which permits advanced cell analysis in microfluidic 

environment. In particular, an innovative optofluidic platform is implemented, 

composed of a DHM modulus and aided by holographic optical tweezers (HOT) for 

optical manipulation and a fluorescence modulus. This platform has been used for 

blood disease screening, cell manipulation studies and tracking of migrating cells.  

 

In this thesis, three main topics have been investigated.   

 

The first topic focuses on diagnostics, which plays several critical roles in 

healthcare. Here a novel and cost-effective approach for detecting real blood 

disorders such as iron-deficiency anaemia and thalassemia at lab-on-chip scale is 

shown. In addition, cell dynamics studies were performed by DHM. In particular, 

a study regarding the temporal evolution of cell morphology and volume during 

blue light exposure is reported.  

 

The second topic aims to investigate cell mechanics. To this end, the capabilities of 

HOT were used to enable the generation and the independent high-precision 

control of an arbitrary number of 3D optical traps. The combination of HOT and 

DHM provides the possibility to manipulate cells, detect nano-mechanical cell 

response in the pN range, and reveal cytoskeleton formation. To confirm the 

formation of the cytoskeleton structures after the stimulation, a fluorescence 

imaging system was used as control. 

 

Finally, the third topic focuses on cell manipulation using an innovative electrode-

free dielectrophoretic approach (DEP) for investigating smart but simple strategies 

for orientation and immobilization of biological samples such as bacteria and 

fibroblast. In particular, the light-induced DEP is achieved using ferroelectric iron-



doped lithium niobate crystal as substrate. In this way, a dynamic platform that 

can dynamically regulate the cell response has been developed. In this case, DHM 

is going to be used as a time-lapse imaging tool for the characterization of dynamic 

cell processes.  

 

In conclusion, the results show that DHM is a highly relevant method that allows 

novel insights into dynamic cell biology, with applications in cancer research and 

toxicity testing. In addition, this study could pave the way for detecting and 

quantifying circulating tumor cells and for providing multidimensional information 

on tumour metastasis. In this framework, the optofluidic platform is a promising 

tool for both identification and characterization of “foreign” cancer cells in the blood 

stream in order to achieve an early diagnosis.  
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Introduction 

 

1    Optofluidic cell manipulation 

 

1.1 Cell manipulation: state of art and recent developments 

      Nowadays, cell manipulation is a key step in several research area from tissue 

engineering to biosensors, besides the basic research in terms of biochemical 

pathways study [1,2]. Some well-established methods exist for single cell and cell 

population handling. In particular, the development of tools for the manipulation 

and characterization of single cells is of major importance for rapidly growing area 

of personalized medicine, diagnostic testing but also fundamental research, 

especially, purification, concentration and counting of specific cell types from 

complex mixtures (e.g. blood, cell culture) is often required in clinical practice. 

Successful detection and isolation of specific subsets of cells is the key to 

understand their functional heterogeneity and the single cell biology [3]. Actuators 

for the positioning and moving of objects such as cells must be compatible with the 

living conditions for cells. Therefore, new engineered nanodevices, characterized by 

functionalized substrates have been developed as alternative methods. Very 

recently, chips have been coated with components of extracellular matrix (ECM) 

caged with photo-deprotectable groups. By using focused light it has been possible 

to create patterns on the chip with de-protected ECM factors in order to guide cell 

adhesion towards those points [4].  

When cell manipulations such as identification and sorting are needed, the gold 

standard methods to identify and separate a certain subpopulation are the 

Fluorescence Activated Cell Sorting (FACS) [5], magnetic activated cell sorting 

(MACS) [6] and chemically functionalized pillar-based micro-chips [7]. These 

techniques, although effective and promising, are limited by the necessary 

knowledge of the properties of the desired cell types, they are time-consuming, and 

require special training to be executed. Furthermore, both FACS and MACS have 

limitations and lack of more sophisticated cell manipulation capabilities, e.g. to 
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precisely control and adjust trajectories as required in elaborated cell stimulation 

experiments [8]. However, these procedures remain the gold standard techniques 

for isolation and counting of cell populations for many biomedical applications, like 

stem cell therapy. Furthermore, besides routine applications, these techniques 

have been demonstrated to (i) detect rare cells [9,10], such as circulating tumor 

cells (CTC), and achieve high (ii) isolation/purification rate as well as (iii) 

throughput. To date, cell manipulation has been majorly performed using 

conventional techniques and labware such as pipettes, sample tubes, microwell 

plates and cell culture flasks.  

Notably, these strategies have only limited cell manipulation capabilities, are rather 

time and reagent consuming, lack sufficient precision and reproducibility and have 

only limited or no online monitoring capacities (e.g., integrated sensors for pH, 

fluorescence or magnetic field measurement). These limitations have motivated the 

development of microfluidic methods for enhanced spatial and temporal control of 

the neighbouring cellular environment, as represented by numerous publications 

[11-15].  

New frontier in biomedical research and clinical diagnostics looks at the possibility 

through the control of cell manipulation to perform experiments in so called lab-

on-chip (LoC) thanks to the advent of new field of the microfluidics. Although 

different examples of microfluidic systems exist in nature (e.g., channel networks 

in paper), in scientific literature the terms microfluidics or microchannels are 

generally employed for microfabricated fluidic networks that have characteristic 

dimensions below 100 μm.  

Nowadays, there is the tendency to emulate biological systems on a chip, in order 

to reduce reagents, costs and to work with small volume of fluids, which is highly 

beneficial in many biomedical and clinical research scenarios which deal with 

limited amounts (e.g., cerebrospinal fluid) or numbers (e.g., research in rare 

disease) of samples. Especially in neuroscience research there is a great interest in 

developing microfluidic devices that provide a highly adaptable cell culture platform 

and may find applications in modelling central nervous system (CNS) injury and 

neurodegeneration [16]. Importantly, the overall reduction of chip size holds a great 

potential for portability as well as integration of sensors and actuators, which is an 

important factor in current lab-on a-chip and point-of-care diagnostics.  
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1.2 Biological significance of cell manipulation studies 

 

        In the life sciences, particularly in cell biology, a technique is needed to 

manipulate structures inside closed objects - for example inside living cells without 

opening them, since otherwise their viability would be impaired. The scientific merit 

of the micromanipulation of biological cells is the combination of this moderately 

difficult physical task with sometimes sophisticated biochemical techniques. It is a 

truly interdisciplinary approach, based on physical principles.  

A cell is an extremely complex system comprising many different classes of 

biomolecules. Among those particularly proteins, lipids, and metabolites are highly 

dynamic and therefore key to the adaptability of cells to immediately respond to 

external stimuli. The human body comprises more than 100 different cell types and 

tissues, each evolutionary and individually tailored to fulfil specific tasks, 

individually or in concert with other cells and tissues. Indeed, this complexity is 

not limited to different cell types, but is also reflected in the heterogeneity among 

populations of the same cell type. Even minor dysregulation of specific cells or cell–

cell interactions can have dramatic effects on the homeostasis of a tissue or even 

the entire organism. Consequently, the detailed and quantitative study of cellular 

processes and their dynamics to understand causes and consequences of 

(dys)regulation is imperative to combat diseases such as cancer, cardiovascular 

and neurodegenerative disorders. It is furthermore one of the major goals of system 

biology research. To elucidate these processes and to reveal their underlying 

principles, one needs to investigate adaptations of cells on the level of proteins, 

lipids and metabolites under a large variety of conditions. Indeed, microfluidic 

applications hold a great potential to boost systems biology research, as they offer 

incomparable possibilities to manipulate and perturb cells, starting from minute 

sample amounts, in an automated, reproducible, fast and efficient way. Therefore 

in the future microfluidics might be a cornerstone of sample preparation for 

disciplines such as (clinical) proteomics which aim at quantifying a large number 

of biomolecules from complex samples, i.e. body fluids, with high reproducibility, 

precision and accuracy. Moreover, microfluidics offers a higher throughput, as well 

as novel opportunities for temporal and spatial analysis of samples, which are 
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otherwise not achievable. In principle, cell manipulation studies have four major 

goals: (i) separation of cells, (ii) single cell analysis, (iii) subcellular analysis, as well 

as (iv) temporal analysis of cellular processes and signalling.  

 

The first goal is the separation of cells, particularly for blood samples, which are 

often used in clinical diagnostics, there is a significant interest to separate and 

analyse specific cell types. This is not only limited to the components of blood such 

as erythrocyte, leucocyte, or platelets, but it could be applied also to microparticles, 

CTC, or even bacteria. Standard biochemical methods are based on differential 

and/or density centrifugation are rather slow and laborious, and even more 

importantly cannot be automated and therefore lack reproducibility. The last 

technologies such as FACS and MACS are more powerful, however, may require 

specific fluorescence labelling of cells, interfering with physiology of sample and 

this could give some artefacts, can be time and cost intensive or have limited 

capacity. Therefore, in this framework microfluidics represents a most promising 

alternative that may allow a fast, comparably cheap, automated and high-

throughput method to separate different cell types for subsequent analysis with 

accuracy at the single cell level.  

The second goal of manipulation studies is single cell analysis. The main interest 

for individual cell analysis derives from cancer research, [17,18] where precise 

methods are needed to define cellular phenotypes from average population data. 

For this purpose, many imaging technique are developing in order to identify cancer 

cells based on their optical and biophysics properties. Javidi’s research group has 

demonstrated to be able to distinguish cancer cells from normal cells through 

comparison of optical path length differences, in synthesis, a high-dynamic-range 

phase measurement system that does not need unwrapping processing was used 

for cancer cell identification. The important property of their system was that it 

could measure transparent objects without using the phase unwrapping process 

even if the thickness of the object is more than one wavelength. Moreover, the 

system can provide the quantitative phase information with high accuracy and it 

may be used for advanced cell analyses, such as quality control, functional 

inspection of cells and dynamics [19]. In the 2010 S. Kim and B. H. Lee reported 

the results for the feasibility of identifying cancer cells by measuring the refractive 
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index (RI) distribution across a single live cell with ultrahigh resolution full-field 

optical coherence microscopy (FF-OCM) [20]. This work showed that cancer cells 

had higher RI than normal ones. Recently, RI of a live cell has gained much 

attention as an attractive indicator of cell abnormality. The cell RI attributable to 

optical interaction of light field with cellular organelles is informative for 

quantifying chemical composition within cellular structures, so that the potential 

application has been considered in cell physiology and pathology. In cancer biology, 

it is well known that the RIs of cancer cells are relatively higher than normal cells 

[21-23]. This approach using the FF-OCM has significant potential for cancer 

diagnosis and dynamic cell analysis as in situ label-free biophysical assay. 

However, many significant studies have underline the importance to define cellular 

phenotypes from average population data, particularly, in stem cell research, 

separate analyses of individual cells led to the characterization of varying levels of 

proteins abundance depending on time and differentiation of cells [24]. The biggest 

challenge in the field still remains the selective and robust isolation of single cells 

out of a tissue, cell culture or body fluid, often characterized by poor efficiency and 

reproducibility. Indeed, recent advances in single cell analysis make use of 

microfluidics and optical microscopy to overcome some of the limitations. Over the 

past decades a large number of high quality studies on single cell analysis using 

microfluidic chips have been published in the literature [25-31]. The field of single 

cell analysis, as can be assessed in the recommended literature, is vast and is 

starting to translate into successful industrial products, such as the case for the 

Fluidigm®C1 equipment, [32] an automated solution for single cell genomics being 

capable of handling up to 800 cells individually in a single run, a considerable 

throughput capability.  

The third goal of manipulation studies is subcellular analysis. In fact, one of the 

most striking limitations of -omics technologies typically used for the in-depth 

analysis of cells is the lack of spatial information. Even so, it is well verified the 

dynamic process of proteins inside a cell, many proteins have multiple subcellular 

localizations that reflect different functions, or may translocate in response of a 

specific intracellular or external stimuli [33] or in pathological conditions [34]. 

However, information such as the spatial distribution of proteins is lost in standard 

large-scale proteome analysis. Although these studies can provide quantitative 
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information on expression levels for thousands of proteins, they cannot 

discriminate whether the distribution of proteins between different organelles or 

sub-compartments has changed. Therefore, the separate analysis of isolated 

organelles and their content is of major interest as it allows studying the 

subcellular localization and distribution of proteins, representing a critical step 

towards a better understanding of their individual functions and dynamics. 

Regarding proteomic studies for example, the standard methods to analyse isolated 

organelles, [35–37] or sub-compartments [38–40] provide for classical, laborious 

and non-automated protocols. Typically, they encompass the mechanical rupture 

of the plasma membrane, homogenization of cellular matrix, and separation of its 

components by differential/density centrifugation. Alternative techniques, e.g. 

MACS, rely on the use of affinity tags or antibodies against specific epitopes present 

on the organelle’s surface. Thus, microfluidics may play an important role and 

many recent publications have demonstrated different possibilities and prototypes 

for cell and organelle separations, [41,42] some of which will be further described 

later in this doctoral dissertation. 

To conclude, the fourth goal of manipulation studies is temporal analysis of cellular 

processes and signalling, which represents another significant issue. Recently, 

increasingly powerful mass spectrometry-based studies considerably improved our 

knowledge about cellular signalling, its complexity and dynamics [43-45]. However, 

it concurrently became more and more evident, that the detailed elucidation of 

such dynamic processes as well as the underlying and intertwined networks 

requires more powerful sample preparation techniques. Notably, in cells different 

situations involve different timescale dimensions: processes such as regulatory 

protein phosphorylation upon kinase activation, or ion transport can occur within 

milliseconds to seconds, while others, such as changes in protein expression 

during cell cycle, require minutes to hours. Whereas rather slow processes can be 

easily followed in a time-resolved manner using conventional and mainly manual 

sample preparation methods, such strategies are not sufficiently reproducible and 

robust to study fast and short term processes. Initial signaling events are too fast 

to tolerate imprecise sampling and consequently measuring points; studying such 

fast processes demands for sub-second time resolution in combination with high 

accuracy and precision during sampling. 
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1.3 Cell handling techniques 

 

          Cells are the basic units of living organisms that regulate all life activities. 

Different types of cells are responsible for their specific biological processes which 

are relevant to cell metabolism, migration, growth, apoptosis and even 

cancerization in the cellular microenvironment. In this context, the ability to isolate 

specific types of cells from a large population of cells is highly important for disease 

diagnosis, intracellular analysis, and stem cell studies. Considering cell sizes are 

about 10 microns in diameter, conventional methods cannot easily manipulate the 

cells at a micro-sized scale in standard tissue culture dishes; precise control and 

efficient capture of target cells in the cell mixture are greatly challenged in this 

regard.  

Nowadays, microfluidic devices for cell manipulation, for the study of cell properties 

and/or cellular processes analysis emerged constantly. Microfluidics is the growing 

field embracing all the techniques and instruments aimed to confine liquids in 

small regions of space, providing accurate control of fluid streams. In particular, it 

has become more and more apparent as the study of biological samples can benefit 

from the use of this technology (Figure 1).  

Optimizing existing protocols and/or developing original research are the main 

motivation drawing researchers’ interest to the microfluidic field. Different 

microfluidic technologies for cell manipulation have been described in literature. 

These can be divided into passive, active or integrated strategies. The cells’ position 

within microchannels can be controlled either by (i) rational design of the 

microfluidic structures, which results in deflection of cells’ trajectories, as for the 

passive strategies, or (ii) as a result of a force generated by an actuator, taking into 

account the cells’ electrical, magnetic and mechanical properties, as for active 

strategies. Often it is advantageous to combine different strategies to improve 

performance and functionalities within a single chip, referred to as integrated 

systems. However, integration is challenging, especially concerning handling 

simplicity, such as the need for alignment of micrometer-sized structures or fluidic 

and electronic connections [46–48].  
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General approaches developed for cell handling and isolation in the microfluidic 

devices including affinity-based approaches for cell recognition and typical physical 

principles for cell isolation by microfabrication structures such as hydrophoresis, 

dielectrophoresis, and acoustophoresis, etc [8]. In this thesis will be discuss mainly 

two cell handling techniques: optical tweezers and dielectrophoresis.  

 

 

Figure 1: Example of microfluidic device for cell isolation and analysis for biomedical 
applications. Microfluidic technologies based on physical trapping and bioaffinity capture 
of target cells are developed for efficient cell isolation and followed with cell analysis on a 
single microchip. 

 

 

1.3.1 Optical tweezers  

 

         In every day life, light is perceived to be a gentle physical entity. Thus, it may 

appear as a surprise that transporting objects with light or working deep in the 

interior of closed objects is lab routine in the world of biological microscopy. There, 

light is used as a quasi-mechanical working tool. Light does not only transmit heat 

(energy) but also exerts force and pressure. When combined with a microscope, the 

light of a comparably small (a few hundred milliwatt (mW)) desktop laser can be 

focused to such high intensities that it will produce temperatures such as those 

that prevail in the interior of the sun and can generate plasma (laser microbeams). 
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Objects which would be difficult to penetrate with a mechanical tool (optical 

tweezers) can be moved, even behind a wall.  

For single cell manipulation, some optical techniques have been developed.  

Among these, optical tweezers represent a quite new technique where a laser beam 

focused on a small area generates forces able to trap micrometer sized objects 

(viruses, bacteria and eukaryotic cells) [49]. OTs allow the manipulation of cells 

directly in suspension, in a contact-less and non-invasive manner [50-53]. OTs 

have been widely exploited for studying cells in a suspended state, such as red 

blood cells, where the great elasticity of their membranes permits easy 

deformability, stretching and rotation [54-57].  

In particular, Guck and coworkers created a microfluidic cell stretcher able to 

measure the deformability of membranes of suspended cells by using two counter-

propagating laser beams inside a microfluidic channel [58]. The apparatus was able 

to trap the cells under test and induce a deformation on the whole cell population. 

The ability of their apparatus to discern between healthy and cancer cells as a 

consequence of the different deformability was proven. Schmidt and coworkers 

proposed for the first time a dual trap system able to promote cell adhesion in a 

suspended configuration [59,60]. The experiments demonstrated that the 

mechanical responses of the acto-myosin cortical network are responsible for 

equilibrating cell internal osmotic pressure and shape fluctuations. Moreover, OT 

allows accurate three-dimensional control with nanometer accuracy by an all-

optical approach.  

In particular, Jordan and coworkers [2] have demonstrated the manipulation of 

multiple bacteria in 3D volume by holographic OT.  

However, the number of samples that is possible to control with OT is limited. To 

this end, another technique named holographic optical tweezer, which enables the 

generation and the high-precise control of an arbitrary number of 3D optical traps. 

HOT have already been used for mechano-biophysical analysis of the inner 

structure of living cells, [61,62] cell identification, manipulation and tracking [51, 

63–71]. Sometime the combination of HOT and DHM has been already exploited to 

study the propagation of the strain inside adherent cells induced by locally applied 

forces [72].  
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1.3.2 Dielectrophoresis  

 

                  An alternative for cell handling to the mentioned methods above in the 

paragraph 1.1 is dielectrophoresis; a technique that eliminates extensive sample 

preparation (no antibody labeling, one needs only to prepare a single sample) and 

provides a high selectivity at separating rare cells.  

DEP is the motion of a polarizable particle in a suspending medium due to the 

presence of a non-uniform electric field [73–75]. With no needs to know the surface 

properties of the desired cells, DEP can noninvasively sort populations through 

differences with in the interior of cells, as well as their exterior. In conventional DEP 

techniques, metallic microelectrodes with various geometries are patterned on a 

microfluidic device using conventional lithography techniques [76–78].  

DEP has been used for the isolation of several rare cell types including human 

cervical, breast and colorectal cancer and leukemia cells [73, 79, 80]. Cell isolation 

has been done through both batch separation [81– 83], where rare cells population 

is trapped by positive DEP force while background cells pass through the 

microdevice, and continuous separation [79], where rare cells continuously 

separate from background cells. Among the several applications of the DEP 

technique in biology, great interest has been focused on the immobilization of 

microbial organisms where the study of the early stage development of biofilms is 

desirable [84–86].  

In literature, it has been largely demonstrated that DEP through local micro/nano-

electrodes allows a time dependent accumulation of bacteriophages; thus resulting 

an excellent technique not only to immobilize but also to concentrate 

microorganisms [87–92].  

Recently, new DEP principles have been demonstrated based on electrode-free 

approaches that allow to realize devices with great versatility in terms of 

liquid/polymer patterning geometries. The electric fields able to manipulate liquids 

and immobilize particles are generated by exploiting the properties of ferroelectric 

crystals avoiding external electric circuits and voltage generators. In particular, it 

has been successfully proved that pyroelectric (PE) and photorefractive (PR) fields 

can be employed for dispensing liquid droplets down to atto-liter volumes [93], for 
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trapping microparticles [94] and for creating liquid/polymer structures such as 

biodegradable polymer microneedles [95], tunable micro-lenses [96] or microfluidic 

channels [97]. The driving stimuli for PE and PR fields generation are thermal and 

optical, respectively.  

Miccio et. Al. demonstrated that is possible to apply such electrode-free DEP cues 

for immobilization and orientation of biological objects [98]. In particular, such 

fields are used to manipulate bacteria cells maintaining them alive. In order to test 

the applicability of this innovative technique they tested the ability of Escherichia 

coli, Gram negative bacteria, to respond to the external electric field on the surface 

of ferroelectric iron-doped lithium niobate crystals (Fe: LiNbO3) [99]. The PR effect 

is the best choice as the high temperature reached in the PE devices could alter 

the normal conditions and damage the samples. In the recent years DEP trapping 

of nano-particles by PR induced electric fields has been largely studied [100] and 

supported by experimental validations [101,102]. In literature, the interaction of 

PR field with biological sample has been investigated to induce death in tumor cell 

cultures [103]. In the present work such fields are used to manipulate bacteria 

cells and fibroblasts maintaining them alive.  

The experimental results and discussion on advantages and drawbacks will be 

described in the section 5. 
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2.2 Optical multifunctional platform  

 

 

2.1 Digital holography for cell imaging characterization  

 

       Nowadays, the imaging analysis of complex processes in living cells with light 

microscopy is important for many research areas in biology and medicine. This 

includes in particular the ranges of stem cell, development, and cancer sciences as 

well as the analysis of infection and inflammation processes.  

For these reasons, there is a high demand for fast and label-free methods for online 

monitoring. Microscopic life cell imaging can give new insights and open 

revolutionary scenarios into cell motility, biomechanical properties on the cellular 

or subcellular level, and the response of cells to drugs and toxins. In order to affect 

the living specimen under investigation as little as possible, ideal imaging methods 

for the investigation of life cell processes should be minimally invasive. Moreover, 

quantitative measurement data should be provided.  

Widely used fluorescence methods require specific labeling and are often restricted 

to chemically fixated samples. On a molecular level, live cell imaging aspects have 

been widely addressed by using a variety of fluorescence microscopy techniques 

[1,2]. These methods have been found highly suitable for 3D imaging of subcellular 

structures like, for example, the cell membrane, proteins of the cytoskeleton, 

mitochondria, or vesicles, with a resolution down to several nanometers [3,4]. 

However, although the specificity of fluorescence signals is high due to a large 

number of available dyes [5], specific auto fluorescence mechanisms [6], 

fluorescence lifetime imaging (FLIM) [7], and a wide experience with the techniques, 

there still remain challenges in the application of these methods for live cell 

imaging. For example, long-term in vitro investigations and in vivo applications are 

restricted as many fluorescence dyes are toxic. The engineering of fluorescent 

proteins like the green fluorescent protein (GFP) [8] allow extended investigations 

of living cells.  

However, for this purpose cells have to be (genetically) modified, e.g., by chemical 

[9] or optical [10] transfection with the high risk to change the physiology of the 
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biological sample in analysis and to obtain some artefacts. Furthermore, in several 

cases, a low quantum efficiency of, for instance, the available dyes or the relevant 

auto fluorescence mechanisms results in the need for long exposure times or a high 

light intensity. This limits the temporal resolution and the application on living 

specimens. In this framework, methods that offer label-free and minimally invasive 

detection of live cell dynamics and cell state alterations are of particular interest. 

Thus, in the past years other label-free methods like Optical Coherence 

Tomography (OCT) [11, 12] and Coherent Amplified Raman Spectroscopy (CARS) 

[13] have been transferred to biomedical sciences. In addition, to make use of the 

high accuracy of diffraction and interferometry-based metrology, the activities of a 

growing number of research groups focus on techniques for quantitative phase 

imaging (QPI). QPI provides label-free data with low demands on light exposure and 

high data acquisition rates. As opposed to the above-mentioned fluorescence 

techniques, such methods detect changes of the optical path length (OPL) that are 

caused by the specimen under investigation.  

Hai et al, were able to detect and quantify in a label-free high-throughput modality 

circulating melanoma tumor cell clusters using linear-array-based photoacoustic 

tomography approach (LA-PAT) [14]. Their data showed the capability of LA-PAT to 

detect and quantify melanoma CTC clusters in rat in vivo and showed its potential 

application in tumor metastasis study and cancer therapy.  However, it is worth 

pointing out that currently LA-PAT detects only CTCs originating from primary 

tumors in which cells express melanin. Exploiting the strong optical absorption of 

melanin in the melanoma tumor cells, LA-PAT can achieve label-free detection of 

melanoma CTC clusters in vivo. By analyzing the contrast-to-noise-ratios (CNR) of 

the photoacoustic signals, this approach can quantify the number of cells in the 

CTC clusters and study their circulating kinetics in the bloodstream. To detect 

CTCs originating from amelanotic melanoma tumors, other tumor specific 

physiological properties, such as size and surface biomarkers, can be utilized. The 

quantification of CTC cluster sizes is indeed based on the assumption that the 

melanin content is relatively uniform in the tumor cells. LA-PAT has the potential 

to be a powerful tool for both preclinical tumor metastasis study, clinical cancer 

diagnosis and therapy. As a useful technique for researchers and scientists to 

better understand the relationship between CTCs and tumor metastasis. LA-PAT 
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can also be used by clinicians to monitor the changes of CTC concentrations in 

patients’ circulatory systems and to evaluate the outcome of cancer therapy. In 

addition, photoacoustic imaging can measure other important biological 

parameters, including the oxygen saturation of hemoglobin, metabolic rate, and 

tumor stiffness [15-17]. 

This paragraph focuses on quantitative phase imaging with digital holographic 

microscopy (DHM). Holographic interferometric metrology is well established in 

industrial nondestructive testing and quality control [18–20].  

 

 

 

Figure 1:  Mach-Zehnder setup for digital holographic microscopy in transmission mode. 
LCLS: low coherence light source; O: object wave; R: reference wave; α: phase gradient 
between O and R; M: mirror; BS1, BS2: non-polarizing beam splitter cubes; CL: condenser 
lens; MO: microscope lens; CCD: hologram recording device (CCD image sensor); L1, L2: 
lenses; PM: piezo actuated mirror; P: Porro prism; LS: motorized linear translation stage; 
PH: pin-hole aperture (spatial filter); TL: tube lens; Δz: distance between the hologram 
plane at z = zH and the image plane at z = zIP; S: sample; PC: computer [43,44].  

 

 

In combination with microscopy, digital holography provides label-free, 

quantitative phase imaging [21–26] that is also suitable for modular integration 
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into common research microscopes [27]. In this way, DHM facilitates a combination 

with other microscopy techniques like laser scanning microscopy, fluorescence 

imaging, and optical laser micromanipulation [28–30]. The reconstruction of 

digitally captured holograms is performed numerically. Thus, in comparison with 

other phase contrast methods [31, 32], related interferometry-based techniques 

[33–36], and optical coherence tomography or microscopy (OCM) [37–42], DHM 

provides quantitative phase contrast with subsequent numerical focus correction 

(multi-focus imaging) from a single recorded hologram.   

In Figure 1 is depicted the principle of a Mach-Zehnder-based digital holographic 

microscopy setup [45]. The shown transmission mode setup enables investigations 

on transparent samples such as living cell cultures. The emitted light of a laser 

(e.g., a frequency doubled Nd:YAG, λ = 532 nm) or a low-coherence light source 

LCLS (e.g., a light emitting diode (LED) or a superluminescence diode (SLD)) is 

spatially filtered (L1, PH), collimated (L), and divided into an object illumination 

wave (O) and a reference wave (R). The intensity ratio between O and R is adjusted 

by adequately chosen optical density filters (not shown) or, alternatively, by 

substituting BS1 by a polarizing beam splitter cube in combination with two λ/2-

wave plates. A condenser lens (CL) provides an optimized illumination of the 

sample. The reference wave is guided directly by a beam splitter to the image 

recording device (typically a charge coupled device sensor, CCD), which is applied 

for the digitization of the holograms in the hologram plane located at z = zH. 

Holographic off-axis geometry is achieved by a phase gradient of the reference wave 

front relative to the object wave front, which can be performed by a slight tilt of a 

mirror (see angle α in Fig. 1) or by the beam splitter BS2. The adjustment of the 

optical path length difference for the LCLS can be performed by a Porro prism that 

is mounted onto a translation stage. For temporal phase shifting-based digital 

holographic reconstruction, a calibrated piezo-actuated mirror (PM) is applied. To 

enhance the lateral resolution, the object wave is magnified by a microscope lens 

(MO). The digital holograms are recorded with a digital image recording device and 

transferred to a computer (PC). The piezo-actuated mirror PM and the translation 

stage are synchronized with the hologram acquisition by a digital interface. The 

potentials of multi-focus DHM quantitative phase imaging are illustrated by 

selected applications.  
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DHM technique has many applications, it is shown that DHM is suitable for 

automated tracking of migrating cells and cell thickness monitoring as well as for 

refractive index determination of cells and particles.  

Moreover, the use of DHM for label-free flow analysis in fluidics and for micro-

injection monitoring is demonstrated. The results prove that DHM is highly relevant 

to achieve novel insights in dynamic cell biology, in cancer research, and in drugs 

and toxicity testing.  

 

 

2.2 Set-Up of Holographic OT, DH and fluorescent moduli 

 

       Optofluidics is the use of light to control the flow of fluids, particularly at the 

micrometre scale. A notable application of this technology is in so-called lab-on-a-

chip devices: miniature systems for analysing and sorting particles and cells. 

Optofluidics also uses liquids to guide the flow of light.  

The optofluidic platform from our laboratory is depicted in fig. 2. Concerning the 

holographic optical tweezers modulus, the infrared (IR) trapping laser emitted at 

1064 nm, the beam was expanded to fit the aperture of a Spatial Light Modulator 

or SLM (Holoeye - PLUTO-NIR phase only) operating in reflection mode. Then, the 

laser beam was injected into a Microscope Objective MO (100x N.A.=1.2) through a 

standard 4f optical configuration.  

The sample was positioned beyond the MO in a temperature and CO2 controlled 

chamber. By HOT, we trapped and manipulated biological samples but also 

micrometer latex beads in order to anchor them to suspended cells. Doing so, the 

optical forces were exerted on the microspheres, thus avoiding the direct 

interaction of the laser beam with cells. Specifically, by functionalizing the 

microbeads with Arginine–Glycine–Aspartic acid (RGD) peptides, we gave the cell n 

points of adhesion and stimulation (where n is the number of HOT trapped 

microbeads) – this point is described in details in chapter 4. Then the cell had the 

chance to assemble its cytoskeleton and react to mechanical stimuli applied by 

HOT. For our purposes we designed trapping sites able to trap polystyrene beads 

8 μm-sized. A fiber-coupled, solid state laser emitting at 532 nm was used to build 
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the Mach-Zehnder interferometer, allowing recording a sequence of digital 

holograms of the sample during the experiment (light green path in Figure 2 (a)). 

From these sequences we reconstructed the Quantitative Phase Maps (QPMs) of 

the samples.  

The third part of the setup is the fluorescence modulus for control studies. Light 

from a fluorescence lamp (X-cite series 120pc Lumen Dynamics) was directed on 

the sample with a combination of excitation and emission (Tritc) filters, suited for 

the fluorophore used in the experiment. All images were recorded with an USB U-

Eye Camera (from IDS), 1280x1024 pixels (pixel size 5.3 μm), recording at 25fps.  

 

 

 

 

Figure 2: (a) Experimental setup made of HOT, DH and fluorescence moduli. Design of the 

experiment: one or more beads are optically trapped (b) and attached to a single floating 
fibroblast (c). 
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3    Quantitative phase imaging for cell analysis: 3D shape and 

dynamics           

 

 

 

3.1 Lab-on-chip analysis of biological samples 

 

       Today, fast and accurate diagnosis through portable and cheap devices is in 

high demand for the general healthcare. Lab-on-chips have undergone a great 

growth in this direction, supported by optical imaging techniques more and more 

refined [1]. A LoC device is a pocket platform consisting in microfluidic channels 

designed in order to form more or less complex circuits.  

The LoC paradigm can be resumed in the will to emulate all the functionalities of 

a modern analysis lab on-board a portable device, realizable at contained costs. In 

particular, it has become more and more apparent as the study of biological 

samples can benefit from the use of a LoC environment. Thus, the typical behaviour 

of a cell, e.g. the growth rate, duplication, migration, adhesion to substrates, 

mechanical interactions with the extracellular matrix and other cells, reaction to 

drugs, and death, strongly depends on the 3D shape and composition of its 

surrounding environment.  

A LoC is nowadays the most appropriate site to recreate the cellular environment 

and mimic all the external cues and forces affecting the cell behaviour, taking 

advantage from the microfluidic flow control, as well as the miniaturization of 

components like valves, pumps, mixers and sorters. These features make a LoC 

extremely promising as a novel device to embed diagnostics tools to be used at the 

point-of-care, allowing first screenings or accurate analysis in absence of adequate 

facilities and with untrained personal, e.g. in developing countries and low-

resource settings.  

Recent progresses in developing imaging tools based on quantitative phase imaging 

can be very useful when applied into biomicrofluidics. In some cases, the optical 

tweezers technique is combined with digital holography (DH), thus offering the 

possibility to manipulate, analyze, and measure fundamental parameters of 
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different kinds of cells. This approach can open the route for rapid and high-

throughput analysis in label-free microfluidic devices and for an early diagnosis 

and prognostic based on cell examination, thus allowing advancements in 

biomedical science. 

 

3.1.1 Red blood cells as optofluidic microlens  

 

Recent discoveries about the optical properties of red blood cells (RBCs) and the 

perspective of using them as liquid micro-lenses can now be used to explain, and 

may eventually be used to predict erythrocyte shape and to screen for blood disease 

[2].  

Nowadays, blood smear test represents a simple and cheap method to estimate the 

morphology of blood components and to achieve qualitative information regarding 

the red cell hemoglobinization. Although blood smear is an important analysis for 

blood disorders, it provides two dimensional morphometric values of cells and it is 

related to the subjective expertise of the doctor, this could mislead regarding the 

real shape of red blood cells. Thanks to the elastic properties of the plasmatic 

membrane, the RBCs can swell up and wrinkle by changing the osmotic conditions 

of the medium in which they are suspended, thereby varying focal length from 

negative to positive values.  

 

 

 

 

 

 

 

 

 

Figure 1: RBC pre-screening process. 
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Blood diagnosis is demonstrated by screening abnormal cells through focal-spot 

analysis applied to an RBC ensemble as a micro-lens array (Figure 1).  

When RBCs are in different solutions (hypotonic, isotonic and hypertonic), cross-

membrane water exchange modifies cell shape, from a disk volume of 90 fl to a 

spherical volume of 150 fl and vice versa, depending on salt concentration of the 

medium (Figure 1a).  

The innovative diagnostic aspect is demonstrated in Fig. 1b, by analyzing the 

intensity spots in the virtual focus plane (z= -6.33µm). In the second row of Fig. 1b  

is shown the quantitative phase map reconstructions of the three samples of (1A); 

while in the first and in the third rows is reported the intensity reconstructions in 

the planes at -6.5µm and 9.5µm from the RBC, respectively. It is simple to establish 

that the isotonic sample presents several healthy RBCs due to their focalization in 

the “virtual” plane, while the other two samples don’t focalize in such a plane.  

A real-time RBC diagnosis, as depicted in Fig. 1c, is performed by analyzing the 

focalizing spots of each of them. Healthy discocyte correspond to a quasi-circular 

intensity spot (green); red spots correspond to doubtful cases. The distinction 

between healthy and doubtful is obtained by evaluating the ratio between minor 

and mayor axes of a best-fit ellipse of each spot (ellipticity).  In the case of healthy 

discocyte RBCs, a suitable intensity pattern of the spots is observed in the plane 

at -6.5µm (green spots), while when RBC shape is deformed (blue circles), the 

corresponding focus spot presents a different form with respect to the “healthy” 

one. Red spots correspond to ambiguous cases because the cells focalize but the 

spots are not uniform. In the blue and red frames, QPMs corresponding to blue 

and red circles are respectively shown.  

Thanks to this new and revolutionary discovery regarding the possibility of using 

red blood cells as lenses,  we have reveal a fast in-line cyto-tomographic method 

for full characterization of erythrocytes operating in a microfluidic channel at lab-

on-a-chip scale. Whereas RBCs are flowing and rolling along a micro channel, each 

tomogram can be obtained without any a priori knowledge of the rotation angle of 

the cell that instead is retrieved from its focusing properties.  

In the next paragraph we will demonstrate an accurate and complete 3D 

classification of RBCs thus adding a new label-free diagnostic tool for fast blood 

analysis and effective disease screening. Thanks to the possibility of using red 
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blood cells as lenses, it was possible to easily detect blood disorders involving shape 

abnormalities, for example, sickle-cell disease, spherocytosis, elliptocytosis by 

screening abnormal cells through focal-spot analysis applied to an RBC ensemble 

as a microlens array.  

Moreover, it is expected that the device for such a diagnostic tool – well described 

in the section 2 - could be adapted at lab-on-chip scale, because the optical set-up 

is very easy as it uses only a camera and a laser light source in the visible range 

that indeed nowadays are very compact and of low cost.  

 

 

3.2 Tomographic flow cytometry by DHM 

 

        The working conditions and the adopted optical system are depicted in Fig. 

2(a). Cells tumble while flowing along a microfluidic chip probed by a single fixed 

laser beam. A second beam is used as a reference to generate interference fringes 

on the CCD camera. More details regarding the optical setup are given in ref [3].  

Hundreds of cells per minute have been analysed and, for each one, hologram’s 

sequence is recorded and the corresponding QPMs retrieved. Firstly, 3D 

holographic tracking is performed to re-align each cell with respect to its centre of 

mass [4-6]. Then, rotation angles are numerically estimated by using two strategies, 

depending on the kind of the cell under analysis. In Fig.2(b) we report the 

conceptual block diagram resuming the main steps of the two proposed strategies. 

Finally, we use the optical projection tomography method to calculate the 3D 

refractive index distribution of the sample [7]. Complete proofs of both 

mathematical relationships for angles retrieving are reported in Supplementary 

Information of ref [3] together with the holographic 3D tracking algorithm 

 

 

 



 

38 
 

 

 

Figure 2: Working principles of R-TPM paradigm. (a) Sketch of the experimental R-TPM 
set-up. Cells are injected into a microfluidic channel and tumble when flowing along their 
path (inset of (a)). At the same time, a holographic image sequence is acquired. In the top-
left corner of the inset the reference system for cell tumbling is reported, while in the top-
right corner a photo of the real setup is shown. (b) Flow chart representing the main steps 
of the two proposed algorithms for angle recovery and tomographic reconstruction [ref. 3]. 

 

  

 

3.2.1 Cyto-tomography as a diagnostic tool in haematological      

         disorders        

 

           Results of Rolling-Tomographic Phase Microscopy (R-TPM) applied on RBCs, 

are reported in Fig. 3. There, four interesting cases are revealed. In particular, we 

have examined both healthy (Fig.3 (a,b)) and pathological (Fig.3 (c,d)) RBCs such 

as iron-deficiency anemia and thalassemia, that are two highly diffused  blood 
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disorders. Specifically, some of QPMs with the corresponding measured angles are 

illustrated on the top row of each sub-Figure 3. The inner plots show the rotating 

angle recovery approach.  

The final cyto-tomography results are displayed on the bottom side together with a 

picture of the correspondent central slices (z=0 and y=0 planes). In addition, insets 

red boxes report a plastic model obtained by a 3D printer for educational purposes. 

In particular, we report the complete 3D RI distribution and the inner RI map 

corresponding to the hemoglobin distribution. Figure 3 a) shows an abnormal RBC 

detected in the healthy sample, an one-side concavity is present resembling the 

shape typically observed in the hereditary stomatocytosis. Figure 3b) reports one 

of the RBCs analyzed for the healthy sample in hypertonic solution, where the 

shape modification, induced by the medium, provides typical burr shape. We 

compare real cases with the simulated one (see Supplementary Information ref. 3) 

by means of the healthiness parameter, H, that is the correlation coefficient 

between the measured and ideal 3D RI distributions. We assume that for 0.9 ≤ H ≤ 

1 a RBC can be considered normal, otherwise deviation from discocyte shape is not 

negligible. H values are reported for all the cases presented in Fig.3 together with 

other global morphometric parameters, namely the Average RI (ARI), the bio-

volume (V), and the corpuscular hemoglobin (CH).   

In order to verify the correctness of the proposed approach, we have tested the R-

QPM for two highly diffused blood disorders.  

The first sample, represented in Fig.3(c), is from a patient affected with an iron 

refractory iron deficiency anemia (IRIDA) due to mutations in TMPRSS6 gene 

(L63Pfs13- W590R in compound heterozygosity) [8].  

The second sample, in Fig. 3(d), is from a patient affected with alpha-thalassemia 

due to a heterozygous deletional event of both in-cisHBA1 genes (--CAMPANIA in 

heterozygosity) [9]. Complete Blood Count (CBC) reveals that mean corpuscular 

volume (MCVs) are equal to 62.6 and 67.5 fL, and MCHs are 18.5 and 21pg, 

respectively. (Analysis performed by DAI.Med.Lab AOU Federico II University, 

Naples).  

In case of anemia due to an inherited defect in iron metabolism and Thalassemia, 

CH and V values are in good agreement with the analysis reported in literature and 

by comparison with CBC from patients with similar genotype [8-10].  
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Figure 3: R-TPM for RBCs. (a-d) Results of R-TPM, applied on RBCs presenting 

morphological anomalies (H<0.9) with respect to the ideal healthy one: (a) one-side 

concavity, (b) speculated, (c) iron-deficiency anemic and (d) thalassemic RBC. For each of 

them we report the QPIs and the mathematical dependence of the defocus coefficient from 

the rotation angle, the tomogram retrieved by the QPIs and the RI distributions at z=0 and 

y=0 planes. ARI, V and CH are also reported together with plastic 3D representations 

realized by a 3D printer [ref. 3]. 
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3.3 Cell dynamics studies by digital holographic microscopy  

 

        In recent years, the digital holography in microscopy configuration has been 

proved to be suitable for bio physics experiments to evaluate quantitatively forces, 

positions and biovolumes [11–17].  

Different works have been published in the last few years where DH is used for 

investigating the variations of cell morphology under in-vitro invasive stimulations. 

Pavillon et al. used DH for monitoring the transient swelling phenomena occurring 

in neuronal cells when stimulated by glutamate applications, but without leading 

to death [18]. A couple of works used DH for measuring the temporal evolution of 

cell volume changes during cell death induced by chemical treatments: neuronal 

cells stressed by glutamate overdoses [19] and human epithelial cells stimulated 

by staurosporine [20].  

More recently Wingren’s group proposed DH for monitoring morphologically cell 

cycle arrest and death under specific chemical treatments, but without real time 

information about the cell volume changes during death [21–22]. 

 

 

Figure 4: Schematic view of the DH set-up. SH, shutter; F, filters; BS, beam-splitters; M, 
mirrors; OM, optical microscope objectives (long working distance, Nikon Plan Fluor 20×, 
N.A. = 0.5); TL, tube lens (focal length 350 mm) [ref. 23].   
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3.3.1 Cell death characterization induced by blue light 

 

         Here we propose an innovative DH configuration (Fig.4) able to monitor the 

cell dynamics and volume variations induced by blue light exposure at different 

cell adhesion stages, thus giving quantitative information about the cell death 

pathways occurring under this kind of injurious stimulation. Figure 4 shows the 

off-axis DH set-up used for monitoring the cell volume changes during blue light 

exposure. It is the same optical set-up described above to perform the RBC 

tomogram but with some adjustments. It is based on a Mach-Zehnder 

interferometer mounted under transmssion configuration.  

The beam exiting a CW laser diode (Melles Griot), emitting 5 mW @ 473 nm, has a 

diameter of 0.75 mm and is splitted by the beam-splitter BS1 into two beams called 

object and reference beams. The object beam is deviated vertically and redirected 

downward on the sample holder through the mirrors M2 and M3. The 20× 

microscope objective OM1 magnifies the sample image, while the beam splitter BS2 

recombines the two beams and addresses the interference pattern onto the 

sensitive chip of a conventional CCD camera (1628 × 1236 pixels, 4.4 μm sized, 

JAI). The glass WillCo-dish (glass bottom dish, size 35 × 10 mm, WillCo Wells) with 

living cells is mounted into a conventional micro-incubator chamber (Warner 

Scientific) in order to maintain the appropriate temperature and atmosphere 

conditions (37 °C and air mixed at 5% CO2). A small angle between the reference 

and the object beams is introduced to spatially separate the first order spectral 

components from the zero-order term to enable effective filtering in the Fourier 

domain. DH allowed us to retrieve the phase shift data Δφ arising from the 

difference in refractive index between the specimen and the surrounding medium 

[17, 19]: 

                                     ∆𝜑(𝑥, 𝑦) =
2𝜋 

λ
 ( 𝑛𝑐 − 𝑛𝑚) ℎ (𝑥, 𝑦)                                                             (1)                             

 

 

where λ is the laser wavelength, nc  is the mean cellular refractive index, nm is the 

refractive index of the surrounding solution, and h is the cell height at position (x, 
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y) in the field of view. We considered, in the first approximation, nc = 1.375 for the 

cellular refractive index [15] and nm = 1.337 for the refractive index of the medium 

[14]. In the reconstructed images of the phase distribution we selected the areas 

belonging to the cells and we calculated the cell height h by Eq. (1). We calculated 

the volume above each pixel in these areas by multiplying the height h by the XY 

size of the pixel (px = 0.128 μm) and finally we retrieved the cell volume by summing 

the volumes above all of the pixels in the cell area.  

The evolution of the cell volume was monitored in real time thanks to multiple 

image acquisitions and, in particular, was performed here during different stages 

of the cell adhesion. It is worth noting that the refractive index of the cell may be 

considered approximately the same during the experiment [20], thus allowing one 

to consider the volume change as the main contribution to the phase variations. 

As already mentioned in the first section, we use here for the first time a DH set-

up with a blue laser source for cell morphology investigation, thus improving the 

spatial resolution, compared to traditional DH methods with red sources.  

The operation conditions were controlled accurately in order to assess the 

threshold between what we call here safe exposure and injurious exposure (SE, IE), 

by evaluating the integrity of both cell body and membrane reconstructed by DH. 

In the first case, the best performance in terms of both DH reconstruction and cell 

integrity was obtained by using a laser power attenuated down to about 200 μW 

and an exposure window ΔT about 1 s long, in correspondence of which 1 hologram 

is acquired, at regular intervals ΔT of 150 s.  

These parameters allowed us to exposure the cells up to 48 h without any 

significant damage onto the cell body, thus allowing us to inspect all of the typical 

adhesion stages of the cells from seeding till the early and the late adhesion stages 

(ESA and LSA). The SE was achieved by using a homemade programmable 

electronic system able to trigger appropriately the mechanical shutter and the CCD 

camera up to 48 h long operation. The IE consisted simply in switching the laser 

emission to continuous mode at about 4 mW. The SE conditions implied a dose of 

about 5 × 108 photons/μm2 × s, while the IE corresponded to about 1012 

photons/μm2 × s. The IE was applied to both ESA and LSA, in order to investigate 

the cell volume evolution under two main different cell adhesion conditions. 
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The figure 5 shows the phase map evolution of live cells under SE from the ESA till 

the LSA. The cells appear clearly to spread completely onto the glass surface of a 

WillCo dish in a couple of hours, without any significant anomaly, thus 

demonstrating the non-invasive nature of the SE modality. Successively, another 

experiment was performed for monitoring the cell volume changes during IE in 

correspondence of the ESA. The laser source was switched on continuous wave 

(CW) just a few minutes after seeding the cells into the WillCo dish. The image 

acquisition started around 10 minutes after seeding and continued for about 9 

hours with an acquisition rate of 0.4 frames/min, namely one frame every 150 s.  

 

 

Fig. 5: Typical phase map images of live cells under SE at different time intervals. The 
scale bar is 20 μm. The colour bar corresponds to μm units [ref. 23]. 

 

The Figure 6 shows the typical phase map evolution of cells during IE. The phase 

images show clearly how the cells try to adhere to the substrate and, before 

spreading, exhibit a swelling effect with the formation of “balloon- like” and blebs 

structures, typical of necrotic cells. 
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Fig. 6: Reconstructed phase map images of cells acquired under IE during ESA. The scale 
bar corresponds to 20 μm. The colour bar corresponds to μm units [ref.23]. 

 

Successively the cell membrane rupture occurs and the intracellular fluid flows out 

the cell body, with a consequent volume decrease. The volume was evaluated for 

each cell in Figure 6 and the corresponding temporal evolutions are shown in 

Figure 1 of the Supplementary Information of ref [23]. The experimental data of the 

cell volumes are represented by the dispersed dots and appear clearly distributed 

according to an elongated reversed S-shaped curve. Therefore, these data were 

fitted with the following sigmoidal function (SF) generated by the Boltzmann model 

(OriginLab): 

 

                                      𝑉(𝑡) =  𝑽𝟎 +
𝑽𝒇−𝑽𝟎

𝟏+𝒆(𝒕−𝒕𝟎)/ 𝝉
                                                  (2) 

 

 

where V0 and Vf are the initial and final volume of the cell reconstructed through 

the corresponding phase maps, t0 is the mean temporal point of the SF, namely the 

centre of the SF where the volume reaches the maximum value, and τ is the time 

constant. The volume data show clearly the volume increase of the cell before 

membrane rupture, typically occurring in necrosis. The variability of cell volume 

variation was due to the slight different adhesion stage in each cell. The R-squared 

results (see Table 1 in Supplementary Information of ref 23) show clearly that the 
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SF definitely fits well the volume data, thus providing a significant model for 

predicting the temporal evolution of the cell volume during light-induced necrosis. 

The same kind of experiment was performed onto another cell culture sample by 

magnifying digitally a single cell, in order to demonstrate the reliability of the 

technique and to observe more details about the single cell morphology. Figure 7 

shows the typical temporal evolution of the reconstructed phase maps under 3D 

representation of a single cell during blue laser exposure on ESA. 

The morphological changes experienced by the cell are clearly visible with high 

spatial resolution during the entire cell death process. The figure 1A) corresponds 

to the state in which the cell is alive just after seeding and observed under SE.  

 

     

Fig. 7: Temporal evolution of the reconstructed phase map under 3D representation in 
case of a single cell during ESA when subjected to IE. The scale bar is 6 μm. The colour 
bar corresponds to μm units [ref. 23]. 

 

 

The cell morphology appears stable and un-perturbated. Conversely, the cell 

motion and vibrations appear to rise significantly when switching to IE, 
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corresponding to the early stages of the necrosis, when the cell tries to regulate its 

volume desperately till death. In this case we evaluated the temporal evolution of 

both cell volume and cell area, and Figure 8 shows the corresponding results. 

 

 

Figure 8 (a) Temporal evolution of cell volume and area during ESA when subjected to IE. 
The data refer to the cell shown in Figure 7; (b) list of parameter values resulting from 
fitting the volume data with the sigmoid function [ref. 23]. 
              

 

The cell volume initially oscillates according to the regulatory mechanisms that 

compensate the physiogocial volume variations in order to maintain an appropriate 

balance of ions across their cell membrane. Then, the volume data exhibit the 

upward slope corresponding to the swelling just before the membrane rupture, 

while the area data arise correspondingly. The intracellular liquid flowed out of the 

cell, the volume dropped down rapidly by about 32%, following the SF behaviour. 

The blue light exposure was investigated also during the LSA by switching the DH 

modality from SE to IE after cell spreading onto the WillCo dish. 

The Figure 9 show the temporal evolution of the reconstructed phase maps under 

2D and 3D representation. The phase images clearly show how the spread cells 

release intracellular liquids with a consequent decrease of the volume.  
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Fig. 9: Phase map images of cells under LSA during IE. The colour bar corresponds to μm 
units. The scale bar is 20 μm [ref. 23]. 

 

 

Figure 10 shows the phase maps reconstructed in case of LSA of more dense cells. 

 

 

Fig. 10: Phase map images of cells under LSA during IE, in case of higher density. The 
colour bar corresponds to μm units. The scale bar is 20 μm [ref. 23]. 

 

 

In conclusion, we performed a novel quantitative study for investigating real time 

the cell volume changes during blue light exposure under both early and late 

adhesion of fibroblast cells. We adopted a holographic microscopy technique for 

obtaining quantitative data. Furthermore, we added an innovative approach if 

compared to the standard DH techniques as here for the first time we develop a DH 

set-up that uses a blue laser source that simultaneously serves as reading and tool 

for inducing phototoxicity, by switching the DH operation between what we call 



 

49 
 

here “safe” and “injurious” exposure. The results show that the cell morphology 

and volume evolve with characteristics that are typical of necrotic cells, with 

swelling, balloon-like structures and successive membrane rupture and leakage of 

intracellular liquids.  

This technique allows one to extract information about the interaction of blue light 

with live adherent cells, establishing the threshold conditions between healthy and 

damaged cells. This study could open the route to further investigations on light 

induced mechanisms in living specimen and, thanks to the possibility of 

structuring the light pattern, even at the interface between live and dead samples. 
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4 Cell mechanics by optical manipulation  

 

    The combination of holographic optical tweezers and digital holography gives the 

possibility to manipulate and study complex processes in living cells. Here, we will 

focus on cell mechanics studies, in particular the role of actin filaments in response 

of forces applied by optical tweezers. To confirm the formation of the cytoskeleton 

structures (actin filaments) after the stimulation, a fluorescence imaging system 

was added as a control. 

 

4.1 Cell mechanics and cell surface interactions: state of art 

 

       Investigating the mechanical crosstalk between cells and their surrounding 

environment is fundamental to understand the influence of forces on cell functions 

and responses [1,2]. Indeed, the correlation between cells and forces (sensed and 

generated by cells) has been receiving increased interest in biological and 

biomedical research. In particular, the ability of cells to sense forces is strictly 

correlated to cytoskeleton dynamics [3–5].  

Generally, force transmission is accomplished via focal adhesions (FAs) [6]. Cells 

anchor onto the extracellular substrate through trans-membrane proteins, i.e. 

integrins, which form bonds with various extracellular protein-receptors, e.g. the 

adhesive signal Arg-Gly-Asp. Depending on the magnitude and the distribution of 

the transmitted forces, cells trigger different cascade pathways of biochemical 

signals that regulate short and long-term cellular responses and behaviors [7].  

It is noteworthy that a quantitative determination of the transmitted forces would 

significantly contribute in shedding light on this mechanism, known as 

mechanotransduction. Until now, the correlation between forces and cell 

mechanotransduction has been carried out through techniques like traction force 

microscopy or by using flexible polydimethylsiloxane pillars [8,9]. Such techniques 

have helped us to understand the nature of the forces exerted by cells on the 

extracellular surroundings and to quantitatively measure them. This kind of 

experimental campaign has been conducted on adherent cells, by averaging the 

generated forces on the substrate contact points (FAs) [10,11].  
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4.2 Integrated optical platform for cell mechanics studies  

 

        Here, the optical system (well described in detail in paragraph 2.2) was used 

to manipulate micrometer latex beads, to anchor them to suspended cells in a 

predefined configuration and to induce mechanical stimuli and thus cell 

deformation.  

In particular, the case presented in this work as a proof of concept is the simplest 

configuration of a single cell suspended between two rigid beads. The 

corresponding static deformation induced by a single stretching stimulus, kept 

constant in time, was investigated using a holographic particle tracking approach 

[12]. The cell mechanical response is discussed in terms of the mechanical 

contributions from cortical and cytoskeletal actin structures.  

DH imaging was used to measure the forces generated in a quantitative, label free 

and non-invasive way. Furthermore, using DH imaging, an increase of the 

refractive index in the inner volume of the cell was revealed, along the direction 

connecting the two anchoring points on the beads, as discussed and shown below. 

We believe that such a detected increase in the quantitative phase imaging is due 

to the assembly of the cytoskeletal actin structure. In fact, fluorescence imaging 

allowed us to confirm the presence and reorganization of such inner structures, as 

clearly revealed by the experimental results presented herein.  

 

 

4.2.1 Nanomechanics of a fibroblasts  

 

           In an attempt to better elucidate the material-cytoskeleton crosstalk during 

the initial stage of cell adhesion, here we report how suspended cells anchored to 

point-like bonds are able to assemble their cytoskeletons when subjected to 

mechanical stress. The combination of holographic optical tweezers and digital 

holography gives the cell footholds for adhesion and mechanical stimulation, and 

at the same time, acts as a label-free, force-revealing system over time, detecting 

the cell nano-mechanical response in the pN range.  
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To confirm the formation of the cytoskeleton structures after the stimulation, a 

fluorescence imaging system was added as a control. The strategy here proposed 

portends broad applicability to investigate the correlation between the forces 

applied to cells and their cytoskeleton assembly process in this or other complex 

configurations with multiple anchor points.  

In particular, a mixture of RGD functionalized beads and cells (NIH/3T3 murine 

fibroblast) was introduced in a temperature and CO2 controlled chamber (Petridish) 

with optimized concentrations to perform the experiments. The Petri-dish was 

opportunely pre-treated to avoid cell adhesion. First, the beads were trapped using 

HOT (Fig. 1b) and then moved in contact with the cells (Fig. 1c) to promote 

attachment.  

Digital holograms were numerically processed to simultaneously track the trapped 

microspheres and recover the quantitative phase-contrast map of the entire field of 

view in order to monitor the Optical Path Difference (OPD) induced on the cell by 

the mechanical stresses.  

The analysis consisted of the following steps: (i) characterization of trapped bead 

motion in time, by a previously proposed method, [12] to detect statistical changes 

in bead movements before and after static deformation of the cell; (ii) QPM 

reconstructions for cell monitoring to detect shape changes; (iii) fluorescence 

imaging to correlate bead motion and cell shape modifications with cytoskeleton 

assembly. Holographic particles tracking method is applied to recorded digital 

holograms by calculating the displacement of moving object from two subsequent 

holographic reconstructions, as specified in ref. 12.  

In particular, the minimum displacement that it is able to detect is defined as px/2, 

where px is the pixel size in the image plane. In the current implementation px = 

54 nm, allowing an accuracy equal to 27 nm. The main steps of the experiment, 

which lasted about 1 h, are presented in Fig. 2 and 3. Specifically, Fig. 2a shows 

two optically trapped microbeads, for which we recorded the displacements in the 

first 5 min after trapping (3000 points, blue dots of Fig. 2e). 
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Figure 1: Experimental setup made of HOT, DH and fluorescence moduli. Design of the 
experiment: one or more beads are optically trapped (b) and attached to a single floating 
fibroblast (c) [ref. 17]. 

 

 

Similarly, the displacement trend immediately after the particle approach and 

during the attachment phase to the cell membrane is shown in Fig. 2b–f. The 

statistical behaviors of the displacement values reported in Fig. 2e and f are very 

similar, however, an average damping of 3% was calculated in the case of the 

attached beads. Nonetheless, we find that this perturbation is completely recovered 

in the first 5 min after bead attachment. At this time point (20th min), mechanical 

stretching was imposed on the right side bead shifting it 2 μm along the x-axis. 

Then, by monitoring the beads after stretching for 10 min (Fig. 2c–g), no damping 

of their displacements was observed with respect to the case reported in Fig. 2f. 

After this time interval, the tracking measurements revealed that the effect of static 

stress was a damping in the right bead displacements (Fig. 2d–h). Because no other 

stimuli occurred during the experiment, the cell reacted by stiffening itself into a 

static tensional state, as shown by the envelope in the bead displacements.  
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Figure 2: Time evolution windows (5 min) of the bead displacements (blue points) along 
the x-axis before and after stretching (held for the rest of the experiment) by shifting the 
right bead by 2 μm; (a) when the beads are trapped by HOT they present the classical 
Brownian motion of a particle in a potential well (e), the same happens immediately after 
attaching the beads to the cell (b–f).  
Once stretched, the bead still presents the classical Brownian motion of a particle in a 
potential well (c g). Conversely, after 10 min from stretching (d–h) the amplitude of the 
displacements is considerably reduced [ref. 17]. 
 

 
 

This was confirmed by calculating the trap stiffness (ktrap) from the bead 

displacement over time (see Fig. 3a and b). Since we calculated an accuracy of 27 

nm in the displacement measurements, the corresponding stiffness precision is 

0.16 pN μm-1.  

We found that, before the beads adhere to the cell, the trap stiffnesses were 2.7 pN 

μm-1 and 2.1 pN μm-1  along the x and y-axes, respectively, i.e. trapped bead 

displacements in this first stage presented typical Brownian behavior. We observed 

that the stiffness along the x-axis did not change after the attachment to the cell 

membrane. If we assume that in the bead–cell–bead system, the composed elastic 

constant of the trapped beads was k = ktrap + kmem, where kmem is the membrane 

stiffness, then soon after attachment the total stiffness returned to a comparable 

value to that before the cell bead engagements (k = ktrap + kmem ≈ ktrap).  

However, a variation in the trap stiffness was calculated along the y-axis, allowing 

for a 6% increase in the total stiffness.  
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Figure 3: Trap elastic constant measured as a function of time for both beads along the 
x-axis (a) and y-axis (b), where x is the stretching direction. (c) Drift displacements of the 
left and right beads, respectively, demonstrate a cell contraction after mechanical 
stimulation. In (d) the mutual correlations between the left and right displacements along 
both the x and y-axis are reported [ref. 17]. 

 

 

In addition, we evaluated the exerted force on the cell, which was found to be about 

5 pN. Surprisingly, considering the amount of deformation on RBCs previously 

reported, [13,14,15] the application of forces with the same order of magnitude 

(tens of pN) on a suspended fibroblast did not produce any detectable deformation, 

as previously observed [16]. This led to the consideration that different mechanical 

properties and different values of membrane tension were involved. However, at 

around the 30th minute (see Fig. 3a), the trap stiffness started to increase reaching 

values of about 40% and 25% higher than at the beginning, for the right and left 

beads, respectively. It is noteworthy that the trap elastic constants reported in Fig. 

3a were the result of the numerical envelope of the data collected during the 

experiment. Additionally, a stiffness variation was observed along the y-axis, equal 

to 9% and 13%, for the right and left beads, respectively, as shown in Fig. 3b. As a 

consequence, such results produced a correlated displacement between the beads, 
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evaluated during the experiment and reported in Fig. 3d. Interestingly, the mutual 

correlation factors followed the same trend as the trap stiffness over time. In fact, 

in the time interval before and after bead attachment, their motions were 

completely uncorrelated, with a correlation factor ranging between 0 and 0.05. 

After mechanical stimulation, the correlation factor increased to ~0.2, thus 

indicating that the bead oscillation around the trap equilibrium position had begun 

to decrease. No correlation was observed orthogonal to the stretching. The previous 

evaluation was devoted to understanding the temporal evolution of cell behaviour 

through its stiffness and the correlation between the trapped beads. However, in 

order to calculate the instantaneous forces exerted by the fibroblasts we considered 

independently the different intervals of time reported in Fig. 2 and the 

corresponding displacement measurements. This analysis furnished a different 

stiffness value with respect to that of Fig. 3a and b, because no temporal correlation 

was considered.  

In particular, we calculated an increment of the absolute elastic constant from 2.6 

to 29.4 pN μm-1 for the right bead along the stretching direction (see Table S1 of 

ref 17). Another interesting effect is reported in Fig. 3c, where the drift displacement 

values of the beads are reported. Both microspheres show a displacement of ~0.5 

μm (left bead) and ~1 μm (right bead) towards the cell nucleus, indicating a cell 

contraction after mechanical stimulation. Furthermore, combining such 

displacement values with the elastic constants of both traps along the stretching 

axis (8.1 and 29.4 pN μm-1 from Table S1 of ref 17) we evaluated the forces 

generated by the cell as ~4 pN and ~30 pN, respectively. Asymmetric values could 

arise from different adhesions of cells on the microspheres. When adherent cells 

detach from their own substrates, they curl up and their cytoskeleton is less 

structured. In particular, the actin cortex of the cell remains, whereas the 

contracting actin stress fibers are only present in the adherent state. Through our 

setup we recreated cell adhesions, in a point-like manner, giving the cell the chance 

to reassemble actin structures. The resulting values of the measured forces 

exceeded those needed to stall approximately eight actin parallel polymerizing 

filaments (1 pN) [18]. It has been proved that the average pulling force generated 

by a single myosin molecule interacting with a single actin filament is 3–4 pN [19]. 

Then, considering the direction of the bead displacements and the force range 
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measured, we were able to exclude the fact that actin pushes against the trapped 

microspheres. Taken all together, these results suggested that the damping motion 

we collected for the beads attached to a fibroblast might be the direct consequence 

of cell stiffening. In an attempt to understand if such a phenomenon is associated 

with the assembly of cellular actin structures, we performed the same experiment 

with fibroblasts after transfection treatment (see Appendix A.2.5).  

First, cell adhesion on a point-like foothold (trapped microbeads) was conformed 

using the fluorescence modulus (Fig. 4). Then, we investigated the cytoskeleton 

assembly at three instants of time, i.e. suspended cell without beads (t = 0), 20 min 

after cell-bead attachment (t = 20 min), and 30 min after stretching (t = 50 min), 

using both DH and fluorescence moduli. As expected, we found that at t = 0 and t 

= 20 min no actin organization was detected, as confirmed by the DH-QPMs and 

fluorescence images reported in Fig. 5 a, b, d and e. Contrarily, in the time interval 

in which we recorded the displacement damping, i.e. after stretching (t = 50 min), 

structured actin filaments were clearly visible (Fig. 5c and f).  

In Fig. 5c the QPM of the cell in false colour at t = 50 min reveals an enhancement 

of the OPD along the axis connecting the two microspheres, not present in the 

previous situations, indicating a modification of the internal cellular structure. In 

order to investigate such an arrangement, we recorded a fluorescence image at the 

same instant of time (Fig. 5f). Surprisingly, we found evidence of a signal 

corresponding to the actin filaments, suggesting a cytoskeleton assembly inside the 

cell volume. In fact, the cytoskeleton modified its assembly over time and polarized 

the fluorescent filaments in the direction connecting the two external beads, as 

proved by the QPMs (Fig. 5c–f). At this early stage, taking into account only the 

QPMs, it was not possible to confirm the presence of the cytoskeleton for two 

reasons: the low resolution and the lack of specificity in the OPD signal retrieved. 

However, it is difficult to imagine different causes that can produce such phase 

variation inside the cell in the particular setup we fabricated. Consequently, we 

believe that the enhancement found in the OPD, together with the cell stiffening 

and fluorescence observations were ascribable to attempts of early cytoskeleton 

assembly by the cell. 
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Figure 4: (a,c) Fluorescence images and (b,d) QPM of different trap configurations.  (a,b) 
four beads and (c,d) two beads are attached to the fibroblast, in suspension. The cell feels 
as only foothold the beads, reorganizing itself consequently. Frame in images a and c 
configurations shows actin accumulation and filaments on microsphere surfaces 
indicating cell anchor points (focal adhesions) [ref. 17]. 
 

 

In summary, we developed a promising proof of concept/setup that gives cells, 

generally living in adhesion on 2D substrates, the possibility to adhere and mount 

their cytoskeleton in a 3D suspended configuration.  

In particular, our approach is able to detect the cytoskeleton and force generation 

in response to mechanical stimuli by nanomechanical characterization.  

The combined fluorescence imaging confirms cell stiffening by direct observation of 

the actin filament-bundles, thus demonstrating the capability of our framework to 

investigate the material–cytoskeleton crosstalk in the early (a few hours) adhesion 

time and for different shape configurations. Moreover, the preliminary QPM results 

are promising and permit us to consider DH as a label-free technique for cell 

nanomechanic investigations in the future.  
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Figure 5: (a and d) are QPM and fluorescence images of a LifeAct-RFP transfected cell in 
suspension before microbead approach (t = 0) and (b and e) clamped between two 
microbeads (t = 20 min). (c and f) QPM and fluorescence image at t = 50 min of the 
experiment (30 min after stretching), showing the presence of actin aggregates. (c) QPM of 
the cell shows an enhancement of the OPD signal corresponding to the area connecting 
the two microspheres (the dotted line is just a guide for the eye), confirmed by the 
fluorescence image (f) of the assembling cytoskeleton [ref. 17]. 
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5 Dynamic platform for cell handling and polarization by optically- 

   induced electric fields  

 

    Here, we present a novel platform for cell handling, in particular for inducing 

ordered alignment and elongation in cells by exploiting optically-induced electric 

fields.  

The response of bacteria and fibroblasts on ferroelectric lithium niobate is studied 

in terms of the orientation and morphological differences induced by the field 

gradients generated by photorefractive effect on its surface.  

Controlling cell alignment is one of the most fascinating challenge in biotechnology 

field and tissue engineering. For example in native myocardial tissue, the complex 

organization of cardiomyocytes and fibroblasts within the cardiac extracellular 

matrix is critical to the electrical and mechanical properties of the heart [1]. 

Musculoskeletal tissue is similarly organized, with myoblasts forming highly 

aligned muscle fibers through fusion into multi-nucleated myotubes [2]. This 

specific arrangement of differentiated myocytes within the musculoskeletal ECM is 

essential for the generation of contractile force. In a broad range of additional tissue 

of the human body, from the vasculature to connective tissue, tissue function is 

also dictated by cellular organization [3].  

However, in previous studies, the inability to control cell behaviour has often 

resulted in poor cell and ECM organization within engineered constructs. Such 

tissue constructs had limited ability to recreate complex tissues characterized by 

precise cell and ECM alignment. Microscale technologies have been successfully 

integrated into many tissue engineering applications and have allowed for 

enhanced control of cell behaviour and function through control of the cellular 

microenvironment [4-8].  

On the other hand, the capacity of cells to sense and respond to physiological 

electric fields (established by a trans-epithelial potential difference in tissues) is a 

very important issue, because several processes such as wound healing, 

development, cell migration and nerve regeneration are under the effect of 

endogenously generated electric fields. In culture, many epithelial and endothelial 

cells respond to an external electric field of magnitude similar to the endogenous, 

by moving preferentially either parallel or antiparallel to the field vector, a process 
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known as galvanotaxis [9-11]. Moreover, electric fields influence cell division, 

polarity, shape and morphology. Cell movements and migration under the effects 

of electric fields relies on the ability of the cells to interact with a given substrate 

thanks to the process known as cell adhesion, a fundamental process for the 

maintenance of cell architecture [12]. It guarantees the right tissue structure, 

necessary for the correct functioning of tissue. Cell adhesion (the physical 

interaction of a cell with another cell or with the extracellular matrix) is essential 

also for cell migration. Cell-cell adhesion maintains epithelial tissues, supports 

functional contacts between specialized cells, and can facilitate directed migration. 

Furthermore, it has been well described the importance of the substrates, 

independently of substrate chemistry, for cell adhesion and cell migration [13-16]. 

In the last years several methods have been developed for controlled cell alignment 

and patterning devoted at ordered tissue growth or for studying cells in isolated 

state or, ultimately, for guiding cell migration, differentiation and fate. Mainly they 

can be classified depending on the type of interaction involved, i.e chemical, 

mechanical, electrical or a combination of them. Smart polymeric structure have 

been realized to force cell in ordered geometries both in 2D and 3D [17-18] and cell 

morphological changes have been quantified also in reversible topographic pattern 

geometries [19]. 

 

5.1 Dielectrophoretic approach based on lithium niobate  

 

       A well-established technique for cell handling in microfluidics is 

dielectrophoresis [20,21] a non-invasive technique used for many different 

purposes, such as drug discovery and delivery [22], detection and separation of 

cancer cells [23], medical diagnostics and quantitative cell analysis. DEP is the 

motion of a polarizable particle in a non-uniform electric field usually generated by 

printed electrodes properly designed for the experiment.  

DEP in combination with suitable cellular adhesive has been employed for 

alignment of single mammalian cells [24]. A further class of methods for cell 

manipulation is based on the light interaction usually employed to activate a photo-

responsive material that selectively interact with the biological sample [25-28].  
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Recently the development of new DEP based techniques allowed the establishment 

of electrode-free approaches, useful for their high degree of versatility and for the 

possibility to avoid the use of external electric field sources. These methods have 

been demonstrated to be able to manipulate micro-particles as well as to drive 

liquid and polymer [29-33]. They exploit the evanescent electric fields generated on 

ferroelectric crystals by means of light interactions.  

Here we report the response of bacteria and mouse fibroblasts NIH-3T3, on the 

surface of ferroelectric iron doped lithium niobate (Fe:LN) where virtual-electrode 

are generated by photorefractive (PR) effect, starting from the first interaction with 

the material, until the full spreading, in order to  understand the dynamics of 

adhesion and cell migration and their effects on the morphology of actin 

cytoskeleton. 

A combination of two innovative approaches, electrode-free dielectrophoresis and 

a digital holographic microscopy was used to monitor these phenomena. The light 

induced DEP is achieved through ferroelectric iron-doped lithium niobate crystals 

used as substrates. Due to the photorefractive property of such material, charge 

distribution inside its volume is generated by using light and the resulting electric 

fields are able to induce a preferential orientation of the cells.  

This new technology may thus be used to investigate most of the electric field driven 

events such as cell migration, cell division, wound healing and all the processes 

linked to cell-substrate interaction. The novelty of this device is the possibility not 

only to generate electric fields with light in absence of electrodes but also to 

reversibly control cell behavior in time and space. The biocompatibility of LN has 

been proved in literature where the interactions of in vitro cells on poled and 

unpoled crystals has been characterized [33-35].  

Here LN is exploited to generate evanescent fields whose strength is able to modify 

the cellular morphology. We demonstrate that PR fields have a double function. At 

the first stage where cells are seeding on the surface the fields are responsible of a 

positive DEP trapping in correspondence of the regions where the higher gradients 

are present. After trapping the fibroblasts start the adhesion process with 

subsequent spreading. We reveal that after 24 hours the 80% of cells present an 

elongated shape whose major axis is oriented perpendicularly to the linear virtual-

electrodes. Here, we report also that is possible to apply such electrode-free DEP 
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cues to pattern biological objects such as eukaryotic cells (NIH-3T3 mouse 

fibroblasts) and bacteria. Cells oriented perpendicularly to the charged pattern 

generated by light, also assuming a peculiar shape. Once the charge pattern is 

erased, again by light, the cells re-orient and change their morphology. This 

phenomenon highlight the possibility to control cell shape, movement, orientation 

and behavior by means of light.  

 

5.1.1 General properties of Lithium niobate crystal  

 

          The response of a material to the application of an external electric field is 

strictly regulated by its electrical properties. In the presence of available free 

carriers (unbounded charges, either electrons or ions) the material will exhibit an 

electric current proportional to the applied voltage, hence performing as a 

conductor.  

Metals and electrolytes are examples of conductive materials. If the activation of 

charge transport necessitates a minimum energy to be provided to the system, the 

material is classified as a semiconductor. Silicon, germanium and alloys of the III-

V groups of the periodic table belong of the semiconductor material family, and well 

known platforms for electronics. Finally, if no free carriers are available for 

conduction, the material is defined as a dielectric, or simply an insulator. Dielectrics 

represent a broad family of materials, which can be polarized by external electric 

fields. In general, such a property arises from their atomic structure, which upon 

the application of external electric fields shows spatially-separated complexes of 

charges of opposite sign, called dipoles.  

However, some dielectrics are made of polar molecules; hence already possess 

intrinsic electric dipoles.  

Dielectrics which possess dipoles are called pyroelectrics and show a polarization, 

called spontaneous polarization Ps, even in absence of external electric field. In 

particular, as shown in Figure 1, ferroelectrics represent a subgroup of pyroelectric 

materials in which such polarization can be reoriented by the application of 

external electric fields [36]. As a consequence of their intrinsic nature, we can 
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define, for these ferroelectric crystals, the electric displacement vector D as a 

superimposition of different contributes:  

                                                                              𝐷= 𝜀0𝐸+ 𝑃𝑖+ 𝑃𝑠  

where ε0 is the dielectric permittivity of vacuum, E the electric field, Pi the induced 

polarization and Ps the spontaneous polarization.  Among the others, the lithium 

niobate has gained a prominent role in research and applications of ferroelectric 

crystals and is one of the most used electro-optic (EO) materials. LiNbO3 is 

characterized by large pyroelectric, piezoelectric (PZ), nonlinear and EO coefficients 

and has useful acoustic and acousto-optic properties. This richness of large-

magnitude physical effects has caused LN to become widely used in applications 

such as acoustic wave transducers, optical amplitude modulators, second-

harmonic generators, beam deflectors, dielectric waveguides, memory elements, 

holographic data processing devices, and others [37]. LN is a human-made 

dielectric material (Czochralski growth technique [38]) that doesn’t exist in nature 

and it was first discovered to be ferroelectric in 1949 [39]. It is a rhombohedral 

crystal that consists of planar sheets of oxygen atoms in a distorted hexagonal 

close-packed configuration [40].  

Octahedral interstices are formed, one third of which is occupied by niobium (Nb) 

atoms, one third by lithium (Li) atoms, while the rest is vacant. Above the Curie 

temperature Tc (around 1210°C) the phase is para-electric (no spontaneous 

polarization), while in the ferroelectric phase, below Tc, LN exhibits spontaneous 

polarization Ps along the c axis, resulting in a c+ and a c- face. 

 

Figure 1: Classification of ferroelectrics. 
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The c+ face corresponds to the positive end of the dipole and, vice versa, the c- face 

corresponds to the negative end of the dipole. In the para-electric phase the Li 

atoms lie in an oxygen layer that away from the Nb atom while the Nb atoms are 

centered between oxygen layers. Conversely, in the ferroelectric phase the elastic 

forces of the crystal become dominant and force the lithium and niobium ions into 

new positions.  

The spontaneous polarization Ps changes according to 𝛥𝑃𝑖=𝜉𝑖 ∙𝛥𝑇, where 𝜉𝑖 is the 

pyroelectric coefficient and 𝛥𝑇 is the temperature variation. At equilibrium (ΔT =0) 

all Pis in the crystal are fully screened by the external screening charges and no 

electric field exists. The polarization change perturbs such equilibrium causing a 

lack or excess of surface charge, thus generating a high electric field, the 

pyroelectric field. 

 

 

5.1.2 Photorefractive effect  

 

          This effect consists in a non-instantaneous and non-local refractive index 

change induced by light in the crystal [41-42]. In fact, this is due to a combination 

of some other effects.  

First, one has to account with the presence of certain impurities or color centers 

which could be optically ionisable. In lithium niobate the most active 

photorefractive impurities are Fe, Cu and Mn. When they are present in the crystal, 

appear simultaneously in two valence states: Fe2+/Fe3+, Cu+/Cu2+, and Mn2+/Mn3+ 

[43]. The reduced valence ions act as charge donors whereas the oxidized valence 

ions act as acceptors.  

Second, inhomogeneous light of the proper wavelength produce ionisation of some 

donors.  

Third, the released charges move along the crystals by means of one of the charge 

transport processes: diffusion in the band, photovoltaic current, or drift in an 

external electric field.  
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Forth, charge is trapped in acceptors. As the trapping occurs in a different place 

than ionization (darker places in average), a distribution of internal electric field is 

created. 

Fifth, finally this electric field distribution induces a refractive index change 

distribution via the electrooptic effect. 

The charge distribution remains in the crystal for some time when it is not 

illuminated. In this case, only the crystal dark conductivity contributes to 

redistribute the charge. By contrast, upon uniform illumination the charge is 

redistributed homogeneously after some time depending on light intensity and 

spectrum, due to photoconductivity. Consequently the refractive index change is 

erased. 

Photorefractive effect is very dangerous for most optical applications because the 

light itself modifies with time the refractive index of the material just in its own way 

path. The result is a perturbation of propagation, as for example a fanning effect. 

Then, usually it is known as optical damage of the material. It can be avoided by 

propagation at high temperature or by doping with damage resistant impurities. 

Considered this effect positively, one can make good use of it. This can be used to 

write with light and store for some time information in the material. This is what is 

done to produce optical memories.  

Alternatively one can produce a useful optical element, as a phase grating, by 

changing the distribution of refractive indices. For lithium niobate, a thermal fixing 

process is known [43] to make these changes quasi-permanent at room 

temperature. Then, the optical element produced by this effect can be included in 

a practical setup. The uncontrolled residual photorefractive impurities and point 

defects provide of enough number of donors and acceptors to produce the 

unwanted damage effect.  

In contrast, crystals are intentionally doped with photorefractive impurities when 

one seeks photorefractive applications. Most common is iron doping, and the usual 

concentration varies depending on the application from 0.01 mol% up to about 0.2 

mol%. 
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5.2 Optical setup for “light writing process” 

 

        We tested on the E. coli bacteria and fibroblsts the effects of PR fields induced 

on the surface of x-cut Fe:LiNbO3 (Altechna, dopant level 0.05%, 500 μm thickness 

(x axis), 20 x 20 mm in y–z plane). The PR field was generated by the optical 

arrangement well-described in Refs. [44,47]. A light source (Argon laser beam at 

514 nm) with structured intensity was transmitted through the crystal to generate 

internal phase grating and surface electric field gradients that were exploited to 

immobilize and orient the bacteria and fibroblasts. Phase gratings with different 

periodicity were inscribed inside the crystal volume. Specifically, we tested 12.5 

μm, 25 μm, 50 μm and 100 μm grating periods for bacteria cells, and   25 μm and 

50 μm grating for fibroblasts. 

 

 

Figure 2: (a) Schematic representation of evanescent field and consequent E. coli 
orientation. The angle, θ, between each bacterium and the direction of grating planes, is 
measured. (b) Drawing of the sample: a closed chamber containing about 30 µl of bacteria 
suspended in LB, the bottom surface of the chamber is Fe:LiNbO3 [ref. 32].   
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The polarization of the laser beam and the grating vector k ⃗⃗  are parallel to the z-

axis (c-axis) of the crystal for all the experiments. A schematic drawing of the charge 

distribution and correspondent evanescent field is reported in Fig. 2(a). 

In case of bacteria cells, the experiments were carried out in two modalities: 

 

(i) in line: A small volume of bacteria suspended in Luria-Bertani (LB) broth 

medium (10 g/l NaCl, 10 g/l tryptone, 5 g/l yeast extract) (30 µl—about 6 x 105 

cells) was placed on crystal surface. Then such system was exposed to the laser 

light to generate the surface DEP forces. In this case the bacteria are on the 

crystal during the grating formation. 

(ii) off line: Only the crystal was exposed to laser light. The E. coli drop was laid on 

it after the grating formation. 

Adhesive spacer and coverslip were used to realize a close chamber to avoid liquid 

evaporation in both modalities, Fig. 2 (b) reports a sketch for the off line case.  

For both the experimental procedures, image recording and processing were 

performed to analyze the bacteria arrangement related to the inscribed phase 

gratings. For each grating period, a complete image mapping of the samples was 

performed under a bright field microscope (Axio Imager. M1m, Zeiss-Germany) 

using 20 x and 40 x objectives.  

All of the images were recorded under phase-contrast mode in order to best 

visualize both the PR phase grating and the bacteria cells. The recording of all 

images was performed, at maximum, 15 min after light exposure and 20 min after 

the measurement of E. coli concentration. Subsequently, measurements of the 

orientation angles were accomplished by ImageJ, a freely available software for 

image handling (http://imagej.nih.gov/ij/).  

We measured the angle, θ, between each single bacterium and the direction of the 

grating planes (see Fig. 2(a)). The histograms shown in the following section were 

realized by Excel and Matlab. In particular, the Cartesian histograms display the 

percentage of bacteria whose angle is in the range 45–90° respect to the grating 

planes while the polar histograms represent the number of bacteria in 70 angular 

intervals between 0° and 90°. 

 

http://imagej.nih.gov/ij/
http://imagej.nih.gov/ij/
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5.3 Control of cell behavior in time and space by photorefractive  

      effect 

 

       The average length of E. coli bacteria is 1–2 μm but during our experiments 

we observed a higher alignment in case of bacteria chains. This observation leads 

us to hypothesize that it is possible to operate a control during the bacteria 

duplication in terms of ordered growth. We performed a preliminary experiment to 

prove this possibility so that, after the light exposition, the sample is incubated  at  

37 °C  for  2 h.  Some pictures  are  recorded  and reported in Fig. 3 confirming our 

hypothesis where a significant ordered arrangement of bacteria is present in the 

sample. In particular, we calculate the alignment percentage of the bacteria chains 

longer than 10 μm. The percentage increased from 68.5% to 77.8% in case of 25 

μm grating in off-line mode. 

 

 

Figure 3:  Two pictures of bacteria chains longer than 10 µm aligned perpendicularly to 
the grating planes. Image are recorded in off-line mode for 25 µm grating [ref. 32]. 
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5.4 Cell pattering: bacteria and fibroblasts 

         

        For all the tests performed a significant high percentage of bacteria were 

arranged in a perpendicular way respect to the grating planes i.e. they were 

elongated in the direction parallel to the grating vector �⃗� . We repeated the 

experiments 20 times for each one of grating period and for both modalities 

described before. In Fig. 4 some pictures are displayed proving these results that, 

for the first time, demonstrate the possibility to manage live biological  sample  by 

exploiting  PR  fields.  Such  images  refer  to different samples, different grating 

periods and also diverse E. coli concentration. 

 

 

Figure 4:  (a) Drawing of bacteria arrangement on the whole crystal surface. (b) Pictures 
of aligned bacteria on different grating periods and with different magnification. All scale 
bars are 20 µm [ref. 32]. 

 

The photovoltaic evanescent field and the corresponding DEP potentials on the 

surface of Fe:LiNbO3 are well-known and characterized in literature [48–50]. We 

performed the experiments with periodic laser light intensity, I = I0 (1+m cos kz) 

where m is the modulation ratio and K the wavevector of intensity profile. For m ~  

1 the evanescent field has harmonic terms with grating vector Kn = nK (n=1,2,3...)  

and  a  good  approximation  is  to  keep  only  terms correspondent to grating 

vectors  K  and  2K  (i.e.  the  fundamental and  the  second  harmonic  terms):  Ez 
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(x;z) =  - EK e 
- Kx   cos Kz - E2K e - 2Kx  cos 2Kz,  Ex = (x;z) = EK e 

- Kx  sin Kz + E2K e - 2Kx  

sin  2Kz, where EK depends on the bulk field amplitude and E2K is the amplitude of 

the second harmonic term [51].  

Bacteria are first trapped by the DEP potential and, because of their cylindrical 

shape, the evanescent field induces a dipole moment 𝑝  on each bacterium that is 

responsible for a torque τ = 𝑝  x �⃗�  able  to  orient  them  in  the direction of the z-

component of the photovoltaic field (Fig. 2(a) and Fig. 4). By means of standard 

interferometric technique, we measure the value of the refractive index difference 

associated to the field and consequently we calculate the photovoltaic field induced 

by the electro-optic effect to be ~ 6 kV/mm [49,51]. 

Concerning the in-line experiments, Fig. 5(a) shows the percentage of bacteria 

oriented in a range 45–90° for all the grating periods analyzed with the 

corresponding standard deviations. The highest percentage alignment in these 

experimental conditions is obtained for 100 μm and 25 μm grating periods. For  

these  two cases we report in Fig. 5(b and c) the polar histograms of bacteria 

orientation  angles  in  the  range  0–90°.  For  100 μm  case  the percentage in the 

range 45–90° is 80%, from the polar histogram it is clear that a great number of 

bacteria are oriented with angle between 60° and 90° and a peak is present at 90° 

(Fig. 5(b)). For 25 μm period the percentage is 75% but a higher number of bacteria 

are completely oriented and perpendicular to the grating planes as clearly shown 

in the angular distribution of Fig. 5(c). 

After laser irradiation, we monitored the effects of the laser light on bacteria 

viability by incubating separately, irradiated and not-irradiated bacteria, in fresh 

LB medium. The growth was monitored until the log phase and, although a short 

delay was appreciable in irradiated cells at 2 h, no differences were observed at 

later time points (4–6 h) between the two samples. These results demonstrate that 

laser irradiation did not have deleterious effects onto the bacteria viability. 

The behaviour of bacteria cells when exposed to PR field is very different from that 

experienced from the HeLa cells investigated in Ref. [52]. We believe that the 

differences in terms of biological species are a crucial point. 

Bacteria are prokaryote cells with cell membrane and cell wall that feel the 

environment and move in the surrounding bath by swimming. 
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Figure 5:  (a) Histograms representation of percentage E. coli alignment in case of in line 
mode. (b)–(c) rose-wind plots for the case of 100 mm and 25 mm, respectively [ref. 32]. 

 

 

Cells employed in Ref. [52] are tumoral cell line, they are eukaryotic cell with only 

cell membrane and they adhere to the surface to move and to reproduce. Bacteria 

present a simpler structure and are in general more resistant respect to adherent 

cells. In addition, the experimental conditions are different because in the present 

experiments we illuminate the sample for 2 min while in Ref. [52] the illumination 

is kept on the sample for 30 min. Moreover in Ref. [52] the light used to illuminate 

the sample is no-structured and the crystal is thicker with higher dopant level. Our 

results prove that PR effect can interact in different way with the biological world 

respect to the results presented in Ref. [52]. Depending on the experimental 

parameters, PR fields can be tailored for applications ranging from therapeutic 

purposes as in Ref. [52] to controlled patterning as in the present work. 

The in-line tests need the sample placed in the optical setup that is quite bulky and 

not easily transportable. It would be desirable having  a  compact  and  efficient  

system  that  could  be  used  for example in microfluidic devices out of the 

laboratory. For this reason we tested the feasibility of the E. coli alignment on Fe: 

LiNbO3 crystals in a different experimental condition, i.e. the off line mode 
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described before. The same procedures were used for image recording and 

processing and the results are reported in Fig. 6. Also in the off line mode the higher 

alignment effect was revealed in case of 25 μm and 100 μm gratings. 

The percentage of alignment is higher for the experiment performed by in-line mode 

for all the cases analyzed. We hypothesize that the direct laser writing slightly 

induce a buffer evaporation; thus enhancing the bacteria probability to be close to 

the surface and, accordingly, to be trapped. In other words, in the in-line mode the 

laser affects bacteria mobility, decreasing their capacity to move respect to the off-

line mode; thus inducing a small difference in E. coli orientations. Concerning the 

higher bacteria alignment at 25 μm and 100 μm gratings in both the experimental 

conditions, we believe this result depends on various parameters as the relative 

length between the bacterium that feels the PV field and the geometry of the field 

itself, i.e. the grating period. Moreover, we suppose that it also depends on the 

fluctuation in the bacteria concentration that could occur. Further experiments 

will be conducted devoted to better understand the influence of these parameters.  

 

 

Figure 6:  Histograms representation of percentage E. coli alignment in case of off line 
mode [ref. 32].  
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Figure 7: Cell orientation on liNbO3 substrate after 24h. a) Fibroblasts grown on patterned 
(25micron grids) crystal oriented with an angle comprised between 45-90° b) Higher 
magnification of cells grown on patterned (25 micron grids) crystal. c-d) Fibroblasts grown 
on patterned (50 micron grids) crystal oriented with an angle comprised between 45-90° 
e-f) The graphs report the orientation angles of cells grown on patterned crystal (e) 25 
micron grids, (f) 50 micron grids. The mean values for each substrate was evaluated over 
three biological replicates. 

 

A similar study was designed to investigate the cellular responses occurring when 

fibroblasts come in contact with new materials [53-55] and to demonstrate the 
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usefulness of these substrates for cell biology studies. Cells seeded on patterned 

crystals showed a preferential orientation towards the pattern as 50% of them 

dispose with an angle comprised between 80-90° (Figure 7), compared to the 

randomly oriented cells grown on non-patterned crystals. The remaining 50% 

shows anyway a preferentiality in disposing with an angle higher than 45°.  

In the near future, DHM is going to be used as a time-lapse imaging tool for the 

characterization of dynamic processes.  

In  this  work,  we  prove  a  method  to  trap  and  orient  E.  coli bacteria and 

fibroblasts by light exposure onto a functionalized ferroelectric substrate. A 

systematic study to define the suitable conditions of the electric field gradients has 

been accomplished. The higher alignment percentage for bacteria is reached when 

25 μm, and 100 μm linear gratings are inscribed inside the crystal volume through 

the PR effect. The related surface potentials are suitable for bacteria alignment in 

case of direct laser irradiation and, as well as, in case of off line trapping. The 

method proposed allows manipulating bacteria at large scale (few square 

centimetres area), without labeling them and by a single step process completely 

driven by laser light modulation.  

Moreover, the PR induced DEP is free from electrodes; thus avoiding multiple 

fabrication steps and integration of different materials. We believe that this 

technique could have a broad field of potential applications concerning the 

controlled patterning of bio-samples to study growth dynamics, proliferation and 

cell–cell interaction mediated by well-organized geometries. Bacteria 

immobilization could be useful for understanding the early stage formation of 

biofilms and helping to improve future treatment or avoiding their growth. 

Furthermore, these crystal properties could open the way for their integration in 

opto-fluidic system, for example, to purify drinking water or simply for detecting 

toxicants and environmental agents. Finally, a well-known feature of the PR fields 

is their writing/ erasing capability that allows defining a kind of DEP reconfigurable 

electrodes [29]. Possible future applications in biology could exploit such capability 

to generate and control spatial structure of cells whose relative position can be 

modified and re-arranged just changing light intensities. 
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       Conclusions and future prospective 

 

         In conclusion, this innovative optofluidic platform allows the study of 

hundreds of cells and supplies as output their complete morphologic classification 

in 3D via the self-rotation of cells in microfluidic channels, in case of red blood cells 

and allows the analysis of cell behavior on crystal niobate.  

The technique of R-TPM is simple, quick, reliable and versatile, it has been proved 

for cells with different shapes and characteristics, such as RBC as reported in 

chapter 3, but can be use also for others bio-samples such as Diatoms Algae (DA), 

as shown in Figure1. A route for full screening at the single-cell level can be a quite 

challenging achievement by means of the proposed approach.  

Applications are foreseen, for example, in the isolation and characterization of 

"foreign" cancer cells in the blood stream and in revealing specific oceanic 

contaminants that threaten the ecosystem via the analysis of damaged 

chloroplasts.  

Nevertheless, one of the future prospective of this work could be the possibility to 

develop a portable and quantitative bio-microfluidic device, including a compact 

detector (e.g., a camera phone), capable of acquiring images and transmitting 

digital information over existing communications channels, provides an integrated 

approach for detecting and diagnosing diseases in locations that are difficult or 

impractical to access by trained physicians or paramedics. Indeed, experts located 

remotely from the site where the test is performed can interpret the results of the 

assays and diagnose disease in real time, without traveling to remote and 

potentially dangerous locations in case of the analysis of red blood cells.  

A LoC technology is nowadays the most appropriate site to recreate the cellular 

environment and mimic all the external cues and forces affecting the cell behaviour, 

taking advantage of the micro-fluidic flow control, as well as the miniaturization of 

components like valves, pumps, mixers and sorters. These features make a LoC 

extremely promising as a novel device to embed diagnostics tools to be used at the 

point-of-care, allowing first screenings or accurate analysis in absence of adequate 

facilities and with untrained personnel, e.g., in developing countries and low-

resource settings.  
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Figure 1: R-TPM for DA. (a-d) Skeletonema marinoi and (e-h) Thalassiosira rotula. (a,e) 
Two mirror QPMs used to define the rotating angle retrieval rule. (b,f) Calculated 
tomograms, where the central slices are shown. Inset figures in the green boxes show the 
whole tomogram shapes, highlighting the volume occupied by diatoms given by the 
parameter V. (c,g) are obtained from (b,f), respectively, by applying a RI threshold to extract 
the 3D distribution of the chloroplasts and their volume (Vchl). (d,h) Fluorescence images 
used for comparison. Inset figures in the red boxes show the typical bright-field microscope 
images of the two diatoms [ref. 3, chapter 3]. 
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Environmental monitoring and the emerging field of telemedicine can also benefit 

from the spread of the LoC technology.  

In a wider sense, these technologies permit communications between patients and 

medical staff with both convenience and fidelity, as well as the transmission of 

medical, imaging and health informatics data from one site to another. For these 

reasons, they represent a fascinating topic, with potential applications in many 

fields, such as for example the tele-diagnosis (Figure2). In the context of the latest 

imaging techniques, BLIPS technology – the paper-thin photo microscopy lens for 

all devices – represents a smart system model that could be integrated on a lab-on-

chip device. BLIPS is an ultra-portable and very affordable set of mini lenses, which 

turn the mobile devices into photo digital microscopes in seconds. In this 

framework, imaging functionalities play a crucial role in gaining a deeper 

understanding of processes occurring inside the chip, and the study of biological 

samples in micro-fluidic channels requires some issues to be addressed. In the first 

place, label-free techniques are highly demanded, in order to avoid sample 

pretreatments and prevent the risk of altering the natural behaviour due to 

markers. In the second place, the quantitative information is required from the 

samples under analysis, e.g., thickness spatial distribution, morphologically 

relevant parameters, biovolume, refractive index spatial composition and dry mass, 

to name a few. In the third place, the integration of imaging functionalities on-

board LoC devices is a highly pursued goal for point-of-care diagnostics, as the 

chip portability makes unnecessary the use of bulky diagnostics instruments. 

Besides, in order to collect statistically relevant data, high-throughput imaging 

systems, able to analyze a huge number of samples in small periods of time, rapidly 

extracting information, are highly in demand.  These topics have recently attracted 

growing the interest of many research groups 

working in heterogeneous disciplines, ranging from biology and medicine to optics, 

materials and biomedical engineering, physics, signal processing and information 

engineering, and the emerging field of bio-informatics. It has become more and 

more apparent that only a transdisciplinary approach can be successful in 

matching the above-mentioned requirements and make LoC diagnostics a 

widespread tool, used worldwide by the general public.  
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Other demanding applications can be addressed, for example in the isolation and 

characterization of circulating tumor cells in the blood stream, for leukemia cells 

detection and for bacteria and diatoms identification for water monitoring studies. 

 

 

 

 
 

 
Figure 2: General strategy for performing inexpensive bioassays in remote locations and 
for exchanging the results of the tests with offsite technicians 
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A Appendix  

 

A.1 Cell culture  

        

A.1.1 Blood samples and isolation of red blood cells 

 

          Human blood (~ 4.0 ml) was collected in a 7.2-mg 

Ethylenediaminetetraacetic acid K2 (EDTA) vacutainer tube (BD, Plymouth, PL6 

7BP, UK) from a healthy volunteer.  

Complete and diluted blood is shown in figure1.  

Blood was centrifuged at room temperature at 2500 rpm for 15 minutes to separate 

RBCs at the bottom of the sterile centrifugation tube from the plasma and buffy 

coat. After centrifugation, the plasma and buffy coat were discarded, and the RBC 

pellet (~ 1.5 ml) was washed with a saline solution of 0.90% w/v of Sodium chloride 

(NaCl) in sterile water in a 1:1 ratio and re-centrifuged at room temperature at 2500 

rpm for 10 minutes. After the second centrifugation, the supernatant fraction was 

removed, and an aliquot of isolated RBCs (~ 100 μl) was diluted in 10 ml of the 

saline solution of 0.90% w/v of Sodium chloride (NaCl) in sterile water with a final 

osmolarity of 308 mOsm/L to maintain the osmotic pressure of the RBCs. Isolated 

RBCs are shown in figure 2. 

 

  

Figure1: Complete and diluted human blood                                                          
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For the experiments, a final volume of diluted RBCs (~100 μl) was used. Altered 

RBC shapes were obtained by changing the buffer osmolarity, and a buffer of 205 

and 410 mOsm/L was used to perform experiments under hypotonic and 

hypertonic conditions, respectively.  

The same procedure was adopted for sick samples. The first was from a patient 

affected with iron refractory iron deficiency anemia (IRIDA) caused by mutations in 

the TMPRSS6 gene (L63Pfs13-W590R in compound heterozygosity) and the second 

sample from a patient affected with alpha-thalassemia caused by a heterozygous 

deletional event of both in-cis HBA1 genes (--CAMPANIA in heterozygosity). 

 

  

Figure 2: Isolated RBC 

 

A.1.2 Cell line model: Murine embryonic fibroblast cell (NIH 3T3) 

 

           NIH 3T3 fibroblasts are cells from Mus musculus, mouse organism, they are 

harvested from embryo tissue.   
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NIH cells were grown in Dulbecco’s Modified Eagle Medium supplemented with 10% 

Fetal Bovine Serum (both Life Technologies, Carlsbad, CA, USA), 2 mM L-glutamine 

(Sigma, St. Louis, MO), and 100 U/ml penicillin 100 μg/ml streptomycin at 37 °C 

at 5% CO2. They show a typical fibroblast morphology and are adherent cells. 

Adherent cell lines grow in vitro until they have covered the surface area available 

or the medium is depleted of nutrients. At this point the cell lines should be sub 

cultured in order to prevent the culture dying. To maintain the same conditions 

during the experiments, cells were counted and put in a 35 mm Willco-dish 

(Willcowells BV, Amsterdam, The Netherlands) in a temperature and humidity 

controlled environment (using a micro-incubator by Bioscience Tools, San Diego, 

CA, USA).   

 

A.1.3 Bacteria culture    

 

            E. coli DH5-alpha was plated and incubated on agar plates. The day before 

the beginning of experiment, a single bacterial colony was picked up and cultured 

in Luria-Bertani (LB) broth medium (10 g/l NaCl, 10 g/l tryptone, 5 g/l yeast 

extract) at 37 °C in a shaker incubator for 16–18 h to achieve saturation conditions. 

A 1:5 volumetric dilution of cell culture was then grown in LB until reaching the 

log phase corresponding to a cell concentration of 4 x 108 cells/ml, verified by OD 

measurements at 600 nm. Cells were then centrifuged at 5000 rpm for 10 min in 

order to separate the cells from the medium and, then re-suspended in fresh LB 

medium to reach a concentration of 2 x 107ml. 
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A.2 Methods and cell culture protocols  

 

A.2.1 Trypsinization protocol of adherent cells  

 

           In order to remove adherent cells from a culture surface, treatment with 
trypsin was adopted.  

 

1. Remove medium from culture vessel by aspiration and wash the monolayer 

with Ca+2 and Mg+2 - free salt solution to remove all traces of serum. Remove 

salt solution by aspiration. 

2. Dispense enough trypsin or trypsin-EDTA solution into culture vessel to 

completely cover the monolayer of cells and place in 37 °C incubator for 

approximately 2 minutes. 

3. Remove the trypsin or trypsin-EDTA solution by aspiration and return closed 

culture vessel to incubator. The coated cells are allowed to incubate until 

cells detach from the surface. Progress can be checked by examination with 

an inverted microscope. The time required to remove cells from the culture 

surface is dependent on cell type, population density, serum concentration 

in the growth medium, potency of trypsin and time since last subculture. 

NIH cells need approximately 5 minutes to detach from plate. Trypsin causes 

cellular damage and time of exposure should be kept to a minimum. 

4. When trypsinization process is complete the cells will be in suspension and 

appear rounded. 

5. It is advisable to add serum or medium containing serum to the cell 

suspension as soon as possible to inhibit further tryptic activity which may 

damage cells.  

6. Cells can be resuspended by gently pipetting the cell suspension to break up 

the clumps. Further dilution can be made, if required, for cell counts and/or 

subculturing. 
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A.2.2 Counting cells by Burker chamber hemocytometer 

  

            Counting chambers serve to determine the number of particles per volume 

unit of a liquid. The particles (e.g., cells, leucocytes, erythrocytes, thrombocytes, 

bacteria, fungus spores, pollen) are visually counted under an inverted microscope. 

The microscope-slide-sized base plate is made of special optical glass.  

Milled grooves divide the surface into two large fields (outside) and three narrow 

ridges (inside). The two outer fields are for inscriptions, whereas the ridges are 

ground and polished. The central ridge (= chamber bottom) has two engraved sets 

of rulings for counting, separated by a groove.  

Generally the chamber bottom on the central ridge is 0.1 mm lower (= chamber 

depth) than the two outer ridges. Hence, when a cover glass is placed on top, there 

is a gap of 0.1 mm between the glass and the central ridge. The lateral boundaries 

of the volume to be counted are formed by the imaginary planes projected vertically 

onto the boundary lines of the ruling.  

Burker chamber was used for cell counting. The ruling shows 9 large squares of 1 

mm2 each (Fig.3 A). These are used for counting leucocytes. Each large square is 

subdivided by double lines (0.05 mm apart) into 16 group squares with 0.2 mm 

sides (Fig.3 B).  

The double lines form mini squares with an area of 0.0025 mm2. Al least three 

squares delimited by triple lines are counted and each square corresponds to 1/10 

mm3. An arithmetic average of counted cells is carried out. Then, the average is 

multiplies for dilution factor equal to 10.000.  
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A              B   

Figure 3: A) Burker chamber. B) Large central square  

Equation for particle determination: 

Number of cells/ml volume: (average of three squares) * 10000                   

 

 

A.2.3 Cryopreservation/thawing procedure of mammalian cells  

 

1. Detach cells from the substrate with dissociation agents.  Detach as gently 

as possible to minimize damage to the cells. 

2. Resuspend the detached cells in a complete growth medium and establish 

the viable cell count. 

3. Centrifuge at ~200 x g for 5 min to pellet cells.  Using a pipette, withdraw the 

supernate down to the smallest volume without disturbing the cells. 

4. Resuspend cells in freezing medium (composed of 20 % fetal bovine serum 

and 80% complete medium) to a concentration of 5 x 106 to 1 x 107 cells/ml. 

5. Aliquot into cryogenic storage vials.  Place vials on wet ice or in a 4°C 

refrigerator, and start the freezing procedure within 5 min. 

6. Cells are frozen slowly at 1°C /min.  This can be done by programmable 

coolers or by placing vials in an insulated box placed in a -70°C to -90°C 

freezer, then transferring to liquid nitrogen storage. 
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For thawing procedure: 

The following protocol describes a general procedure for thawing cryopreserved 

cells. 

1. Remove the cryovial containing the frozen cells from liquid nitrogen storage 

and immediately place it into a 37°C water bath. 

2. Quickly thaw the cells (< 1 minute) by gently swirling the vial in the 37°C water 

bath until there is just a small bit of ice left in the vial. 

3. Transfer the vial it into a laminar flow hood.  Before opening, wipe the outside 

of the vial with 70% ethanol. 

4. Transfer the desired amount of pre-warmed complete growth medium 

appropriate for your cell line dropwise into the centrifuge tube containing the 

thawed cells. 

5. Centrifuge the cell suspension at approximately 200 × g for 5–10 minutes.  The 

actual centrifugation speed and duration varies depending on the cell type. 

6. After the centrifugation, check the clarity of supernatant and visibility of a 

complete pellet. Aseptically decant the supernatant without disturbing the cell 

pellet. 

7. Gently resuspend the cells in complete growth medium, and transfer them into 

the appropriate culture vessel and into the recommended culture environment. 

 

 

A.2.4 Cell viability assay: propidium iodide and Hoechst 33342 
staining 

 

            The cell death induced by IE (well decribed in chapter 3, paragraph 3.3.1) 

was compared to a standard chemical assay, in order to validate the results.  

Figure 4 shows the typical microscope images of adherent cells under IE (first line) 

and under SE (second line), observed under standard differential interference 

contrast (DIC) and fluorescence contrast. The appearance of necrotic cells was 

monitored using Hoechst 33342 and propidium iodide (PI) double- staining assay. 

The cells were stained with 5 μg/ ml Hoechst 33342 for 10 min in the dark at 37 
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°C. Next, PI was added to the culture medium (final concentration of 50 μg/ml) and 

incubated for 20 min in incubator. Stained nuclear/DNA morphology of cells was 

analysed by a fluorescence microscope using a magnification objective of 10× and 

40×. 

 

   

 

Figure 4: Optical microscope images of adherent cells subjected to IE (first line) and SE 
(second line), under DIC and fluorescence contrast. The blue colour refers to Hoechst 
labelling and the red colour to propidium iodide labelling. Scale bar 50 μm. 

 

 

The cells were classified as viable (spherical blue fluorescence of nucleus), and 

necrotic (red fluorescence of large nucleus with spherical vesicles stained by PI). 

All experiments were performed in triplicate.  

The chemical assay confirms the necrotic nature of the cells subjected to IE and 

the viability of those under SE. Figure 5 shows the microscope large view image of 

the cell culture sample investigated in Figure 4, just after light-induced necrosis. 

The highlighted region corresponds to the surface exposed to the blue laser during 

IE. Figure 5(a) shows the bright contrast image and Figure 5(b) the corresponding 
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fluorescence image after PI labelling. The most of the inner cells exhibited the round 

shape typical of dead cells, while the outer ones appeared clearly adhered to the 

substrate, thus confirming that the continuous exposure to blue light is toxic and 

that the blue light irradiation is the only responsible of cell death. In fact, the 

accurate control of temperature and pH in the micro-incubator allowed us to 

exclude any thermal or chemical side effect. During irradiation, photons are 

transferred from light to cell molecules. For wavelengths at the edge of the visible 

spectrum, as is the case of blue light, the molecules tend to gain both rotational 

and vibrational energy. Therefore the mean kinetic energy increases and induces 

simultaneously photothermal, photomechanical and photochemical damages.  

 

 

Figure 5: Large view image of the cell culture dish investigated in Figure 8, under (a) bright 
and (b) fluorescence contrast. Scale bar 500 μm. 

 

 

A.2.5 Gene transfection protocol for actin filaments visualization  

 

            In order to study cell mechanics (well described in chapter 4) lipofectamine 

LTX reagent (by Life Technologies, lot 1468812) was used to transfect the 

pCMVLifeAct-TagRFP (ibidi) mammalian expression vector in NIH/3T3 cells in 

order to visualize filamentous actin (F-actin) in living cells as shown in Figure 6. 
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After 15 min of incubation with 0.75 μg of pDNA in lipoplexes, cells were returned 

to culture with complete medium and grown at 37 °C and 5% CO2  

 

 

Figure 6. Gene transfection. Actin filaments in adherent NIH3T3 cells under a 
conventional fluorescence microscope. The image was acquired with 20x objective lens.  

 

 

 

A.2.6 Surface treatment of cell culture dish 

 

           In order to avoid cell adhesion onto plate surface, that was necessary for 

the experiments in suspension (described in detail in chapter 4, paragraph 4.2.1) 

previously, 35 mm Willco-dishes were coated treating the surface in a low pressure 

O2 plasma system (Femto System, Diener Electronic GmbH & Co. KG, Ebhausen, 

Germany) for micro-cleaning and to activate their surfaces; they were then spin-
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coated with 50 μl of Fluorolink PFPE S10 (Solvay Polymers Ltd, Warrington, UK) at 

10000 rpm for 2 min and incubated under vacuum for 30 min. After incubation, 

Fluorolink was de-activated adding de-ionized water and Petri dishes were rinsed 

with Ethanol 100% (Delchimica Scientific Glassware, Naples, Italy) in order to 

discard Fluorolink in excess, then they were sterilized with a UV lamp treatment 

for 30 min. 

 

A.2.7 Statistical analysis of cell polarization 

 

           The approach described in this manuscript in chapter 5, paragraph 5.4 for 

cell orientation analysis is divided into two main processes. The first process 

provides an image collection for each sample. A number of 50 cells (three biological 

replicates) were analysed per 25µm grid and 50µm grid.  

The cell number was calculated from a set of 20 images, acquired by an inverted 

microscope in bright field (Axio Zeiss Vert). The second process employs the angle 

tool of ImageJ, a public domain image analysis software by the National Institute 

of Health Once loading a cell-crystal image into ImageJ, the angle tool measures 

the angle value, 45°-90° angle range, between the major axis of the cell and the 

pattern lines. Afterwards the results of the angle values from the “results window” 

can be directly copied to Excel spreadsheet for statistical analysis.  

 

 

A.2.8 Immunostaining assay 

 

           For fluorescence staining, cells were fixed with 4% paraformaldehyde for 15 

min. at room temperature, permeabilized with 0.1% Triton X-100 and labelled with 

Alexa fluor 488 phalloidin (Sigma) for revealing the actin filaments. The nuclei were 

stained with blue fluorescent Hoechst 33342 dye, trihydrochloride trihydrate 

(Molecular Probes Invitrogen). The actin pattern and nuclei distribution of the NIH 

on the four samples are shown in Figure 7. These images were obtained by 

immunofluorescence on fixed Fibroblast 24 h after plating them on the different 

substrates. Confocal experiment shows a strong difference in the morphology of 
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the actin filament between the cells grown on control samples and on patterned 

samples. On the 25µm and 50 µm gratings cells appear polarized with an angle 

between 90° and 45° respect to the grid, they showed a smaller size and an irregular 

formation of actin stress fibres; also the nuclei seem to be aligned in the same 

direction, indicating a possible difference also in the cell differentiation and a 

change even in a normal cell physiology. On the 50µm grating the cells are bigger 

than 25 µm grating probably because of the wideness of the grid and a less narrow 

confinement.  

 

 

Figure 7: Morphology of nuclei and actin filaments. Typical confocal images of cells seeded 
onto (a) a crystal sample patterned at 25 µm period, (b) a crystal sample patterned at 50 
µm period, (c) an un-patterned crystal and (d) a glass slide. The cells were stained by Alexa 
fluor 488 phalloidin and blue fluorescent Hoechst 33342 dye, trihydrochloride trihydrate 
(Molecular Probes Invitrogen) for visualizing nuclei and actin filaments.  
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On the other hand cells plated onto un-patterned crystal and normal glass appear 

rounder than the others with a well-organized actin structure and nuclei and a 
normal polymerization of actin stress fibers can be appreciate (Figure 7 (c-d)). As 

shown in the figure elliptical nuclei polarization follow actin orientation. In c and d 
(control samples), keep the typical round shape of nuclei and are not polarized in 
the actin filaments direction, while actin filaments are more structured then actin 

on 25 and 50 µm  

 

A.2.9 Biocompatibility assay  

 

           The biocompatibility of crystals Lithium Niobate was tested by using a 

conventional live/dead viability/cytotoxicity assay kit (Molecular Probes 

Invitrogen).  

The cells were seeded at a density of 1 × 105 cells on four kinds of substrates, 25, 

50 µm, un-patterned crystal and glass slide, which was used as a control 

(Delchimica Scientific Glassware), and were incubated in Petri dishes for 24h. After 

incubation 1 mL of the combined live/dead cell staining solution (2 μM calcein AM 

and 4 μM EthD-1 in D-PBS) was added to the dish and incubated for 45 min at 

room temperature. The kit contains calcein-AM, which stains live cells as green, 

and the ethidium homodimer, which stains the dead cells as red. Samples were 

then observed under a conventional fluorescence upright microscope (Axio Imager, 

Carl Zeiss). 
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Figure 8: Biocompatibility Assay by live/dead viability staining. Typical fluorescence 
images of the cells seeded on (a) 25µm grids, (b) 50µm grids, (c) un-patterned crystal and 
(d) glass slide, treated by the live/dead assay after 24 h of incubation. Live cells are stained 
in green by Calcein-AM; dead cells are stained in red by Ethidium Homodimer. No evidence 
of red cells are on any of four substrates. Scale bars 50 µm. 
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