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Abstract

The Cisco VNI Complete Forecast Highlights clearly states that the Inter-
net traffic is growing in three different directions, Volume, Velocity, and
Variety, bringing computer network into the big data era.

At the same time, sophisticated network attacks are growing exponen-
tially. Such growth making the existing signature-based security tools, like
firewall and traditional intrusion detection systems, ineffective against new
kind of attacks or variations of known attacks.

In this dissertation, we propose an unsupervised method for network
anomaly detection. This method is able to detect unknown and new
malicious activities in high-speed network traffic.

Our method uses an innovative detection algorithm able to identify the
hosts responsible for anomalous flows by using a new statistical feature
related to traffic flow. This feature is defined as the ratio between the
number of flows generated by a host and the number of flows it receives.

We evaluate our method with real backbone traffic traces from the
Measurement and Analysis on the WIDE Internet (MAWI) archive. Fur-
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thermore, we compare the results of our method with MAWILab archive, a
database that assists researchers to evaluate their traffic anomaly detection
methods.

The results point out that our method achieves an average positive
prediction rate (i.e. Precision) of 90% outperforming the four MAWILab
detection methods in terms of false negative rate.

We deploy three cluster configurations to evaluate the horizontal and
vertical scalability performance of the proposed architecture and our
method shows outstanding performance in terms of response time.
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Chapter 1
Introduction

This chapter gives an overall description of this dissertation. It is divided
into four sections. First of all, Section 1.1 describes the context in which
the thesis has been developed. Section 1.2 presents the motivation. Then,
Section 1.3 shows the primary objectives and the original contribution.
Finally, Section 1.4 outlines the remaining of the thesis chapters.

1.1 Background

Nowadays, more and more services are available on the Internet, and their
use becomes widely pervasive. Thus most of such services are heavily
dependent on a network access and their use is no longer confined to IT
experts. People use chat applications and social media to communicate
with each other, e-banking services to manage their money and watch
movies on video streaming services. It has been reported that Video
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streaming is responsible for about the 70% of Internet traffic peak in North
American fixed access networks, and this figure is expected to reach 80%
by 2020 [17].

Apart from the ascertained foreseen increase of data Volume for the
Internet traffic also Velocity and Variety of data will increase in the next
few years.

This trend is driven mainly by two factors. In the first place, the steady
growth of devices connected to the Internet. In fact, a large variety of
devices, such as mobile phones, personal computers, IP cameras, wireless
measurement sensors and more in general Internet of Things [46, 32],
leads to the creation of a significant data volume in a variety of data types.
Second, the improvements in the communication technology allowed the
spreading of the current high-speed networks with traffic speed never seen
before. Since Volume, Variety, and Velocity are the 3Vs characteristics
that define the Big Data [53], thus the network traffic monitoring can be
considered as a Big Data problem [28]. In the meanwhile, the number
of attacks against computer networks is increasing at the same notable
rate. In particular, the homogenization of mobile operating systems, where
Android take the 87% of market share [39], combined with the increase
in computing performance of smartphone devices and the spreading of
4G communication technology [67], make the smartphones a desirable
target for attackers. In this scenario, measuring traffic characteristics in
a more effective way is crucial for different network activities such as
network planning, traffic management and network security. A primitive
way to make the network less vulnerable from potential attacks is the
use of a firewall. A firewall is often deployed between the trusted local
network and untrusted networks in order to provides a filter for incoming
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and outgoing traffic. It stops unauthorized access through the use of simple
rules specified by the network administrator. A firewall can provide basic
preemptive protection for the systems but it can not detect intrusion or more
sophisticated attacks. For this purpose, network administrators need more
advanced tools able to identify potential threats to the network. Intrusion
Detection System (IDS) is a software (or hardware) alarm-system that
looks for intruders who have overcome the measures previously adopted.
Furthermore, due to the rapid evolution of attack techniques it is crucial to
use detection methods which are effective against both new kinds of attack
and variations of known ones. A typical signature-based IDS may not
be sufficient to detect these kinds of attack because they need a constant
updating of new accurate attack signature. Anomaly-based IDS (ADS) are
designed to overcome this issue. In fact, ADSs are able to detect such kind
of attacks, but even if attacks are identified, existing methods are usually
too slow in terms of response time.

In this dissertation, we propose a network monitoring architecture for
anomaly detection (AD). We are capable to achieve real-time like response
time by introducing an innovative AD method which exploits Big Data
Analytics framework. Finally, we provide a performance and scalability
analysis of this architecture in the case it is deployed on an in-house cluster
or in the cloud. Moreover, we show challenges and open issues in anomaly
detection, and the existing network anomaly detection methods, including
their advantages and disadvantages, are discussed.
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1.2 Motivation

Anomaly detection is a critical problem common to many research domain.
An anomaly can be defined as a pattern in the data that does not conform to
the expected behavior, and an Anomaly Detection System (ADS) analyzes
the input dataset with the aim of detecting these deviations from the
standard pattern of behavior. In the computer network, anomalies are
unusual and significant changes in network traffic, and the development of
ADSs in high-speed networks come with many challenges to face. The
main of them are the lacks of ground truth (Section 3.5), the high false
alarm rates, the route cause identification, a significant amount of data
to be processed, the time-spending computation, and the needed of a
real-time response. With the aim to cope these challenges in mind, this
dissertation proposes a flow-based anomaly detection system using Big
Data Analytics. As seen in Section 1.1, systems for monitoring high-
speed network traffic involve a huge amount data to be observed and its
analysis can be prohibitive. Analyze traffic data at packet-level can be
not only time-consuming but also superfluous. In order to reduce the
volume of data to be analyzed, our proposed architecture analyzes the
traffic data at flows-level rather than at the packet-level. Beside the 5-tuple
(i.e. source and destination IP addresses, source and destination port,
and transport protocol) that identify a flow, for each of them, we record
for each flow record a set of statistical features, namely the number of
bytes sent, the number of packets, and the duration. For our anomaly
detection algorithm. We preferred to use an unsupervised method because
supervised approaches assume the existence of a training set (i.e. ground
truth). A ground truth dataset is composed by a number of labeled samples,
where the labels represent information about at which class (such as
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normal or anomaly activity) the entry belongs. Due to the lack of high-
quality labeled traffic, we have chosen a statistical-based approach rather
than signatures or patterns-based methods. In fact, this approach can
operate without any previous knowledge about the traffic. From Telco
Operator point of view, an anomaly justifies a more in-depth analysis
only if the amount of traffic involved can be deleterious to the proper
operation of its network infrastructure. Accordingly, we have focused
our efforts towards the identification of volume anomalies which involve
huge amounts of NetFlow in a short time. Finally, to realize a system
able to detect anomalies in real-time, a scalable and efficient solution is
still needed, and traditional systems for data management and analysis are
ineffective for the purpose. On the other hand, we exploit modern big data
analytics (BDA) tools (i.e. Hadoop, Apache Spark, and Kafka) that are
able to handle these time-spending tasks in a more efficient way compared
to traditional approaches.

1.3 Thesis Contribution

In this thesis, we propose a system to deal volumetric anomalies (such as
DoS, DDoS or port scan), in a Tera-bps networks. Due to the data size
and velocity, we analyze traffic flows instead of the single packets passing
through the network to face the amount of data expected, and exploit a
Big Data Analytics framework (i.e. Apache Spark) to provide a scalable
implementation of the anomaly detector.

Summarizing, the contributions of this thesis are as follows:
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• The first contribution is the introduction of a volume-based algorithm
for network anomaly detection. This algorithm analyzes all the IP
flows traversing the monitored network instead of inspecting the
payload of each packet. The algorithm makes use of the ratio of the
number of flows sent and the number of flows received by every host
on the monitored network identifying which is responsible for the
anomalies. This method does not require prior knowledge, such as
a training dataset or a database of attacks behaviors. We create the
input dataset transforming traces from MAWI archive into network
flow traces. To evaluate the accuracy of our method we use the
MAWILab ground truth, a labeled dataset of identified anomalies
present in the MAWI archive traces.

• The second contribution is the development of an architecture that
uses algorithm mentioned above to detect the anomalies in real
backbone traces. In particular, this architecture has three targets,
collect the flows coming from the probes (i.e. flow exporters) de-
ployed around the monitored network, process the flows collected
and finally analyze the flows to detect anomalies in the traffic. This
architecture exploits Apache Spark, a Big Data Analytics framework,
to improve the processing performance.

• The third contribution is the deployment of the anomaly detection
architecture on the cloud. We implement a testbed on AWS in order
to evaluate how our method performs when scaling up and out.
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1.4 Thesis Organization

The reminder of this thesis is organized as follows:

• Chapter 2 (Network Traffic Monitoring),presents an overview of
network traffic measurements techniques. Furthermore, a descrip-
tion of active and passive measurements and their applications is
provided.

• Chapter 3 (Intrusion Detection) presents intrusion detection con-
cepts and reviews related work in the area of the network anomaly
detection. Firstly, a general overview of IDSs taxonomy is provided.
Then, we introduce the definition of attack and anomaly, and finally,
a description of the most spread network anomalies is provided.

• Chapter 4 (Big Data Analytics and Network Monitoring) provides
an introduction to the background of Big Data in general. Then
insights on some application of Big Data Analytics technologies to
network management, and network architecture solutions for Big
Data processing applications like Hadoop. Finally, a brief overview
on Big Data analytics tools concludes the chapter.

• In Chapter 5 (An architecture for anomaly detection) the proposed
architecture and the anomaly detection method are presented.

• Chapter 6 (Evaluation and Results) describes the tests performed
and it presents the results of these tests. an evaluation

• Finally, Chapter 7 concludes this dissertation by summarizing my
contributions and presents some ideas for the future work.





Chapter 2
Network Traffic Measurements

In this chapter we describe the network flow monitoring technique, as
flows were chosen as data source for the proposed method. The chapter
starts with Section 2.1 where a general description and comparison of two
main network traffic measurements methods, namely active measurement
and passive measurements is proposed. Then, in Section 2.2, some details
related to packet level as well as flow level passive measurement techniques
are presented.

Finally, in Section 2.3. the classic flow monitoring architecture with
its two main components, the flow exporter and the flow collector, are
described.
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2.1 Network Monitoring

Network monitoring aims to infer useful traffic information through the
monitoring, collection, and analysis of traffic data. In order to monitor
the network performance, two kinds of measurement can be used, namely
active and passive measurement methods [58].

2.1.1 Active Measurements

Active methods are based on the observation of a packets stream [88]
created ad hoc for the purpose of measuring service level parameters such
as the delay, the packet loss, and the jitter [75]. Active measures involve
probes that generate test traffic as similar as the traffic that would be
generated by a legitimate user of the service. Synthetic traffic is injected
into the network to simulate the use of the service by the user. This traffic
is received by one or more intermediate probes. In order to facilitate the
measurement, one or more packet fields (such as timestamps or sequence
numbers) are modified. Once an intermediate probe receives the test
traffic, it can have two behaviors. If the parameter to be estimated involves
only the outward traffic, it registers the observed results and evaluates the
performance. Otherwise, if the parameters to be evaluated also depend
on the return traffic, it reflects the traffic received to the sending probe
and allows that it evaluates the performance parameters. Traditional tools
for this type of measures are ping [Muuss], and traceroute [52]. The first
uses the ICMP (Internet Control Message Protocol) [69] echo request to
measure the network latency between two hosts (i.e. the round-trip time).
The latter is used for discovery the routing paths from the source host to the
destination target host. Usually, it is implemented by transmitting a series
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of probe packets with increasing time-to-live values. Each hop in a path
to the destination host rejects the probe packet (probe’s TTL too small)
until its time-to-live becomes large enough for the probe to be forwarded.
Each hop in a traceroute path returns an ICMP message that is used to
discover the hop and to calculate a round-trip time [70]. Active methods
are useful for making measurements in case of the traffic inspection is
impossible in a passive way. On the other hand, Active measurements
techniques, by injecting additional traffic to the network can potentially
influence the measured properties. Thus, these measurements methods
need to handle their effects on the measurements quantifying their effects
to the measures and implementing practices to minimize such effects. An
application of active measurements is presented in our paper [8]. In this
work, we proposed an active measurement methodology that allows to
acquire and analyze performance data and topology information about the
infrastructure of video hosting providers. In the following sections, as
in the rest of this dissertation, we focus on the problem of analyzing the
network traffic traces collected using passive measures.

2.1.2 Passive Measurements

In contrast to active measurements, passive measurement methods are non-
intrusive. Passive methods gather network information by observing the
traffic stream of interest without remove, change or add any packets to the
packet stream [88]. The functioning of these methods depends on the use of
one or more observation points [88] located inside the monitored network
(i.e. on switches, routers, or gateways). According to the method in which
the observation points collect the data, passive measurement techniques
can be classified into two type. The first type of passive measurement
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inspects into the packets and receives all packets that pass through the
observation points. The second technique filters the traffic of interest
and collects only the packets that matching the filter criteria in order to
limit the amount of traffic to be analyzed. Regardless the used technique,
Observation Points have to send the observed packets, the traffic statistics
or both to a collector for the furthermore analysis. In fact, this information
is used for various purposes, for example, to infer performance metrics
or unveil particular user behaviors. Thus, in network configurations with
high data rate, the traffic load generated by the communication between
Observation Points and collectors may itself influence the measurements.

2.2 Packet-Level vs. Flow-Level Measurements

The passive measurement can gather the observed packet stream at mainly
two different levels of granularity: packet-level, and flow-level.

2.2.1 Packet-Level

In the first case, the measurements are performed using the information re-
lated to the single packets. Both packet capturing and analysis phases can
be performed inside the Observation Points, or alternatively, the packets
are streamed to a remote system for the analysis phase. With the increase
of data rate, and consequently with the number of packets, packet-level
analysis and storage phases become more and more resources demanding.
To cope this problem, the measurements can be performed on a restricted
subset of packets of interest by filter or sampling algorithms. Packets
sampling can be achieved by random algorithms where the packets selec-
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tion depends on a random process and systematic algorithms which aim
at identifying a statistically significant subset of packets. IETF standard
proposals for techniques for packet sampling and filtering are presented
in [88] and [19].

2.2.2 Flow-Level

On the contrary respect to the aforementioned packet-level measurements,
flow-level measurements collect the traffic information related to a packet
aggregation, the flow. The flow represents a statistic summarization of
network traffic. According to Internet Engineering Task Force (IETF), a
flow is defined as “a set of packets or frames passing an Observation Point
in the network during a certain time interval. All packets belonging to a
particular flow have a set of common properties” [20]. Packets belonging
to a flow have in common a set of key properties. Traditionally, these keys,
also know as 5-tuple, are the source IP address, the destination IP address,
source and destination transport ports and transport protocol. Therefore,
a 5-tuple aggregates all packets belonging to a one-way communication
between two hosts on a single socket. In flow-level measurements, the
observation points are also called Flow Exporters. For every flow, the Flow
Exporter generates various traffic statistics, and it stores them in a flow
record. Usually, Flow Exporters are used only for the monitoring phase.
Subsequently, they “export” the flow records to a remote component called
Flow Collector. Flow exportation is triggered by an active or a passive
timeout. In the first case, long-lasting flow records are exported when the
timeout expires. On the other hand, in passive timeout, the flow exportation
is triggered after a defined period where no new packet is observed. As
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well as in packet-level traffic measurements, the demand for computing
resources increases hand in hand with the growth of packet rate.

2.3 Flow Monitoring

Flow monitoring architecture consists of a hierarchy of functional com-
ponents. Features and responsibility of this architecture are spread across
these components that perform their tasks subsequently and independently,
in a perspective of scalability of the system. Figure 2.1 shows a typical
architecture for flow-level network monitoring. Usually, a flow monitoring
architecture is composed by a set of Observation Points, where the packets
are captured, one or more flow exporter and metering components, and
one or more flow collectors. Finally, the captured data are available to
a monitoring or an analytics framework for on-line analysis, forensics
analysis or both.

2.3.1 Flow Exporter

The flow exporter is the component responsible for the packet observation,
the metering process, and the flow exporting process. Observation Point is
defined as a monitored network spot where the packets stream is observed.
The ports of a router, the interface of a packet forwarding device or the
line to which a probe is attached are examples of Observation Points.
Flow Exporter exploits a set of Observation Points to read the packets
from the line and extracts the header information of each packet passing
through them. The final step of packet observation phase is packet filtering
and sampling. Packet filtering and sampling algorithms aim to select a
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Fig. 2.1 Overview of a typical Flow Monitoring Architecture

certain packets subset for the following phases. The reduction of data
to be processed plays a crucial role in using less memory resource, and
to preserve the bandwidth. In flow metering stage, the flow exporter
aggregates the packets according to a set of key properties (i.e. the flow 5-
tuple), into a flow record. All active flow records are stored in a table called
flow cache. For each packet, the flow exporter compares the incoming
packet header information with the flow entries in the flow cache. If the
header information does not match with any existing flows, a new entry
is created in the flow cache table. Otherwise, the corresponding flow
entry is updated with the information of the new packet header. Flow
Exporter looks for expired flow entries in the flow cache. When flow
records expire, the flow exported forwards (i.e. exports) them to the flow
collector. Flow cache entries are considered as expired when they meet
one of the following triggering conditions:
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• The flow cache memory is full. All the flow entries in the cache
table are considered as expired.

• The flow entry exceeds its active timeout. Long-lasting flows active
for more in which a specified time are considered as expired.

• The flow entry exceeds its passive timeout. After a specified time
that no packets belonging to the flow have been observed for it, the
flow is considered as expired.

• FIN or RST flag is observed for a TCP flow. When a TCP packet
with a FIN or RST flag has been observed for a flow, the flow is
considered as expired.

An example of the fields of a Netflow Version 5 flow record is summa-
rized in Table 2.1. Cisco Netflow version 9 [18] and the IPFIX [20] are at
state of the art in exporting flow records protocols.
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Filtering and Sampling

Before the flow exporting process, filtering and sampling algorithms can
be performed to select a subset of flow records. On the one hand, the goal
of these phases is to reduce the resources demand of all subsequent steps,
which is the same goal of filtering and sampling at the packet level. On
the other hand, these two processes are executed on the flow entries in the
flow cache instead of the single packet. Thus, when a flow matches any
filtering or sampling criteria, either all the packets belonging the flow are
considered matching or none.

2.3.2 Flow Collector

The Flow Collector is the component responsible for retrieving and storing
of the flow records from the Flow Exporters in the network. At this stage,
pre-processing activities are performed for helping further monitoring and
analysis process. Examples of pre-processing tasks performed by this
component are data anonymization, data compressing, data aggregation,
and filtering.



Chapter 3
Intrusion Detection System

This chapter reviews related work in the area of network anomaly detection.
The chapter starts with a general overview of the Intrusion Detection
Systems. Then, we presented more details on the anomaly detection
techniques closely related to the approach proposed in this Dissertation.
Finally, some remarks on existing datasets for evaluating network anomaly
detection systems are given.

3.1 Introduction

Intrusion detection system (IDS) is an invaluable network security tool that
aims to detect potential malicious activities against information systems,
and recording useful information for further forensic investigations. IDS
is a component in hardware or software that monitors the actions taken in
a specific environment (e.g. the host, the network or both) and analyzes
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them in order to determine if these activities are a legitimate use of the
environment or the evidence of intrusions or attacks against the system.
IDS does not prevent the attack from reaching the different resources,
either it directly analyzes the real traffic from the client to the server and
vice-versa. On the contrary, it analyzes a copy of the traffic that pass
through the network probes, such as the routers, computers, etc.

IDS can be classified according to the place where they are deployed
in Host-based, and Network-based [25], [74].

3.1.1 Host-Based IDS

Host-based IDS (HIDS) aims to disclose attacks targeted to a specific
system (also called host). HIDS running on the monitored host depends
on its architecture and operating system. It monitors and analyzes the
inbound and outbound traffic only from the host and processes high-level
information such as system calls, commands running on the host, changes
in specified files. Finally, it reports an alert when it detects a deviation
from normal behavior. An HIDS is effective in detecting intrusions that
occur within the local network (e.g. a virus installed on the monitored host
or if the attacker is on the same network as the victim).

3.1.2 Network-Based IDS

A Network-Based IDS (NIDS) aims to reveal attacks or intrusions on a
network as a whole, and its functioning is independent of the architecture
of the hosts which may be different from each other and belongs to the
monitored network. The primary purpose of these intrusions is due to
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the attacks launched by hackers outside the network who want to obtain
unauthorized access to the system for information stealing or to disrupt
the normal operation of the network. NIDS is deployed at strategic points
within the network to analyze traffic exchanged to and from all hosts within
the network itself. NIDS is effective in detecting intrusions from outside
the monitored network, such as Denial-of-Service (DoS) attacks, botnet,
and network scans.

3.2 IDS Taxonomy

According to the approach used to identify the intrusions, IDSs can be
classified in misuse-based and anomaly-based.

3.2.1 Misuse-Based IDS

A misuse-based IDSs detects intrusions by matching current pattern with a
set of events, sequences of events (rules) that are the symptom of a security
threat. These rules are contained in a predefined knowledge base of attack
behaviors. This kind of IDS has a high accuracy to detect well-known
attacks, but it is unable to recognize new or variants of known attacks.

3.2.2 Anomaly-Based IDS

On the other hand, anomaly-based IDSs do not need attack signature be-
cause they perform a comparison with the regular traffic pattern analyzing
the network traffic to find abnormal activities, without distinguishing from
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malicious and benign. The principal research challenges in ADS are the
high number of false alarms rate, the lack of publicly available labeled
datasets to be used as ground truth for network anomaly detection[2]. As
the network is constantly evolving, the model of normal behaviors may
not be accurate in the future. Even if ADSs generate a higher false alarms
rate than misuse-based IDSs, they come with the invaluable advantage of
being able to detect unknown novel attacks.

3.3 Network Activities

Network activity can be classified according to the purposes of the actors
who perform in two types, legitimate (or benign) and malevolent.

3.3.1 Benign Activities

The Benign activities are all the activity that a user or a device performs
using the network according to the intended purpose by the network
administrator. For example, a student who checks e-mail through the
network of the university campus, or a host using a DNS service to resolve
the URL of a website perform legitimate activities.

3.3.2 Malicious Activities

On the contrary, a malicious activity is an action carried out by an attacker
or a compromised host that has the sole purpose to damage of the services
and the hosts on the network. This type of activities can be designed to
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capture, destroy, modify, or access to information from a network, a host,
or users without permission. For example, a bot (i.e a compromised host),
which scans a network looking for vulnerable hosts, or a group of hosts
that makes a huge number of requests to a service with the only purpose of
making it inaccessible to the legitimate users perform malicious activities.

3.3.3 Network Attacks

An attack is defined as an intentional act by which an entity attempts to
evade security services and violate the security policy of a system [76].
According to its purpose, an attack can be classified in passive or active
attacks.

• Active attacks attempt to alter system resources or affect their opera-
tions.

• Passive Attacks try to get information on the target system without
changing its resources and subsequently exploit these data to prepare
an active attack on the target system.

An attacks Taxonomy was provided by [37].

3.4 Network Anomalies

Network anomalies could be generated either by non-malicious usage of
the network and network attacks. In the following, we describe more in
these anomalies type.
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3.4.1 Alpha flows

Alpha flows are anomalies where the traffic increases from just a few
high-volume connections between two hosts. Usually, alpha flows are
caused by the transmission of high dimension file over high-bandwidth
links.

3.4.2 Flash crowd

Flash crowd consists of an unusually large and quick demand of a specific
resource from many clients (i.e. the downloading of a security patch or the
live video streaming of a wide interest event). These kinds of events lead
the increase of both inbound and outbound traffic (i.e. requests/responses)
from the server that contains the resource.

3.4.3 Worms

Worms [71] are self-replicating malicious software that tries to infect other
hosts by exploiting specific vulnerabilities. During the propagation phase,
the infected hosts send a small number of packets to a large number of
target hosts on the Internet.

3.4.4 Network Scans

Network Scan, also known as horizontal scan, is a malicious activity that
aims to identify which hosts belonging a specific network (i.e. the target)
are alive. To perform a Network Scan, a single host sends a huge number of
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probe packets to a wide range of destination hosts (i.e. target). Depending
on its purpose, an attacker may send each probe packet to a large set
of ports or a specific one. In the first case, the attacker is interested in
discovering which of the contacted hosts are active. In the second one,
they can also detect if the target host has a specific service active on it. The
most common scans use probe packets with SYN or ACK TCP flag active,
namely SYN scans and ACK scans. Other TCP flags, such as invalid
combination for the protocol, can be used.

3.4.5 Port Scans

Port Scan, also know as vertical scan, is a malicious activity that aims
to detect all service running on a specific host. Essentially, this type of
scan involves a single host that sends the probe packets to a wide range of
ports of the target. This operation is performed to check which services
are available on the victim host. Usually, this kind of scan uses packets
as small as possible for efficiency purpose, such as UDP packet with a
one-byte payload.

3.4.6 DoS attacks

DoS attack exploits known vulnerabilities of the communication protocols
in order to incapacitate the target host ability to respond to a legitimate
request. This malicious activity is performed sending a huge number of
requests to the victim server. This overload of requests slows the server
in quickly responding to a legitimate user until the target host is unable
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to handle all requests both from attackers and legitimate users. Common
DoS attacks are TCP SYN Flooding, UDP Flooding, and ICMP Flooding.

TCP SYN Flood

TCP SYN Flood is a DOS attack that takes advantage of the vulnerabilities
of the TCP three-way handshake. SYN flood attack aims to occupy all
the memory resources of a victim by sending a disproportionate number
of TCP SYN requests with spoofed source IP. The victim responds with
SYN-ACK packets, but do not get answers because its source IP is forged.
Because of the incomplete three-way handshakes, the memory resources
of the victim host tend to run out (this depends on the operating system
used by the victim), and as a result, the victim is no longer able to accept
the legitimate connection requests for a while.

ICMP Flood

ICMP Flood is a flooding attack similar to the SYN flood. It occurs
when an attacker overloads his victim with a huge number of ICMP echo
requests with spoofed source IP. This type of attack still causes many
hardships for network administrators.

3.4.7 DDoS Attacks

Another widely used type of attack is the Distributed DoS (DDoS). It has
the same goal of what Dos, however, involves more hosts to give more
power to his attack. In DDoS attack, the attacker sends a huge number of
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packets from multiple hosts toward the victim network. Despite Dos and
DDoS threats are not next-generation kinds of attack, they are constantly
changing and tend to be a serious threat not only to the users but also for
the network infrastructure also.

3.5 Datasets

One of the primary challenge that the anomaly detection poses is the lack
of labeled ground truth for evaluating the detection methods. Ground truth
data are tough to acquire since they require a solid domain knowledge,
may have privacy issue (in the case in which real traffic traces). Last but
not less, a high-quality ground truth dataset often needs to be manually
created which is a very time-spending process. In the following, useful
methods to create a ground truth are presented. Moreover, we provide a
brief overview of the available datasets mainly used in literature.

3.5.1 Synthesized traces

One common approach to evaluate a detection method is to use a dataset
where the anomalies are synthesized. These anomalies, combined in a
background trace (i.e. normal traffic), compose the dataset utilized in the
evaluation phase. The background trace can be both real traffic or synthetic
traffic. On the one hand, this approach has the invaluable advantage of
fully controlling the anomalies inside the dataset. In fact, all the features
of each anomaly are defined, such as the duration, start time and end time,
the number of packets and their rate, the number of contacted IPs. On
the other hand, these datasets have the disadvantage that the anomalies
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synthesized refer to well-known behaviors and no recent attacks are being
available. Moreover, the distribution of normal traffic and anomalous
events is quite unrealistic. Notwithstanding these issues, these kinds of
datasets are still spreadly used by researchers in recent work for mainly
two reasons: the datasets are publicly available, and they are the unique
tool to strictly compare their detection methods with the ones existing in
the literature. In the following, we introduce the most important available
datasets of synthesized anomalies.

DARPA

The DARPA (US Defense Advanced Research Projects Agency) dataset
is one of the most widely used synthetic dataset for anomaly detection
evaluation. DARPA 1998/99 dataset was prepared and managed by MIT
Lincoln Labs[51]. Its objective was to evaluate intrusion detection systems.
The dataset provides five weeks of simulated network traffic collected from
the US Air Force-based network and the Internet. More specifically, the
traffic data from weeks one and three are anomaly free. The data from
weeks two, four, and five contain both normal and simulated attack traffic.
Attacks were injected into the synthetic background traffic, using real
attack tools in an isolated test bed. The simulated attacks consist of 177
instances of 59 different types of attacks, such as DoS, U2R, R2L, and
probe attacks.

KDD99

The KDD99 [KDD] dataset was created by processing the 1998 DARPA
Intrusion Detection System Evaluation tcpdump traces. The result is a



3.5 Datasets 29

dataset consisting of nearly five thousand records where each record repre-
sents 41 traffic features extracted from labeled connection records. The
traffic connection records are labeled, as in DARPA dataset, as normal,
DoS, R2L, URL or probe attacks. The KDD Cup dataset provides both
training and test set. The KDD set is about 20 years old and has not been
updated. Therefore, this dataset may not be a good choice for the evalua-
tion of anomaly detection methods that aim to detect current anomalies in
nowadays traffic. However, this dataset is still one of the most popular for
researchers who want to evaluate their data mining-based methods.

3.5.2 Collected Real Traffic

The other approach to evaluating and validate an anomaly detection method
consists in using datasets of traffic collected from real-world networks,
such as backbone, campus, and enterprise networks. Using real traffic leads
the advantage that anomaly detection methods are “certified” to being able
to identify real abnormal events in real network traffic. However, captured
datasets are often privacy sensitive, especially when they contain the packet
payloads and IP addresses.

CAIDA

CAIDA [CAIDA], the Center for Applied Internet Data Analysis is a
collaborative undertaking among organizations in the commercial, gov-
ernment, and research sectors aimed at promoting greater cooperation
in the engineering and maintenance of a robust, scalable global Internet
infrastructure. It collects several different types of data at geographically
and topologically diverse locations and makes this data available to the
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research community to the extent possible while preserving the privacy of
individuals and organizations who donate data or network access. CAIDA
provides several traffic datasets for different research purposes such as
anonymized backbone traffic, DDoS attack dataset or telescope datasets
used for the observation of anomalous behavior. Since these datasets
are composed of raw traffic traces that have no labels available, they are
unusable as validation set of detection methods.

Abilene

Abilene [Abilene] provides another public available real traffic dataset
that is widely used in anomaly detection research domain. The Abilene
(also knows as Internet2) is a backbone network that connects various US
campus and peering with numerous European and Asian research networks
which include 11 Point of Presence (PoP). For each Origin-Destination
Flows, with a total of 121 OD flows, this dataset provides the flow statistics
measured at five minutes intervals. These statistics are available in Matlab
files.

MAWI

The MAWI [16] dataset is a freely accessible real backbone network traffic
dataset. The main advantage of this dataset compared to the previous
ones is twofold. Firstly the collected traces are very up-to-date. Secondly,
MAWI group provides a dataset with labeled anomalies (i.e. MAWILab)
for every instance in the traces mentioned above. A more detailed de-
scription of MAWI and MAWILab datasets will be provided in chapter
6.
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3.6 Anomaly Detection

Anomaly detection is a critical problem common to many research domain.
An Anomaly Detection System (ADS) analyzes the characteristics of the
input data with the aim of discovering deviations from a normal pattern
of behavior. These deviations are also referred to as anomalies. The term
anomaly often referred as different names such as outliers, exceptions,
aberrations, etc., refers to patterns behavior that differs from what we
would normally expect. In the computer network, an anomaly may be
caused both by an attack, and a non-malicious traffic activity. According
to the IETF definition, “an attack is a deliberate activity by which an
entity attempts to evade security services and violate the security policy
of a system” [76]. Due to the evolution of the attack methodologies, it
is important to use methods able to detect the malicious activity of any
nature, both known and unknown. This could be done through an anomaly
intrusion detection system. Anomaly IDS approach was introduced for
the first time by Denning [26]. Many surveys have been published to
classify anomaly detection systems according to the detection methods.
The authors in [36], [14] provide a comprehensive review of outliers
detection methodologies. They identify three fundamental approaches to
the outliers detection problem:

• Unsupervised - This approach operates without an a priori knowl-
edge of data. It is based on the assumption that in the dataset the
normality events are statistically more frequent than anomalies.

• Supervised - This approach uses the models of the normality and
the abnormality to operate. In other words, a training set of labeled
instance of both normal and anomalous events is needed.
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• Semi-supervised - This approach uses models normality. In this case,
the training set contains only the instance labeled for the normal
events.

It uses two technique: Statistical calculations or Machine Learning
(ML) algorithms.

3.6.1 Statistical Methods

Anomaly detection systems based on statistical methods consist of two
phases. First, the system observes and collects one or more statistical
features of network traffic, subsequent it compares the current state with
the stored one using a stochastic method to detect behavior changes. One
critical of the challenges in the development of resilient and secure sys-
tems is the efficient detection of the malware. In fact, malware is often
the point of beginning for various kinds of attacks, such as Distributed
Denial of Service (DDoS), phishing and email spamming, which are per-
formed through bots deployed on the target hosts. With the purpose to face
this challenge, [55] have presented an anomaly detection technique, that
uses an Ensemble Empirical Mode Decomposition (E-EMD) algorithm
in order to conduct a statistical characterization and decomposition of
measured signals. This anomaly detection approach considers the joint
network and systems information of every VM gathered at the hyper-
visor level. Numerous researchers have successfully applied Principal
Component Analysis (PCA) in their network anomaly detector methods
(i.e. [49], [49], [72], [44], [48], and [10]). However, as mentioned in [64],
PCA detectors are based on the assumption that the data reproduces a
combined Gaussian distribution which may be unrealistic in the case of
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network traffic. Researchers present in [15] a Holt-Winters forecasting
method that uses the entropy of three flow features, (i.e. source IP address,
destination IP address, and destination port) to model the normal traffic
and exploits the Kullback-Leibler divergence distance to detect network
anomalies.

3.6.2 Machine Learning Methods

Machine learning was defined in 1959 by Arthur Samuel as “the field of
study that gives computers the ability to learn without being explicitly
programmed” [73]. ML allows to uncovering hidden correlation patterns
through an iterative learning by sample data (or past experiences) instead
of being explicitly programmed. Common classes of problems that ML
algorithms can solve are classification, regression, clustering, and outliers
detection. Several techniques are applied for anomaly detection and based
on the availability of labeled dataset an anomaly detection method can op-
erates in Unsupervised, Semi-Supervised, or Supervised mode [14]. Super-
vised and semi-supervised approaches are more suitable for classification
problem while unsupervised approach fits better clustering problems.

Unsupervised Anomaly Detection

Cluster analysis (or clustering) is a technique used to group objects of a
similar kind into respective categories. Clustering is based on unlabeled
data. In machine learning, methods that use labeled samples for the training
and validation phases are said to be supervised, or semi-supervised, and
methods which rely on unlabeled dataset are said to be unsupervised.
Clustering can be achieved by different algorithms that vary in their notion
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of what constitutes clusters and how to identify them. Usually, a clustering-
based technique requires distance computation between a pair of objects.
Clustering was used by [7], [59] (using K-means), and [68].

Semi-Supervised and Anomaly Detection

Both supervised and semi-supervised methods are based on knowledge
provided by an external agent and they require labeled training datasets.
Specifically, supervised methods need both normal and anomalous in-
stances, and semi-supervised methods use only the normal labels. Support
Vector Machines (SVM) provide a semi-supervised learning method for
the anomaly detection. A flow-based anomaly detection system using a
one-class SVM was proposed by [40]. The use of Multi Layer Percep-
tron (MLP) neural network for supervised anomaly detection systems was
investigated in [41], and [81].

3.7 Flow-based anomaly detection

In literature, there has been a considerable amount of research on anomaly
detection based on the flow analysis. Studies related to flow-based traffic
analysis have proven useful in identifying anomalies. The authors of [49]
analyze various traffic types (i.e. metrics) of sampled flows in an extensive
academic network. Each traffic metric brings into focus a different set
of anomalies and more specifically, this work reveal that the analysis of
numbers of flows is suitable to identify DoS, scan, and Flash Crowd. Sig-
nal processing techniques assume that generally, traffic may be modeled
as a linear state space model having Gaussian behavior. Authors in [79]
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combine Kalman filtering and statistical methods for detecting volume
anomalies in large-scale backbone networks. Based on the hypothesis
that along their routes anomalies traverse numerous links, this approach
monitors multiple links simultaneously. This technique performs anomaly
detection on origin–destination (OD) flows to identify the source of the
anomaly. Dewaele et al [27] extract sub-traces from randomly chosen
traffic traces, model them using Gamma laws and identify the anomalous
traces by tuning the deviations in the parameters of the models. Flow-
based methods allow faster analysis through a reduction in data size, on
the other hand, surveys have already shown how the complete absence of
payload could also be the main weakness [80]. The use of these techniques
makes it tough to detect attacks for which the variations are only in the
payload. Nevertheless, Flow-based Intrusion Detection Systems could be
used as a complement when technological constraints or privacy policy
make payload-based techniques infeasible. The use of entropy estima-
tion for anomaly detection relies on the principle that certain types of
network anomalies will (meaningfully) disturb the distribution of traffic
features (e.g. source/destination ports, source/destination IP addresses)
[11], [9]. Authors in [11] show that packet sampling methods employ
several trade-offs regarding the detection of anomalies. They analyze in
detail the random packet sampling and the impact of its quantification on
anomaly detection. Even if since the early 2000 packet sampling is under
discussion for standardization by the IETF PSAMP working group [19],
there is no standard to describe how to sample flow data. On the one hand,
flow sampling decreases the computational load, on the contrary, it makes
more difficult the detection process. Studies that describe the impact of
flow sampling to the anomaly detection are presented by [4], [6]. Androul-
idakis et al. [4] utilized an entropy-based anomaly detection method based
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on an intelligent flow sampling to improve the effectiveness of anomaly de-
tection and validate it. Bartos et al. [6] proposed an adaptive flow sampling
technique. An ideal sampling model used to evaluate the sampling method
is provided. This approach preserves the statistics of the traffic features
used for anomaly detection. In order to evaluate real anomalies in real
traffic, researchers can use typically two approaches, manually checking
the alert or comparing their alert events with other anomaly detectors. In
the first approach, the event labeling relies on human-based knowledge,
thus detected events are verified manually by the domain experts. Fol-
lowing this approach, authors in [9] present a histogram-based anomaly
detector that identifies anomalous flows by detected the changes in traffic
by applying the Kullback-Leibler divergence to several histograms that
monitor distinct traffic features. Furthermore, the association rule mining
allows for the extraction of the set of traffic features that describes the
anomalies detected by the histograms. On the contrary, in this dissertation,
we evaluate the accuracy of our anomaly detector by comparing all alert
events with the results of MAWILab archive.

Authors of [38] proposed a method for anomaly detection using four
flow metrics: volume of bytes; the number of packets; the number of flows
to the same destination IP and port, and the number of destination ports.
The validation process was performed analyzing simulated anomalies (e.g.,
UDP flood, ICMP flood, TCP SYN, or Port scan).

A traffic analysis focused on scan in TCP protocol was presented
in [60]. The author used Nmap to perform network or port scan. The
authors, in an afterward work, presented a solution to detect network
anomalies (i.e. scan and flood) in a high-speed network with an accurate
identification of the anomalies [61]. The key features that identify alert
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consist of attack time, attacker IP and victim IP, the attack category (scan,
flood, DoS, and DDoS) and the attack type (scan type, and flood type).

A two steps method to identify and classify the flows involved for the
anomalies is proposed by [31]. This technique firstly determines the time
slice where the anomaly occurs then find the IP flows responsible for the
detected anomalous behavior.

On the contrary, instead of identifying the flows responsible of an
anomaly, [24] provided for each anomaly detected, a table of all flows
belonging a time slice with the highest flow frequency.

3.8 Final remarks

This chapter has provided background information on Intrusion Detection
Systems and its taxonomy. Then, the Anomaly Detection Systems tech-
niques present in the literature. Moreover, a brief overview of datasets to
evaluate and validate the anomaly detection methods was provided.





Chapter 4
Big Data Analytics and Network
Monitoring

4.1 Introduction

What is Big Data? According to Manyika et al. [53]definition “Big data is
datasets whose size is beyond the ability of typical database software tools
to capture, store, manage, and analyze”. This definition contains a time-
variant aspect. Datasets that today can be considered as Big Data tomorrow
could become “normal” data. Since this definition does not use any metric
to define big data, we prefer to use Laney et al. [50] definition that defines
the data growth challenge as three-dimensional, i.e., concerning an increase
in Volume, Velocity, and Variety. Big Data is a relatively novel topic that
has received much attention from the community in the last decade. Many
research groups (such as biologists, astronomers, and computer scientists)
have focused their efforts on several aspects of interest related to this
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important research topic, such as methods and technologies to handle
big data issues including for i.e. acquisition, storage, analytic and data
mining models [3]. Among the sciences, discoveries in astrophysics have
always been driven by the analysis of massive data sets. Thus, a new
discipline, the Astroinformatics, has born. In this interdisciplinary field
of astrophysics and computer science, scientists exploit new methods and
analytics tools to solve the big data challenges faced in astronomy [30].

The number of devices connected to the network and the spread of
high-speed network are leading the growth in network traffic concerning
data Volume and complexity (i.e. Variety), and traffic Velocity. Network
monitoring could be considered a Big Data problem as it has all the 3Vs
characteristics (i.e. Volume, Velocity, and Variety). Beyond all definition
of Big Data, in the context of computer networks, a Big Data problem in-
volves a enormous amount of data (to capture, store and analyze) traversing
the network infrastructure, so large that it exceed the analytic capabilities
of traditional computing methods and architectures. This chapter aims at
providing an overview of the new and much less investigated topic related
to big data and networking. In particular, we aim at analyzing the existing
literature dealing with how computer networks produce big data as well as
dealing with how computer networks handle big data. For example, in the
first case, network management and intrusion detection systems running
distributedly across vast and high-speed networks produce a large amount
of data (pertaining the status of hosts, nodes, and the network links) having
the 3V properties of big data cited above. On the other hand, the several
existing applications dealing with big data have more and more stringent
requirements for the network and impose a huge load (in a very broad
sense) on such networks.
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4.2 Network Solutions for Big Data

Many architectural solutions for the various aspect of the Big Data prob-
lems are present in literature. Authors of [82] focused their work on
the exponential growing of dataset sizes and the resulting data transfer
problem. They proposed an efficient solution based on the Remote direct
memory access over Converged Ethernet (RoCE) [5]. Most of the data
transfer tools are based on TCP, with a limit of tens of Gbps on current
hardware. The work presents a brief overview of the main open issue and
a performance comparison between the RoCE and conventional transfer
protocols (TCP, UDP), over high-speed network links. This work demon-
strates that the transfers based on RoCE achieve comparable performance
as TCP or UDP while maintaining a low percentage of the involved CPU
resources up to two order of magnitude less than other protocols. MapRe-
duce applications consume most than 50 percent of the bandwidth for the
Shuffle, and Date-Spreading phases. To avoid potential over-subscription
problems due to the uses of static routing, [86] presented a distributed
adaptive routing algorithm. The authors presented an approximate Markov
chain model to evaluate the convergence time of the aforementioned adap-
tive algorithm. This model predicts that, under the condition that the
flows do not exceed the 50% of the bandwidth capacity for the edge links
of the network, the algorithm would converge in a few iterations to a
non-blocking routing assignment regardless the size of the network.

Due to the enormous amount of network traffic produced by batch
and real-time big data processes, numbers of new architectural solutions
in order to optimize the bandwidth utilization [23], [84] or reduce the
network traffic [22] are proposed in the literature. One of these is Cam-
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doop [22] that focuses on decreasing traffic by pushing the aggregation
to the network core. In this way it reduces the amount of traffic, paral-
lelizing the typical shuffle and reduces steps of the MapReduce processes.
Camdoop is a framework for the execution of MapReduce-like processes
that uses a custom transport protocol, providing a reliable communica-
tion, a specific programming for the application of the packets and the
packet aggregation through the flows. It runs on CamCube [21], a platform
that distributes the switch functionality between servers. Leveraging the
way by which CamCube forwards the traffic, Camdoop performs data
aggregation during the shuffle phase. It can be used as a Hadoop plug-in,
or completely replace it since Camdoop supports the same MapReduce
functions. Recent researches as [23], [84] have shown how the benefits
brought by SDNs to the optimization of network utilization (e.g., using
the adaptive routing) can be exploited to improve the performance of dis-
tributed applications. In [84], the author proposed a cross-layer approach
for SDN controller that, by fitting the application requirements at run-time,
enhances the performance of distributed application. This work combines
the high-speed optical switches with SDN controllers to dynamically re-
configure them. The SDN controller functioning is based on application
level information. Thus, it is interfaced to the master node (such as the
Hadoop scheduler) to retrieve the job by scheduling the information used
to predict the bandwidth consumption of the next application task. Then,
the controller configures the underlying network routing and topology
accordingly to the recognized traffic pattern, such as bulk transfers, data
partitioning and aggregation (i.e. MapReduce), and low-latency control
message, in order to improve the application performance at run-time.
Nevertheless, flow-level traffic engineering for big data applications has
been postponed by the author as future work. Among the previous work,
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author of [23] proposes a network management framework that improves
Big Data process through the optimization of the network utilization. This
framework, named FlowComb, includes a centralized decision engine that
by monitoring big data applications through software agents deployed on
each application server, is able to predict the application transfer phases
before they start. Then, the decision engine (as well as an SDN controller)
adapts the network by changing the path using the application domain
knowledge.

4.3 Big Data Solutions for network

Achieving the ability to analyze, understand and exploit information in a
more efficient way is crucial for several computer network applications
such as monitoring, planning, forensics, and security.

In [87], the authors propose a Big Data analytics framework for mobile
network optimization (MNO). Data is collected from various sources,
the users (i.e. location, mobility pattern, communication pattern, and
application usage behaviors), the network core (i.e. network performance
information, successful calls, application usage), and the physical level
(i.e. cell information, radio signal power, and quality). The framework is
composed of a BDA platform and a set of network optimization functions.
These features can be useful for several tasks in MNO, such as network
planning, QoE modeling, and resource allocation.

Authors in [63] propose a big data framework (i.e. Hadoop MapRe-
duce) for change detection in temporally-evolving network traffic data.
This approach involves two steps. Firstly, the traffic is sampled using a
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random method then the selected time period is partitioned in temporal
bins. Then, the change detection method is applied. A distributed applica-
tion that uses MapReduce is implemented to perform both the sampling
and the change detection phase. A performance comparison that using real
traffic traces [CAIDA] shows how the distributed solution achieves better
performance than a non-distributed one. However, this comparison does
not take into account the accuracy or the efficiency, but only the execution
time. Moreover, only a theoretical model is presented without providing
a possible comprehensive implementation of the monitoring architecture.
An anomaly detector referring to performance metrics of virtual machines
running in a cluster is presented by [78]. They proposed a framework for
real-time anomaly detection based on Apache Spark. Finally, a big data
architecture for security monitoring is proposed by [54]. Data analyzed
come from different sources, such as honeypots data, DNS and HTTP
traffic, and IP flow records. The system proposed correlates these sources
with data correlation schemes useful for network security. Finally, a per-
formance assessment of this schemes is performed using five BDA tools,
namely Hadoop, Hive, Pig, Shark, and Spark, against four scenarios (i.e.
queries). This performance analysis shows how Spark achieves the best
performance in all scenarios. Unfortunately, this work does not present any
practical implementation for this system and the performance comparison
does not consider the efficiency and the accuracy but only the computing
time performance.

Among numerous others, we propose a Big Data architecture to analyze
the flow network traffic in an efficient manner.
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4.4 Big Data Analytics Tools

BDA frameworks, deployed on Cloud or In-House Data Center, have
become critical to facing the computational demand tasks. In the following,
we present an overview of the most used BDA tools in literature.

Fig. 4.1 Big Data Analytics framework - Batch Analysis

4.4.1 Apache Hadoop

Apache Hadoop is an open source distributed computing framework for
distributed storage and batch processing of large data sets on clusters
built from commodity hardware using simple programming models (i.e.
MapReduce) [Hadoop]. It is designed to scale up from single to thousands
of servers, each of which offers both local computation and storage. It
allows processing big data by using batch processing. Rather than rely on
hardware to deliver high-availability, the library itself is designed to detect
and handle failures at the application layer. Hadoop core components
provide services for job scheduling (YARN), a distributed file system
(HDFS), and data processing (MapReduce).
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HDFS - Hadoop Distributed File System

HDFS [HDFS] is the distributed file system of Hadoop framework. HDFS
is designed to store files that have the size of gigabytes to terabytes on
clusters of commodity hardware. In an HDFS cluster, there are two types of
nodes, namely NameNode and DataNode. The NameNode is responsible
for storing and managing the metadata of files and directories in the file
system. On the other hand, DataNodes, function as storage for HDFS files.
In HDFS, files are split into blocks which are stored independently in a
set of DataNodes. In order to provide fault tolerance and high availability,
each block is replicated to multiple DataNodes. When a client application
writes a file to HDFS, each block is sent to a DataNode, which then
replicates it to other DataNodes. On the other hand, when a client needs a
file from HDFS, each block of the file is read from the nearest one among
the DataNodes hosting the block replicas [Hadoop].

4.4.2 Apache Storm

Storm is a distributed real-time computation system for processing large
volumes of high-velocity data. Storm is extremely fast, with the ability
to process over a million records per second per node on a cluster of
modest size. Enterprises harness this speed and combine it with other data
access applications in Hadoop to prevent undesirable events or to optimize
positive outcomes.
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4.4.3 Apache Kafka

Apache Kafka is a fast, scalable, durable, and fault-tolerant publish-
subscribe messaging system. Kafka is often used in place of traditional
message brokers like JMS and AMQP because of its higher throughput,
reliability and replication [Kafka]. Apache Kafka can work in combina-
tion with numerous systems for real-time analysis and the rendering of
streaming data, such as Apache Storm, Apache HBase or Apache Spark.
Usually, it is employed for two type of application, developing real-time
data workflows, exchanging messages between systems or applications in
a reliable way, and real-time streaming applications that transform or react
to the data stream. Kafka is a message broker horizontally scalable, and
fault-tolerant. Regardless of the use case, Kafka brokers massive streams
of messages for low-latency analysis in the Apache Hadoop ecosystem.

Fig. 4.2 Big Data Analytics framework - Streaming Analysis

4.4.4 Apache Spark

Apache Spark is a fast, in-memory, general purpose engine for large-scale
data distributed computing. It provides development APIs to allow data
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workers to efficiently execute streaming, machine learning or SQL work-
loads that require fast iterative access to datasets. With Spark running on
Apache Hadoop YARN, developers everywhere can now create applica-
tions to exploit Spark’s power, derive insights, and enrich their data science
workloads within a single, shared dataset in Hadoop [85]. Moreover, it
provides libraries for implementing machine learning: ML Lib, which
provides machine learning models, and ML Pipelines which manages the
workflow, (i.e. data preparation, post-processing, and validations) helping
to develop and deploy the models.



Chapter 5
Proposed Architecture for
Flow-Based Anomaly Detection

5.1 Introduction

The objective of this chapter is to give an overview of the model of the
proposed architecture model. Firstly, a summary of the objectives of our
system is presented in the following Section 5.2. Then, Section 5.3 gives
a brief description of the architectural models (i.e. the flow monitoring
architecture and the big data value chain) that inspired our multi-layer
architecture. Therefore, the architecture modeling along with its implemen-
tation will be addressed in the following Section 5.2. Finally, a detailed
discussion about the development of each component and their functioning
are given in the sections which conclude this chapter.
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Fig. 5.1 The Big Data Value Chain

5.2 Objectives of the Proposed Architecture

The proposed architecture has been modeled with the following goals in
mind:

• Capture the traffic at packet-level, to and from the monitored net-
work, and transform it into a dataset of traffic at flow level.

• Provide an anomaly detection algorithm able to analyze the gener-
ated flow-based dataset, is able to detect the source IP responsible
for the malicious behaviors.

• Reduce the response time of the anomaly detection algorithm using
of Big Data Analytics framework
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5.3 Proposed Architecture Model

As previously said, in this dissertation, we propose an architecture for
the anomaly detection that analyzes traffic at flow level. Frameworks of
batch and streaming Big Data analytics are exploited in order to enable
the system to achieve better efficiency and scalability. In our proposed
architecture, as in all Big Data applications, the data lifecycle can be
described through the big data value chain [34]. For this reason, modeling
of the architecture is loosely based on the Big Data value chain model.
Figure 5.1 shows schematic workflow of the big data value chain. It
transforms the raw data source into novel insights and new knowledge
through different stages. The four stages constituting the Big Data value
chain are Data Generation, Data Acquisition, Data Storage, and Data
Analysis. A brief description of the four phases is as follows.

• Data Generation phase describes how and where data are created.

• Data Acquisition phase has mainly two aims. On the one hand,
it gathers data coming from the generation phase. On the other
hands, it transforms the collected data into a suitable format for the
successive data storage and analysis phases. Data Acquisition is
itself composed by three sub-tasks, data collection, pre-processing,
and data transmission.

• Data Storage refers both to storage and management of the large
dataset from the previous phase. It collects data in a convenient man-
ner for the subsequent step of data analysis. With this purpose, data
storage provides essentially two services. A hardware infrastructure
responsible for warehousing of the information in a distributed, per-
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sistent, and reliable manner. A data management framework that
provides software interfaces to access and query the data. Moreover,
the information is organized for the efficient data processing by the
last stage, the Data Analysis.

• The final phase of the big data value chain is Data Analysis. It aims
to extract useful insight and new knowledge and hence provides
information that can aid in the decision-making process.

A high-level overview of the architecture of our systems is illustrated
in Figure 5.2. In order to fulfill the objectives of the proposed model, the
architecture proposed consists of two layers (i.e. Acquisition, and Big
Data Analyzer). The layers are responsible for handling the phases of the
Big Data value chain, namely the data acquisition, storage, and analysis.

In the first layer, the model is implemented for capture traffic packet
traversing the monitored network, then transforming it in a flow records
dataset. This dataset is stored in a distributed way in order to improve the
subsequent analysis. In the second Layer, the model is implemented for
detecting the traffic anomalies. In order to identify as soon as possible the
host responsible for the anomalous traffic, a Big Data Analytics framework
is employed. Th A description of the different layers that constitute the
architecture will be as follows

5.3.1 Acquisition Layer

This layer is responsible for capture network traffic through the monitored
network. It is used to cope te first two value chain phases (i.e. data
collection, and data reduction). In this layer, the traffic is captured by a
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Fig. 5.2 A modeled view of the Architecture of the Proposed System

set of probes deployed in specific locations (usually at the edges of the
network).Then the data is passed from the probes to the Flow Exporter
that aggregate individual packets in flow records. At this point, the data
can be transmitted to the next component, the Flow Collector. This layer
is also responsible for the distributed storage and management of the data
from the previous level and its preprocessing. With this purpose, a Flow
Collector is used for gather the flow records. When it receives the flow
records sent from various Flow Exporters within the network, a Flow
Collector converts them into a suitable format for our detection algorithm.
Finally, it stores the preprocessed data in a distributed storage system in
orded to facilitate the further querying and analysis tasks.
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5.3.2 Analysis Layer

This layer is composed of a big data analysis framework used to perform
anomaly detection algorithms. It can receive the flow records collected by
the previous Layer in batch and streaming mode.

5.4 Implementation Details

A proof of concept implementation of the proposed architecture will be
provided in the following. In order to analyze the traffic at flow-level
with our architecture, an appropriate setup for the Flow Exporter and the
Flow Collector is needed. In our work, the role of the Flow Exporter is
assigned to Softflowd [Softflowd]. Softflowd is a probe in software that
is able to capture network traffic packets, and generate and export flow
records. At defined time intervals, this software sends the unidirectional
flow records collected to the Flow Collector. NfCapd [NFCAPD] is used
as a collector node that retrieves the flow records from Softflowd. With the
purpose of transforming the collected flow record into a format suitable
for the analytics platform, NfDump [NFDUMP] is used. At this point,
binary flow records converted into an ASCII file can be streamed directly
to the analytics platform or stored in a distributed manner for further
batch analysis. In both cases, the analytics platform analyzes streaming or
collected data performing the anomaly detection algorithm. The algorithm
receives as input dataset the list of flow records (i.e. start time, source
IP address, destination IP address, number of packets, number of octets,
duration, source Port, destination Port, and transport protocol). The flow
records are grouped by the start time in time bins (i.e. 30 seconds). Given
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a time bin, for each flow record is calculated the ratio between the number
of flow generated and the number of flow received by the host identified
by the source IP address. Thus, if the ratio exceed the threshold then the
IP is considered as generator of anomalous flows. The detection algorithm
has been deployed in the Apache Spark framework. Apache Spark allows
to analyze the dataset both in batch and streaming.

The proposed architecture presented in the previous section 5.2, pro-
vides loose coupling between each stage. Thus, the collection component
can be simply replaced with a different tool as well as the Flow Exporter,
the probes, and the source traffic used to the analysis system.





Chapter 6
Evaluation and Results

6.1 Introduction

This chapter presents results of our proposed architecture in terms of
efficiency and scalability of our method. In Section 6.2 and 6.3, the
input dataset analyzed and its characterization are presented. Then, the
gold standard dataset used to validate our anomaly detection method are
presented in Section 6.4. The chapter concludes with the results of the
evaluation of performance efficiency in Section 6.5 and scalability in
Section 6.7.

6.2 The Dataset: MAWI

The MAWI (Measurement and Analysis of the WIDE Internet) traffic
repository is a publicly accessible archive of real traffic from the WIDE



58 Evaluation and Results

backbone network provided by the MAWI Working Group Traffic Archive
and maintained by the WIDE Project. The MAWI archive provides
anonymized packet traffic traces collected from several links. Specifically,
in our evaluation, we use the packet traces captured at Samplepoint-F.
Every trace collected by this link contains traffic captured every day for
15 minutes (from 14:00 to 14:15 GMT) from a transpacific backbone
link connecting Japan and the United States. Different links captured the
traces daily since 1999 and storing them in pcap files with anonymized
IP addresses and without packets payload data. These links have been
updated three times; originally the samplepoint-B was a 100 Mbps link
with an 18 Mbps committed access rate (CAR). It was replaced in July
2006 by a full 100 Mbps link (i.e. the samplepoint-F) that was updated to a
1Gbps link with a 150 Mbps CAR in June 2007. Finally, in June 2016 the
CAR was officially removed. Summarizing the contributions of MAWI
dataset for Internet traffic research are threefold:

• Accessible - the entire archive is freely available to all researchers.
Therefore, they are able to replicate and compare results achieved
employing MAWI traces as input dataset.

• Extensive - MAWI allows investigating about the evolution of In-
ternet traffic since its daily monitoring lasting more than 15 years
which corresponds to an archive of tens of Terabyte (TB) of back-
bone network traffic traces.

• Various - during the 15 minutes a daily trace, MAWI monitors
hundreds of thousands IP addresses that use several applications.
Moreover, the archive includes real traffic since 2001 to nowadays.
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Thus, every trace carries within several kinds of anomalies, from
well-known attacks to unknown and new threats.

The analyzed flow dataset was generated using the MAWI traffic traces
captured from the samplepoint-F between October the 1st and October
31th, 2014. These packet traces were transformed in ASCII datasets using
the aforementioned flow exporting functionality of our architecture.
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Fig. 6.1 The MAWI dataset breakdown according to the protocol at packet
and flow level

Figure 6.1 shows the breakdown of input dataset according to the
level 3 protocols at packet and flow level, respectively. The collected
dataset presents a subdivision in only three IP protocols: ICMP, TCP,
and UDP. At packet level, the majority of traffic have TCP protocol (i.e.
almost 68% of the packets). A second slice of the dataset consists of
UDP traffic (i.e. almost 30% of the packets). Finally, the lower fraction
is due to ICMP (i.e. 10% of packet traffic). The packet level protocol
breakdown is in contradiction with protocol breakdown at flow level. In
this case, the protocol distribution is the opposite of the previous one.
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The majority of traffic is due to ICMP with the 73% of flows, then UDP
protocol constitutes about the 20% of flow traffic, finally only the 8% of
flows have TCP protocol.

6.3 Dataset characterization

In order to characterize the MAWI traffic traces, in the following, we
analyze and study the dataset in various flow dimensions, namely pro-
duction rate, duration, the number of packets, flow size, and packet rate.
Specifically, production Rate refers to the number of flows per minute
produced by every source IP. Duration is the time elapsed between the first
and the last packet belonging the flow. The flow size refers to the volume
of bytes transferred with a single flow.

We analyze IP addresses where the production rate exceeds the thresh-
old of ten thousand flows per minute. Thus, the dataset refers to a list of
10 source hosts IP addresses. The feature on which to apply the threshold
(i.e. production rate) and the value of the threshold have been chosen
in an empirical way. Thus, as can be seen in Figure 6.2, using a higher
threshold removes the only source IPs that appear for more than one slice
of time (i.e. 202.11.241.164 and 220.48.217.28). On the other hand, using
a threshold lower than 2000 flow per minute, the number of sources that
will be involved can exceed the hundreds of hosts. In the following, we
discuss traffic flows characterization for these set of source IPs.
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6.3.1 Flow per Minute

Figure 6.2 shows for each source host, identified by their IP addresses, the
number of flows per minute generated. Most of these hosts, (i.e. eight out
of ten) have a transient characterization. The faster one generates about
one hundred of thousand of flows in less than 30 seconds.
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Fig. 6.2 Number of flows generated by the top 10 source IP with respect
to time slices.

6.3.2 Duration

Figure 6.3 shows for each source IP the average duration of the flows
generated in each time slice. Most of them are characterized by a duration
practically equal to 0 seconds.
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Fig. 6.3 Average duration of flows generated by the top 10 source IPs with
respect to time slice.

6.3.3 Number of Ports

Figures 6.4 and 6.5 show respectively the number of source ports and the
number of destination port used by the hosts inside the monitored network
at each slice of time. The behavior of hosts with source IP addresses
220.48.217.28, and 222.134.30.232 deserves more in-depth analysis. The
first uses hundreds of source ports but only one destination port (i.e. 2967).
The second, with the source IP with the higher number of flows across the
entire trace, uses only ports 1026 and 1027.

6.3.4 Bytes and Packets Transferred

Figure 6.6 and 6.7 depicted the number of bytes and the number of packets
transferred by each IP in every time slice (one minute), respectively.
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Fig. 6.4 Number of source port involved by the top 10 source IP with
respect to time slices

6.4 The Gold Standard: MAWILab

The MAWILab project provides an archive of labeled anomalies in the
samplepoint-F traffic traces of the MAWI archive. To labels the anomalous
events in the samplepoint-F traces, MAWILab used an advanced unsuper-
vised graph-based methodology that compares and combines four different
and independent anomaly detectors to provide the labeled dataset. The
used detectors are respectively based on the Hough transform [29], the
Gamma distribution [27], the Kullback-Leibler divergence [9], and the
Principal Component Analysis (PCA) [45]. According to the analysis
performed the traffic is labeled as following:
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Fig. 6.5 Number of destination port involved by the top 10 source IP with
respect to time slices.

• Anomalous if traffic is certainly identified as abnormal;

• Suspicious if traffic is not clearly identified as anomalous.

• Notice if at least one of the four anomaly detectors reported the
traffic as abnormal;

• Benign for normal traffic that is not detected by any of the detectors.

MAWILab archive is daily updated to include the new traffic traces
upcoming from the MAWI Archive [MAWI]. Due to probabilistic nature of
the MAWILab classification method, we are not sure that all the anomalies
in the traffic traces are actually detected and so presents in the MAWILab
dataset. However, this database is one of the most used gold standard [83]
for researchers to evaluate their traffic anomaly detection methods.
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Fig. 6.7 Number of packets sent by the top 10 source IPs with respect to
time slices.

For each trace are available two CSV files. One file containing the
traffic labeled as anomalous or suspicious, the other one identify the traffic
labeled as notice. Each row of these files consists of a 4-tuple (i.e. source
IP address, source Port, destination IP address, destination Port) describing
the traffic characteristics and additional information such as the heuristic
and taxonomy classification results. The CSV file header gives the actual
order of the aforementioned information [29]:

• anomalyID a unique anomaly identifier. Several lines in the CSV
file can describe different sets of packets that belong to the same
anomaly. The anomalyID field permits to identify lines that refer to
the same anomaly.

• srcIP is the source IP address of the identified anomalous traffic
(optional).
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• srcPort is the source port of the identified anomalous traffic (op-
tional).

• dstIP is the destination IP address of the identified anomalous traffic
(optional).

• dstPort is the destination port of the identified anomalous traffic
(optional).

• taxonomy is the category assigned to the anomaly using the taxon-
omy for backbone traffic anomalies.

• heuristic is the code assigned to the anomaly using a simple heuris-
tic based on port number, TCP flags, and ICMP code.

• distance is the difference Dn-Da.

• nbDetectors is the number of configurations (detector and parame-
ter tuning) that reported the anomaly.

• label is the MAWILab label assigned to the anomaly, and it can be
either anomalous, suspicious, or notice.

6.4.1 Taxonomy

The information stored in the CSV files mentioned above concerning the
taxonomy of the anomalies are out by a process described in [57]. The
authors define this taxonomy in order to provide a more detailed classifica-
tion of events detected in MAWILab repository. The taxonomy creation
process is initiated by exploiting the knowledge of network anomalies,
then continues iteratively refining from time to time the description of
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detected events but not yet classified by taxonomy. Figure 6.8 shows a
high view of the taxonomy structure. The taxonomy elements are coarsely
divided into two categories: normal, and anomalous event. Normal events
are further divided into heavy hitter, point to multipoint behaviors and
other events (such as tunneling, and outages), while anomalous events
include denial of service, whether distributed ones or not, and port and
network scans event. Each event can match one or more labels. In this
case, it is chosen as label the one furthest from the root of the taxonomy
tree.

Fig. 6.8 The structure of MAWILab for the anomaly classification taxon-
omy

6.4.2 MAWILab Characterization

Starting from the taxonomy defined by [57], we have taken into account
only the anomalies that are related to malicious behaviors. All this anoma-
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Table 6.1 MAWILab - Attacks Percentage

Taxonomy 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

PortScan 0.7% 10% 1.6% 3% 3.6% 4.2% 2.3% 2.3% 1.3% 0.8%
ICMPNetScan 4.9% 2.5% 3.1% 2.1% 1.1% 0.7% 0.6% 0.1% 0.6% 0.8%

TCPNetScan 56% 50% 64% 61% 58% 63% 65% 74% 72% 74%
UDPNetScan 35% 30.1% 30% 30% 25% 26.8% 28% 21% 23% 32%

DoS 2% 1.3% 1.32% 2.4% 11% 4.7% 1.6% 2.4% 2.2% 1.8%

lies belonging to the following classes: DoS/DDoS, Port Scan, and Net-
work Scan. Afterward, we filtering out from the dataset all the anomalies
that involving ICMP protocol. Thus, we have identified four anomalies
categories. Figure 6.9 shows the percentages of these anomaly classes
founded by MAWILab from 2007 to 2016. Figure 6.9 depicts that only a
small part of anomalies (i.e. about the 3% of anomalies) involved ICMP
traffic. On the other hand, as showed in Table 6.2, the MAWI traces are
composed on average of 80% ICMP flow traffic. For this reason, we filter
out the ICMP traffic from all traces.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

DoS

UDPNetScan

TCPNetScan

ICMPNetScan

PortScan

Fig. 6.9 Malicious anomalies percentage in MAWILab archive
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Table 6.2 MAWI Protocol Breakdown

Protocol Packets (MAWI) Flows (MAWI) Flows no-ICMP

TCP 60.13% 8.13% 30.54%
ICMP 10.92% 73.38% -
UDP 28.95% 18.49% 69.46%

6.5 Efficiency Evaluation

In this section the proposed anomaly detection method is evaluated using
alarms reported by the MAWILab archive. In particular, the positive
precision rate of the detector is discussed.

6.5.1 Evaluation Metrics

In order to evaluate the efficiency of an anomaly detection method can be
used various metrics, namely Accuracy, Precision, Recall (or True Positive
Rate), and False Alarm Rate. These four metrics are defined as follows.

Accuracy tp+tn
tp+tn+ fp+ fn

Precision tp
tp+ fp

Recall or True Positive Rate tp
tp+ fn

False Alarm Rate FPR =
fp
N =

fp
tn+ fp
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Accuracy is not appropriate for evaluating methods for rare event
detection. For example, if the Network traffic dataset has the 99.99% of
normal data and 0.01% of intrusions, a trivial classifier (where everything
is labeled as normal) can achieve 99.99% accuracy!

6.6 Experimental Testbed

To evaluate the effectiveness of our proposed architecture and to validate
the anomaly detection algorithm we developed a testbed. In this testbed,
flow exporters, and flow collector are simulated through two open source
software, respectively Softflowd and Nfcapd. Using Softflowd as Flow
Exporter, real traffic traces are transformed into flow records and exported
to the flow collector (i.e. Nfcapd). Then, using Nfdump the collected
flow traces are transformed into a suitable file format for the Big Data
Analytics framework. These files can be stored using Hadoop Distributed
File System (HDFS) for batch analysis or streamed to the BDA framework
through a message broker (i.e. Apache Kafka) for streaming analysis.
Finally, Apache Spark, could analyzes streaming or collected data, running
our anomaly detection algorithm.

6.6.1 Experimental Result

To validate our algorithm we used all traces of October 2014 from MAWI
archive. System performance has been calculated, for each traffic trace
analyzed, comparing source IP addresses (i.e hosts source of anomaly
flows) identified by our detection algorithm with the result of MAWILab
archive. MAWILab archive is used as a gold standard to validate our
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method. Table 6.3 depicts the confusion matrix with the positive precision
rate achieved by our algorithm comparing its results with MAWILab. The
results showed a high false positive rate. Due to probabilistic nature of
MAWILab classification methods, we are not sure that all attacks in the
traffic trace are actually in MAWILab the dataset. For this reason, we
performed for all False Positive IP a rule-based refinement process. The
rule-based process aims to detect the port scan and network scan activities.
Thus, the second part of the Table 6.3 shows the confusion matrix when
the refinement process is applied. The results in Figure 6.10 shows that
our algorithm achieving an average precision of 90%.
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Fig. 6.10 Algorithm Precision Comparison
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Table 6.3 Confusion Matrix - MAWILab as gold standard vs MAWILab
plus refinement rule-based process

MAWILab Refinement PercentageChange

Day TP FP PPV TP FP PPV

1 106 11 0.906 111 6 0.949 4.7%
2 107 22 0.829 122 7 0.946 14.0%
4 47 9 0.839 55 1 0.982 17.0%
5 68 28 0.708 94 2 0.979 38.2%
7 56 45 0.554 93 8 0.921 66.1%
8 60 24 0.714 76 8 0.905 26.7%
9 63 28 0.692 87 4 0.956 38.1%

10 83 32 0.722 109 6 0.948 31.3%
11 58 19 0.753 72 5 0.935 24.1%
12 30 5 0.857 34 1 0.971 13.3%
13 53 13 0.803 64 2 0.970 20.8%
15 60 33 0.645 84 9 0.903 40.0%
16 73 35 0.676 99 6 0.943 39.5%
17 64 41 0.610 96 9 0.914 50.0%
18 37 11 0.771 48 0 1 29.7%
19 78 10 0.886 86 2 0.977 10.3%
20 72 34 0.679 100 6 0.943 38.9%
21 71 246 0.224 300 17 0.946 322.5%
22 84 58 0.592 133 9 0.937 58.3%
23 87 47 0.649 123 11 0.918 41.4%
24 73 49 0.598 109 13 0.893 49.3%
25 41 206 0.166 246 1 0.996 500.0%
26 47 203 0.188 250 0 1 431.9%
27 59 237 0.199 275 21 0.929 366.1%
28 33 54 0.379 76 11 0.874 130.3%
29 50 53 0.485 89 14 0.864 78.0%
30 54 22 0.711 67 9 0.882 24.1%
31 34 20 0.630 46 8 0.852 35.3%
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6.6.2 Rule-based Refinement

For each IP in the list of the false positives, either source or destination,
it is performed a refinement rule-based process. This operation consists
of analyzing other network traffic descriptors to detect abnormal patterns
that none of the MAWI anomaly detectors was able to identify. The traffic
descriptors manually analyzed are the following:

• the rate between the number of generated flows and the number of
destination ports contacted.

• the rate between the number of generated flows and the number of
destination IP addresses contacted.

Therefore, IPs that present the following patterns have been labeled as
"possible" anomalies:

• the ratio between the number of generated flows and the number of
destination ports connected is less than two we have a port scan

• the ratio between the number of generator flows and the destination
IP addresses contacted is lower than two, then we have a Network
Scan

• many source IPs labeled as anomaly contact the same set of destina-
tion IP, then we have a DDoS
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Table 6.4 Cloud Cluster Configurations

Configuration # of Nodes RAM Memory Total Memory

c1 = original 2 8 GB (m4.large) 16 GB
c2 = scale out 4 8 GB (m4.large) 32 GB
c3 = scale up 2 16 GB (m4.xlarge) 32 GB

6.7 Performance Evaluation

Since our architecture aims to manage big data traffic, a performance
evaluation in terms of response time is presented.

6.7.1 Testbed Setup

We prepared three cluster configurations of Amazon Amazon Elastic Map
Reduce which are used to define the nodes of our distributed anomaly
detection architecture. Each cluster configuration is reported in Table 6.4.

For each configuration, the response time is evaluated processing four
traffic traces of (i.e. t1 = 15, t2 = 30, t3 = 60, and t4 = 120 minutes
of flow traffic). Figure 6.11 shows the execution time of each cluster
configuration. The difference are noticeable with the increasing of the size
of the traces analyzed with configuration C3 (i.e. scale up) that shows the
better performance.
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Fig. 6.11 Comparison of response time among the cluster configurations

6.8 Final Remarks

Statistical methods have been proposed for network traffic anomaly detec-
tion due to the capacity of real-time detecting of both known and unknown
attacks without attack signatures. In this chapter, we proposed the rate
between flows generated and flows received by each host monitored as a
new feature for traffic anomaly detection and introduced an unsupervised
statistical anomaly detection method based on this new proposed feature.

We tested the efficiency of the proposed feature and method with
real-world backbone traffic traces containing several kinds of volumetric
anomalies (such as Network Scans, Port Scans, and DoS) captured by the
MAWI Working Group Traffic Archive.

The results showed that the proposed method could detect more anoma-
lies than the four MAWILab methods, namely Hough transform, the
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Gamma distribution, the Kullback-Leibler divergence, and the Principal
Component Analysis, in terms of false positive rates and precision, with
an average positive predictive value of about 90%.

Finally, an evaluation of the scalability performance of our architecture
was presented. The results showed that the proposed architecture deployed
in a private cloud given better performance in scale up than in scale out.





Chapter 7
Conclusion

7.1 Review of findings and contributions

In this thesis, we faced the challenge of detecting network anomalies
in huge traffic datasets. We have introduced, designed, and developed
an innovative architecture for anomaly detection in high-speed networks.
The processing and storage resources to monitor high-speed network can
be very expensive due to the data volume. To cope with this issue, our
system analyzes the network traffic at flow-level instead of the single
packet information. We focused on detecting the hosts responsible for the
anomalous flows, instead of detecting collective anomalies as most of the
literature [4, 49, 13, 42, 60]. In Chapter 6 we described the implementation
of the proposed architecture. We developed an experimental testbed which
by exploiting Apache Spark eased the computational scalability problem.
The proposed detector algorithm has been validated by detecting real
anomalies in real backbone traffic traces captured by the MAWI group.
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For each input trace, we have compared our results with the ones provided
by the MAWILab anomalies dataset. Due to the probabilistic nature of
the classification methods used by MAWILab, we considered their results
as a gold standard rather than a ground truth. With this purpose, we have
performed a refinement process for false positive data. In this phase we
analyze our false positives with a rule-based detection method to figure
out which of these events are actually false alarms and which anomalies.
The rules applied are designed to identify network and port scan attacks.
The results of this process has shown that our method achieve an average
precision of 90% in detecting volumetric anomalies, such as Net Scan, Port
Scan, and DoS/DDoS, and a lower false negative rate compared to the four
anomaly detectors used by MAWILab. Finally, we have investigated on the
detection time as function of the data volume variation. We developed a
cloud version of our testbed using Amazon Elastic Map Reduce employing
three cluster configuration in order to evaluate the architecture scaling out
and up performance. The results have shown that the better performance
are achieved when our architecture was made to scale vertically (i.e. when
more memory resources are added). In the summary, the key contributions
presented in this thesis are as the following:

• It proposes a novel methodology for network anomaly detection in
high-speed networks, witch analyzing flow traffic. This methodol-
ogy does not require a prior knowledge, such as a training dataset or
a database of attacks behaviors.

• In order to validate the methodology, it provides a long term analysis
on real backbone traces.
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• It provides an architecture that exploiting a Big Data Analytics
framework is able to improve the processing performance. Thus,
the algorithm mentioned above is able to detect anomalous events
in real backbone traces with a response time real-time like.

7.2 Future Works

Anomaly detection is a very vast subject, and in this dissertation, we have
only covered some of the many challenges that network operators have
to face. The architecture in Chapter 5 exclusively deal with traces from
the samplepoint F of the MAWI archive, where all the traces belonging to
this dataset only lasts for 15 minutes. These come with the disadvantage
that it is impossible to identify events that have a longer duration. As in
the Chapter 6, the main advantage of our method is the easy identifica-
tion of the host responsible for anomalous event. But, no taxonomy nor
information regard to the type of anomaly is provided. However, the use
of our anomaly detection method in combination with a system for the
taxonomy definition might be used to facilitate the interpretation of events
by network administrators.
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