
University of Naples “Federico II”  

School of Polytechnic and Basic Sciences 

Department of Structures  
for Engineering and Architecture 

 

Ph.D. Programme in Structural, Geotechnical and 

Seismic Engineering 

XXIX Cycle 

 
 

 

MARIA GRAZIA SIMONELLI 

 

Ph.D. Thesis 
 

PLASTIC BUCKLING OF THIN AND 

MODERATELY THIN PLATES AND 

SHELLS: CLASSIC PROBLEMS AND 

NEW PERSPECTIVES 

 

TUTOR: PROF. ING. FEDERICO GUARRACINO 

2017 



 



 

 

 

 

 

 

 

To my family and Eric 

  



 



1 

 

Acknowledgments 

First of all, I would like to express my sincere gratitude to Prof. Federico 

Guarracino who followed and supported me during the whole Ph.D. programme 

and offered me the opportunity to work in an outstanding academic department. 

His guidance has given me the chance to develop a more rigorous and critic 

approach to scientific research and has encouraged me to have more self-

confidence about my personal. 

I am grateful to Prof. Luciano Rosati for his patience and understanding. His 

suggestions and practical indications have always incited me to expand my 

knowledge in the broad field of research. A special thank goes also to Prof. Paolo 

Budetta for supporting me in experimental research and for having shared his 

knowledge and time with me.  

A particular acknowledgment is due to two persons who have appreciated me. 

First, I would like to express my gratitude to Aldo Giordano for trusting me since I 

was a student. He has understood my passion and determination in the field and, 

despite the lack of time, he has always taught me more than I could dare to ask. 

Also, I wish to thank Francesco Marmo for making me believe in the quality of 

research, giving me the motivation and the confidence to go ahead and sharing with 

me his knowledge. 

I would like to express my sincere and devoted gratitude to Prof. Carlalberto 

Anselmi for the initial inspiration. He has motivated me with his profound passion 

for scientific studies, giving me the methodology and the fundamental knowledges 

which have made possible my achievements. 

A warm acknowledgment is due to my Ph.D. colleagues, Stefania Fabozzi, 

Fabiana De Serio and Antonino Iannuzzo for their example of perseverance. They 

have shown me in a friendly manner how to face everyday difficulties in academic 

life. In particular, special thanks go to my roommate Francesca Linda Perelli for 

the light-hearted atmosphere and for sharing the passion for mathematics and 

physics. 

 



2 

 

I would like to thank all the students of the courses of “Analisi Limite delle 

Strutture” and “Scienza delle Costruzioni” taught by Prof. Federico Guarracino for 

motivating me to face difficulties, for trusting my advice and my knowledge and 

for having enriched me with their opinions and doubts about structural engineering 

problems. 

I am particularly grateful to my friend Maria Romano for supporting me all the 

time with her wise suggestions, in many circumstance she has helped me to 

improve myself and never give up. Special thanks to Le Socie which encouraged 

me like sisters: their support has been always felt. They continue to inspire me day 

by day and make me give my best in both professional and personal aspects of my 

life. 

Last but not least, I would like to thank my mother and my father for giving me 

the most important nurtures: the determination, the spirit of sacrifice and the 

willpower to go ahead. They have always strongly supported me in any decision. I 

would also like to thank my brother and Lilla for their patience and loving support 

and Eric for the love and the understanding: he is the reason why I go successfully 

ahead in my life and to him I wish to dedicate this important achievement.  

 

Naples, March 2017  

Maria Grazia Simonelli 

 

  



3 

 

Index 
 

Acknowledgments ............................................................................................. 1 

List of figures .................................................................................................... 5 

List of tables ...................................................................................................... 9 

Introduction .................................................................................................... 11 

1. The theory of plasticity ........................................................................ 17 

1.1. Flow and deformation theories of plasticity ....................................... 19 

1.2. Constitutive laws and analytical relations in the flow theory of 

plasticity ....................................................................................................... 21 

1.3. Constitutive laws and analytical relations in the deformation theory of 

plasticity ....................................................................................................... 35 

1.4. Other plasticity approaches ................................................................ 39 

1.5. Experimental stress-strain curves ....................................................... 41 

1.6. Uniaxial behaviour ............................................................................. 47 

2. The “plastic buckling paradox” .......................................................... 51 

2.1. The concept of buckling ..................................................................... 53 

2.2. Bifurcation buckling ........................................................................... 55 

2.3. Elastic buckling .................................................................................. 57 

2.4. Plastic buckling .................................................................................. 60 

2.5. The “plastic buckling paradox” .......................................................... 65 

2.6. Open issues in the investigation of the plastic buckling paradox ........ 76 

3. Plastic buckling of a cruciform column .............................................. 79 

3.1. Historical background ........................................................................ 81 

3.2. Torsional buckling: canonic results .................................................... 84 

3.3. A procedure for the evaluation of the critical load according to the 

flow theory of plasticity ................................................................................ 88 

3.4. Discussion of the results ..................................................................... 96 



4 

 

4. Plastic buckling of cylindrical shells ................................................ 113 

4.1. Historical background...................................................................... 115 

4.2. Buckling of cylindrical shells: an overview ..................................... 117 

4.3. Estimation of buckling strength in case of non-proportional loading123 

4.4. Discussion of the results .................................................................. 131 

4.5. The role of the mode switching ....................................................... 137 

5. Conclusions ........................................................................................ 149 

References ..................................................................................................... 153 

References for Section 1. ........................................................................... 153 

References for Section 2. ........................................................................... 153 

References for Section 3. ........................................................................... 155 

References for Section 4. ........................................................................... 158 

Appendixes ................................................................................................... 163 

Appendix 1. Plastic work in Prandtl-Reuss material .................................. 163 

Appendix 2. Description of Ramberg-Osgood stress-strain curve .............. 166 

 

  



5 

 

List of figures 

 

Figure 1 - Geometric illustration of associated flow rule .................................. 23 

Figure 2 - Flat and corner plasticity (Chen and Han, 1988) .............................. 25 

Figure 3 – Differences in plastic flow between von Mises and Tresca yield 

surfaces. ................................................................................................................. 26 

Figure 4 - Hardening and softening in rate-independent plasticity: motion of 

yield surface in stress space ................................................................................... 31 

Figure 5 – The concept of slip in single crystal (schematic).(Batdorf and 

Budiansky, 1949) ................................................................................................... 40 

Figure 6 – A loading surface with a corner in stress space. ............................... 40 

Figure 7 – Determination of K and n in the Ramberg-Osgood stress-strain 

curve. (Jones, 2009) ............................................................................................... 43 

Figure 8 - Ramberg-Osgood stress-strain curves for various strain hardening 

values.(Jones, 2009) ............................................................................................... 44 

Figure 9 - Overlap of Ramberg-Osgood and Nadai stress-strain curves for an 

aluminium alloy. .................................................................................................... 46 

Figure 10: Tangent, tE , and secant, sE , moduli in a simple tension test.......... 48 

Figure 11: Unloading in the 
2J  flow theory of plasticity. ................................. 49 

Figure 12: Bifurcation buckling. ....................................................................... 53 

Figure 13: Nonlinear collapse. .......................................................................... 54 

Figure 14: Stable symmetric buckling and influence of imperfections. ............ 56 

Figure 15: Instable symmetric buckling and influence of imperfections. .......... 56 

Figure 16: Asymmetric buckling and influence of imperfections. .................... 57 

Figure 17: Critical load for a simply supported and uniformly compressed rod.

 ............................................................................................................................... 58 

Figure 18: Plate subjected to in-plane compressive loading. (Singer, Arbocz and 

Weller, 1998) ......................................................................................................... 59 

Figure 19: Plastic buckling of a cylindrical shell subjected to axial compression.

 ............................................................................................................................... 61 

Figure 20: Euler’s curve of instability. .............................................................. 62 

Figure 21: Shanley approach to inelastic column buckling. .............................. 64 



6 

 

Figure 22: Onat and Drucker model (1953). a) simplified geometrical model. b) 

simplified material model. ..................................................................................... 67 

Figure 23: Hutchinson and Budiansky numerical results for critical load as a 

function of imperfection amplitude (1976). ........................................................... 68 

Figure 24: Modes of buckling of Lee’s tests (1962). ........................................ 68 

Figure 25: Batterman hinge model for cylindrical shells (1965). ..................... 69 

Figure 26: Numerical and experimental results fo. specimens (Set A). (Giezen, 

Babcock and Singer, 1991) ................................................................................... 72 

Figure 27:Theoretical and experimental results for L/D = 1 cylinders. (Blachut, 

Galletly and James, 1996) ..................................................................................... 73 

Figure 28:Axisymmetric mode of wrinkling observed by Bardi and Kyriakides 

(2006). ................................................................................................................... 74 

Figure 29:Results of axially compressed imperfect cylinders. (Shamass, Alfano 

and Guarracino, 2014). .......................................................................................... 75 

Figure 30: Torsional buckling of a cruciform column. ..................................... 84 

Figure 31: Cross section of a cruciform column. .............................................. 85 

Figure 32: Strain increment for a perfect column according to the flow theory of 

plasticity. ............................................................................................................... 87 

Figure 33: Strain increment for an imperfect ( )  vs a perfect ( ) column 

according to the flow theory of plasticity. ............................................................. 89 

Figure 34: Twisted configuration of an imperfect cruciform column. .............. 90 

Figure 35: Iterative procedure for the evaluation of the critical twisting load of 

an imperfect cruciform column according to the deformation theory of plasticity. 94 

Figure 36: Iterative procedure for the evaluation of the critical twisting load of 

an imperfect cruciform column according to the flow theory of plasticity. ........... 95 

Figure 37: Plots of the Ramberg-Osgood curves for the considered aluminium 

alloys. .................................................................................................................... 98 

Figure 38: Non-dimensional plots of the Ramberg-Osgood curves for the 

considered aluminium alloys. ................................................................................ 98 

Figure 39: FE model of a cruciform column. ................................................. 100 

Figure 40: Plots of different shear moduli versus the compressive stress,   for 

an imperfection amplitude 1/10h  . .................................................................. 102 



7 

 

Figure 41: Plots of different shear moduli versus the compressive stress,   for 

an imperfection amplitude 1/10h  . ................................................................. 103 

Figure 42: Plots of different shear moduli versus the compressive stress,   for 

an imperfection amplitude 1/10h  . ................................................................. 104 

Figure 43: Plots of different shear moduli versus the compressive stress,   for 

an imperfection amplitude 1/100h  . ................................................................ 105 

Figure 44: Plots of different shear moduli versus the compressive stress,   for 

an imperfection amplitude 1/100h  . ................................................................ 106 

Figure 45: Plots of different shear moduli versus the compressive stress,   for 

an imperfection amplitude 1/100h  . ................................................................ 106 

Figure 46: Axial load versus torsional rotation in ABAQUS, imperfection 

amplitude: 1/10h  . ........................................................................................... 107 

Figure 47: Axial load versus torsional rotation in ABAQUS, imperfection 

amplitude: 1/10h  . ........................................................................................... 108 

Figure 48: Axial load versus torsional rotation in ABAQUS, imperfection 

amplitude: 1/10h  . ........................................................................................... 108 

Figure 49: Axial load versus torsional rotation in ABAQUS, imperfection 

amplitude: 1/100h  . ......................................................................................... 109 

Figure 50: Axial load versus torsional rotation in ABAQUS, imperfection 

amplitude: 1/100h  . ......................................................................................... 109 

Figure 51: Axial load versus torsional rotation in ABAQUS, imperfection 

amplitude: 1/100h  . ......................................................................................... 110 

Figure 52: Load-deflection curves showing limit and bifurcation points. 

(Bushnell, 1984) .................................................................................................. 116 

Figure 53: Cylindrical shell displacements and forces. (Yoo and Lee, 2011) . 118 

Figure 54: Cylindrical shells under simple loading conditions: a) axial 

compression; ........................................................................................................ 120 

Figure 55:Equilibrium paths of axially compressed cylinder. (Yoo and Lee, 

2011) .................................................................................................................... 121 

Figure 56: Buckling of a cylindrical shell subjected to a non-proportional 

loading. ................................................................................................................ 124 

Figure 57: Ramberg-Osgood stress-strain curves of the considered aluminium 

alloys.................................................................................................................... 127 



8 

 

Figure 58: Dimensions and coordinate system of a cylindrical shell. ............. 128 

Figure 59:Experimental setting by Giezen et al.. (Giezen, Babcock and Singer, 

1991) ................................................................................................................... 129 

Figure 60:FE model of cylindrical shells........................................................ 130 

Figure 61: Load arc length paths for specimen S1. ........................................ 134 

Figure 62: Lateral pressure-arc length paths for specimen S2. ....................... 135 

Figure 63: Lateral pressure-arc length paths for specimen S3. ....................... 135 

Figure 64: Lateral pressure-arc length paths for specimen S4. ....................... 136 

Figure 65: Representation of first two circumferential modes for specimens S1-

S3. ....................................................................................................................... 138 

Figure 66: Representation of circumferential modes for specimens S1-S3. ... 139 

Figure 67: Representation of circumferential modes for specimen S4. .......... 140 

Figure 68: Representation of circumferential modes for specimen S2. .......... 140 

Figure 69: Lateral pressure-arc length paths for specimen S1. ....................... 142 

Figure 70: Lateral pressure-arc length paths for specimen S2. ....................... 142 

Figure 71: Lateral pressure-arc length paths for specimen S3. ....................... 143 

Figure 72: Lateral pressure-arc length paths for specimen S4. ....................... 143 

  



9 

 

List of tables 

 

Table 1 – Difference between flow and deformation theories of plasticity and 

the plastic buckling paradox................................................................................... 66 

Table 2 - Ramberg-Osgood parameters for the considered aluminium alloys. .. 97 

Table 3 - Characteristics of the analysed specimens. ........................................ 99 

Table 4 - Critical stress for a perfect specimen according to Eqs. (72), flow, and 

(78), deformation theory of plasticity vs ABAQUS elastic results. ...................... 100 

Table 5 - Results obtained from the procedure proposed in this paper for an 

imperfection equal to 1/10 of the flange thickness, h, versus FE and experimental 

ones. ..................................................................................................................... 101 

Table 6 - Results obtained from the procedure proposed in this paper for an 

imperfection equal to 1/100 of the flange thickness, 1 /100 h  , versus FE and 

experimental ones. ............................................................................................... 105 

Table 7 - Percent differences between the analytical solutions for the two 

different values of the imperfection amplitude, 1/10h   and 1/100h  . ............. 110 

Table 8 - Ramberg-Osgood parameters for the considered aluminium alloys. 126 

Table 9 - Characteristics of the analysed specimens. ...................................... 127 

Table 10 – Applied axial loads,  . ................................................................ 129 

Table 11 – Calculated limit values of the lateral pressure. .............................. 132 

Table 12 – Influence of the initial imperfection shape and amplitude on the 

buckling loads. ..................................................................................................... 133 

Table 13 – Calculated limit values of the lateral pressure for low imperfection 

amplitudes. ........................................................................................................... 134 

Table 14 – Elastic buckling modes. ................................................................ 139 

Table 15 – Results of non-linear buckling analysis for specimen S2. ............. 141 

Table 16 – Results of non-linear buckling analysis for specimen S2. ............. 144 

Table 17 – Results of non-linear buckling analysis for specimen S3. ............. 145 

Table 18 – Results of non-linear buckling analysis for specimen S3. ............. 146 

  



10 

 

  



11 

 

Introduction 

Elastic-plastic instability of structures is a widespread field which involves a 

broad category of civil and mechanical engineering problems and allows to 

investigate a rather large variety of structural problems including: the physical and 

mechanical characterization of materials, the resistance criteria, the modelling of 

materials respecting to the main theories of plasticity and the phenomena related to 

material and geometric nonlinearities especially for thin and moderately thin plates 

and shells.  

The concept of buckling involves a sudden lost in strength of a structure due to 

its lost in shape. In structural engineering, different types of buckling have been 

shown depending on its appearance in the elastic or plastic range and on the 

loading path followed. The aim of this work is to investigate the plastic buckling of 

plates and shells subjected to different loading conditions with respect to the 

phenomenon of the “plastic buckling paradox”. In particular, by means of a deep 

numerical investigation on cylindrical shells with different geometrical and 

material properties, some limitations about the modern numerical nonlinear 

analyses conducted by the use of the Finite Elements are highlighted and discussed 

in detail. 

In the study of the elastic-plastic response of structures under certain loading 

conditions, the first issue to deal with is the knowledge of the material behaviour 

with the definition of appropriate strain-stress relationships. A well-known way to 

observe a material behaviour is the uniaxial stress test which produces a simple 

stress-strain curve, in case of compression or tension only. However, in many 

cases, particular attention must be pay to the material behaviour under multiaxial 

states of stress for which defining an appropriate constitutive relation is much more 

complex. Therefore, it becomes necessary to generalize the stress-strain 

relationships observed from a simple uniaxial test to more general multiaxial stress 

states. A large amount of stress-strain curves are considered and represented by use 

of simplified material models, as the Ramberg-Osgood or Nadai ones. 
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At the same time, the study of the main theories of plasticity is conducted. Since 

the beginning of the twentieth century, there have been many developments in the 

study of elastic-plastic behaviour of structures. Accordingly, a large improvement 

has been made in the study of the theory of plasticity, leading to identify different 

models for engineering materials based on whether path-dependence is accounted 

for or not. The plasticity models proposed for metals can be divided into two main 

groups: the deformation (Hencky-Nadai) and the flow (Lévy-Mises) theories of 

plasticity. In both of these theories the plastic deformation does not allow volume 

changes because it is ruled by the second invariant of the stress deviator and, in this 

respect, the flow and the deformation theories are both called 2J  theories of 

plasticity. The flow theory of plasticity assumes that an infinitesimal increment of 

strain is determined by the current stress and its increment, that is a path-dependent 

relationship in which the current strain depends not only on the value of the current 

total stress but also on how the actual stress value has been reached while the 

deformation theory of plasticity is based on the assumption that, for continued 

loading, the state of strain is uniquely determined by the state of stress and, 

therefore, it is essentially a special path-independent nonlinear constitutive law. 

Details on the theories of plasticity and on the constitutive relations are described 

and discussed in Section 1. 

Notwithstanding the fact that the deformation theory lacks of physical rigour 

with respect to the flow theory of plasticity, in many engineering problems 

involving the inelastic buckling of structures, the deformation theory seems to be 

more in agreement with the experimental results. This phenomenon is commonly 

known as the “plastic buckling paradox” and shows that the 
2J  flow theory of 

plasticity brings to a significantly overestimation of the critical load while the 
2J  

deformation theory of plasticity seems to obtain more accurate results with respect 

to the experimental data. This paradox has existed for many years and has involved 

a multitude of controversies, many of them are still to be resolved. 

In order to deeply examine the roots of the plastic buckling paradox, several 

plastic buckling problems for plates and shells are investigated. An important 

observation is made on the nonlinear character of the plastic buckling from both 

geometrical and material points of view. From the material point of view, the 
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nonlinearity depends on the nonlinearity of the stress-strain relationship of the 

material while from the geometrical one, it depends on the geometrical 

configurations of the structural element before and during the loading process, i.e. 

on account of some initial imperfections or of second order effects when large 

deformations appear. Including nonlinearities in the buckling analysis makes the 

investigation of the equilibrium paths more elaborate. The effects of nonlinearities 

are decisive in the prediction of the critical load and also in the definition of the 

post-buckling behaviour. Details on the plastic buckling phenomenon and several 

examples about the influence of the nonlinearities are illustrated and discussed in 

Section 2. 

Focusing the attention on the fundamentals of the problem, in Section 3 the case 

of axially compressed cruciform column showing a torsional buckling is 

thoroughly analysed. As back as 1953, Onat and Drucker found the plastic 

buckling paradox: the critical compressive stress predicted by the deformation 

theory was in a better agreement with the experimental results than that predicted 

by the flow theory. The reasons for this discrepancy were found in the high value 

of the shear modulus in the flow theory formula. The solution was investigated by 

conducting an approximate analysis in which small initial imperfections were taken 

into account. In this manner, assuming that there existed a very small imperfection 

in the column, the critical load predicted by the flow theory was found to be 

reduced significantly, getting itself close to that predicted by the deformation 

theory.  

Nevertheless, in other investigations concerning the plastic buckling of the 

cruciform column it was seen that, depending on the strain hardening of the 

material, the initial imperfections have to be too much higher and thus no more 

compatible with those experimentally measured (Gerard and Becker, 1957, 

Hutchinson and Budiansky,1976). In this respect, in Section 3 a careful analysis is 

conducted in order to resolve the discrepancies in the flow theory of plasticity due 

to the shear modulus and also considering the imperfection sensitivity on account 

of different strain-hardening materials. A new approach for the evaluation of the 

critical load according to the flow theory of plasticity is presented in detail.  
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In such a manner, a very good agreement between the results from the flow 

theory of plasticity and other analytical and experimental results can be obtained 

also for metals with significant strain-hardening without the necessity of 

accounting large initial imperfections. 

In the light of the results achieved with the simple case of the cruciform 

column, the investigation in the plastic buckling is extended in Section 4 to more 

complex structures such as cylindrical shells of moderate thickness. There are 

different loading conditions under which the cylindrical shells show the paradox 

and often it is not possible to obtain reasonable results either by the use of the flow 

and the deformation theories of plasticity. Indeed, in the case of nonproportional 

loading, as for instance in the condition of combined axial tension and external 

pressure investigated by Giezen and Blachut, both the two theories fail to predict 

the critical load. However, with the contemporary diffusion of powerful 

computational instruments able to conduct incremental analyses in the plastic range 

by the use of the Finite Elements, the discrepancy between flow and deformation 

theories has been reduced and many problems have been resolved. But a doubt still 

remains: can a modern incremental analysis naturally avoid the plastic buckling 

paradox? Is that sufficient? 

In Section 4, by examining in depth the case of nonproportional loading it is 

shown that, contrary to what observed in several studies present in literature, is not 

much the amount of the initial imperfection to govern the problem as its shape. 

Indeed, by conducting several numerical analyses, it may be shown that in some 

cases an opposite phenomenon occurs, i.e. the deformation theory fails in the 

prediction of the critical load on account of low initial imperfections. This may be 

thus called the “inverse buckling paradox”, given that it is the deformation theory 

to overestimate the critical load while the flow theory results more in accordance 

with the experimental data. Numerical calculations on cylindrical specimens with 

different geometry and material have been conducted and finally some limitations 

of the modern numerical non-linear Finite Element analyses have been discussed. 
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The use of the deformation theory of plasticity in the investigation of the 

inelastic buckling of plates and shells is still recommended for practical 

applications. In years, many researchers attempted to revise its formulation 

including unloading (Peek, 2000) or redefining it as a sequence of linear loadings 

in the case of nonproportional loading (Jahed et al.,1998).  

However, the results of the present dissertation highlight a superior reliability of 

the flow theory of plasticity in the estimation of the critical load with respect to the 

commonly used deformation theory, contrarily to what is normally agreed in 

literature. In fact, by conducting a geometrical and material nonlinear finite 

element analysis, a very good agreement between numerical and experimental 

results can be found even in presence of the physically more sound flow theory of 

plasticity, provided that particular attention is pay to constitutive laws and 

imperfection amplitudes.  

 

 

KEYWORDS: • Plasticity • Flow theory • Deformation theory • Stability  

• Plastic buckling paradox • Plates • Shells • Non-linear FEA  
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Section 1.  

1. The theory of plasticity 
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1.1.  Flow and deformation theories of plasticity 

Since the beginning of the twentieth century, there have been several 

developments in the study of elastoplastic behaviour of structures and, accordingly, 

enormous progress has been made in the theories of plasticity leading to identify 

different models for engineering materials based on whether path-dependence is 

accounted for or not. The plasticity models that have been proposed for metals in 

the strain hardening range can be divided into two main groups: the deformation 

(Hencky) and the flow (Lévy-Mises) theories of plasticity. In both of these theories 

the plastic deformations do not allow volume changes as plastic yielding is ruled 

by the second invariant of the deviatoric part of the stress tensor and, in this 

respect, they are both called 2J  theories of plasticity.  

Deformation theory was proposed by Hencky in 1924 and subsequently 

developed around 1945 by the Russian school of Nadai and Ilyushin. This theory of 

plasticity is essentially based on the assumption of a relationship between stress 

and strain in global terms, and basically refers to the loading processes that do not 

involve returns in the elastic path of parts of the structure previously plasticized. 

Thus, the elastoplastic problem is treated as a kind of nonlinear elastic problem. 

However, while in the loading path a nonlinear elastic relationship has the ease of 

considering total strains in a one-to-one correspondence with total stresses also 

during plastic deformation, on the other hand upon unloading the main plastic 

deformation characteristic of irreversibility is not accounted for and this implies 

that the application of the deformation theory is very limited. In fact this approach 

can be applicable only to problems of proportional or simple loading, that is a 

loading in which the ratios among the stress components remain constant, so that 

no reversal or cyclic loading are allowed, given that no stress history effects can be 

accounted for. 

Conversely, in the flow or “incremental” theory of plasticity, strain increments 

are related to stress increments and there are irreversible plastic deformations 

because of the energy dissipation and, as a consequence, the stress history effects 

are accounted for. In this manner, at the end of each loading process that leads the 

material to plasticity, the total strain increment can be decomposed in the sum of 

two parts, elastic and plastic, so that in the unloading phase the elastic deformation 
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is completely reversible while the plastic one is irreversible and given in value by 

the difference between the total and the elastic part. The incremental approach has 

proved to be more effective in describing the non-holonomic nature of the elastic-

plastic behaviour of metals, i.e. the final strain is dependent not only on the final 

value of the load but also on the loading path, and it is extensible to generic loading 

processes, including reversal or cyclic loading.  

In conclusion, while the deformation theory of plasticity is based on the 

assumption that for continued loading the state of strain is uniquely determined by 

the state of stress and, therefore, it is essentially a special path-independent non-

linear constitutive law, the flow theory of plasticity assumes that an infinitesimal 

increment of strain is determined by the current stress and its increment, that is a 

path-dependent relationship in which the current strain depends not only on the 

value of the current total stress but also on how the actual stress value has been 

reached.  

Finally, it is clear that the incremental theory of plasticity is more in agreement 

with the experimental behaviour of engineering materials than the deformation 

theory, and hence more widely applicable. However, that generality and 

applicability collide with a much higher analytical complexity in calculations. 

Notwithstanding the fact that there is a general agreement that the deformation 

theory of plasticity lacks of physical rigour in comparison to the flow theory, the 

use of deformation theory is thus practically motivated by the capacity to solve 

certain problems without the mathematical complications of the flow theory and 

moreover, in the case of plastic buckling problems of elements under multiaxial 

stress, the use of deformation theory has been repeatedly reported to predict 

buckling loads that are in better agreement with the experimental results.  
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1.2. Constitutive laws and analytical relations in the flow 

theory of plasticity 

The study of the elastic-plastic response of structures under certain load 

conditions is a rather complex problem that requires a deep knowledge of the 

material behaviour under applied loads and, as well, its translation in mathematical 

terms with an appropriate stress-strain law. A customary way to observe a material 

behaviour is the uniaxial stress test which leads to a simple stress-strain curve, in 

case of compression or tension stress state only. However, in order to predict the 

behaviour of the material under any general combined stress state, it is necessary to 

understand how to generalize the simple stress-strain relationships observed from 

an uniaxial test into a more general multiaxial stress states. One-dimensional 

curves of the constitutive relation that are in accordance with the principal elastic-

plastic behaviours highlighted by laboratory experiments show a first elastic linear 

part and then, above the point of yielding, a nonlinear plastic part. The elastic limit 

in uniaxial case is well identified by the yielding stress y  only, above which the 

material is considered in plastic range. For a material under all possible 

combinations of stresses a yield function in terms of stress tensor in the indicial 

form can be defined as: 

( ) ( ) 0ij ijf F k                                              (1) 

This relationship, in the stress space ( , ,I II III   ), provides the geometrical 

representation of a yield surface. The term ( )ijF   is function of the stresses and k  

is a parameter which expresses the limit properties of the material in multiaxial 

states of stress and it may be obtained particularizing the results from the uniaxial 

case with known experimental results or by more sophisticated triaxial tests. The 

( )ijf   yield function is assumed differentiable so the tangent hyperplane exists at 

every point belonging to the surface. Considering, in the first instance, an elastic-

perfectly plastic material, plastic deformation occurs as soon as the stress vector 

reaches the yield surface. Continuing the loading above the yielding, for the 

perfectly plastic equilibrium the increment of stress ijd  has to remain tangent to 

the yield surface and the plastic flow continues showing a plastic strain increment 
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vector 
p

ijd  normal to the yield surface. In unloading process, the stress state 

returns inside the yield surface and the irreversible plastic deformation remains 

constant and all the increments in deformation are purely elastic.  

During the loading process the condition of plastic flow is: 

( ) 0ijf    and 0ij

ij

f
df d




 


                               (2) 

while during the unloading process the condition of elastic return is: 

( ) 0ijf    and 0ij

ij

f
df d




 


                               (3) 

At any loading step, in the flow theory an infinitesimal increment of strain is 

determined by the current stress and its increment and, recalling that the total strain 

increment ijd  satisfies the additive decomposition property, it can be written as 

the sum of the elastic and plastic strain increments: 

e p

ij ij ijd d d                                                 (4) 

In this manner, the elastic strain increment may be directly derived by 

differentiating the elastic potential function ( )e

ij    with respect to stresses ij , 

recalling that in the elastic path: 

e

ije

ij

d d


 






   and   

ij e

ij










                                    (5) 

Similarly, for the plastic strain increment, in 1928 von Mises proposed the 

concept of the plastic potential function ( )ijg  , which frequently assumes the 

form of 2( )ijg J  , where 
2J  is the second invariant of the stress deviator. 

Therefore the plastic strain increment can be expressed by the equation: 

p

ij

ij

g
d d 







                                                 (6) 
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where d  is a positive scalar function which is nonzero only at yielding, that 

is when plastic deformation occurs. Eq.(6) defines the plastic flow rule that 

postulates an important kinematic assumption for the plastic deformation tensor. It 

naturally gives the magnitude of the plastic strain tensor components and implies 

that the plastic flow vector 
p

ijd , geometrically represented by a vector with nine 

components in strain space ( , , )I II III    is directed along the normal to the surface 

of plastic potential ( )ijg  , when plotted as a free vector in stress space 

( , , )I II III   .  

Another important consequence of this flow law which involves a plastic 

potential function 2( )ijg J   dependent only on the stress deviator, is that the 

volume deformation is purely elastic which is in agreement with experimental 

evidence. Indeed, it has been generally observed that in metals the largest amount 

of plastic deformation is due to changes in shape accompanied by very slight, if 

any, changes in volume. Consequently, the stress deviator does most of the work 

because of the prevalently distortional nature of plastic deformation. Furthermore, 

it is worth to underline that plastic deformation is assumed to be rate insensitive. 

This assumption implies that all plastic processes are considered to be infinitely 

slow thus the constitutive equations for plastic deformation may be homogeneous 

in time and the viscous effects may be neglected.  

 

Figure 1 - Geometric illustration of associated flow rule 
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When using the plastic potential theory, the main problem is how to assume the 

plastic potential ( )ijg  , given that the effective form of the function ( )ijg   is 

undetermined. A simple approach in plasticity theory is to consider that the plastic 

potential function and the yield function coincide, i.e. ( ) ( )ij ijg f  : 

p

ij

ij

f
d d 







                                                 (7) 

and the direction of the plastic strain increment is thus coincident with the 

normal to the yield surface at the current stress (see Figure 1), in the coincident 

stress and strain space ( , , ) ( , , )I II III I II III      . This simplified equation is 

called the “associated flow rule” because the plastic flow is no more related to an 

any unknown potential function but it is associated with a precisely yield criterion 

function, chosen on the base of the material behaviour. Conversely, if 

( ) ( )ij ijg f  the plastic flow follows a “non-associated flow rule”.  

This simplification is very useful in practical applications since, particularly for 

materials such as metals, it is possible to choose an adequate yielding surface that 

agrees with either the constitutive law and the experimental evidence. In this 

respect, the most widely used criterion for metals is the von Mises yield criterion 

that has a large applicability not only for its adherence to the real behaviour of the 

material but also for the regular shape of its surface. Indeed, one has to be very 

careful in the choice of the surface because in some cases phenomena of corner or 

flat plasticity may occur (see Figure 2).  
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Figure 2 - Flat and corner plasticity (Chen and Han, 1988) 

 

These two phenomena take place on account of the geometry of yielding 

surface. In fact, on regions of the domain with the same tangent plane the flat 

plasticity occurs, i.e. the same plastic deformation increment 
p

ijd  corresponds to 

different stress states while if the surface has some angular points the corner 

plasticity occurs, i.e. there are different plastic strain increments corresponding to a 

unique state of stress ij .  

Both flat and corner plasticity phenomena are particularly evident in Tresca 

yielding surface, a criterion widely used for metals on account of its more 

restrictive nature with respect to von Mises’one, but not as effectively applicable in 

plasticity. In fact, considering a plane representation in ( , ) ( , )I II I II     it may 

be seen that due to the geometry of the Tresca surface on the planes normal to the 

principal axes ,I I   and ,II II   the flat plasticity occurs while at the corners of 

the domain the corner plasticity occurs. This doed not happen in the case of von 

Mises surface because of its elliptic shape. In fact, at any point, there is an unique 

correspondence between the stress state ij  and the plastic strain increment 
p

ijd  

(see Figure 3). 
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Figure 3 – Differences in plastic flow between von Mises and Tresca yield surfaces. 

 

Due to the irreversible character of the plastic deformation, the increment of 

plastic work cannot be recovered. This implies that whenever a change of plastic 

strain occurs the work of the stresses on the increment of plastic strain must be 

positive and this condition leads to the convexity of the yield surface and to the 

normality of the plastic flow: 

0p p

ij ij ij

ij

f
dW d d   



 
     

                                   (8) 

where the gradient of the yield function 
f

ij

f
f




  


n  coincides with the 

normal to the yield surface. This convexity of the yield surface implies that the 

scalar product of the stress vector and the normal to the yield surface is non-

negative, so that this two vectors must form an angle not larger than 
2

 . 

Furthermore, it is opportune to underline that also the undetermined factor d  

is related to the magnitude of the increment of plastic work pdW . The scalar 

multiplier d  must always be positive when plastic flow occurs in order to assure 

the irreversibility of the plastic deformation and it can be evaluated combining the 

stress-strain relation with the consistency condition.  
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In particular, expressing the constitutive relation in terms of stress increments in 

explicit form: 

( )p

ij ijhk hk hkd C d d                                             (9) 

and combining it with the consistency condition which maintains the stress 

increment vector tangent to the yielding surface, that is the scalar product between 

the stress increment and the gradient of f  is zero, it is: 

0df         0ij

ij

f
d







                                   (10) 

where the scalar factor d  can be obtained substituting the stress increment of 

the Eq. (9) in Eq. (10): 

0ijhk hk ijhk

ij hk

f f
C d C d 

 

  
  

  
                              (11) 

and finally: 

ijhk hk

ij

lmno

lm no

f
C d

d
f f

C






 






 

 

                                       (12) 

where all indices are dummy ones, confirming the scalar character of d . 

Therefore, given the yield function and defined the strain increments, the scalar 

multiplier d  can be uniquely determined. In this form, the scalar factor d  may 

be substituted in the Eq.(13) of the constitutive relation:  

ijpq rshk

pq rs

ij ijhk hk

lmno

lm no

f f
C C

d C d
f f

C

 
 

 

  
  
  

  
   

                         (13) 
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and finally the elastic-plastic tensor of tangent moduli for an elastic-perfectly 

plastic material can be written as: 

ijpq rshk

pq rsEP

ijhk ijhk

lmno

lm no

f f
C C

C C
f f

C

 

 

 

 
 

 

 

                               (14) 

The generical formulation of the associated flow rule can be hence 

particularized considering the simplest form of the von Mises yield criterion. As 

previously mentioned, the term ( )ijF   in Eq.(1) results dependent on the second 

invariant of the stress deviator and thus substituting the expression 2 2( )F J J  

in Eq.(1), the plastic potential function becomes: 

2

2( ) 0ijf J k                                                 (15) 

The flow rule in Eq. (7) as well can be written in the simple form: 

2p

ij ij

ij

J
d d d s  




 


                                         (16) 

where ijs  is the deviatoric stress tensor and d  is the factor of proportionality 

with the value: 

0

0
d





   wherever    

0 0

0

f or f

f

 


    and    

0

0

df

df




             (17) 

for an elastic-perfectly plastic material model. The flow rule in Eq. (16) can also 

be expressed in terms of the components of the strain increments and stresses as: 

2 2 2

p p pp pp
y yz xyx zxz

x y z yz zx xy

d d dd dd
d

s s s

   


  
                           (18) 
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These simplified expressions of the stress-strain relations, Eq.(16) or Eq.(18), 

are known as the Prandtl-Reuss equations after Prandtl who, in 1924, extended the 

earlier Levy-von Mises equations and Reuss who, in 1930, extended the Prandtl 

equations to the three-dimensional case and formulated their general form.  

As meaningful consequences, it may be noted that a small increment of plastic 

strain 
p

ijd  depends only on the current state of the stress deviator ijs  and not on 

the total stress increment ijd  which is required to reach that state and to maintain 

the plastic flow. Also, the principal axes of stress ij  (or ijs ) and the plastic strain 

increment are coincident by means of the scalar factor d . The Prandtl-Reuss 

equations confirm that there is no volume change during the plastic flow. In fact, 

by Eq. (16) it is easy to note that the plastic volumetric deformation results equal to 

zero: 

0p

ii iid d s                                                   (19) 

Conclusively, it is possible to specify the previously mentioned relation 

between the undetermined factor d  and the increment of plastic work pdW . 

Recalling that in incremental theory of plasticity the total strain increment ijd  is 

the sum of the elastic and plastic strain increments, as seen in Eq.(4), the elastic 

strain increment can be deduced from Hooke’s law: 

e

ij ijhk hkd D d                                                (20) 

where ijhkD  is the tensor of the elastic moduli, or in other terms: 

2 9

ije kk
ij ij

ds d
d

G K


                                             (21) 

and the plastic strain increment can be obtained from the previous flow rule.  
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Thus, combining Eq.(21) and (16), the complete stress-strain relation for an 

elastic-perfectly plastic material can be expressed as: 

2 9

ij kk
ij ij ij

ds d
d d s

G K


                                         (22) 

in which the unknown term d  is related to the amount of the current 

increment in the work of plastic deformation pdW  by: 

22

pdW
d

k
                                                    (23) 

which is obtained by simply derivating the rate of plastic work for a Prandtl-

Reuss material (see Appendix 1). By recalling the second invariant of the stress 

deviator, 
2 1 2 ij ijJ s s , and that for a flow rule associated with the von Mises yield 

criterion it is also 2

2J k , it is: 

22p

p ij ijdW d d k                                            (24) 

These formulae hold true for an elastic-perfectly plastic material, as said before. 

On the other hand, in the case of materials with isotropic hardening, the stress 

increment allows the yield surface expand homothetically in the stress space for 

any loading increment. This behaviour of the yield surface in the stress space 

corresponds to the positive slope of the stress-strain curve in the uniaxial state of 

stress. Similarly, if the uniaxial stress-strain curve in the plastic range has no slope, 

the material is elastic-perfectly plastic and the yield surface unchanges during the 

plastic flow while for an uniaxial stress-strain curve with softening the yield 

surface above the yielding contracts (see Figure 4).  
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Figure 4 - Hardening and softening in rate-independent plasticity: motion of yield surface in 

stress space 

 

In the light of this similarity between the uniaxial and the multiaxial behaviours, 

the conditions of hardening in the stress space related to the motion of the yield 

surface (expanding, constant and contracting) was generalized from the uniaxial 

stress-strain curves by Drucker in 1950. In particular, he stated that considering a 

single stress component   and the corresponding increment of plastic deformation 

pd , the conditions of hardening was: 

0pd d      for positive hardening with expanding surface 

0pd d      for perfect plasticity with constant surface 

0pd d      for softening with contracting surface                  (25) 

For isotropic hardening materials, the yield function depends not only on the 

stress tensor 
ij  but also on some hardening parameters which constitute internal 

variables of the material deduced by experimental evidence.  
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In particular, if the material plasticity is independent on hydrostatic pressure 

and depends on only one hardening parameter, the yield function may be expressed 

by: 

( ) ( ) ( ) 0ij ijf F k                                           (26) 

where   is the hardening parameter and ( )k   is a monotonically increasing 

function of  . The parameter   characterizes the hardening and it depends on the 

loading process, in particular on the energy dissipated in the straining process.  

Until the first yield surface is attained, the hardening parameter is a constant (as 

seen in the case of elastic-perfectly plastic material with the Eq.(1)) and 

successively, once plastic deformation occurs, it increases and makes the yield 

surface expand to a larger one in case of positive hardening material. If the loading 

process is first reversed and successively reapplied, plasticity is attained on the 

expanded surface.  

In the case of von Mises yield criterion, the term ( )ijF   is a function of the 

second invariant of the stress deviator, 2 2( ) ( )ijF F J J   , and the yield 

function in Eq. (26) results: 

2

2( ) ( ) 0ijf J k                                            (27) 

where the unknown terms are the hardening parameter   and the hardening 

function ( )k  .  

In order to obtain the hardening parameter  , two types of assumption are 

generally made: the strain-hardening or the work-hardening. The choice of one of 

these hypothesis for the determination of the hardening parameter depends on the 

constitutive relation characterizing the material and on the yield criterion adopted. 

The strain-hardening assumption is easier to apply than the work-hardening one 

and for this reason it is used in most applications. Incidentally, by using the von 

Mises yield criterion and assuming the constitutive Prandtl-Reuss equations, the 

strain-hardening and the work-hardening assumptions lead to equivalent results so 

that the strain-hardening assumption can be chosen to evaluate the hardening 
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parameter  . For the strain-hardening assumption, the hardening parameter can be 

determined as a function of the total equivalent plastic strain. In this manner, it is 

introduced as:  

p p

eq eqd                                                   (28) 

Under this assumption, an important observation is that the measure of the 

hardening parameter does not depend upon the strain path but only on the initial 

and final points of the strain flow in the plastic strain space. The increment of the 

equivalent plastic strain 
p

eqd  in Eq. (28) can be described as: 

2 1

23

p p p

eq ij ijd d d                                           (29) 

and likewise the increment of the hardening parameter d  can be obtained by 

recalling that the normality condition holds by the Eq. (7), and that the increment 

of plastic deformation follows an associated (von Mises) flow rule: 

2

6

p

eq

ij ij

f f
d d d  

 

 
 

 
                                 (30) 

where the only unknown term is the scalar multiplier d  which can be 

calculated in a manner analogous to what has been shown before. Therefore, by 

virtue of Eq. (30), since the multiplier d  is determined, the increment of the 

hardening parameter in the loading path can be obtained.  

On the other hand, in the Eq. (27) the unknow function ( )k   has to be defined 

and it is sufficient to make reference to the uniaxial state of stress. For uniaxial 

tension only, the hardening function can be obtained from the uniaxial stress-strain 

curve in the plastic range and the equation of the yield surface can be simply 

expressed as: 

( )pk                                                     (31) 
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In such a way, the hardening function depends on the plastic strain ( )pk  . As 

in the determination of the hardening parameter  , by replacing the plastic strain 

p  with the equivalent plastic strain 
p

eq  and using a von Mises yield surface, the 

expression for the expanding yield surface due to isotropic strain-hardening is 

obtained by: 

2

2 ( )p

eqJ k                                                   (32) 

As previously mentioned, also in the case of isotropic hardening the 

undetermined factor d  can be found by combining the stress-strain relation with 

the consistency condition as done for perfect plasticity. In particular, it is: 

0df         0p

ij eqp

ij eq

f dk
d d

d
 

 


 


                           (33) 

And, by substituting the definition in Eq. (29) for the increment of the 

equivalent plastic strain, it follows that: 

2
0

6
ij p

ij eq ij ij

f dk f f
d d

d
 

   

  
 

  
                          (34) 

Thus, rearranging the terms, the proportionality scalar factor d  can be written 

as: 

2

6

ij

ij

p

eq ij ij

f
d

d
dk f f

d






  






 

 

                                     (35) 

It may be useful to observe that the terms: 

ˆij

f

ij ij

f

f
n

ff f



 



 
 

 

 

                                        (36) 
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correspond to the unit normal to the yield surface. Thus, by substituting this 

formula into Eq. (35), the scalar function d  simplifies as: 

6
ˆ

2
f ij

p

eq

d n d
dk

d

 



                                             (37) 

In this compact form, the term d  can be replaced in the constitutive relation 

which has a similar expression to the one used for the elastic-perfectly plastic 

material in Eq.(9). Indeed, the stress-strain relation for isotropic hardening material 

can be expressed in the form: 

6
ˆ

2
ij ijhk ijlm f nohk hk

no
p

eq

f
d C C n C d

dk

d

 




 
 


  

 
 
 

                      (38) 

where the elastic-plastic tensor of tangent moduli for an isotropic hardening 

material is found as: 

6
ˆ

2

EP

ijhk ijhk ijlm f nohk

no
p

eq

f
C C C n C

dk

d






 


                            (39) 

 

 

1.3. Constitutive laws and analytical relations in the 

deformation theory of plasticity 

As said in Section 1.1., the deformation theory of plasticity is essentially a 

nonlinear stress-strain relationship. Using the additive decomposition property also 

in this circumstance, the total strain tensor can be expressed by the sum of the 

elastic and plastic tensors: 

e p

ij ij ij                                                      (40) 
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where the elastic part is governed by Hooke’s law and the plastic part is much 

simple with respect to its counterpart in the flow theory of plasticity. The Hencky-

Nadai deformation theory for initially isotropic materials, in fact, proposes that the 

total plastic strain is merely proportional to the stress deviator, so that: 

p

ij ijs                                                       (41) 

where   is a scalar which may be considered a function of the invariant 
2J . 

The Hencky-Nadai equation (41) is similar to Prandtl-Reuss equation (16) except 

for the use of the total plastic strain 
p

ij  instead of the incremental plastic strain 

p

ijd . The important property of coaxiality between the increment of plastic strain 

p

ijd  and the total deviatoric stress ijs  in the incremental theory can be extended to 

the deformation theory. Thus, coaxiality between the total plastic strain 
p

ij  and the 

total deviatoric stress ijs  and consequently also with total stress tensor ij , can be 

stated. This because the principal axes of the stress deviator tensor S  and the total 

stress tensor σ  coincide.  

The scalar function 
2( )J  is dependent on material properties which can be 

determined by experimental uniaxial stress-strain curve and by introducing the 

definition of effective stress and effective plastic strain. By multiplying Eq. (41) by 

itself, it is: 

2p p

ij ij ij ijs s                                                  (42) 

and introducing the definition of effective stress and effective plastic strain, 

respectively, it is: 

2

3
3

2
ef ij ijJ s s     and 

2

3

p p p

ef ij ij                           (43) 

In terms of stress, in the uniaxial tension case with 0I   and 

0II III    the effective stress reduces to the stress I . In terms of strain, 

given that the first principal plastic strain is 0p

I   while the other two principal 
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strains are not zero on account of the plastic incompressibility condition, being 

them related to the first principal value by 
1

2

p p p

II III I     , the effective strain 

reduces again to the uniaxial strain 
p

I . In this manner, by combining Eqs. (42) and 

(43) after some manipulations, the proportional function   can be obtained in 

terms of effective stress and effective plastic strain: 

3

2

p

ef

ef





                                                      (44) 

Substituting the resulting function   in the Hencky-Nadai equation (41), the 

latter becomes: 

3

2

p

efp

ij ij

ef

s





                                                   (45) 

The dependence of the plastic strain on the effective values of strain and stress 

implies that a general function of stresses and strains connects the effective stress 

with the effective plastic strain: 

( )p

ef ef ef                                                  (46) 

This function is independent from the loading path and can be therefore found 

from a simple uniaxial tension or compression laboratory test.  

In the total strain expression of Eq.(40), the plastic part of the strain tensor can 

be now replaced by the Eq. (45) so that the total strain tensor can be written as the 

sum its elastic and plastic parts: 

3

2 9 2

p

ij efkk
ij ij ij

ef

s
s

G K


 


                                          (47) 

where K is the elastic bulk modulus  3 1 2K E   . Since the effective 

stress is a function of effective plastic strain as seen in Eq. (46) and   is a function 

of these two effective values as seen in Eq.(44), the Hencky-Nadai constitutive 
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relation can be rewritten in an explicit form in terms of stress and strain 

components as: 

 

 

 

1

2

1

2

1

2

p
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The concept of plastic incompressibility implies an important consequence on 

the expression of the Poisson’s ratio which, starting from his elastic value, becomes 

a function of the stress in the elastic-plastic regime until it reaches a constant value 

of 0.5 in plastic range. This is valid only for isotropic materials.  

As known, the Poisson’s ratio is linked with two other material parameters: the 

secant longitudinal modulus sE  and the secant shear modulus sG . The relationship 

between the material parameters  , sE  and sG  is: 

1 1

2 2

s
el

E

E
 

 
   

 
                                        (49) 

sE



                                                      (50) 

3 (2 1)

s
s

s

E
G

E

E




 

                                           (51) 

Therefore, once two of them are given, the third can be directly determined. 

With the respect to Eq. (47), if the elastic part of the total strain tensor is negligible 

with respect to the plastic one, the constitutive equation based on the deformation 

theory can be determined by the plastic tensor only: 
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Thus, also the previous relation between effective stress and effective plastic 

strain in Eq. (46) can be extended to encompass the whole effective strain: 

( )ef ef ef                                                  (53) 

In this manner, the explicit expression of the Hencky-Nadai constitutive relation 

in Eq. (48) can be rewritten in terms of total strain by introducing the relations 

between the material parameters  , sE  and sG  in the plastic range: 
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1.4. Other plasticity approaches 

Notwithstanding the wide adoption of the 
2J  flow and deformation plasticity 

theories in many engineering applications, it has been shown that in particular 

cases, as for instance in the plastic instability of plates and shells, both the flow and 

deformation theories present some problems in predicting correct results and more 

elaborated theories of plasticity have been proposed.  

In 1949, Batdorf and Budiansky proposed a theory of plasticity for initially 

isotropic materials in the strain-hardening range based on the concept of slip. Their 

theory was essentially based on the physical evidence that for metals plastic 

deformation occurs on certain slip lines defined by the sliding along parallel planes 

between small blocks of the metallic crystals (Figure 5). As the applied stress 

increases beyond a certain limit, the corresponding shear stress increases and 

metallic crystals begin to slip along the orientation of that shear stress. Plastic 

deformations are hence caused by slipping along the plane of the maximum shear 
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stress and the amount of slipping in that direction depends on the history of the 

corresponding component of shear stress. 

 

 

Figure 5 – The concept of slip in single crystal (schematic).(Batdorf and Budiansky, 1949) 

 

 

Figure 6 – A loading surface with a corner in stress space. 

 

The total strain increment evolves along preferential directions depending on 

the material crystalline structure and on the amount but not on the direction of the 

applied load. At the same time, the strain increment can be decomposed into an 

elastic and a plastic part. The elastic part is reversible while the plastic part that 

corresponds to the slip between two adjacent crystalline blocks (see Figure 5) 

constitutes a permanent deformation. The strain hardening is also function of the 
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direction of the slip planes and it is therefore anisotropic. In this manner, the plastic 

function cannot be associated any more with a generic yield function but it depends 

on the loading surface which is not differentiable at any point and shows corners 

due to the particular directions of slip (see Figure 6). 

Despite the fact that Batdorf and Budiansky theory is rationally based on the 

physical consideration that the slip is the principal mechanism of plastic 

deformation, the aim of the authors to give reason of several loading processes in 

plasticity resulted not entirely achieved. As demonstrated in many applications, as 

in case of circular tubes subjected to tension or torsion, the characteristic shear 

function based on the concept of slip is found to assume different and sometimes 

incorrect values in each simple loading case, so that the accuracy of the approach is 

not assured. Moreover, the slip theory involves some mathematical complexities in 

calculation that limit its application in many common cases.  

In conclusion, in spite of the sound physical formulation of the slip theory with 

respect to the flow and deformation theories of plasticity, based on simplified 

assumptions about the exact orientation of the plastic strain tensor, the slip theory 

is not easily applicable to analytical calculations. 

 

 

1.5. Experimental stress-strain curves 

As stated in Section 1.2., the first objective in the study of the elastic-plastic 

behaviour of structures is the understanding of the material response under applied 

loads. This leads to the definition of constitutive relations which must be 

determined not only in the simple case of uniaxial state of stress but also in more 

general combined stress states. Ideally, the constitutive law for any state of stress 

should be deduced from a set of experimental tests but this is not always possible 

and hence reference is often made to simple uniaxial tension or compression test 

data. However, on the basis of some general principles it is possible to generalise 

the results from uniaxial stress states to multiaxial stress states. A large amount of 

stress-strain curves are available to determine the material parameters to use in the 
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multidimensional states and many material models have been developed 

accordingly. 

One of the fundamental parameters is the elastic modulus E  given that every 

stress-strain curve begins with an elastic path governed by the Young modulus E . 

Another fundamental parameter is the yield stress 
y  which represents the limit 

value of the stress in the transition from the elastic to the plastic range. However, in 

materials such as aluminium, the passage from the linear elastic region to the 

plastic region is so gradual that the identification of the limit yield stress cannot be 

well-defined.  

In this respect, several material curves with a smooth transition between the 

elastic and plastic paths such as aluminium alloy, stainless-steel and carbon-steel 

curves are found to be accurately represented by the Ramberg-Osgood formula 

which defines the yield stress in the stress-strain plane as the intersection between 

the material curve and a line with the slope of the elastic modulus E  shifted along 

the strain axis by a specified quantity between the 0.1% and the 0.5%. Generally, 

the amount of this shift, named “yield offset”, is taken as 0.2% and the 

corresponding yield stress, or proof stress, is hence conventionally defined 
0.2% , 

that is the stress that corresponds to a strain equal to 0.2%.  

The general Ramberg-Osgood stress-strain curve is given by the equation: 

n

K
E E

 


 
   

 
                                              (55) 

in which the elastic strain is e

E


   and the plastic one is given by the term 

n

p K
E




 
  

 
. It is worth noticing that this exponential form does not provide a 

clear difference between the linear elastic region and the nonlinear plastic region, 

being the stress-strain curve nonlinear overall. This relation between stresses and 

strains is based on the three unknown parameters E, K and n derivable from the real 

stress-strain curve of the material.  
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As previously said, E is the well-known Young’s modulus of the material, 

measured in the initial phase of the loading process and is related to the tangent to 

the stress-strain curve at the origin. The other two parameters, K and n, are 

obtained by tracing two straight lines passing through the origin and intersecting 

the stress-strain curve at two points, corresponding to two fixed stress values. The 

slopes of these two lines are respectively equal to 0.7E  and 0.85E  so that the 

stress values deduced by the intersection with the material curve are respectively 

0.7E  and 0.85E  (see Figure 7). 

 

Figure 7 – Determination of K and n in the Ramberg-Osgood stress-strain curve. (Jones, 

2009) 

 

By means of simple calculations the parameters K and n are obtained and the 

stress-strain curve is effectively determined by the use of the three parameters E, 

0.7  and 0.85 . However, in practical applications it often appears preferable to 

deal with the yield strength y  rather than with the stress values 0.7  and 0.85  

so that it is convenient to express the stress-strain curve as function of the three 

parameters E, y  and n where n graphically represents the best fit to the stress-

strain curve data. (see Appendix 2). 
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By rewriting the Ramberg-Osgood formula using the three parameters E, y  

and n, the well-known stress-strain curve expression can be obtained: 
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                                         (56) 

where the yield offset is defined as 0.002 yE   and the hardening 

parameter n  is correlated with the slope of the curve with particular respect to the 

plastic range.  

 

Figure 8 - Ramberg-Osgood stress-strain curves for various strain hardening values.(Jones, 

2009) 

 

It is of interest to note that high values of the hardening parameter n correspond 

to low slopes of the stress-strain curve in the plastic range. In this respect, by 

plotting several stress-strain curves for various values of n it can be seen that as n 

gets larger, the curve approaches to the elastic-perfectly plastic behaviour (see 

Figure 8).  

As previously said, the Ramberg-Osgood curve is overall nonlinear so that no 

clear distinction exists between the elastic and the plastic ranges.  

Early, in 1939, Nadai suggested to describe the nonlinear stress-strain behaviour 

paying particular attention to the limit between the linear elastic region below the 

yield stress and the nonlinear plastic region above. With respect to this aim, he 
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proposed a material model based on four parameters and he divided the curve 

equation in two distinct laws defining the elastic and the plastic regions, 

respectively. In the elastic range the governing law is: 

E


     for   p                                           (57) 

where E  is the Young’s modulus and p  is the proportional limit.  

 

On the other hand, the plastic range is governed by the law: 
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where y  is the yield stress, y  is the strain corresponding to the yield stress 

and n  is a constant. By considering the yield strain at 0.002, the yield stress results 

to be 0.2%  and the plastic equation becomes: 
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Consequently, by virtue of Eqs. (57) and (59), the Nadai stress-strain curve 

results ruled by four parameters: the Young modulus E , the proportional stress 

p , the yield stress 0.2%  and the constant n . As a consequence of introducing 

four parameters in the stress-strain relation there is an additional complexity in 

determining the exponent n  with respect to the more straightforward procedure of 

the Ramberg-Osgood formula. Furthermore, Nadai have only displayed a series of 

material curves with various integer values of n  but he did not state whether n  

should be an integer or not.  
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In order to find the value of the exponent which best fits the real material curve, 

besides the yield point  ,y y   other two points,  2 2,   and  3 3,  , need to 

be chosen in the plastic range: 
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given that in the form of Eq.(59), the exponent n  of the Nadai stress-strain 

curve cannot be determined by direct calculations. 

 

Figure 9 - Overlap of Ramberg-Osgood and Nadai stress-strain curves for an aluminium alloy. 

 

As a matter of fact, in Figure 9 a real stress-strain curve of an aluminium alloy 

is represented by both the Ramberg-Osgood and Nadai material models. In 

particular, three Nadai curves are plotted with different values of the exponent n  

found by considering different points in the material plastic range. By this 

comparison it is evident that the accuracy of the Nadai stress-strain curve is much 

influenced by the value of the exponent n  and also that constructing the material 

curve on the basis of two separated laws does not deliver a better accuracy since 

the Ramberg-Osgood curve fits well the elastic path at the advantage of a simpler 
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formula. Therefore, the accuracy of a material model does not really depend on the 

number of parameters taken into account but on its capacity of representing the real 

stress-strain curve. It is certainly true that a well-defined elastic law distinct from 

the plastic one as in the case of the Nadai model seems more physically sound with 

respect to the Ramber-Osgood representation but, as seen in the previous example 

of the aluminium alloy, the nonlinearity of the elastic path in the Ramberg-Osgood 

case is largely acceptable also on account of the fact that for many materials a clear 

limit of the yield stress cannot be exactly defined in the real world. 

In conclusion, it can be stated that determining an universal stress-strain curve 

must be done primarily in a convenient and sufficiently representative manner 

without impairing the mathematical treatment of the problem.  

 

 

1.6. Uniaxial behaviour 

For a simple uniaxial loading path, in the deformation theory of plasticity the 

total strain is directly related to the total stress by the secant modulus 
sE  which is 

a function of the actual value of the stress and not of how it has been attained. 

Conversely, in the flow theory of plasticity the increment of elastic strain is related 

to the increment of stress through the elastic modulus E  while the increment of 

plastic strain is related to the increment of the plastic stress through the tangent 

modulus 
tE  which is a function of the actual stress.  

As such, the following incremental strain-stress relationship,  ij ij ijd d d   , 

holds in the 
2J  flow theory of plasticity: 

1 2 2

1
(1 ) ( )e p

ij ij ij ij kk ij ijd d d d d h J s dJ
E

                         (61) 

where E is the Young’s modulus,   is the Poisson’s ratio, ij
  is the Kronecker 

delta, / 3
ij ij kk ij

s      is the stress deviator and 2 / 2ij ijJ s s  is the second 

invariant of the stress deviator. The term 
1 2( )h J is a hardening parameter, which 
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can be obtained from the one-dimensional stress-strain curve,  ,d d d    , in 

terms of the tangent modulus 
tE  after some manipulations: 
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On the other hand, the following total strain-stress relationship,  ij ij ij   , 

holds in the 
2J  deformation theory: 
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where the hardening parameter 
2 2( )h J  can be obtained from the one-

dimensional stress-strain curve,    , in terms of the secant modulus 
sE : 
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The graphical meaning of tangent 
tE  and secant 

sE  moduli is shown in Figure 

10. 

 

Figure 10: Tangent, tE , and secant, sE , moduli in a simple tension test. 
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Figure 11: Unloading in the 
2J  flow theory of plasticity. 

 

The differences between the two theories of plasticity have been discussed in 

previous Sections but it is worth pointing out once again that the unloading in the 

2J  flow theory of plasticity takes place according to the initial Young’s modulus 

(see Figure 11), as it is experimentally found for most metals, while in the 
2J

deformation theory it simply follows the total strain-stress path, making this theory 

substantially equivalent to a nonlinear elastic one, so that it can be reasonably 

applied to cases of monotonic proportional loading. 
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Section 2.  

2. The “plastic buckling paradox” 
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2.1. The concept of buckling 

Buckling is physical phenomenon which involves a sudden lost in strength of a 

structure due to its lost in shape. 

Usually, this quick lost in shape involves consequently large deformations that, 

as it is generally known, are not recommendable for structural elements. 

Nevertheless, the most important state during the buckling is not the final widely 

deformed shape but the initially deformed configuration for which it is still 

possible to write equilibrium equations in order to obtain the critical load.  

There are different types of buckling, the most important for structures are 

bifurcation buckling and nonlinear collapse. Bifurcation buckling consists in 

finding a particular state in load P  and displacement  , called indeed “bifurcation 

point”, before that the structure is essentially in equilibrium in its undeformed 

shape and after that the structure changes rapidly its configuration maintaining 

equilibrium only with rapidly large displacements. The first equilibrium path 

before the buckling point is called pre-buckling path while the second equilibrium 

path after the buckling point is called post-buckling path (see Figure 12). There are 

three types of bifurcation buckling that will be described in detail later in Section 

2.2. The investigation of the bifurcation load is conducted by an eigenvalue 

analysis. 

 

Figure 12: Bifurcation buckling. 
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The concept of bifurcation buckling is however too much conceptual in fact the 

most common real buckling phenomenon in structures is the nonlinear collapse. 

Differently from the bifurcation buckling analysis, the investigation of the 

nonlinear collapse is conducted by a nonlinear stress analysis in which the slope of 

the load-displacement curve decreases by increasing the load P  until it reaches the 

critical value and the slope of the P    curve becomes zero. In this manner, the 

loading process reaches a peak in correspondence of the critical load and 

immediately after the structure continues to deform showing quickly large 

displacements (see Figure 13). 

 

Figure 13: Nonlinear collapse. 

 

Another important point is that buckling is a strongly nonlinear phenomenon, 

even for material as for geometry. This characteristic is of particular interest 

because including nonlinearities in the buckling analysis, even in bifurcation 

buckling as in nonlinear collapse, makes the investigation of the equilibrium paths 

more elaborate. From the material point of view, the nonlinearity depends on the 

nonlinearity of the stress-strain relationship of the considered material while the 

geometrical nonlinearity depends on the configurations before and during the 

loading process of the considered structural element, i.e. on the presence of some 

initial imperfections or on the second order effects, if large deformations occur. 

The effects of nonlinearities are decisive in the investigation of the critical load and 

also in the definition of the post-buckling behaviour.  
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Finally, depending on the material and the geometry of the structural element, 

elastic or plastic buckling may be exhibit. The difference between elastic and 

plastic buckling consists essentially in the region in which the buckling 

phenomenon occurs. Detailed examples and theories will be illustrated and 

discussed later in Section 2.3 and 2.4. 

 

 

2.2. Bifurcation buckling 

For a system with several degrees of freedom, classical stability analysis of a 

perfect structure develops in an eigenvalue problem that gives as a result a field of 

multipliers of the unit load where the smallest defines the bifurcation critical load 

crP . 

A simple explanation of bifurcation buckling may be provided for a perfect 

column subjected to a compressive load: the concept of bifurcation arises in the 

fact that before reaching the critical value of the applied load the column is 

essentially undeformed in bending and then, immediately after the point of the 

critical load, the structure begins to exhibit deflections.  

Stable or instable paths of equilibrium may show, depending on the possibility 

of increasing load after the bifurcation point. The Figures 14, 15 and 16 are three 

typical cases of possible load-deflection curves describing the static equilibrium 

configurations for perfect and imperfect structures. Starting from a perfect 

structure, Figure 14 displays the stable symmetric buckling where the structure is 

able to support more load than the bifurcation critical load and where it doesn’t 

follow a particular direction for the deformed shape. 
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Figure 14: Stable symmetric buckling and influence of imperfections. 

 

Conversely, Figure 15 displays the instable symmetric buckling for which after 

the bifurcation point no more increments in loading are available and the structure 

is rapidly conducted to show large deflections. 

 

Figure 15: Instable symmetric buckling and influence of imperfections. 

 

Finally, Figure 16 displays asymmetric buckling where in the post-buckling 

path the structure shows at the same time a stable behaviour for positive deflections 

and instable behaviour for negative deflections due to the asymmetry in loading 

application or in the geometry of the structure. 
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Figure 16: Asymmetric buckling and influence of imperfections. 

 

The general theory of post-buckling behaviour of structures was developed by 

Koiter during World War II and diffused later, only in 1970. He argued that the 

classical bifurcation analysis does not give any indication about the character of the 

post‐buckling behaviour or about the behaviour of imperfect structures. Thus, he  

conducted a careful investigation in the buckling of initially imperfect structures, 

finding that the presence of initial imperfections reduces significantly the critical 

load. In fact, any small increment of the applied load on the imperfect 

configuration produces non-avoidable deflections with a consequently loss in 

stiffness of the structure. Finally, the structure subjected to initial imperfections 

goes through a smoother transition between the pre-critical and the post-critical 

paths (see Figures 14, 15 and 16) so that it is not very simple to identify a clear 

bifurcation point. 

 

 

2.3. Elastic buckling 

In the elastic range, the first buckling problem investigated in the past was the 

elastic instability of columns for which Euler, in 1744, found the critical load by 

determining the value of the centred axial compressive force which caused large 

lateral deflections in a very slender column. 
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Figure 17: Critical load for a simply supported and uniformly compressed rod. 

 

He wrote a simple equilibrium equation in the deformed configuration using the 

differential equation governing the deflection of a beam and derived a simple 

formula for the critical load of a slender ideal column with simply supported ends: 

2
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l


                                                   (65) 

where 
0l  is the effective length which, in the case of a simply supported rod, is 

equivalent to the total length L  (Figure 17). In stresses terms, with respect to the 

cross section area, the critical load can be written as: 
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where the slenderness ratio 0l   is introduced. Particularizing the critical 

load in Eq. (66) for a rectangular cross section with dimensions b h  , it is: 

2 2

2

012
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Eb

l


                                                   (67) 

Successively, the Euler formula was modified to describe different cross 

sections and boundary conditions and later, in 1890, the elastic buckling problem 

was extended also to the instability of plates, with reference to Bryan energy 

approach.  



59 

 

 

Figure 18: Plate subjected to in-plane compressive loading. (Singer, Arbocz and Weller, 1998) 

 

Bryan investigated the elastic buckling of a supported rectangular plate 

subjected to a compressive load in its own plane (Figure 18). He described a 

displacement field normal to the middle surface of the plate that satisfies the 

boundary conditions. His work arose to the conclusion that the equilibrium stability 

of a given configuration depends on the total potential energy which must be 

minimum in that configuration. The critical compressive load for the rectangular 

plate was found to be: 
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2 212 (1 )
cr

Eh

a


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



                                            (68) 

Comparing the two expressions of the critical load for the column and the plate, 

it may be seen that replacing in the column equation (67) E  by 
2(1 )E   the 

plate formula (68) results. The greater stiffness against bending in the plate is thus 

caused by biaxial stresses, identified in the 2(1 ) term. 

Despite the fact that Bryan findings have become the foundations of the general 

theory of the stability of equilibrium for many years, his research includes some 

limitations. One was highlighted by Southwell in 1913: he showed that Bryan got 

to the conclusion that instability is possible only in the case of thin rods, plates and 

shells when no distortions are considered in the extension of the central line or 

middle surface of the plate. To remedy this limitations, Southwell proposed a 

general equation of elastic stability which is called “Equation of Neutral 

Equilibrium” which expresses that it may be equilibrium for a given configuration 

of slight distortion from the initial position. This equation is generally applicable to 

both materials of indefinite and finite strength taking as important advantage the 
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accuracy to follow the actual stress history in a structure which fails by instability 

under a gradually increasing stress. 

The phenomenon of lateral buckling of compressed bodies illustrated by these 

authors is only a particular case of e1astic instability. As it may be seen in the 

modern design of bridges, ships and aircraft there are a large variety of stability 

problems that includes torsional, flexural and local buckling. A simplest case is, 

indeed, the instability of columns with composed cross sections, i.e. cruciform 

columns that, if subjected to an axial compressive stress, show torsional buckling 

due to their low torsional stiffness. This simple example will be discussed later, in 

Section 2.5, in order to describe the “plastic buckling paradox”. 

 

 

2.4. Plastic buckling 

The buckling is one of the principal causes of collapse for plates and shells and, 

depending on the material and on the geometry of the element, elastic or plastic 

buckling may occur. For these kind of structures, the elastic buckling usually 

occurs quickly and catastrophically while the plastic buckling is generally a 

sequence of degenerating processes. The phenomenon of plastic buckling was 

firstly shown by thick cylindrical shells subjected to an axial compressive load. 

Bushnell, in 1982, examined the behaviour of thick cylindrical shells under axial 

compressive load during the loading process and he found that they firstly attain a 

critical state in which they deform axis-symmetrically and then, with no other 

increments in load, they meet the bifurcation point from which they start to deform 

non-axis-symmetrically showing more post-buckling paths (see Figure 19). 
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Figure 19: Plastic buckling of a cylindrical shell subjected to axial compression. 

 

Since it is difficult to keep an eye on all the relevant literature about the plastic 

buckling of bars, plates and shells because of the its fast and large development in 

years, only some of the important authors and publications involved in the field are 

briefly reported. 

In order to appreciate the principal differences between elastic and plastic 

buckling in detail it may be useful to recall the simplest case of Euler rod subjected 

to a compressive load. By virtue of the Eq. (66), a hyperbole can be plotted in the

   plane (see Figure 20) and from this representation it is possible to identify a 

limit value of slenderness ratio, 
0 0E   , for which the structure shows 

instability in elastic range. In fact, above the limit of slenderness 0 , the rod is 

considered slender and shows buckling in the elastic region with the corresponding 

critical load obtained from the Euler formula (65). Conversely, under the limit of 

slenderness 0 , the rod is considered stocky and shows buckling in the plastic 

range, i.e. the stresses exceed the elastic limit stress 
0  so that the material have 

no more a linear behaviour and the critical load depends on the tangent modulus 

tE  (see Figure 10 in Section 1.6). 



62 

 

 

Figure 20: Euler’s curve of instability. 

 

The dependence of the critical load on the tangent modulus was discussed 

firstly in 1889 by Engesser who provided a simple formula for the plastic buckling 

of a compressed column replacing the elastic modulus E  by the tangent modulus 

tE  in the Euler column formula: 
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He considered a perfect straight column also during the loading process and 

assumed that the axial strain increases everywhere with no strain reversal during 

buckling. Up to the critical load the column slightly deflects from the straight 

configuration of equilibrium. The bending stresses corresponding to these small 

deflections cause a slightly increase in the total compressive stress on the concave 

side of the column and a slightly decrease in the compressive stress on the convex 

side. The neutral axis coincides with the centroidal axis of the column so that 

bending stresses vary linearly across the whole section.  

The tangent modulus theory is very easy to apply and it seems to work well 

with respect to some experimental results but it tends to underestimate the strength 

of the column since on the concave side of the column the stress exceeds the 

proportional limit while on the convex side it is still below it.  
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Furthermore, he simplified the inelastic buckling using only one value of the 

tangent modulus where, in reality, it depends on the stress which is a function of 

the bending moment that varies with the column deflection. 

Many authors, included Engesser himself in 1898, proposed corrections to the 

tangent modulus theory by introducing the reduced modulus (or double modulus) 

that is a function of the elastic and the tangent moduli and is affected by the shape 

of the cross section. Among these proposals, finally in 1910 von Kármán presented 

the reduced modulus theory for a rectangular cross section assuming that, once 

attained the critical stress, the column starts to bend causing a decrease in strain on 

one side and an increase on the other one. In this manner, for the increasing strains 

the resulting stresses are given by the tangent modulus while for the decreasing 

strains the elastic modulus gives the relation between strain and stress so that the 

effective modulus all over the column lies between these two moduli in average. 

The elastic modulus E  in the Euler column formula is thus replaced by the von 

Kármán reduced modulus rE , so that the critical load takes the form: 
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The reduced modulus theory was accepted to be the exact theory for estimate 

the inelastic buckling of a perfect column. Nevertheless, experimental data showed 

that the critical load was generally closer to the tangent modulus one than to the 

reduced modulus one.  

In 1946 Shanley investigated again the inelastic buckling of columns by 

conducting experiments on small aluminium columns and found some paradoxes in 

the reduced modulus theory. In particular, he opened a question about the von 

Kármán assumption that the column remains straight up to the critical load and in 

the meantime some strain reversal should be needed in order to provide the 

additional column stiffness required above the tangent modulus load. It is an 

evident paradox in that it is impossible to have strain reversal in a straight column.  
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Starting from that point, Shanley considered a discrete model of a rigid column 

with two degrees of freedom supported by two elastic-plastic springs at the bottom 

and subjected to an axial compressive force at the top. He concluded that the 

inelastic buckling of a column may be reviewed on the basis that bending proceeds 

simultaneously with increasing axial load. Consequently, his work led to a new 

column formula that includes both the tangent modulus and the reduced modulus 

formulas. It was shown that bending starts at the tangent modulus load and that the 

column load increases with increasing lateral deflection, approaching the reduced 

modulus load as an asymptotic limit if the tangent modulus is assumed to remain 

constant (Figure 21).  

 

Figure 21: Shanley approach to inelastic column buckling. 

 

The fact that bending proceeds simultaneously with increasing axial load attains 

particular interest in the case of an imperfect column. As back as 1886, it was 

described by Ayrton and Perry who analysed a centrally loaded and simply 

supported column with a small initial curvature. As expected, they found that if the 

column has an initial curvature of sinusoidal shape giving origin to a small 

displacement v  at the middle section of the column, for any increment of the axial 

load the deflection also increases and the critical stress is given by the axial stress 

together with a bending stress produced by the axial force on account of the 

deflection ( v v  ).  
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In this manner, they found a quadratic equation for the critical stress depending 

on the Eulerian critical load eul , as expressed in Eq.(66), on the elastic limit stress 

of the material 0  and on the slenderness ratio  : 
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On the basis of these important contributes, Timoshenko and Gere in 1963 

extended the concept of buckling to many engineering problems, i.e. torsional 

buckling, buckling of frames, curved bars or arches and also to more complex 

structures as thin plates and shells. Later, in 1974, Hutchinson studied post‐

buckling behaviour of a large amount of plates and shells, highlighting important 

aspects about imperfection sensitivity in plastic buckling. He firstly investigated 

post‐buckling behaviour of a simple discrete model, similar to Shanley’s model for 

plastic buckling of column and then he examined a simple continuous model to 

bring out some aspects of the behaviour of continuous solids.  

 

 

2.5. The “plastic buckling paradox” 

The linear and nonlinear theories of elastic buckling have been thoroughly 

investigated in years and they have almost totally been completed so that the 

research about the buckling of structures directs on the plastic buckling and it is 

still ongoing in order to examine the motives of the diffuse paradox of plastic 

buckling. 

The plastic buckling paradox shows that in the plastic buckling analysis the 
2J  

flow theory of plasticity seems to bring to a significantly overestimation of the 

critical buckling load while the 
2J  deformation theory of plasticity seems to obtain 

more accurate results respect to the experimental data. The paradox insists due to 

the theoretical and physical differences between the two theories of plasticity (see 

Table 1) which should favour the use of flow theory of plasticity in practical 

applications. 
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Flow theory of plasticity Deformation theory of plasticity 

Dependence on the second invariant of 

stress deviator (J2) 

Dependence on the second invariant of 

stress deviator (J2) 

Incremental expression of the plastic 

strain 

Total expression of the plastic strain 

Dependence on the loading path  Independence on the loading path 

Elastic unloading with residual 

deformations (irreversibility of plastic 

deformation) 

Absence of residual deformations 

(nonlinear elastic behaviour) 

Physical representation of the 

experimental loading and unloading 

behaviour of uniaxial tests 

Best correspondence with the 

experimental data in many plastic buckling 

problems 

Complexity in calculations Simplicity in calculations 

Wide applicability (step-by-step 

analysis) 

Applicability in case of proportional or 

radial loading 

Table 1 – Difference between flow and deformation theories of plasticity and the plastic buckling 

paradox. 

 

The plastic buckling paradox firstly showed during investigations into the 

plastic buckling of flat plates subjected to uniform stresses. Since the 1940s, the 

critical load of a simply supported flat plate of infinite length has been obtained by 

using the 
2J  flow theory of plasticity that is mathematically and physically more 

rigorous. However, in 1949, Bijlaard and Stowell, solved the same problem by 

using the 
2J  deformation theory of plasticity that is commonly valid under the 

condition of proportional loading, and found an unexpected result: the critical load 

calculated with the deformation theory was in a very good agreement with the 

experimental evidence while that obtained by the flow theory tended to 

overestimate. 

To completely understand this phenomenon, the applicability of the two 

theories of plasticity was further investigated in a large number of experiments. 
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a)                                                   b)  

Figure 22: Onat and Drucker model (1953). a) simplified geometrical model. b) simplified 

material model. 

 

In the 1953, Onat and Drucker found the paradox in the case of axially 

compressed cruciform column showing a torsional buckling. The critical 

compressive stress predicted by deformation theory was in better agreement with 

the experimental results than that predicted by the flow theory. The reasons for this 

discrepancy were found in the high value of the shear modulus in the flow theory 

formula. The solution was investigated by conducting an approximate analysis 

(Figure 22) in which small initial imperfections were taken into account. In this 

manner, assuming that there existed a very small imperfection in the column, the 

critical buckling load predicted by the flow theory was found to be reduced 

significantly, getting itself close to that predicted by the deformation theory. In any 

real structure, small initial imperfections can be observed thus the Onat and 

Drucker interpretation seems to be acceptable and was also supported by further 

theoretical studies and practical applications. Nevertheless, due to the imperfection 

sensitivity of the shear modulus in the flow theory formulation, the deformation 

theory remained to be suggested for practical applications. 

The plastic buckling paradox of plates continued to be investigated from both 

analytical and numerical points of view. In 1974, Hutchinson and Budiansky 

pointed out a query about Onat and Drucker findings inquiring how and when it 

was possible for an unavoidable small imperfection to have a very large influence 

on the plastic buckling of a cruciform column. They gave an important contribution 

as they found that the effect of small imperfections depends on material properties: 

for different values of strain hardening the critical load becomes a function of the 
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imperfection amplitude. In particular, if the strain hardening of the material is 

sufficiently low ( n  is high, in the Ramberg-Osgood tensile relation, see Appendix 

2), the numerical analysis confirms that in the use of the 
2J  flow theory of 

plasticity the initial imperfections are effectively small and then unavoidable. 

However, when the strain hardening is high ( n  is low) the range of imperfections 

cannot necessarily be considered unavoidable (see Figure 23) so that it gave a 

limitation in the previous results.  

 

Figure 23: Hutchinson and Budiansky numerical results for critical load as a function of 

imperfection amplitude (1976). 

 

Since the 1960s, the plastic buckling paradox also showed in the inelastic 

instability of cylindrical shells subjected to axial compression and, in the light of 

the latter findings, the effect of initial imperfections was also investigate. 

 

Figure 24: Modes of buckling of Lee’s tests (1962). 
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In 1962, Lee conducted an analytical and experimental study concerning the 

plastic buckling of ten initially imperfect cylindrical shells of aluminium alloy 

3003-0 subjected to an axial compressive stress (Figure 24). From the comparison 

between the theoretical and the experimental results he found that the deformation 

theory of plasticity provides a moderately accurate prediction of the buckling 

strength but fails to describe correctly the post-buckling behaviour, while the 

incremental theory leads to an overestimation of buckling strength, even though 

initial imperfections are taken into account. He proposed a procedure to determine 

the effect of initial imperfections on the buckling mode and on the critical stress 

using Donnell’s equations and the principle of virtual work but he substantially 

concluded that the paradox remained to be solved. 

 

Figure 25: Batterman hinge model for cylindrical shells (1965). 

 

In 1965, Batterman conducted analytical and experimental analyses on thirty 

cylindrical shells of aluminium 2024-T4 with different radius to thickness and 

length to radius ratios. He confirmed that it is necessary to include initial 

imperfections in the analysis in order to avoid the paradox but at the same time he 

argued that more attention has to be given to the nonlinearity of the material and to 

the effect of unloading. This was highlighted with reference to Shanley’s concept 

of considering the growth of imperfections during the loading process until the 

critical load is attained. In this light, Batterman proposed a hinge model to 

investigate the effects of unloading (see Figure 25) and he found that the flow 

theory gives results very close to deformation theory. Finally, the incremental 
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theory was found to predict both the buckling strength and the geometry of 

buckling for thick or moderately thick shells in a good manner. 

Later, starting from 1982, Bushnell proposed a strategy to eliminate much of the 

discrepancies between flow and deformation theories in many buckling problems 

and wrote some comments and suggestions about nonlinear collapse, bifurcation 

buckling and about a combination of these modes in order to avoid unexpected 

catastrophic collapse of structures composed by thin shells. He guided for years 

engineers to produce an efficient design of practical shell structures giving several 

examples and at the same time giving the basis for the determination of the 

buckling behaviour and of the imperfection sensitivity. Numerically, he gave a 

fundamental contribution with the code BOSOR5, a computer software able to 

predict the buckling of elastic-plastic complex shells of revolution including large 

deflections and creep. 

After many practical and physical approaches, starting from the 1990s, 

analytical investigations were conducted in order to confirm theoretically the 

experimental findings. In 1992, Ore and Durban studied the buckling of axially 

compressed cylindrical shells in the plastic range for various boundary conditions. 

Unfortunately, they found that the analytical flow theory model overestimates the 

buckling compressive stress while the deformation theory predicts results very 

close to the measured test values. In the wake of Hutchinson and Budiansky 

observations, they also discovered that the strain hardening of the material was 

influent in the differences between the two theories in the way that the 

discrepancies reduce with increasing of the strain hardening parameter.  

In 1999, Mao and Lu analysed the plastic buckling of cylindrical shells 

subjected to axial compression, comparing the theoretical results with the 

experimental ones obtained by Lee in 1962. The results were again in favour of 

deformation theory as the predicted critical stress was in good agreement with the 

experimental value while the flow theory tended to exceed in the buckling load. 
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The plastic buckling of cylindrical shells under an axial compressive stress was 

largely investigated in years and, as seen in Batterman or Bushnell works, some 

obtained results were of particular engineering interest. However, the plastic 

buckling paradox shows not only in the simple case of axial compression. In fact, it 

can be observed also with different loading conditions, i.e. in case of 

nonproportional loading. It is true that there are many interpretations of 

nonproportional loading but in the study of plastic buckling of cylindrical shells a 

simple nonproportional loading condition was frequently found in practical 

applications as the combination of axial tension and external pressure (considering 

for instance underwater or buried pipelines used to transport fluids). 

At first, in 1988, Giezen investigated the plastic buckling paradox of cylindrical 

shells subjected to nonproportional loading in his thesis and concluded that, if 

reversing the loading path, the flow theory fails to predict buckling while the 

deformation theory summarily displays the same trend of the test results. Later, in 

1991, Giezen et al. extended his early findings conducting experimental and 

numerical analyses on cylindrical shells subjected to combined axial tension and 

external pressure. For the investigation they chose two sets of specimens (Set A 

and Set B) of aluminium alloy 6061‐T4 with length to diameter ratio equal to one. 

The condition of nonproportional loading were studied considering two different 

loading process: in the first, the axial tensile load was maintained constant and the 

external pressure increased while in the second one, the external pressure was 

maintained constant and the axial tensile load increased. As a result, considering 

the case of constant axial tension and increasing external pressure, the experiments 

showed that the axial tension reduces the strength of the cylinder moving the 

material in the plastic range, so that less external pressure is required to cause 

buckling. Conversely, from the numerical analyses conducted by the use of 

BOSOR5 computer program, the flow theory exhibits an increase in the external 

buckling pressure due to the axial tension and the deformation theory in some cases 

results to quite under-estimate the buckling pressure. In conclusion, Giezen et al. 

stated that both flow and deformation theories fail to predict the buckling load in 

case of nonproportional loading (see Figure 26). 
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Figure 26: Numerical and experimental results fo. specimens (Set A). (Giezen, Babcock and 

Singer, 1991) 

 

Moved from the Giezen et al. conclusions, Blachut et al. in 1996 thoroughly 

investigated the plastic buckling paradox for cylindrical shells under the same 

condition of nonproportional loading, i.e. axial tension combined with external 

pressure. They carried out numerical calculations employing the BOSOR5 program 

and conducted several experiments on a large amount of specimens with different 

material and geometrical characteristics. They tested thirty cylinders of mild-steel 

with length to diameter ratio of about 1, 1.5 and 2. As a matter of fact, it was 

noticed that the ratio /L D  governs the accordance between the critical loads 

predicted by flow and deformation theories. In fact, the results showed that for 

/ 1L D   the two theories coincide only for pure radial loading (sole external 

pressure) or with a negligible axial tension while in the other cases with increasing 

axial tension the flow theory tends to fail in predicting the critical load and the 

deformation theory is closer to the experimental value (Figure 27).  
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Figure 27:Theoretical and experimental results for L/D = 1 cylinders. (Blachut, Galletly and 

James, 1996) 

 

On the other hand, for /L D  from 1.5 to 2, flow and deformation theories are in 

a very good agreement together, depending on the amount of the axial tension 

applied. In any case, deformation theory results to agree reasonably well with the 

experimental evidence and moreover, differently from Giezen et al. findings, 

deformation theory predicts that, with increasing axial tension, the external 

pressure at which buckling occurs decreases, that is what observed in the 

experimental tests. Finally, another important point highlighted by Blachut et al. 

was the strong connection between the critical load and the number of waves in the 

buckling configuration. Indeed, they found numerically and confirmed 

experimentally that the critical load corresponds to the buckled configuration with 

the lowest number of circumferential waves. 
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The plastic buckling paradox for cylindrical shells thus resulted to be still 

unresolved and in years several experiments were conducted and many approaches 

proposed to archive the problem in all its shades. Between the experimental 

analyses, it may be recalled the contemporary work of Bardi and Kyriakides, in 

2006, where they investigated the buckling of cylindrical shells due to axial 

compression. They designed and machined fifteen cylinders of stainless steel SAF 

2507 with diameter to thickness ratio from 23 to 52. The result brought to a 

substantial confirm of Bushnell explanation about the evolution of plastic buckling 

for cylindrical shells: the first instability path causes axial axisymmetric mode of 

wrinkling (see Figure 28) and subsequently for some combinations the wrinkles 

amplify changing to a non-axisymmetric mode before the critical load is attained. 

The mode of wrinkling is by two or three circumferential waves and, with the 

gradual amplification of the wrinkles, the stiffness of the structure quietly reduces. 

Upon the critical load, phenomena of local collapse appears due to large 

deformations. In order to predict the beginning of buckling, a bifurcation analysis 

was conducted using the 
2J  deformation theory of plasticity and by comparing the 

analytical and experimental results the authors found that the deformation critical 

stress was very close to the experimental one but at the same time the theory tends 

to overestimate the wrinkle wavelength. 

 

 

Figure 28:Axisymmetric mode of wrinkling observed by Bardi and Kyriakides (2006). 
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From a numerical and theoretical point of view, Shamass et al. in 2014 

investigated the plastic buckling paradox of cylindrical shells subjected to axial 

compression and also, in 2015, subjected to axial tension plus external pressure. 

They contribution sheds a light on the plastic buckling paradox with respect to the 

common engineering practise of conducting nonlinear buckling analyses by the use 

of finite element models. In fact, in the case of simple axial loading they found 

that, contrary to previous statements, by employing a geometrically nonlinear finite 

element formulation and by choosing opportunely the constitutive laws, a 

satisfying concordance may be found between the experimental evidence and the 

numerical results obtained by the use of flow theory of plasticity (Figure 29).  

 

Figure 29:Results of axially compressed imperfect cylinders. (Shamass, Alfano and 

Guarracino, 2014). 

 

Afterwards, in the case of nonproportional loading, they showed that the roots 

of the discrepancy between the two theories of plasticity resides in the harmonic 

buckling shapes assumed in the circumferential direction. As a matter of fact, the 

kinematic rigour of the incremental theory leads to an overestimation of the critical 

load while the more flexibility of the kinematic imposed by the deformation theory 

counterbalances the excessive stiffness, predicting critical loads more in 

accordance with the test values.  
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2.6. Open issues in the investigation of the plastic buckling 

paradox 

In the previous Section 2.4 and 2.5, several examples of theories and 

applications about the plastic buckling of plates and shells have been presented. 

The plastic buckling paradox was found in many fields and, in particular, the 

simple case of the cruciform column and the case of cylindrical shells subjected to 

axial compressive load or nonproportional loading have been reported.  

In any investigation, the authors highlighted the possible causes of the paradox 

and found their own solution to the problem, depending on the material, the 

geometry and the boundary conditions of the analysed structures. However, most 

of the time, open issues have persisted about these main topics: the imperfection 

sensitivity, the influence of the material curve, the applicability of the theories for 

different loading conditions and finally the numerical resolution by the use of finite 

element models. 

About the imperfection sensitivity, since first studies about the paradox in 

plates, it was supposed that the presence of a small initial imperfection, which 

implies the presence of a shear stress, may be sufficient to reduce the shear 

stiffness modulus in the flow theory of plasticity leading to results more in 

accordance with the deformation theory ones and the experimental evidence (Onat 

and Drucker). Nevertheless, in several cases it was seen that imperfection 

amplitudes have to be considerable and thus no more compatible with those 

experimentally measured (Gerard and Becker, Hutchinson and Budiansky) so that 

there is still a difficulty in determining the magnitude of initial imperfection to take 

into account. 

The imperfection sensitivity is strictly connected with the second open topic 

that is the influence of the material curve. In fact, as noticed by Hutchinson and 

Budiansky, when the strain hardening parameter of the material is high ( n  is low, 

in the Ramberg-Osgood tensile relation, see Appendix 2) the level of initial 

imperfection cannot be considered unavoidable. In this manner, the material curve 

assume an important role in the resolution of the problem. 
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Moreover, in the investigation of the plastic buckling for shells, it can be seen 

that there are different loading conditions under which the plastic buckling paradox 

occurs and it is not always possible to obtain reasonable results neither by the use 

of the flow theory and of the deformation theory of plasticity. Indeed, in case of 

nonproportional loading both the two theories fail to predict the critical load, as for 

instance in the condition of combined axial tension and external pressure 

investigated by Giezen and Blachut. 

However, with the contemporary largely diffusion of powerful computational 

instruments able to conduct incremental analyses in the plastic range by the use of 

the Finite Elements, the discrepancy between flow and deformation theories has 

been reduced and many paradoxes have been resolved. But a doubt still remains: 

can a modern incremental analysis naturally avoid the plastic buckling paradox? Is 

that sufficient? 

In the light of these open issues, the objectives in the study of the plastic 

buckling paradox for plates and shells remain: 

• to introduce an initial imperfection in analytical and numerical flow and 

deformation models for the simple case of a cruciform column 

subjected to axial compression. The aim is to understand the effects of 

initial imperfections on the occurrence of the paradox depending on 

their amplitudes; 

• to compare and validate the findings from the previous objective (the 

investigation of the cruciform column) for different material curves 

which show low and high strain hardening parameters; 

• to thoroughly investigate the case of nonproportional loading in the 

plastic buckling of cylindrical shells in order to achieve a great 

correspondence between the flow theory and the deformation theory of 

plasticity and the experimental evidence; 

• to evaluate the results obtained by conducting numerical analysis 

on cylindrical shells subjected to nonproportional loading using finite 

element models in order to demonstrate whether or not an incremental 

nonlinear numerical analysis is sufficient to avoid the plastic buckling 

paradox.  
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Section 3. 

3. Plastic buckling of a cruciform column  
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3.1. Historical background 

Inelastic stability of structures has been the focus of many controversies since 

the end of the nineteenth century. In fact, as back as 1889, Engesser suggested the 

use of a variable tangent modulus into the classic Euler’s equation for the study of 

the stability of a simple metal column in the plastic range. Two years later 

Considère indicated that a correct stability analysis in the plastic range would 

require the concept of strain reversal on one side of the bent section. As a result of 

this observation, Engesser in 1895 presented the reduced modulus theory. In the 

following years many carefully conducted column tests on both mild steel and 

aluminium alloys columns showed that the difference between the tangent modulus 

and reduced modulus theory is depending on the stress-strain curves for the 

materials and it was found that the results from experiments on aluminium alloy 

columns were generally in better accordance with the tangent modulus theory. 

Moreover, earlier in 1886 Ayrton and Perry had analysed the effect of initial 

imperfections and found that for a simply supported column with a small initial 

deflection, for any increment of the axial load the critical stress was given by the 

axial stress together with a bending stress due to the moment produced by the axial 

force on account of the increased deflection. On these bases in 1947 Shanley re-

examined the basic assumptions of the analysis of the stability of columns in the 

plastic range and suggested that, if axial and bending straining proceed 

simultaneously at the buckling load, as it is the case even for a minimum level of 

imperfection, the tangent-modulus equation should be used as a basis for 

determining the buckling strength of members in the inelastic range. As a result, 

most of the work done thereafter in the inelastic stability of compressed metal 

struts has made reference to the Shanley’s concept that axial straining and bending 

proceed simultaneously and the tangent-modulus theory has been seen as providing 

the critical stress of a strut with vanishingly small initial imperfections.  

However, inelastic buckling is a complex phenomenon which occurs not only in 

simply compressed columns, but also in a variety of other structures such as plates, 

cylinders, torispherical domes and many others. Since buckling is a non-linear 

problem from both a geometrical and a material point of view, the material non-

linearity requires the definition of appropriate strain-stress relationships, which for 

many cases of structural interest go beyond the results of a simple tensile test.  
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In general, based on whether path-dependence is accounted for or not, the 

plasticity models that have been proposed for metals in the strain hardening range 

can be divided into two main groups: the deformation and the flow theories of 

plasticity. In both of these theories the plastic deformations do not allow volume 

changes as plastic yielding is ruled by the second invariant of the deviatoric part of 

the stress tensor and in this respect they are both called 2J  theories of plasticity. 

The difference lays in the fact that the deformation theory of plasticity is based on 

the assumption that for continued loading the state of stress is uniquely determined 

by the state of strain and, therefore, it is essentially a special path-independent non-

linear constitutive law, while the flow theory of plasticity assumes that an 

infinitesimal increment of strain is determined by the current stress and its 

increment. This leads to a path-dependent relationship in which the current strain 

depends not only on the value of the current total stress but also on how the actual 

stress value has been reached. 

Notwithstanding the fact that there is a general agreement that the deformation 

theory of plasticity lacks physical rigour in comparison to the flow theory, the use 

of the deformation theory has been repeatedly reported to predict buckling loads 

that are in better agreement with the experimental results. This fact has become 

known in literature as the “plastic buckling paradox” and examined in a number of 

works and books in the past decades too abundant to be cited (see, for example 

Hutchinson, Lubliner or Bazant and Cedolin). It suffices to say that in the early and 

mid-90s, the plastic buckling paradox was considered still unresolved, for example, 

by Tuğcu and proposed explanations were judged still inconclusive by Teng who 

once again confirmed the better agreement between deformation theory and 

experiment. 

Lately in a series of works on the plastic buckling of cylindrical shells Shamass 

et al. have shown that the results of geometrically nonlinear finite element analyses 

using flow theory with an associated flow rule are unaffected by the plastic 

buckling paradox, while a number of other analytical and numerical approaches are 

sensible to it. Their conclusion has been that there is actually no buckling paradox 

but, depending on the particular methodology, some inconsistencies might appear 

in the results. 
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In the light of these results and in order to investigate the roots of the plastic 

buckling paradox here reference is made to what is generally considered the 

simplest example of the discrepancy between the flow and deformation theory of 

plasticity, that is the torsional buckling of a cruciform column. This problem has 

been examined, among the others, by Cicala, Onat and Drucker, Hutchinson and 

Budiansky, Tuğcu and, very recently, by Becque. Cicala first and Onat and 

Drucker successively suggested that the plastic buckling paradox can be avoided 

by incorporating imperfections into the model since inevitable imperfections 

reduce the buckling load by the flow theory to levels close to those predicted by the 

deformation theory. Hutchinson and Budiansky confirmed this finding for low 

strain-hardening metals but found that for metals with significant strain-hardening 

the imperfections have to be of considerable magnitude in order to reduce the 

buckling load provided by the flow theory. In general, most of the published work 

has aimed, by various means, to reduce the shear modulus from the flow theory 

computations below its elastic value. In this respect Becque has proposed to 

circumvent the problem by apparently considering a perfectly straight column 

without initial imperfections but developing a relationship between shear stress and 

shear strain increments at the onset of buckling. In this manner he applied the 

plastic flow rule to an infinitesimal solid element in its deformed shape. As a 

matter of fact this approach makes reference to a configuration which is slightly 

past the buckling point and thus incorporates the deviation from the straight 

configuration to reduce the shear modulus of the flow theory. 

In Section 3 an accurate analysis of the torsional buckling of a cruciform 

column is presented on the basis of the classic formulation of the flow and 

deformation theory of plasticity and it is shown that in order to overcome this 

apparent conundrum it is not only necessary to consider an imperfect column, as 

generally suggested in the past, but principally to account correctly for the effects 

of the imperfection up to the point where the critical load is attained. In such 

manner a very good agreement between the results from the flow theory of 

plasticity and other analytical and experimental results can be obtained also for 

metals with significant strain-hardening without the necessity of making reference 

to imperfections of significant magnitude. 
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In fact it is proven that, by properly computing the effects of imperfections until 

the critical load is attained, the flow theory of plasticity is capable of attaining a 

very good agreement with both the results from the deformation theory and from 

experiments. A new approach for the evaluation of the critical load according to the 

flow theory of plasticity is presented in detail. 

Finally, an analysis of the effects of employing different stress-strain curves is 

carried out and the physical implications underlying the use of the flow and 

deformation theory of plasticity are discussed with particular attention to the 

variation in the shear modulus. 

 

 

3.2. Torsional buckling: canonic results 

It is known that doubly symmetric sections with low torsional rigidity may 

experience a pure torsional buckling mode. This is the case of a cruciform column 

which, for a certain range of dimensions, tends to buckle in the torsion mode under 

axial compression, as shown in Figure 30. 

 

Figure 30: Torsional buckling of a cruciform column. 
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In the torsion mode the flanges of the cruciform column show twisting in 

addition to compression and change from simple compression to a combination of 

compression and shear. When the applied load exceeds the yield load, the twisted 

structure remains in the plastic state in the whole cross-section. This problem was 

originally studied by Stowell and, as said before, is one of the simplest examples of 

the problems of the 
2J  flow theory in predicting buckling loads of perfect 

structures, that is of the plastic buckling paradox. 

In the elastic range the critical stress, i.e. the value of the axial stress at which 

the torsional buckling takes place is: 

2

2cr

h
G

b
                                                    (72) 

where G is the elastic shear modulus: 

2(1 )

E
G





                                                 (73) 

and h and b are shown in Figure 31. 

 

Figure 31: Cross section of a cruciform column. 

 

In the plastic range, according to the classic 
2J  flow theory of plasticity, Eq. 

(73) still holds true on account of the smooth yield surface, which makes the 
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increments in the components of shear stress and strain related, following uniaxial 

compression, by the elastic shear modulus. In fact, from Eq. (61), determining the 

shear strain where the Kronecker delta is zero and where the hardening parameter 

1h  vanishes because of the void value of 
ijs , it is: 

2
2 (1 )ij ij kk ijd d d d

E
          1 2 2( ) ijh J s dJ 

 
             (74) 

and, being 
ijd d  , it follows: 

 2 1

d E
G

d



 
 


                                       (75) 

that is Eq. (73). 

On the other hand, in the case of the deformation theory of plasticity, the shear 

modulus following uniaxial compression can be derived from Eq. (63) as follows: 

2
2 (1 )ij kk iij j

E
         2 2( ) ijh J s 

 
                     (76) 

and, being 
ij  , by virtue of Eq. (64) it is: 

3 (2 1)

s
s

s

E
G

E

E



 

 

 
                                       (77) 

The critical stress hence results: 

2

2cr s

h
G

b
                                                    (78) 

From these simple formulae it results evident that the critical load from the flow 

theory of plasticity does not account for the fact the column has attained the plastic 

status and provides the same result as the strut had remained in the elastic range, 

differently from the otherwise less physical sound deformation theory of plasticity. 

In fact, for a perfect straight column at the instant of buckling, shearing stress   

and shearing strain   are added to the existing state of simple compression at the 

point P of the yielding curve  , 0f     but according to the flow theory and its 
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associated rule the normal to the loading surface and therefore the plastic strain 

increment vector points along the negative    axis (see Figure 32). 

 

Figure 32: Strain increment for a perfect column according to the flow theory of plasticity. 

 

As pointed out by Onat and Drucker, this means that all the associated 

incremental theories of plasticity which do not have a corner at P predict, 

according to Eq. (61), a purely elastic response to a shearing stress increment from 

point P.  

This problem could be overcome by making reference to the slip theory by 

Batdorf and Budiansky, which predicts a vertex in the yield surface at the current 

stress point. However, the rationale of the present investigation is to show how the 

paradox does not take place by correctly accounting for the presence of small, 

unavoidable imperfections in the spirit of Shanley’s approach and in the framework 

of the classic formulae of 2J  plasticity only. This route has been followed to some 

extent by Cicala, Onat and Drucker and Hutchinson and Budiansky, among the 

others, who all pointed out that, in order to avoid the overestimation of the shear 

stiffness of a compressed cruciform column given by the 2J  flow theory of 

plasticity, the introduction of an imperfection could help to obtain less inaccurate 

results.  
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However, in the case of the flow theory of plasticity these studies does not seem 

to have managed to calculate precisely the effects of the imperfection up to the 

point where the limit load is attained and have thus concluded that for materials 

with significant strain hardening the imperfections have to be of significant 

magnitude to reduce conveniently the buckling load. 

 

 

3.3. A procedure for the evaluation of the critical load 

according to the flow theory of plasticity 

The analytical procedure which will be developed in the present Section is 

intended to show that the observation by Shamass et al. that the results of 

incremental non-linear finite element analyses using flow theory with an associated 

flow rule are unaffected by the plastic buckling paradox, can be justified on the 

basis of straightforward equations in the case of a simple example like the one of a 

cruciform column. 

Since an incremental approach naturally remedies the problem, it is natural to 

speculate that the difficulty in estimating the influence of small, unavoidable, 

imperfections lies in the procedure used to evaluate the actual state of stress in the 

vicinity of buckling. In fact, while on one hand the presence of a small shear stress 

  is sufficient to reduce the value of the shear modulus for the flow theory of 

plasticity, given that in such a case the plastic strain increment vector do not point 

along the negative    axis anymore (see Figure 33) on the other hand it is 

known that the buckling of structures in the plastic regime often exhibit a strong 

imperfection-sensitivity and so the evaluation of the equilibrium path must be 

precise in order to avoid inaccurate and unreliable results as it seems to have been 

the case for many past investigations. 

In fact, in the canonical formulation of torsional buckling, Eq. (72) is simply a 

limit equilibrium equation involving the instability forces which tend to twist the 

column on account of the applied axial load and the warping resistance of the 

column. As such, it has been straightforwardly employed by the previously 

mentioned authors in order to evaluate the buckling load in the plastic range by 
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substituting the value of the elastic shear modulus, G , with those from the flow or 

the deformation theory of plasticity. In this respect, the analysis of the response of 

the structure to the imperfection is aimed to evaluate the value of the plastic shear 

modulus at buckling, that is at the limit axial load that the column can sustain 

before the induced twisting cannot be counteracted by the torsional stiffness and 

increases suddenly. 

 

Figure 33: Strain increment for an imperfect ( )  vs a perfect ( ) column according to the 

flow theory of plasticity. 

 

This said, the expression of the critical load in the flow theory of plasticity 

relies upon the value of the tangent shear modulus, which, by its own nature (see 

Figure 10 in Section 1.6), is much more sensible to the shape of the stress-strain 

curve than the value of the secant shear modulus in the deformation theory of 

plasticity. Therefore, inaccurate calculations tend to affect much more the 

predictions from the flow theory than those from the deformation theory. 

To keep things as simple as possible, reference is made to the equation which 

links the rotation of the cross section in the plane x-y,  , to the value of the applied 

compressive stress z  in presence of an initial imperfection 0 , as shown in Figure 

34. Upon twisting, the axis of the column is thought to remain straight while each 

of the four flanges rotate about the z axis. The column is considered as an element 

fixed at one end and free at the other, in a manner that at 0z   the cross section is 
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prevented to rotate but free to warp and at z L  the section can rigidly rotate in its 

own plane and warp. Given that for the case at hand the warping rigidity 1C  

vanishes, the equilibrium equation results: 

2 2

0
02 2

( )d d
C I

dz dz

  



                                        (79) 

where tC GI  is the torsional rigidity, 
24

3
tI bh  is the torsional inertia and 

2

0

4

3
I hb is the polar inertia. Introduce for simplicity z  . 

 

Figure 34: Twisted configuration of an imperfect cruciform column. 

 

The angle of twist may be expressed in terms of the lateral deflection at the 

extremity of the flange, u , as ( ) /u z b  . By choosing an initial imperfection 

shape in the sinusoidal form: 

0 ( ) sin
2

z
u z

L


                                               (80) 
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Eq. (79) becomes: 

2 2

0 02 2
( ) sin

4 2

d z
C I I

dz L L

  
                                   (81) 

and the solution links the angle of twist of the generic cross-section,  z , to 

the applied compressive stress,  , by: 

0
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                                           (82) 

or also, in terms of shear strain, 
d

h
dz


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
                                    (83) 

Depending on the maximum amplitude of the initial imperfection,  , for any 

increment of the applied compressive stress,  , there will be increments in shear 

stress, G  , so that the state of stress is never that of simple compression at any 

loading stage. 

However, the key point is that at the beginning of the loading process, the shear 

modulus is simply the elastic one, G, whereas once the material has attained the 

plastic status, the shear modulus can be derived from the incremental stress-strain 

relationship in Eq. (61) in the case of the flow theory of plasticity and from the 

stress-strain relationship in Eq. (63) in the case of the deformation theory of 

plasticity. 

Given that both a compressive axial stress,  , and a shear stress,  , exist at any 

stage of the loading process, in the case of the flow theory of plasticity, by virtue of 

Eqs. (61) and (62) it is: 
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    
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and, since the second invariant of the stress deviator may be expressed as 

2

2

2/ 2 / 3ij ijJ s s     , Eq. (84) becomes: 
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so that after some manipulation it is: 
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     (86) 

It is worth noticing that Eq. (86), which represents the inverse of the tangent 

shear modulus, tG , depends not only on the actual state of stress,  ,  , but also 

on the ratio /d d  . However, it can be observed that, given the limit state of 

equilibrium represented by Eq.(72) at the point of buckling, the increment in the 

axial stress, if any, can be considered negligible when the swift progression of twist 

makes the increment in the shear stress much more significant than any possible 

increment in the axial loading, so that it can be assumed that / 0d d   . Thus, the 

expression of the tangent shear modulus, tG , can be written as: 
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                        (87) 

Vice versa, with reference to the deformation theory of plasticity, from Eqs. 

(63) and (64) it is easy to verify that the expression of the secant shear modulus sG  

in Eq. (77) holds the same at any stage of the loading process under a compressive 

axial stress,  , and a shear stress,  . 
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All this said, in order to evaluate the critical load for an imperfect column, for 

the deformation theory of plasticity reference can be made to Eqs. (78) and (77), 

while for the flow theory of plasticity reference can be made to the following 

equation: 

2

2cr t

h
G

b
                                                    (88) 

together with the expression in Eq. (87) of the tangent shear modulus, 
tG , at 

buckling. In fact, as noticed before, Eq. (72) is simply a limit equilibrium equation 

involving the instability forces which tend to twist the column on account of the 

applied axial load and the warping resistance of the column. As such, it is here 

employed, as it has been previously done in literature by Onat and Drucker or 

Hutchinson and Budiansky and similarly to Euler’s critical load for a column in the 

inelastic range, by substituting the value of the elastic shear modulus, G , with 

those from the flow or the deformation theory of plasticity, as it is done in Eqs.(78) 

and (88). Of course, the value of the actual shear modulus, G , at buckling has to 

account both for the initial imperfection and for the loading path. 

This is the point that, in the view of the present authors, has mostly contributed 

to the controversies about the results from the flow and deformation theories and 

thus to the plastic buckling paradox. 

In fact, the use of the secant shear modulus in Eq. (77) of the deformation 

theory of plasticity, which is, by its own nature, a total strain theory, naturally leads 

Eq. (83) to provide a value of the shear strain – and successively of the shear stress 

- which takes into account the loading path up to the considered value of the 

compressive stress  . On this basis, and by making reference to the equivalent 

stress defined as: 

2 23eq                                                 (89) 

the simple procedure illustrated in the flow chart in Figure 35 gives 

straightforwardly the value of the critical load for an imperfect column according 

to the deformation theory of plasticity. 
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Things are different in the case of the flow theory of plasticity. In fact, being the 

flow theory of plasticity an incremental strain-hardening relationship, the tangent 

shear modulus cannot be directly employed in Eq. (83) to obtain a value of the 

shear strain – and successively of the shear stress – because this would not take 

correctly into account the loading path up to the considered value of the 

compressive stress . Instead, a non-linear incremental procedure would be 

required to reach the desired value of the compressive stress  , which is what the 

finite elements incremental analyses do. Many analytical and numerical approaches 

in literature seem to have made reference to the elastic shear modulus to evaluate 

the effect of the initial imperfection on the progressive twisting of the column and 

this appears to be the main reason for which the imperfections have to be of 

significant magnitude in order to reduce the buckling load provided by the flow 

theory for materials with signficant strain-hardening. 

 

Figure 35: Iterative procedure for the evaluation of the critical twisting load of an imperfect 

cruciform column according to the deformation theory of plasticity. 

 


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Here the idea is to calculate the value of the shear strain induced by the 

imperfection on the basis of Eq. (83) and of the secant value of the shear modulus 

also in the case of the flow theory of plasticity. In such a manner, the loading path 

up to the considered value of the compressive stress   is rationally taken into 

account in the elastic-plastic range and the simple procedure illustrated in the flow 

chart in Figure 36 is proposed to compute the value of the critical load for an 

imperfect column according to the flow theory of plasticity. It is worth underlining 

that, with the exception of the first three steps (in blue), relative to the evaluation of 

the value of the shear strain for an assigned value of the compressive stress,   , 

the procedure uses the value of the tangent shear modulus 
tG  from Eq. (87). Also, 

it is worth noticing that the use of the secant modulus from the deformation theory 

of plasticity, generally restricted to proportional loading, is here justified by the 

fact that the column undergoes torsional instability following a monotonic process 

which does not involve strain or stress reversal. 

 

Figure 36: Iterative procedure for the evaluation of the critical twisting load of an imperfect 

cruciform column according to the flow theory of plasticity. 
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In both cases, the variation of the Poisson’s ratio,   , in the inelastic range can 

be estimated as reported by Hopperstad et al.: 

 s
p e p

E

E
                                               (90) 

where the fully plastic value, 
p  , is generally set equal to 0.5 for 

incompressible, isotropic materials and 
e  is the elastic value. However, since 

buckling generally occurs for relatively small plastic strains, it has been usually 

found reasonable to take the current value of Poisson’s ratio as the elastic one, 
e . 

In the following Section 3.3. a number of results from the presented procedures 

will be discussed and compared with those from experimental and numerical FE 

analyses. 

 

 

3.4.  Discussion of the results 

The procedure presented in the previous Section 3.2. is applied here to a few 

selected examples and compared to the results from numerical and experimental 

tests. 

Three different types of aluminium alloys have been taken into consideration, 

namely AA6082 tempers T4 and T6 and aluminum alloy 6061 temper T4. The first 

two alloys have been employed in the experimental tests by Hopperstad et al. who 

conducted torsional buckling tests on extruded aluminum cruciform columns, while 

the third one has been extensively employed in the studies by Shamass et al. on the 

buckling of circular cylindrical shells.  

The uniaxial stress-strain relationships of the materials under monotonic loading 

are characterised by the well-known Ramberg-Osgood formula (see Appendix 2): 
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where y  is the nominal yield strength, sometimes called “proof stress” and 

denoted by 
0.2% , n is the strain hardening parameter and   is the “yield offset”, 

i.e.: 

0.002
y

E



                                                 (92) 

 

 E  

(MPa) 

y  

(MPa) 

n    
u  

(MPa) 

AA 6082 T4 69 700 131 23 1.064 238 

AA 6082 T6 67 900 267 45 0.509 290 

AA 6061 T4 65 130 178 16 0.733 246 

Table 2 - Ramberg-Osgood parameters for the considered aluminium alloys. 

 

The material properties for the considered aluminium alloys are reported in 

Table 2. u  is the ultimate strength. 

Figure 37 shows the plot of the Ramberg-Osgood curves for the considered 

aluminium alloys. Moreover, Figure 38 shows the same curves in a non-

dimensional plot which highlights the low strain hardening (n=45) of AA6082T6 

versus the relatively high (n=16 and n=23, respectively) of AA6061T4 and 

AA6082T4. This representation is useful with reference to the observations by 

previous investigations, especially by Hutchinson and Budiansky, which concluded 

that for metals with high strain-hardening the imperfections have to be of a much 

bigger magnitude with respect to low strain-hardening metals in order to reduce the 

buckling load provided by the flow theory. 
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Figure 37: Plots of the Ramberg-Osgood curves for the considered aluminium alloys. 

 

 

Figure 38: Non-dimensional plots of the Ramberg-Osgood curves for the considered aluminium 

alloys. 
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Three specimens have been considered for the present investigation: S1, S2 and 

S3. With reference to Figures 30 and 31, their respective dimensions and materials 

are listed in Table 3. 

 

 h (mm) b (mm) L (mm) L/b b/h Material 

S1 25 262.5 1500 5.71 10.5 AA6082 T4 

S2 25 262.5 1500 5.71 10.5 AA6082 T6 

S3 24 200 1500 7.5 8.3 AA6061 T4 

Table 3 - Characteristics of the analysed specimens. 

 

For the numerical FE analyses, the examples under consideration have been 

modelled by means of the finite element commercial code ABAQUS. A general 

four-node shell element, S4R, for thin or thick shells with six degrees of freedom at 

each node, reduced integration, hourglass control and finite membrane strains has 

been used. This type of mesh element uses a normal integration rule with four 

integration points. A free quad-dominated mesh has been generated with an 

approximate size of 10 mm. Each flange of specimens S1 and S2 has been divided 

in 3938 elements. Each flange of specimen S3 has been divided in 3000 elements.  

Both the end cross sections have been made undeformable by using the 

constraint type “MPC beam” and by setting the centre of the crux as Control Point 

and all the other points of the cross section as Slave Nodes. The control point at 

section z=0 has been modelled as fully fixed, i.e. with no allowed rotations and 

translations for all degrees of freedom, which implies that, differently from the 

analytical model of Section 3.2., the FE model displays some warping rigidity. At 

section z=L a point compressive load is applied.  
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The FE model is shown in Figure 39. 

 

Figure 39: FE model of a cruciform column. 

 

Table 4 shows the critical stress for a perfect specimen according to the flow 

deformation theory of plasticity, Eq. (72), and the deformation theory of plasticity, 

Eq. (78), compared to the results from an elastic buckling analysis by ABAQUS. 

 

 Critical stress 

Analytical 

Critical stress 

Numerical 

(ABAQUS) 

 Flow 

 

Deformation Elastic 

S1 243,15 129,06 253,99 

S2 236,87 236,24 247,43 

S3 360,72 179,82 362,57 

Table 4 - Critical stress for a perfect specimen according to Eqs. (72), flow, and (78), 

deformation theory of plasticity vs ABAQUS elastic results. 
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It is evident that the results from the classic Eq. (72) for the flow theory of 

plasticity, which relies upon the elastic value of the shear modulus G, Eq. (73) , 

and the FE ones by ABAQUS are in good agreement within a difference of at most 

4.5% for specimens S1 and S2, a fact which can be attributed to the difference in 

the warping stiffness. On the contrary, as expectable, results from the classic Eq. 

(78) for the deformation theory of plasticity, are much lower than the elastic ones. 

Also, it is worth pointing out that Table 4 shows a ratio of about 2:1 between 

the critical stresses from both ABAQUS and the flow theory of plasticity with 

respect to those from the deformation theory of plasticity for specimens S1 and S3, 

i.e. those made with AA6061T4 and AA6082T4 and therefore characterised by a 

relatively high (n=16 and n=23, respectively) strain hardening, see Figure 38. The 

same ratio is much lower for specimen S2, made by the low strain hardening 

(n=45) AA6082T6. This fact confirms the observation by Hutchinson and 

Budiansky that the difference between the results from flow and deformation 

theory of plasticity significantly increase for metals with high strain-hardening 

curves. 

 

 Critical stress (MPa) 

Analytical 

Critical stress (MPa) 

Numerical (ABAQUS) 

Critical stress 

(MPa) 

Experimental 

results 

 Flow 

 

Deformation Flow Deformation by Hopperstad 

S1 125,89 126 128,17 125,58 124 

S2 215,09 217,93 225,75 225,5 218 

S3 175,93 175,89 181,57 175,05 - 

Table 5 - Results obtained from the procedure proposed in this paper for an imperfection equal to 

1/10 of the flange thickness, h, versus FE and experimental ones. 

 

Table 5 collects the results obtained from ABAQUS and from the procedure 

proposed in this paper (see Figures. 35 and 36) for an imperfection of amplitude 

equal to 1/10 of the flange thickness, h. Table 5 shows also the results from the 

experimental tests conducted by Hopperstad et al., in 1999.  
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Hopperstad et al. did not measure the imperfection amplitude and the specimens 

were only examined by visual inspection. They were only believed to be small, at 

least within the tolerance (±0.005 b) given by the extrusion producer. 

It is evident that the proposed procedure achieves results using both the flow 

and the deformation theory of plasticity which are not only in very good agreement 

between each other, but also with the nonlinear FE analyses and the experimental 

results. 

 

Figure 40: Plots of different shear moduli versus the compressive stress,   for an imperfection 

amplitude 1/10h  . 

 

It is also worth underlining that the critical stresses from the flow theory of 

plasticity, according to the proposed solution and differently from the previous 

investigations, may results even lower than those from the deformation theory of 

plasticity. This finding can be understood by taking into consideration the fact that 

at buckling the tangent shear modulus can be lower than the secant one, see Figures 

40,41 and 42. 
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Figure 41: Plots of different shear moduli versus the compressive stress,   for an imperfection 

amplitude 1/10h  . 

 

In fact, Figures 40,41 and 42 show the plots of different shear moduli versus the 

compressive stress,   for an imperfection 1 / 10 h  . The tangent shear 

modulus  tG E  is calculated by accounting for the effects of the initial 

imperfection on the basis of the elastic Young modulus, E, as it has generally been 

done in the past literature. The tangent shear modulus  t sG E is calculated 

according to the procedure proposed in the present paper (see Figure 36) and the 

secant shear modulus sG  is calculated according to the procedure shown in Figure 

35. 
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Figure 42: Plots of different shear moduli versus the compressive stress,   for an imperfection 

amplitude 1/10h  . 

 

It is manifest that, to a different degree depending on the strain-hardening 

properties of the material, the tangent shear modulus  tG E in the inelastic range 

results generally higher than the secant one, sG  , and this fact shows why, even in 

presence of imperfections, the flow theory of plasticity has been considered to 

deliver results in worse agreement with experimental tests than the less physical 

sound deformation theory of plasticity. 

On the contrary, the tangent shear modulus  t sG E calculated accounting for 

the effects of the initial imperfection in a correct way, as proposed in the present 

paper, initially tends to follow the values of the secant modulus, 
sG , but as the 

loading progresses in the inelastic range, takes values lower than 
sG . 

The robustness of the proposed procedure can be verified by repeating the 

calculations with reference to an imperfection amplitude equal to 1/100 of the 

flange thickness, i.e. 1 /100 h  . 
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The findings are collected in Table 6 and in Figures 43,44 and 45. 

 Critical stress (MPa) 

Analytical 

Critical stress (MPa) 

Numerical (ABAQUS) 

Critical stress 

(MPa) 

Experimental 

results 

 Flow Deformation Flow Deformation by Hopperstad 

S1 128,73 128,47 134,04 128,67 124 

S2 232,02 232,78 240,18 239,62 218 

S3 177,75 177,75 191,55 179,38 - 

Table 6 - Results obtained from the procedure proposed in this paper for an imperfection equal to 

1/100 of the flange thickness, 1 /100 h  , versus FE and experimental ones. 

 

 

Figure 43: Plots of different shear moduli versus the compressive stress,   for an imperfection 

amplitude 1/100h  . 

As it is physically expectable, the reduction in the imperfection amplitude leads 

to an increment in the critical stress, which is correctly captured by both the flow 

and the deformation theory of plasticity. Again, both theories result in nearly 

perfect agreement, also in the case of specimens S1 and S3, characterised by 

relatively high strain hardening curves. 
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Figure 44: Plots of different shear moduli versus the compressive stress,   for an imperfection 

amplitude 1/100h  . 

 

 

Figure 45: Plots of different shear moduli versus the compressive stress,   for an imperfection 

amplitude 1/100h  . 
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It can be thus concluded that the proposed procedure does not require 

imperfections of significant magnitude in order to reduce the buckling load 

provided by the flow theory. 

The minor differences with nonlinear FE analyses by ABAQUS can be once 

again attributed to the effects of the warping rigidity deriving from the slightly 

different boundary conditions. To this purpose, Figures 46, 47 and 48 with Figures 

49, 50 and 51 show the value of the axial load versus the torsional rotation,   , in 

ABAQUS, together with the modes at impending collapse. 

 

Figure 46: Axial load versus torsional rotation in ABAQUS, imperfection amplitude: 1/10h  . 

 

Figures 46, 47 and 48 with Figures 49, 50 and 51 clearly show that also in the 

case of the nonlinear FE analyses the most marked differences between the flow 

and the deformation theory of plasticity are found in the case of specimens S1 and 

S3, characterised by relatively high strain-hardening curves. 
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Figure 47: Axial load versus torsional rotation in ABAQUS, imperfection amplitude: 1/10h  . 

 

 

Figure 48: Axial load versus torsional rotation in ABAQUS, imperfection amplitude: 1/10h  . 
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Figure 49: Axial load versus torsional rotation in ABAQUS, imperfection amplitude: 

1/100h  . 

 

 

Figure 50: Axial load versus torsional rotation in ABAQUS, imperfection amplitude: 

1/100h  . 
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Figure 51: Axial load versus torsional rotation in ABAQUS, imperfection amplitude: 

1/100h  . 

 

Finally, Table 7 shows the percent differences between the analytical solutions 

for the two different values of the imperfection amplitude, 1 / 10 h   and 

1 /100 h  . The case of specimen S2, characterized by a relatively low strain-

hardening curve, is the more sensible to the imperfection amplitude. 

 

 Critical stress (MPa) 

Analytical 

1/100   

Critical stress (MPa) 

Analytical 

1/10   

Percentage increment 

between the critical 

stresses 

 100 10 10%        

 Flow 

 

Deformation Flow Deformation Flow Deformation 

S1 128,73 128,47 125,89 126 +2,26% +1,96% 

S2 232,02 232,78 215,09 217,93 +7,87% +6,81% 

S3 177,75 177,75 175,93 175,89 +1,06% +1,06% 

Table 7 - Percent differences between the analytical solutions for the two different values of the 

imperfection amplitude, 1/10h   and 1/100h  . 
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In the present dissertation an accurate analysis of the torsional buckling of a 

cruciform column in the inelastic range has been conducted on the sole basis of the 

classic formulation of the flow and deformation theory of plasticity and in the spirit 

of Shanley’s approach to the stability of columns in the plastic range. In this 

respect the column is considered to be affected by inevitably small initial 

imperfections.  

The conclusions are the following: 

• the discrepancies repeatedly reported in literature between the results 

from the flow and the deformation theory of plasticity, even in presence 

of imperfections, seem essentially due to the fact that the effects of 

imperfections are computed inaccurately up to the point where the limit 

load is achieved; 

• by means of the presented analytical procedure, it is shown that the 

flow theory of plasticity is capable of attaining a very good agreement 

with the results from the deformation theory and the experimental 

results, as well as with nonlinear incremental FE analyses; 

• the proposed solution is also capable of naturally overcoming the 

observation that for metals with signficant strain-hardening the 

imperfections have to be of considerable  magnitude in order to reduce 

the critical load provided by the flow theory; 

Overall it can be affirmed that, by using a careful analytical procedure and in 

contrast to common understanding, in the case of the torsional buckling of a 

cruciform column in the inelastic range there is actually no plastic buckling 

paradox. 

The present findings confirm and give a mechanical reason to the observation 

made in recent works on the plastic buckling of cylindrical shells by Shamass et al., 

who have shown that the results of incremental non-linear finite element analyses 

using flow theory with an associated flow rule are unaffected by the plastic 

buckling paradox while, depending on the particular methodology, other 

approaches are sensible to it. 
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Section 4 

4. Plastic buckling of cylindrical shells 
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4.1. Historical background 

The cylindrical shells have been one of the most commonly used elements in 

modern structures. Their relevance in structural design united with their simple 

shape have generated large interest in structural mechanics in recent times. This 

interest is evidenced by thousands of publications and books in this field and has 

led to many advances in the theory of thin shells.  

The main difference between a plate and a shell element is that in the initial 

state the shell element has a natural curvature while the plate element is assumed to 

be flat. The presence of this initial curvature slightly affects the equilibrium 

equations for bending but it has significant consequences on the membrane action 

which is activated by in-plane forces. These latter may be distinguished in two 

groups: the primary in-plane forces generated by applied edge loads and the 

secondary in-plane forces produced by flexural deformations. Differently from 

plate elements in which secondary in-plane forces affect membrane action 

considerably only if bending deformations are large, for shell elements with initial 

curvature secondary in-plane forces have significant consequences on membrane 

action regardless of the amount of the bending deformations and thus they may be 

accounted for in both small and large deflection shell theories.  

In the light of these basic considerations, more complexities are found out to be 

involved in the study of the plastic buckling of cylindrical shells diversely from the 

more simple formulation of flat plates, as for instance the case of the cruciform 

column discussed in Section 3. Moreover, beyond these geometrical complications, 

there is the evidence that in many shell problems the initially buckled configuration 

shows a condition of unstable equilibrium for which, once attained the buckling 

load, new equilibrium paths can exist only at a much lower load level (see Figure 

52). In this manner, also due to the influence of inevitably initial imperfections, the 

theoretical buckling load calculated by the classical theories of stability may be 

hardly observed in experimental tests and in addition the analysis of the shell 

behaviour in the post-buckling path which is largely governed by the shape and the 

amount of initial imperfections is hence a fundamental issue to deal with in any 

buckling analysis. 
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Figure 52: Load-deflection curves showing limit and bifurcation points. (Bushnell, 1984) 

 

With reference to the study of buckling in the plastic range, there has been a 

considerable amount of works on the inelastic instability of initially imperfect 

cylindrical shells subjected to different loading conditions which takes into account 

the complexity of the material behaviour in the inelastic range respect to the 

particular geometry of the shell elements. In this direction, many studies have been 

conducted comparing experimental and analytical results with the application of 

the principal theories of plasticity, 
2J  flow theory of plasticity and 

2J  deformation 

theory of plasticity, and the same “plastic buckling paradox” has been found, i.e. 

the application of the flow theory of plasticity led to an overestimation of the 

buckling strength while the deformation theory of plasticity provided a more 

accurate prediction with respect to the experimental data.  

The fact that many authors, such as Onat and Drucker, Mao and Lu, Durban and 

Ore and Bardi and Kyriakides, among the others, pointed out that the deformation 

theory tends to predict buckling loads that are smaller than those obtained by the 

flow theory and much closer to the experimental observations is essentially due to 

the fact that the associated incremental theories of plasticity which do not have a 

corner on the limit surface predict a purely elastic response to a shearing stress 

increment following a simple axial load, as discussed recently by Guarracino and 

Simonelli.  
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It is known that by introducing a certain degree of initial imperfection it is 

possible to overcome this problem and a number of recent studies conducted by 

Shamass et al. have shown that by means of accurately modelled and conducted FE 

analyses it is possible to obtain predictions based on the flow theory of plasticity 

that are in good agreement with the experimental findings.  

This said, one may argue that making recourse to a properly constructed non-

linear finite element model would naturally overcome any difficulty connected 

with this kind of analyses but unfortunately it is rather immediate to realise that this 

is not always the case. The present investigation goes deeper into the problem and 

shows that the material model is also capable to trigger a mode jumping from the 

initial imperfection which may reverse the predictions by the flow and deformation 

theories of plasticity and give origin to a sort of inverse buckling paradox. The 

study focuses on the plastic buckling of circular cylindrical shells under non-

proportional loading which, on account of to its importance in many engineering 

applications, has been the subject of intense research for many decades. 

 

 

4.2.  Buckling of cylindrical shells: an overview 

The nonlinear equilibrium equations for thin cylindrical shells according to 

Donnell (1934) and von Kármán and Tsien (1941) are: 
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          (93) 

where , , ,x y xy yxN N N N  are in-plane normal and shearing forces, ,x yQ Q  are 

transverse shearing forces, w  is the displacement in the z-direction, i.e. normal to 

the middle surface directed toward the centre of curvature, R  is the radius of 

curvature of the shell element and p  is the applied load in z-direction, with 

reference to Figure 53. 
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Figure 53: Cylindrical shell displacements and forces. (Yoo and Lee, 2011) 

 

The constitutive equations for thin-walled isotropic elastic cylinders are: 
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C  is the axial stiffness per unit thickness, defined as: 

1

Et
C





                                                    (95) 

where E  is the Young’s modulus, t  is the thickness and   is the Poisson’s 

ratio. D  is the bending stiffness per unit thickness, defined as: 

3
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                                               (96) 
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The kinematic relations at the middle surface on which the Donnell equations 

are based are: 
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                       (97) 

where , ,u v w  and , ,x y z  are always referred to Figure 53. 

Eq. (93), together with the constitutive and kinematic relations in Eqs. (94) and 

(97), govern all linear and nonlinear equilibrium conditions for cylindrical shells 

provided the deformations are not excessively large.  

Buckling is a nonlinear problem from both material and geometrical points of 

view. Therefore, given that the investigation of the critical load of a thin cylindrical 

shell under any loading condition involves a large amount of computation,  the 

reliability and efficiency of the incremental finite element analyses offer a tool 

which is facilitated by the availability of modern software packages. Nevertheless, 

many simple loading conditions as for example the axial compression or the lateral 

pressure (see Figure 54) have been solved using the governing equations for shells 

in Eq. (93) and by introducing some simplifications.  
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                                a)                                            b) 

Figure 54: Cylindrical shells under simple loading conditions: a) axial compression;  

b) external pressure. 

 

By considering a symmetrical buckling of a cylindrical shell under the action of 

an uniform axial compression, Figure 54.a, the classical solution was obtained first 

by Lorenz in 1908 and lately discussed by Timoshenko in 1910 and by Southwell 

in 1914, in a modified form. The critical compressive stress, according to 

Timoshenko and Gere, was found to be: 

23(1 )
cr

Et

R






                                            (98) 

where E  is the elastic modulus and   the Poisson ratio, t  and R  the thickness 

and the radius of the cylinder, respectively. It is of interest to note that the result is 

independent from the length of the cylinder, indicating that for very long cylinders 

the critical stress refers to local buckling. More accurate results for axially 

compressed cylinders may be obtained by considering the possible growth of 

eccentricities due to the increments of lateral deflection during the loading process. 

The equilibrium paths for the perfect cylinder based on the solution in Eq. (98) 

and for a cylinder with a small initial imperfection subjected to axial compression 

are shown in Figure 55. 
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Figure 55:Equilibrium paths of axially compressed cylinder. (Yoo and Lee, 2011) 

 

For the perfect cylinder, it can be observed that the pre-buckling path is linear 

static such as the underlying governing equilibrium equations while the post-

buckling path is nonlinear. As a matter of fact, the nonlinear equations in Eq. (93) 

rule both the primary and the secondary paths and from their resolution the 

ultimate strength of the cylinder can be obtained, given that bifurcation point and 

critical load are coincident. On the other hand, in the case of an imperfect shell the 

critical load is substantially lower than that given by the perfect theory so that 

initial imperfections are believed to be the main reason of the discrepancy between 

the classical buckling solution and the experimental evidence. 

In fact, in a cylinder with an initial imperfection, for any small increment of the 

axial load bending deformations slightly increase until, once a certain load is 

attained depending on the amplitude of the initial imperfection, bending 

deformations suddenly and rapidly grow and the load begins to reduce. In this 

manner, the maximum load for an initially imperfect cylindrical shell is 

significantly less than the critical load given by the classical theory and this 

circumstance denotes a strong imperfection sensitivity in the buckling prediction. 

In this respect, many progresses have been made in the study of axially loaded 

cylindrical shells by introducing initial imperfections into the buckling analysis.  
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Nevertheless, as seen in the work of Timoshenko among the others, the 

symmetrical buckling occurs within the elastic limit only for very thin cylindrical 

shells while for moderately thick cylinders subjected to various loading conditions 

as for example axial compression, external pressure, torsion or combinations of 

such loads, commonly plastic buckling occurs. Indeed, in the treatment of the 

plastic buckling, the material nonlinearity adds to the geometrical one and requires 

the use of the principal theories of plasticity, a fact which significantly affect the 

predictions for the critical load above the elastic limit. Additional computational 

difficulties may hence occur in resolving the buckling problem so that it is usually 

approached by conducting accurate linear and nonlinear finite element analyses by 

the use of the flow theory and the deformation theory of plasticity. 

As seen in Section 2, also in the investigation of the plastic buckling of 

cylindrical shells the phenomenon of the “plastic buckling paradox” takes place 

and it has been object of extended research for many decades and by many authors. 

Focusing the attention on cylindrical shells subject to the simple case of axial 

compression, many theoretical and experimental results have been reported by Lee 

and Batterman and many analytical results have been reported by Mao and Lu and 

Ore and Durban, as seen in Section 2.5. Recently, Shamass et al. shed further light 

on the plastic buckling paradox for cylindrical shells subjected to axial 

compression and showed that, in contrast to common understanding, by using a 

careful geometrically nonlinear finite element analysis, a very good agreement 

between numerical and experimental results can be obtained in the case of the flow 

theory of plasticity.  

Also for combined states of stress, as in the case of nonproportional loading, the 

flow and deformation theories seem to provide quite different results. A simple 

non-proportional path which combines more loading processes consists in applying 

first a fixed axial tension and then an increasing external lateral pressure. The 

instability of the cylindrical shell is hence activated by two principal phenomena: 

the axial tension moves the material farther into the plastic region and reduces the 

stiffness of the element while the external pressure induces structural instability 

because of the compressive circular stresses which increase the possibility of 

buckling.  
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This said, the differences in the prediction for plastic buckling between flow 

and deformation theories of plasticity are of particular interest. Blachut and Giezen, 

as seen in Section 2.5, conducted several experimental tests and also numerical 

analyses using the code BOSOR5 and Shamass et al. examined the sensitivity of 

the predicted critical pressures with respect to the applied tensile load. Similarly, as 

in the case of axially compressed cylinders, they concluded that the causes of the 

discrepancy between the two theories of plasticity lie substantially in the 

simplifying assumptions regarding the buckling modes used as the basis of many 

analytical studies. In particular, due to the evidence that the cylinders follow a 

constrained kinematics induced by predefined buckling modes, they have shown 

that the deformation theory of plasticity naturally counterbalances this excessive 

stiffness and thus provides results that are only apparently more in line with the 

experimental findings. Hence, by means of accurately modelled and conducted FE 

analyses it is possible to obtain predictions based on the flow theory of plasticity 

that are in good agreement with the experimental results.  

 

 

4.3. Estimation of buckling strength in case of non-

proportional loading 

Since it has been extensively reported that the differences in the prediction of 

the buckling strength between the flow and the deformation theory are more 

evident in the case of non-proportional loading (see, for example, Giezen et al. and 

Blachut et al.) in the present dissertation reference is made to the simplest 

nonproportional loading procedure, which consists in applying first a fixed axial 

tension and then an increasing external lateral pressure, as reported in Figure 56. 

The axial tension is such as to generate plasticity in the material, so that the 

subsequent lateral pressure can be increased until the specimen buckles in the 

plastic range. In fact Giezen et al. conducted experiments and numerical analyses 

on two sets of tubes made of aluminium alloy and subjected to combined axial 

tension and external pressure, making resort to the code BOSOR5 (Bushnell, 1986) 

for the numerical analyses.  
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Figure 56: Buckling of a cylindrical shell subjected to a non-proportional loading. 

 

Giezen, firstly in 1988, investigated the plastic buckling paradox of cylindrical 

shells subjected to nonproportional loading and found that upon reversing the 

loading path the flow theory failed to predict buckling while the deformation 

theory displayed the same trend of the test results. In 1991, Giezen et al. extended 

these early findings conducting experimental and numerical analyses on cylindrical 

shells subjected to combined axial tension and external pressure. For the 

investigation they chose two sets of specimens (Set A and Set B) of aluminium 

alloy 6061‐T4 with a length to diameter ratio equal to one. The non-proportional 

loading was attained considering two different loading processes: in the first one, 

the axial tensile load was kept constant and the external pressure was progressively 

increased while in the second one the external pressure was kept constant and the 

axial tensile load was progressively increased. In the first case the experiments 

showed that the axial tension reduces the strength of the cylinder with respect to 

the application of the lateral pressure. However, the numerical analyses conducted 

by means of BOSOR5 showed that the flow theory predicts, contrarily to the 

experimental findings, an increase in the lateral buckling pressure on account of the 

axial tension preloading, while the deformation theory in some cases under-

estimates the lateral buckling pressure. Also in the second loading scheme with 
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increasing axial tensile load and constant lateral pressure the discrepancies between 

the test and the numerical results showed that both the flow and the deformation 

theory of plasticity were not able to provide satisfactory results. In conclusion, 

Giezen et al. stated that both the flow and the deformation theories fail to predict 

the buckling load under nonproportional loading. 

Blachut et al., in 1996, conducted experimental and numerical analyses on 30 

mild-steel machined cylinders of different dimensions, subjected to axial tension 

and increasing external pressure. Using once again the code BOSOR5 (Bushnell, 

1986) for their numerical analyses, they showed that the agreement between the 

two plasticity theories was strongly dependent on the length of the cylindrical shell. 

For short cylinders, / 1L D  , the plastic buckling results predicted by the flow 

and deformation theories coincided only when the tensile axial load vanished. By 

increasing the axial tensile load, the buckling pressures predicted by the flow 

theory started to diverge quickly from those predicted by the deformation theory. 

Additionally, the flow theory failed to predict buckling for high axial tensile load 

while tests confirmed the buckling occurrence. For specimens with length-to-

diameter ratio L/D ranging from 1.5 to 2.0 the results predicted by both theories 

were identical for a certain range of combined loading. However, for high values of 

the applied tensile load, the predictions of the flow theory began to deviate from 

those of the deformation theory and became unrealistic in correspondence to large 

plastic strains. 

Consequently, in the case of cylinders subjected to axial tensile load and 

external pressure, Blachut et al. (1996) and Giezen et al. (1991) concluded that the 

flow theory tends to overpredict quite significantly the plastic strains and the 

buckling loads in the case of high values of the axial tensile loads, while the 

deformation theory leads to results that seem more in line with the experimental 

observations. 

For the present investigation three different types of aluminium alloys have 

been taken into consideration, namely AA6082 tempers T4 and T6 and aluminium 

alloy 6061 temper T4. The first two alloys have been employed in the experimental 

tests by Hopperstad et al. (1999), who conducted torsional buckling tests on 

extruded aluminium cruciform columns, while the third one has been employed by 
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Giezen et al. in their study of on the buckling of circular cylindrical shells under 

non-proportional loading.  

The uniaxial stress-strain relationship of the material under monotonic loading 

has been characterised by means of the Ramberg-Osgood law, i.e.: 

1n

y

E


   




 
    

 

                                         (99) 

where   and   denote uniaxial stress and strain, E  is the Young’s modulus, 

y  is the nominal yield strength,   is the yield offset and n  is the hardening 

parameter (see Appendix 2). 

The Ramberg-Osgood parameters of the considered aluminum alloys are 

reported in Table 8 where u  is the ultimate strength. The Ramberg-Osgood 

stress-strain curves of the considered aluminum alloys are shown in Figure 57. 

 

  E  

(MPa) 

y  

(MPa) 

n    
u  

(MPa) 

AA 6082 T4 69 700 131 23 1.064 238 

AA 6082 T6 67 900 267 45 0.509 290 

AA 6061 T4 65 130 178 16 0.733 246 

Table 8 - Ramberg-Osgood parameters for the considered aluminium alloys. 
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Figure 57: Ramberg-Osgood stress-strain curves of the considered aluminium alloys. 

 

Four different specimens have been studied, which have been derived from the 

geometry of the specimen Set A analysed by Giezen: S1, S2, S3 and S4. Their 

dimensions, with reference to Figure 58, and materials are listed in Table 9. 

 

 D 

(mm) 

R 

(mm) 

L 

(mm) 

t  

(mm) 

L/D D/t Material 

S1 38.1 19.05 38.1 0.76 1 50 AA6082 T4 

S2 38.1 19.05 38.1 0.76 1 50 AA6082 T6 

S3 38.1 19.05 38.1 0.76 1 50 AA6061 T4 

S4 38.1 19.05 57.2 0.76 1.5 50 AA6061 T4 

Table 9 - Characteristics of the analysed specimens. 
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Figure 58: Dimensions and coordinate system of a cylindrical shell. 

 

The plastic buckling of the case studies has been numerically analysed using 

both the flow theory and the deformation theory of plasticity by means of the FE 

code ABAQUS, version 6.11-1 (Simulia, 2011). 

A general four-node shell element, S4R, for thin or thick shells with six degrees 

of freedom at each node, reduced integration, hourglass control and finite 

membrane strains was used. This type of mesh element adopts a normal integration 

rule with four integration points. A free quad-dominated mesh was generated with 

an approximate size of 1.07 mm. Consequently, the circumferential number of 

divisions was 100 and therefore the specimens S1, S2 and S3 resulted divided in 

3800 elements, while the specimen S4 was divided in 5400 elements.  

Both the end cross sections were made undeformable by using the constraint 

type “MPC beam” and by setting the centre of the circumference as Control Point 

and the all the other points of the border as Slave Nodes. The control point at 

section 0z   was modelled as fully fixed, i.e. with no allowed rotations and 

translations for all degrees of freedom while at section z L  only the uniform 

component of the displacements along the z-axis are allowed. Moreover, in order to 

prevent local buckling phenomena at each end of the cylinder a stiffener was added 

so that the effects of the end constraints and of the applied loads would not alter the 

overall behaviour of the specimen. In this respect, two rings of 4 mm length 

characterised by a flexural and torsional stiffness ten folds larger than an equal 
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length of the cylinder wall were added. The stiffeners were modelled employing 

the same four-node element, S4R, with an approximate size of 1.07 mm. 

The layout of the constraints was made in accordance to the experimental 

setting of Giezen et al. displayed in Figure 59. 

 

Figure 59:Experimental setting by Giezen et al.. (Giezen, Babcock and Singer, 1991) 

 

The loading consisted, according to the nonproportional sketch of Figure 56, 

first of an axal tensile stress at section z L  and successively of an increasing 

external pressure on the lateral surface of the cylinders. The value of the applied 

axial tensile loads are reported in Table 10. 

 

 D (mm) Material 
y  

(MPa) 

   

(MPa) y




  

S1 38.1 AA6082 T4 131 20.33 0.16 

S2 38.1 AA6082 T6 267 41.43 0.16 

S3 38.1 AA6061 T4 178 27.58 0.16 

S4 38.1 AA6061 T4 178 27.58 0.16 

Table 10 – Applied axial loads,  . 
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The FE model is shown in Figure 60. 

 

Figure 60:FE model of cylindrical shells. 

 

The numerical analyses were performed in the realm of large-strains by using 

spatial co-rotational stress and strain measures and a hypo-elastic relation between 

the rates of stress and elastic strain (Simulia, 2011). Even if hypo-elastic laws may 

occasionally tend to lead to fictitious numerical dissipation, as noticed by Simo and 

Hughes in 1998, the adopted large-strain formulation is widely implemented in 

many commercial codes, including ABAQUS, and it is generally accepted that the 

hypo-elasticity of the formulation has limited influence on the results because, even 

when strains are large, the elastic part of the strain is typically still very small and 

close enough to the limit where hypo-elastic and hyper-elastic formulations 

coincide.  

In order to follow the structural response beyond the buckling load, that is a 

limit point when load control is applied, the Riks arc-length method, proposed by 

Riks himself in 1979, was used in the version implemented in ABAQUS (Simulia, 

2011). In this method both the nodal displacement increments u  and the 

increment   of the load multiplier are assumed unknown in each increment. The 

Riks’ formulation iterates along a hyperplane orthogonal to the tangent of the arc-

length from a previously converged point on the equilibrium path (Falzon, 2006). 
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Following these assumptions, in the present investigation the external pressure 

is set as
0p  , where 

0p  denotes a reference inward external pressure and   is a 

scalar multiplier. The critical load is determined by the point at which the load-arc 

length curve reaches a maximum. 

The bifurcation point is the intersection of secondary and primary paths, which 

are the post-buckling and pre-buckling paths, respectively. To avoid such 

discontinuous response at bifurcation, geometric imperfections are generally 

introduced in order to remove bifurcation points (Falzon, 2006; Simulia, 2011). In 

this way, the post-buckling problem analysed using Riks method turns into a 

problem with a continuous loading-deformation path. The critical point determined 

on the equilibrium path is the limit point and there are no bifurcations prior to 

collapse. Ideally, with the progressive reduction of the amplitude of the 

imperfection, the limit point should represent a reliable approximation of the 

bifurcation load but, as it will be pointed out in the discussion, this does not turn to 

be always the case. 

Accounting for imperfections was achieved by scaling and adding buckling 

eigenmodes to a perfect geometry in order to create a perturbed initial 

configuration. The scaling factor was set as a percentage of the shell thickness t  

and the buckling analyses useful to find the eigenmodes were conducted assuming 

linear elastic material behaviour and small displacements, under constant axial 

tensile loading. It is worth noticing that Giezen et al. reported that the average 

measured imperfection,  , of the specimens was about 10% of the shell thickness. 

 

 

4.4. Discussion of the results 

Table 11 shows that for all the considered specimens the buckling lateral 

pressure is essentially the same according to both the Hencky’s deformation theory 

of plasticity and the Lévy-Mises flow theory of plasticity for an initial imperfection 

with the shape of the lowest buckling mode given by the eigenvalue analysis and 

an imperfection amplitude of 1%. 
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Once again this result would seem to contribute to support the supposition that 

making recourse to a properly constructed nonlinear finite element model naturally 

overcomes any difficulty connected with the different theories of plasticity. 

However, by making reference to the experimental tests by Giezen et al., one can 

notice that the critical load for specimen S3 was obtained with a buckling shape of 

five circumferential waves and one longitudinal wave (first eigenmode), with a 

measured amplitude of the initial imperfection equal to 10% of the shell thickness. 

 

Specimen 

Initial 

imperfection 

mode 

Initial 

imperfection 

amplitude 

  

n

crp  (MPa) 

(numerical) 

 

exp

crp  (MPa) 

(experimental) 

 

   Deformation 

theory 

Flow theory  

S1 1 1% 4.62 4.68 - 

S2 1 1% 8.82 8.84 - 

S3 1 1% 6.08 6.19 6.27 

S4 3 1% 5.50 5.53 - 

Table 11 – Calculated limit values of the lateral pressure. 

 

By repeating the numerical nonlinear analysis with an imperfection amplitude 

equal to 10% of the shell thickness, the buckling pressure results 5.18 MPa for the 

deformation theory and 5.21 MPa for the flow theory, with a 17% difference from 

the previous analysis and the experimental measured buckling load. 

Table 12 shows the results of the nonlinear FE analyses for specimen S3 for 

different initial imperfection modes and amplitudes. 
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Specimen 

Initial 

imperfection 

mode 

Initial 

imperfection 

amplitude   

n

crp  (MPa) 

 

exp

crp  

(MPa) 

 

exp

n

cr

cr

p

p
 

   Deformation 

theory 

Flow 

theory 

  

S3 1 1% 6.08 6.19 6.27 0.98 

S3 1 10% 5.18 5.21 6.27 0.83 

S3 3 10% 5.74 5.77 6.27 0.92 

S3 5 10% 5.10 5.14 6.27 0.82 

Table 12 – Influence of the initial imperfection shape and amplitude on the buckling loads. 

 

In order to obtain a value of the buckling pressure more in line with the 

experimental findings by Giezen, it is necessary to assume, for an imperfection 

amplitude of 10% an initial imperfection mode corresponding to the third 

eigenvector. However, contrary to what one would expect, an initial imperfection 

mode corresponding to the fifth eigenvector does not lead to a further increase in 

the predicted buckling pressure. Moreover, by progressively reducing the 

amplitude of the initial imperfection to a very low value, such as to consider a 

nearly perfect cylinders, it is found that the deformation theory predicts buckling 

pressures which are much higher than the ones predicted by the flow theory, 

contrary to the common agreement and overturning the results which have given 

origin to the plastic buckling paradox. These results are shown in Table 13. 

A deeper insight into the behaviour of the numerical solutions can be obtained 

by making reference to Figures 61-64, which show the lateral pressure vs. arc 

length plots for different amplitudes of the initial imperfection (first eigenmode) 

for Specimens S1, S2, S3 and S4. All these plots have been drawn considering the 

initial imperfection in the shape of the first eigenmode and show that the Lévy-

Mises flow theory of plasticity tends to provide buckling pressures which are lower 

than those predicted by the Hencky’s deformation theory of plasticity for perfect or 

nearly perfect specimens. 
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Specimen 

Initial 

imperfection 

mode 

Initial 

imperfection 

amplitude   

n

crp
 (MPa) 

(numerical) 

 

exp

crp
 (MPa) 

(experimental) 

 

   Deformation 

theory 

Flow 

theory 

 

S1 1 0.005% 6.78 5.43 - 

S2 1 0.2% 12.43 9.33 - 

S3 1 0.1% 8.24 6.50 6.27 

S4 3 0.07% 7.28 5.89 - 

Table 13 – Calculated limit values of the lateral pressure for low imperfection amplitudes. 

 

 

Figure 61: Load arc length paths for specimen S1. 
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Figure 62: Lateral pressure-arc length paths for specimen S2. 

 

Figure 63: Lateral pressure-arc length paths for specimen S3. 
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Figure 64: Lateral pressure-arc length paths for specimen S4. 

 

It is normally accepted that the “plastic buckling paradox” is essentially due to 

the fact that the associated incremental theories of plasticity which do not have a 

corner on the limit surface predict a purely elastic response to a shearing stress 

increment following a simple axial load and it is thus necessary to introduce a 

certain degree of initial imperfection in order to overcome this problem (Onat and 

Drucker, 1953, Hutchinson and Budiansky, 1974, Guarracino and Simonelli, 

2017). Given that, the fact that in the presented cases the behaviour of the solution 

appears to be the opposite, needs some additional considerations which are 

presented in the next Section 4.5.  
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4.5. The role of the mode switching 

The critical load of shells of revolution is known to exhibit complex 

phenomena, characterised by mode switching and mode interaction. Many analyses 

of the non-axisymmetric buckling configurations of spherical domes, as for 

instance those conducted by Blachut and Galletly in 1993, have suggested that the 

collapse is mostly determined by the form of the imperfections, rather than by their 

magnitude. However, it is also generally believed that the circular cylindrical shells 

object of the present dissertation, especially in the case of nonproportional loading, 

does not exhibit such kind of behaviour. In fact, in the performed numerical 

analyses, the /R t  ratio of the cylinders was about 25, thus placing the buckling in 

a substantially pure plastic range, where imperfect shells are less prone to show a 

reduced collapse load with respect to perfect ones (Shamass et al., 2015). 

From the analyses presented in the previous Section 4.4, it is on the contrary 

found that the shape of the buckling mode and its relation with that of the initial 

imperfection plays a major role in determining the predictions from the flow and 

deformation theories of plasticity. In fact, it can be noticed that both theories 

predict the same value of the critical pressure when the buckling shapes result the 

same.  

The flow theory models tend to exhibit the same number of circumferential 

waves at the critical state of the imposed initial imperfection, regardless of its 

initial amplitude, while in the deformation theory models the number of 

circumferential waves at buckling tend to differ from the one of the initial 

imperfection, particularly when the amplitude of the initial imperfections is low.  

The different behaviour of the two plasticity theories can be thus attributed to 

the phenomenon of the mode switching (Supple, 1968, Guarracino and Walker, 

2007). In order to have a jump in the buckling mode along the loading path, it is 

necessary that the linear perfect model has two rather close eigenvalues which may 

give origin to different secondary bifurcations if small perturbations act in the 

neighbourhood of some critical parameter values. Mode jumping is perhaps the 

most noteworthy feature of experimental studies of the stability behaviour of plates 

and shells. In fact, a rectangular plate can show a number of different buckled 

configurations which can be distinguished by their wave number. Experiments 
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have shown that the wave number do not need to remain constant as the load is 

gradually increased and there might be values of the load parameter at which a 

sudden and violent change in buckling pattern takes place. The new mode typically 

has a wave number greater than the previous one. Such a phenomenon has also 

been pointed out in the buckling analysis of circular rings (Fraldi and Guarracino, 

2014). 

In order to investigate the effects of the mode switching in the present study, it 

is thus opportune to consider the elastic buckling problem with its eigenvalues and 

modal shapes for each specimen. The specimens S1, S2 and S3 are characterised 

by the same geometry and, following a linear eigenvalue analysis, it is immediate 

to realise that their modal shapes are characterised by the same number of 

circumferential and longitudinal waves. Specimen S4 has a different geometry and 

its modal shapes are different. Table 14 collects the eigenmodes, the elastic critical 

loads and the number of corresponding circumferential waves for each specimen. 

The eigenmodes are characterised by a single longitudinal wave for all the case 

studies.  

In particular, as seen in Figure 65, the first two modes show the same number of 

circumferential waves and present the same elastic critical load. The same happens 

for modes 3 and 4 and for modes 5 and 6 so that only modes 1, 3 and 5 are reported 

in Table 14 and in the subsequent tables and figures. 

            

                                Mode 1                                        Mode 2 

Figure 65: Representation of first two circumferential modes for specimens S1-S3. 
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L/D Material Mode 

Number of 

waves 
bucklingp   

(MPa) 

S1 1 AA6082 T4 1 5 15.18 

S2 1 AA6082 T6 1 5 14.79 

S3 1 AA6061 T4 1 5 14.18 

S4 1.5 AA6061 T4 1 4 9.07 

S1 1 AA6082 T4 3 4 17.05 

S2 1 AA6082 T6 3 4 16.61 

S3 1 AA6061 T4 3 4 15.93 

S4 1.5 AA6061 T4 3 5 10.84 

S1 1 AA6082 T4 5 6 17.85 

S2 1 AA6082 T6 5 6 17.39 

S3 1 AA6061 T4 5 6 16.68 

S4 1.5 AA6061 T4 5 3 14.01 

Table 14 – Elastic buckling modes. 

 

Figures 66 and 67 show the circumferential modes 1, 3 and 5 for the specimens 

object of the present study. 

 

                 Mode 1                            Mode 3                          Mode 5  

Figure 66: Representation of circumferential modes for specimens S1-S3. 

 



140 

 

 

                   Mode 1                          Mode 3                            Mode 5  

Figure 67: Representation of circumferential modes for specimen S4. 

 

On these bases it is possible to making reference to Table 15 and notice that, 

notwithstanding the fact that the initial imperfection considered for both theories of 

plasticity is in the shape of the first eigenmode (five circumferential waves), for an 

imperfection amplitude of 0.2% in the case of specimen S2 the flow theory of 

plasticity attains a critical pressure of 9.33 MPa with a buckling mode which 

retains the shape of the injected imperfection, while the deformation theory attains 

a critical pressure of 12.43 MPa with a buckling mode characterised by 20 

circumferential waves.  

The longitudinal buckling is shown in Figure 68. 

           

          Deformation theory model                     Flow theory model  

                (scale factor: 2x)                               (scale factor: 10x) 

Figure 68: Representation of circumferential modes for specimen S2. 
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Deformation theory results 

Imperfect cylinder (Mode 1,    0.2%)       

t = 0.76 mm      

R = 19.05 mm      

n = 20 -      

bucklingp = 157.53 MPa      

n

crp  = 12.43 MPa       

Flow theory results 

Imperfect cylinder (Mode 1,    0.2%)       

t = 0.76 mm      

R = 19.05 mm      

n = 5 -      

bucklingp = 9.48 MPa      

n

crp  = 9.33 MPa       

Table 15 – Results of non-linear buckling analysis for specimen S2. 

 

Moreover, always referring to Table 15, the values of the elastic buckling 

pressure load corresponding to the same number of waves showed by the numerical 

models are also reported and calculated according to Timoshenko and Gere 

formula: 

3 2

3 2

( 1)

12 (1 )
buckling

Et n
p

R 





                                            (100) 

where E  is the elastic modulus, n  the number of circumferential waves, t  and 

R  the thickness and the radius of the cylinder, respectively, and   the Poisson 

ratio. 

In Figures 69-72 the loading curves of the specimens S1-S4 are showed only 

with reference to the low initial imperfection amplitudes reported in Table 13.  
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Figure 69: Lateral pressure-arc length paths for specimen S1. 

 
Figure 70: Lateral pressure-arc length paths for specimen S2. 
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Figure 71: Lateral pressure-arc length paths for specimen S3. 

 
Figure 72: Lateral pressure-arc length paths for specimen S4. 
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It can be clearly seen that for any specimen the flow theory maintains the same 

shape of the initial imperfection while the deformation theory changes form 

attaining more elevated critical loads. In several cases the system does not forget 

the initial imperfection shape also in largely deformed post-buckling 

configurations, as it may be seen in Figures 71 and 72 which show the loading 

curves of the specimens S3 and S4 with an initial imperfection amplitude of 0.1% 

and 0.07%, respectively, and a 5 waves initial imperfection shape. In fact, for the 

specimen S4 in Figure 72, in the post-buckling configuration the deformation 

theory model displays 10 circumferential waves until the ultimate load is attained, 

while the flow theory model maintains along the whole loading process the 5 

circumferential waves of the initial imperfection. 

 

Deformation theory results 

Imperfect cylinder (Mode 1,    1%)       

t = 0.76 mm      

R = 19.05 mm      

n = 5 -      

bucklingp = 9.48 MPa      

n

crp  = 8.82 MPa       

Flow theory results 

Imperfect cylinder (Mode 1,    1%)       

t = 0.76 mm      

R = 19.05 mm      

n = 5 -      

bucklingp = 9.48 MPa      

n

crp  = 8.84 MPa       

Table 16 – Results of non-linear buckling analysis for specimen S2. 
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Table 16 shows the results for the specimen S2 again with an initial 

imperfection with the shape of the first eigenmode (five circumferential waves) but 

an imperfection amplitude of 1%. In this case both theories of plasticity attain 

essentially the same critical pressure with the same buckling mode, which retains 

the shape of the injected imperfection with no mode switching in the case of the 

deformation theory. Therefore the amplitude of the initial imperfection is decisive 

in maintaining the shape of the initial imperfection for the whole loading path up to 

the buckling load.  

 

Deformation theory results 

Imperfect cylinder (Mode 1,    1%)       

t = 0.76 mm      

R = 19.05 mm      

n = 5 -      

bucklingp = 9.09 MPa      

n

crp  = 6.08 MPa       

Flow theory results 

Imperfect cylinder (Mode 1,    1%)       

t = 0.76 mm      

R = 19.05 mm      

n = 5 -      

bucklingp = 9.09 MPa      

n

crp  = 6.19 MPa       

Table 17 – Results of non-linear buckling analysis for specimen S3. 

 

Table 17 shows the results of both theories of plasticity for the specimen S3 

tested by Giezen for an initial imperfection with the shape of the first eigenmode 

(five circumferential waves) and an imperfection amplitude of 1%. 
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It is immediate to notice that both theories of plasticity attain essentially the 

same critical pressure with the same buckling mode, which retains the shape of the 

injected imperfection with no mode switching in the case of the deformation 

theory. The predicted buckling load corresponds to the one found experimentally 

by Giezen, who also counted five circumferential waves at buckling. 

Table 18 shows the results of both theories of plasticity for the specimen S3 for 

an initial imperfection again with the shape of the first eigenmode (five 

circumferential waves) but an imperfection amplitude of 10%. Once again both 

theories of plasticity attain essentially the same critical pressure with the same 

buckling mode, which retains the shape of the injected imperfection with no mode 

switching in the case of the deformation theory. As it was expectable, the predicted 

buckling load results about 15% less than the one calculated for an imperfection 

amplitude of 1% . 

 

Deformation theory results 

Imperfect cylinder (Mode 1,    10%)       

t = 0.76 mm      

R = 19.05 mm      

n = 5 -      

bucklingp = 9.09 MPa      

n

crp  = 5.18 MPa       

Flow theory results 

Imperfect cylinder (Mode 1,    10%)       

t = 0.76 mm      

R = 19.05 mm      

n = 5 -      

bucklingp = 9.09 MPa      

n

crp  = 5.21 MPa       

Table 18 – Results of non-linear buckling analysis for specimen S3. 
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It is worth noticing that Giezen et al. (1991) did not report the amplitude of the 

measured initial imperfection for each tested specimen but simply observed that the 

maximum measured imperfection was about 0.03 in., that is 10% of the thickness. 

It results thus clear that in all the examples under consideration the discrepancy 

between the flow and the deformation theory of plasticity, which for low values of 

the imperfection amplitude leads to results contrary to those of the plastic buckling 

paradox, can be attributed to a switching in the initial imperfection mode which 

takes place, in the case of the deformation theory of plasticity, along the loading 

path. 

In conclusion, the following considerations may be observed: 

• depending on the value of the amplitude of the initial imperfection 

injected into the model, a mode switching can take place along the 

loading path which is even capable of reversing the results which in the 

past have given origin to the plastic buckling paradox. In fact, a sort of 

inverse buckling paradox may occur in which the deformation theory 

provides buckling load which are sensibly higher than those obtained 

by the flow theory of plasticity; 

• differently from the common beliefs for which the use of deformation 

theory of plasticity in the investigation of the inelastic buckling of 

shells is however recommended despite its some obvious inadequacies, 

so that many researchers attempted to elaborate revised formulations of 

the deformation theory, for instance including unloading (Peek, 2000) 

or redefining it as a sequence of linear loadings in case of 

nonproportional loading (Jahed et al.,1998), the results from the present 

dissertation highlight a superior reliability of the use of the flow theory 

of plasticity which is in contrast to what is normally agreed in literature 

and suggests that a geometrically nonlinear finite element formulation 

for imperfect shells is used with great attention to constitutive laws and 

imperfection amplitudes and a preference for the physically more sound 

flow theory of plasticity. 
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5. Conclusions 

The present dissertation has investigated the plastic buckling of thin and 

moderately thin plates and shells with particular reference to the phenomenon of 

the “plastic buckling paradox” which occurs in these structures under various 

loading conditions. Old controversies in classical literature and new perspectives 

have been examined and thoroughly discussed with the aim of providing an 

explanation of the paradox. 

In this respect, the study of the main theories of the plasticity has been of 

fundamental importance as many of the controversies reported in literature derive 

from the theoretical assumptions and from the limits of applicability of the 

proposed formulations. In fact, it is generally accepted that the incremental theory 

of plasticity is more in line with the experimental behaviour of engineering 

materials than the deformation theory and hence, under a physical point of view, it 

is more widely applicable, even if it implies a higher complexity in calculations. 

Therefore, despite the fact that there is a general agreement that the deformation 

theory of plasticity lacks of physical rigour in comparison to the flow theory, the 

use of deformation theory is practically motivated by its capability to solve certain 

problems without the mathematical complications of the flow theory. Moreover 

and importantly, in the study of plastic buckling problems of plates and shells 

under multiaxial stress the use of deformation theory has been repeatedly reported 

to predict critical loads that are in better agreement with the experimental results 

while the flow theory is often incorrect. This fact is generally named “plastic 

buckling paradox” 

In 1953, Onat and Drucker investigated the plastic buckling paradox in the case 

of an axially compressed cruciform column showing torsional buckling. The 

solution was investigated by the authors by means of an approximate analysis in 

which small initial imperfections were taken into account. In this manner, 

assuming that a very small degree of imperfection was present in the column, the 

critical load predicted by the flow theory could be reduced significantly, getting it 

closer to that predicted by the deformation theory.  

In the light of these findings, in the present dissertation first an accurate analysis 

of the torsional buckling of a cruciform column in the inelastic range has been 
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conducted on the sole basis of the classic formulation of the flow and deformation 

theory of plasticity and in the spirit of Shanley’s approach to the stability of 

columns in the plastic range. It has been shown that the discrepancies repeatedly 

reported in literature between the results from the flow and the deformation theory 

of plasticity, even in presence of imperfections, seem essentially due to the fact that 

the effects of imperfections are computed inaccurately up to the point where the 

critical load is achieved. Furthermore, by means of the analytical procedure 

presented in Section 3.3, it has been shown that the flow theory of plasticity is 

capable of attaining a very good agreement with the results from the deformation 

theory and the experimental results, as well as with nonlinear incremental FE 

analyses. The proposed solution is also capable of naturally overcoming the 

observation that for metals with significant strain-hardening the imperfections have 

to be of considerable magnitude in order to reduce the critical load provided by the 

flow theory. Overall it can be affirmed that, in contrast to common understanding, 

by using a careful analytical procedure in the case of the torsional buckling of a 

cruciform column in the inelastic range there is actually no plastic buckling 

paradox. The present findings confirm and give a mechanical reason to the 

observation made in recent works on the plastic buckling of cylindrical shells by 

Shamass et al., who have shown that the results of incremental nonlinear finite 

element analyses using flow theory with an associated flow rule are unaffected by 

the plastic buckling paradox while, depending on the particular methodology, other 

approaches are sensible to it. 

Also in presence of a more complex state of stress, as it is the case of non-

proportional loading, the flow and deformation theories seem to provide quite 

different results. In the case of circular cylindrical shells, a simple non-proportional 

loading process can be obtained by applying first a fixed axial tension and then an 

increasing external lateral pressure. The inelastic instability of the cylindrical shell 

subjected to this kind of non-proportional loading has been investigated in depth by 

authors such as Blachut (1996) and Giezen (1991) which conducted several 

experimental tests and numerical analyses using the code BOSOR5. Recently, 

Shamass et al. (2014-2017) examined the sensitivity of the predicted critical 

pressures with respect to the applied tensile load. By means of accurately modelled 

and conducted FE analyses, they concluded that it is possible to obtain predictions 
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based on the flow theory of plasticity that are in good agreement with the 

experimental results. However, a deeper insight into the problem, presented in 

Section 4, has shown that, depending on the value of the amplitude of the initial 

imperfection injected into the model, a mode switching can take place along the 

loading path which is even capable of reversing the results which in the past have 

given origin to the plastic buckling paradox. In fact, it has been shown that the 

deformation theory, far from predicting critical loads lower than the flow theory 

and more in line with experimental findings, might provide critical loads which are 

sensibly higher than those by the flow theory of plasticity.  

Notwithstanding the fact that the adoption of the deformation theory of 

plasticity in the investigation of the inelastic buckling has been recommended by 

many researchers, despite its obvious inadequacies (Jones, 2009; Peek, 2000; Jahed 

et al.,1998), the results from the present dissertation indicate that the use of the 

flow theory of plasticity, contrarily to what is normally agreed in literature, is 

generally more reliable for this kind of problems. Thus, the results of the present 

investigation suggest that a geometrically nonlinear finite element formulation for 

imperfect shells should be used paying particular attention to constitutive laws and 

imperfection amplitudes even in presence of the physically more sound flow theory 

of plasticity. 
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Appendixes 

 

Appendix 1. Plastic work in Prandtl-Reuss material 

The concept of plastic work is very important in plasticity due to its large an 

simple use in determining some quantities related to the material behaviour. For 

instance, as seen in Section 1.2, it would be very helpful in order to determine the 

scalar factor d  present in the yield function formulation.  

Basically, the total work at the end of a loading process is simply the product 

between the stress and the strain while during a loading process the increment of 

work per unit volume is the product between the stress and the increment of strain: 

ij ijdW d                                                   (101) 

Recollecting that the increment of strain undergoes the additive decomposition 

property, it will be replaced by the sum of the elastic and plastic increments: 

( )e p e p

ij ij ijdW d d dW dW                                   (102) 

where 
edW  is the increment of elastic work and 

pdW  is the increment of 

plastic work. If the loading process reverses or unloads, the increment of elastic 

work, or the increment of elastic strain energy, totally recovers while the increment 

of plastic work 
pdW  remains as dissipated energy because of the irreversibility of 

plastic deformations. Substituting instead the stress 
ij  by the sum of its 

hydrostatic and deviatoric parts, the increment of plastic work becomes: 

( )p p p

ij ij ij ij ijdW d p s d                                       (103) 

and for another property of plastic deformation that is the incompressibility, i.e. 

no dependence on volume change exists, it follows that: 0p

ij ijp d    and then the 

increment of plastic work reduces to: 

p p

ij ijdW s d                                                 (104) 
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In vector form, the Eq. (104) may be expressed as the inner product of the stress 

deviator vector with the increment of plastic strain one. In the principal stress space 

for isotropic materials, it becomes: 

cospdW  p
s dε                                            (105) 

where s  and p
dε  are the norms of the stress deviator and of the plastic strain 

increment, respectively, and   is the angle between them. In order to explicit the 

terms in the increment of plastic work expression, the norms of the stress deviator 

and of the plastic strain increment are given, respectively: 

2 2 2

22I II III ij ijs s s s s J    s                             (106) 

2 2 2( ) ( ) ( )
II III I ij ij

p p p p pd d d d d       p
dε                    (107) 

and the effective stress and effective strain increment are recalled as: 
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ef ij ijJ s s                                            (108) 

2 1

23
ef ij ijd d d                                            (109) 

From this point, after some manipulations it results possible to connect the 

norms with the effective stress and effective strain increment by introducing the 

expressions: 
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and in this manner the equation for the increment of plastic work simply 

becomes: 

cosp p

ef efdW d                                             (112) 

Under the assumption of Prandtl-Reuss constitutive relations, it is known that 

the increment of plastic strain vector is coaxial with the stress deviator so the angle 

0  , cos 1   and the increment of plastic work reduces to: 

p p

ef efdW d                                                 (113) 

After these calculations, the Prandtl-Reuss equation may be rewritten taking 

into account the amount of the increment of plastic work, as seen in Eq. (113), and 

the expression of the increment of plastic work, as seen in Eq. (104), so that: 

2

22 2p p

ij ij ij ijdW s d d s s d J d k                              (114) 

and the unknown parameter d may be obtained: 

22

pdW
d

k
                                             (115) 

as already seen in Section 1.2. in Eq. (23). 

Finally, the complete expression for the plastic strain increment may be showed 

substituting the scalar d  in the flow rule: 
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Appendix 2. Description of Ramberg-Osgood stress-strain curve 

As discussed in Section 1.5., the Ramberg-Osgood stress-strain formula is based 

on the determination of three parameters in order to express approximatively the 

relation between stresses and strains in the plastic range for a given material. Its 

general expression already seen in Eq. (55) in Section 1.5. is following reported: 

n

K
E E

 


 
   

 
 

where E  is the Young modulus, K  and n  are material parameters.  

In the first edit of the work, the two unknown parameters, K and n, are obtained 

by tracing two straight lines passing through the origin and intersecting the real 

stress-strain curve at two points, corresponding to two precise stress values. The 

slopes of these two lines are respectively of 0.7E  and 0.85E  so that the stress 

values deduced by the intersection with the material curve are respectively 
0.7E  

and 
0.85E  (see Figure 50 in Section 1.5). Nevertheless, since determining the 

stresses by means of the offset method along the strain axis is much more used than 

by means of that secant method, it may be convenient to evaluate the two 

parameters K and n by assuming other two stresses related to adequate offset stress 

values.  

Consider to have two generic stress and offset values:
1  related to the offset 

1d  

and
2  related to the offset 

2d . In the Eq. (55) the first term represents the elastic 

amount of the strain while the second term is the plastic one. In this respect, a 

generic strain offset over the yield point may be rewritten as: 

n

d K
E

 
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 
                                               (117) 

from which by introducing a logarithmic scale and using the additive property 

of the logarithm it may be obtained: 

log log logd K n
E

 
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                                    (118) 
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By substituting the two couple of stress and offset values 
1 1( , )d  and 

2 2( , )d  

in Eq. (118) respectively, two equations in K and n are obtained: 

1
1log log logd K n
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 
                                    (119) 

2
2log log logd K n
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                                    (120) 

and then subtracting the Eq. (120) with the Eq. (119) the solution for n  may be 

deduced: 
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                                            (121) 

Thus from Eq. (117), K  may be obtained: 
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  or  1
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                       (122) 

Replacing the solution for K  in Eq. (55) , the stress-strain formula becomes: 
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   or  
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where n  is always obtained by Eq. (121).  

A commonly used offset value is that corresponding to the yield stress, i.e. 

0.002. In this manner, choosing the couple of values ( ,0.002)y , the expression 

of the stress-strain curve reduces to the simple formula: 
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Moreover, introducing the “yield offset” as: 

0.002 yE                                              (125) 

the stress-strain curve finally assumes the well-known expression in Eq. (56) 

seen in Section 1.5: 
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where E  and 
y  are the elastic modulus and the yield strength of the material, 

respectively,   is the yield offset defined in Eq. (125) and n  is the hardening 

parameter defined in Eq. (121). 


