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A NEW RIGID BLOCK MODEL 

FOR MASONRY STRUCTURES 
by 

Antonino Iannuzzo 

 

Abstract. This dissertation presents a new rigid block model for the analysis of masonry elements and 

structures. In this work a masonry structure is modelled as a continuum composed by Normal Rigid No-

Tension (NRNT) material. The NRNT represents an extension of the model material of Heyman to 2d/3d 

continua. The material is rigid in compression, but extensional deformations, allowed at zero energy price, 

can be either regular or singular; then extensional deformation can appear as either diffuse (smeared 

cracks) or concentrated (macroscopic cracks), and there is not any reason to prefer one upon another, on 

an energy ground. 

The fact that rigid block deformation seems to be the preferred failure mode for real masonry structures 

stems from mechanical characteristics, such as toughness, interlocking, finite friction and cohesion, that 

are not inherent to the simplified NRNT continuum model. So, it is interesting to see if rigid block 

mechanisms can arise naturally in solving the equilibrium problem, and if there is any legitimate way to 

force rigid block mechanisms over diffuse cracking. 

The boundary value problem for a continuum composed of NRNT material is formulated as an energy 

minimum search, and two numerical methods for approximating the solution are proposed. With the PR 

method the energy is minimized in the set of piecewise-rigid (PR) displacements. With the C0 method the 

possibility to restrict the search of the minimum to continuous (C0) displacement fields, by adopting some 

classical Finite Element (FE) approximation, is explored. The C0 solution, though more cumbersome from 

the numerical point of view, appears as more adaptable than the rigid block approximation, in 

approximating fracture lines that are slanted, that is far from being located on the skeleton of a mesh. 

This sluggishness of the rigid block approximation in reproducing “slanted” cracks (that is cracks not 

developing along the boundary of the rigid elements), is one of the main critical issues inherent to the 

piecewise rigid (PR) approximation. Then there is another reason to adopt the C0 approximation, namely 

for seeing if the C0 approximation can be used, in combination with the PR approximation, as a preliminary 

analysis for suggesting the optimal rigid block partition. 

After the two methods are introduced, some benchmark problems are analysed to illustrate the numerical 

performances of the two approaches and the “pro et contra” of these two opposed strategies. 

The effectiveness of the rigid block approach combined with energy minimization, is also tested on some 

benchmark problems, such as the problem of the arch subject to given settlements, the Couplet’s problem, 

and the determination of the collapse load multiplier of horizontal forces. 

A number of case studies concerning real masonry structures is also presented to illustrate the 

effectiveness of the proposed method. 
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[1] Introduction - Chapter 1 

INTRODUCTION 

Prologue. In this dissertation, considering plane masonry structures in 

equilibrium under the action of known loads, we propose a method for 

predicting the effect, in terms of displacements and fractures, of given 

settlements and load conditions. 

Fractures and cracks in masonry are physiological, and rather than the result of 

over-loading, are most likely the direct product of small changes of the 

boundary conditions. However, geometry and loads play a role in the specific 

fracture pattern that actually nucleates into the structure. In other words, the 

specific way in which a certain fracture pattern opens up and evolves, even if 

usually not directly due to an excess of loading (and more likely the direct effect 

of settlements of the foundation or of internal distortions), is in a strong relation 

with the geometry of the structure and of the loads themselves. 

A simple mathematical model allowing for the prediction of this peculiar 

behaviour is the unilateral masonry-like material of Heyman (1966), a very crude 

but genial model for masonry, for which the two theorems of Limit Analysis, 

created for analysing ductile structures, are still valid.  

We refer to the works by Kooharian (1952), Livesley (1978), Como (1992), 

Angelillo (2014b), Brandonisio et al [(2015),(2017)], Gesualdo et al (2016a), 

Angelillo et al (2014), Fortunato et al (2016), Huerta [(2002),(2006),(2008)], Block 

et al (2006), Block (2009), Marmo and Rosati (2017), Bagi (2014) for the 

discussion and the application of limit analysis to masonry-like structures. 

∎  1.1 THE UNILATERAL MODEL FOR MASONRY 

It is a fact that the key issue in the peculiar response of masonry structures, is 

represented by their essentially unilateral behaviour. While a standard structure 
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under bilateral constraints, will usually respond to comparatively small settlements 

and eigenstrains with elastic deformations, and then with a substantial modification 

of the internal forces, a unilateral structure, even if heavily over-constrained, can 

exhibit zero energy modes, and then may compensate the effect of comparatively 

large settlements without any increase of the internal forces, through mechanisms 

requiring essentially vanishing energy dissipation.  

We call the search for a kinematically admissible displacement, that is for the solution 

of the boundary value problem (bvp) for the displacement 𝒖 under Heyman’s 

restrictions: kinematical problem, as opposed to the equilibrium problem, that is the 

search of a statically admissible stress field under Heyman’s restrictions. For 

masonry-like materials these two problems are essentially independent, and can be 

dealt with separately. 

When trying to solve the boundary value problem with a kinematic approach, the 

problem arises of selecting, among the possibly many kinematically admissible 

displacement fields responding to the given kinematical data (settlements and 

eigenstrains), the ones that guarantee also the equilibrium of the loads imposed on 

the structure. 

For elastic, and even for some elastic-brittle materials, these states, that we call 

“solutions of the boundary value problem”, can be found by searching for the 

minimum of some, suitably defined, form of energy. For elastic-brittle materials this 

energy is the sum of the potential energy of the loads, of the elastic energy and of 

the interface energy necessary to activate a crack on an internal surface, see 

(Angelillo et al, 2012) and (Gesualdo et al, 2015). For elastic materials is the sum of 

the potential energy of the loads and of the elastic energy. For Heyman’s materials 

is just the potential energy of the loads. 

Then we may search a displacement field which is the solution of the boundary value 

problem, by minimizing the potential energy ℘ of the loads over a convenient 

function set 𝒦 for the displacements. Here we consider two numerical 

approximations of the minimum problem, based on a finite element subdivision of 

the structure into parts. With the first (PR) method, we consider that the structure 

is an assembly of a finite number of rigid elements, with potential strong 

discontinuities along the common interfaces (i.e. the common boundaries among 

the blocks). This approach is usually called in the recent literature Discrete Element 

Method (DEM). In the plane case, these interfaces must be made of straight pieces. 

With the second method, we consider classical C0 finite elements (FEM). Indeed, 

a possible simple choice for approximating this set 𝒦 for a continuum made of 

Heyman’s material is to consider that the strain is zero a.e. inside the domain, namely 

𝒦 is the set of piecewise rigid displacements. This is actually the case if the structure 
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is composed of monolithic blocks which are not likely to break at their inside (De 

Serio et al, 2016) 

We must point out that piecewise rigid displacements, which are the most frequent 

and evident manifestation of masonry deformation in real masonry constructions, 

are not at all simple displacement fields for a continuum, and are usually ruled out 

in the standard numerical codes for fluids and solids which are employed to handle 

the complex boundary value problems of continuum mechanics. A usual setting for 

problems in which finite jumps of the displacement are admitted is the space SBV 

(Ambrosio et al, 2000). The main difficulty with displacements that belongs to the 

space SBV, (besides, for deformable materials, the managing of the singularity of 

strain at the tip of the crack) is the fact that the location of the support of the 

singularity (that is of the jump set) is not known in advance, and that the shape and 

the topology of the parts over which the displacement is regular, can be, in principle, 

rather wild. 

Actually, a recent piecewise rigidity result by Chambolle et al (2007) generalizing the 

classical Liouville result for smooth functions now states that an SBV function y 

satisfying the constraint ∇𝑦 ∈ 𝑆𝑂(2) a.e. (𝑆𝑂(2) being the group of rotation tensors 

in 2d), is a collection of an at most countable family of rigid deformations, i.e. the 

body may be divided into different components each of which is subject to a different 

rigid motion. 

Some issues connected with the managing of rigid deformation with unknown 

interfaces is discussed, with the aid of some simple examples, in the forthcoming 

paper of Cennamo et al (2017), from which we make the following citation: 

“…then we may search a displacement field 𝒖 which is the solution of 

the boundary value problem (i.e. the kinematical and the equilibrium 

problem for masonry-like structures), by minimizing the potential 

energy ℘ of the loads. … Actually, the functional ℘ is linear in 𝒖; then, if 

the set of kinematically admissible displacements is discretized by fixing 

a given partition of the domain into rigid parts Ω𝑖 (that is the supports 

of the possible strain singularities -i.e. the fractures- are fixed in 

advance), the minimization of ℘ reduces to the minimization of a linear 

functional under linear unilateral and bilateral constraints (i.e. the 

constraints expressing the unilateral contact with no-sliding among 

blocks). Such a problem is, at least in principle, an easy problem of 

convex analysis that can be solved, for example, with the simplex 

method. The case of movable interfaces, that is the case in which the 

partition into blocks is not fixed in advance, is a completely different 

story. The functional ℘, though still a linear function of 𝒖, becomes a 

strongly nonlinear function of the position of the interfaces, and its 
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minimization under the given constraints, requires a much bigger 

effort.” 

Summing up, in the present work to obtain an approximation of the minimizer (that 

is of the displacement minimizing the energy) with the two methods, we proceed 

as described below. 

PR. With the first method, fractures will appear concentrated. We fix a 

mesh geometry and iterate the minimization with respect to the rigid 

body displacements of the elements, by refining the mesh until a 

satisfying picture of the fractures is obtained. This way produces a 

sequence of linear programming problems.  

 

𝑪𝟎. With the second method, fractures will appear as smeared. We fix a 

FE mesh and find the minimizer. The minimal solution may return 

diffuse cracking with large peaks in the vicinity of lines and then, 

essentially, a partition of the domain into rigid blocks. This second 

method, computationally more time-consuming, allows to detect the 

exact position and inclination of the fractures by approximating them 

with narrow bands. Then, the second (𝐶0) method can be used also to 

select an optimal partition into rigid blocks to be fed into the first 

method (PR). 

The description of fractures and rigid block mechanisms is inherent to the unilateral 

model, but masonry sometimes presents also other kinds of local and global failure 

modes that we describe and analyse in the following sections. 

∎  1.2 MODEL FOR MASONRY: NO-TENSION ASSUMPTION 

A common architectural definition of masonry says: masonry is the building of 

structures from individual units, which are often laid in and bound together by 

mortar. 

The common materials of masonry construction are various: generally, bricks and 

building stones such as marble, granite, limestone, tuff and concrete blocks. The 

materials used, the quality of the mortar and workmanship, and the pattern in which 

the units are assembled can significantly affect the performance and the durability 

of the overall masonry construction. Generally, well executed masonry assemblies 

are a highly durable form of construction. Indeed, in particular in Europe, masonry 

constructions are the great majority of the buildings and the most important 
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monuments of its architectural heritage. Despite the continuous growth of demand 

for masonry safety assessments, nevertheless, as Como noted, “there is a lack of a 

widely accepted approach to studying the statics of masonry structures” (Como, 

2013, p. VII). 

The main question in masonry modelling is: it is possible to group a large variety of 

masonry structures into a single material class in order to apply a unified and general 

approach?  

If the answer be negative, any particular structure would be approached with an “ad 

hoc” model. Probably a definite answer to this question does not exist, and in this 

sense the way used for the analysis of a masonry structure could be justified in case 

by case fashion; in a certain sense these two approaches could be viewed as 

complementary.  

In the current scientific context, there are essentially two ways of approaching the 

modelling of masonry: the first aims at the modelling of large classes of masonry 

buildings (e.g. old masonry structures). The second one is more pragmatic and 

restricts to the mechanical description of very specific types of masonry (masonry 

structures of regularly arranged blocks, e.g. brickworks of known geometry, see De 

Buhan and De Felice (1997), Sacco [(2009),(2014)], Milani (2011), Lourenço et al (2014) 

and Lebon (2014). 

In the present work, we follow the first approach and develop numerical models, 

which can be applied to solve equilibrium problems for a large class of masonry 

structures. It is to be pointed out that while the second approach adopts 

sophisticated material models, requiring a high degree of knowledge about the 

behaviour of masonry material, the first approach requires only minimal (and mainly 

qualitative) information on the material. Indeed, one of the reasons to prefer, at least 

at the macro-scale, the first approach over the second is the fact that often the 

parameters required by the second approach (e.g. the microscopic geometry, the 

specific material behaviour and the construction details) are either not known or are 

affected by an elevated randomness and uncertainty. 

The basic idea behind the first approach is centred on the assumption that the 

material is unilateral, that is tensile strength can be neglected and only compressive 

stresses can be considered: this is the so called No-Tension assumption. Making 

this assumption, it is possible to take into account and predict one of the main 

characteristic aspects of masonry behaviour, namely the fractures. Indeed, fracturing, 

as noted by Heyman, is “the way in which the masonry buildings relieve and can 

survive also to radical and, sometimes, dramatic changes of the environment)” 

(Angelillo, 2014a, p. 2). Here we describe briefly three models, which we call 

simplified models, and that are based on the No-Tension assumption. 
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∎  1.3 MASONRY MECHANICAL BEHAVIOUR 

As previously defined, masonry is a heterogeneous assemblage of units and joints. 

Units can be such as bricks, blocks, ashlars, adobes, irregular stones and others. 

Mortar is a workable paste used to bind masonry blocks together filling the gaps 

between them. Modern mortars can be typically clay, bitumen, chalk, lime/cement 

based mortar or other. The large possibilities of combination of such elements, either 

from a mechanical point of view or from a geometrical one (assemblage), leads to a 

wide variety of “masonry” cells. Thus, we can easily imagine that the accurate 

knowledge and mechanical characterization of a particular masonry is strictly 

connected to the in situ material proprieties. In what follows we treat, briefly, some 

mechanical macroscopic aspects, referring to a macroscopic portion of a masonry 

wall composed of many individual blocks as an elementary representative element, 

neglecting the specific behaviour either of mortar or of the block components.  

Masonry Type 𝑓𝑐  (
𝑑𝑎𝑁

𝑐𝑚2
) 𝑓𝑡  (

𝑑𝑎𝑁

𝑐𝑚2
) 𝐸 (

𝑑𝑎𝑁

𝑐𝑚2
) 𝜌 (

𝑘𝑔

𝑚3
) 

Disarranged masonry of cobbles/boulders 10-18 0.40-0.64 6900-10500 1900 

Masonry of roughhewed stones 20-30 0.70-1.00 10200-14400 2000 

Masonry of cut stones 26-38 1.12-0.74 15000-19800 2100 

Masonry of soft stones 14-24 0.56-0.84 9000-12600 1600 

Masonry of squared stone blocks 60-80 1.80-2.40 24000-32000 2200 

Brickwork of solid blocks and lime mortar 24-40 1.20-1.84 12000-18000 1800 

Brickwork of semisolid blocks and cem. mortar 50-80 4.80-6.40 35000-56000 1500 

Brickwork of air bricks (45%) 40-60 6.00-8.00 36000-54000 1200 

Brickwork of air bricks (< 45%) 30-40 2.00-2.60 27000-36000 1100 

Masonry of concrete air-blocks (45-65 %) 30-44 3.60-4.80 24000-35200 1400 

Masonry of concrete air-blocks (< 45 %) 15-20 1.90-2.50 12000-16000 1200 

 

Tab. 1.1 - Compressive strength 𝑓𝑐, tensile strength 𝑓𝑡, elastic modulus 𝐸 and mass 

density 𝜌 of different types of coarse masonry with poor mortar are reported (source: 

Italian Code for Constructions, DM 14.1.2008). 

It has to be pointed out that the size of the representative element of masonry is at 

least one order of magnitude bigger than any representative volume element of 

other materials such as steel and concrete; for example, a polycrystal has grains of 

size of the order of 10-5-10-4m, concrete aggregates have a size of 10-3-10-2m and 

bricks of 10-1m. The main feature of masonry is that its tensile strength is much lower 

than the compressive one, their ratio being lower than 0.1 and often around 0.01. 

This feature can be noticed from Tab. 1.1, where the main mechanical parameters of 

different types of coarse masonry with poor mortar are reported. In Fig. 1.1a and 

Fig. 1.1b two qualitative stress-displacement diagrams for a masonry wall are 

reported. The symbols 𝑓𝑐 and 𝑓𝑡 indicate the compressive and tensile strength of the 
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wall. Obviously, the strength of the wall depends on the mixing of the strengths of 

its components (blocks and mortar) and their assemblage: many empiric relations 

between the strength of the basic components and the global strength of a masonry 

wall are available in the literature and reported in construction codes.  

In Fig. 1.1 𝐺𝑐 and 𝐺𝑡 represent respectively the compressive and tensile fracture 

energy. In particular, 𝐺𝑡 , also known as toughness, is the surface energy per unit area 

required to open a crack in elongation. Instead, 𝐺𝑐 represent the surface energy per 

unit area connected with the fracture pattern forming during the crushing of the wall. 

There exist some empirical formulas which allow to evaluate 𝐺𝑐 as a function of the 

compressive strength 𝑓𝑐, some other relations expressing 𝐺𝑡 as a function of 𝑓𝑐. 

 

(a) (b)  

Fig. 1.1 - Two qualitative stress-displacement diagrams, in compression (a) and in tension 

(b), for a masonry wall are reported. The symbols 𝑓𝑐 and 𝑓𝑡 denote the compressive and 

tensile strength of the wall, whilst 𝐺𝑐 a 𝐺𝑡 represent the compressive and tensile fracture 

energy (toughness). 

Remark 1|1. Since the tensile strength is much lower than the compressive 

one, the energy 𝐺𝑡 required to open a crack, as can be easily deducted from 

Fig. 1.1b, is negligibly small with respect to the energy required to crush the 

material; therefore neglecting the tensile strenght and the corresponding 

toughness is justified on an energetical ground. ∎ 

∎  1.4 MASONRY STRUCTURES: FAILURE MODES 

In this section, we present some typical failure modes showing images selected from 

(Faccio, a.a. 2014-15), (De Maria), (Giuffrè, 1991), (Calderoni, 2015) and (Papa et al, 

2001). 
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1.4.1 Local failure modes 

Masonry structures exhibit essentially three main local failure modes. The first is 

associated with the low tensile strength of masonry and manifests itself through a 

clear and definite detachment between two adjacent and intact parts (see Fig. 1.2).  

Usually these detachments, called fractures, can involve or not the bricks (see Fig. 

1.3), depending on the mutual strength of mortar and brick. Usually this kind of 

failures are the less alarming, since through them masonry structures can 

accommodate the possible change in boundary conditions (e.g. settlements). 

         
 

      
 

 
 

Fig. 1.2 - Some typical failure modes of the first type: detachments. 

 

 

Fig. 1.3 - Detachments can involve or not the brick: a scheme. 
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The second one involves both fractures of detachment and sliding, and is typical of 

in-plane shear mechanisms Fig. 1.4): this failure mode appears when masonry is 

subjected to high compressive loads and shears. 

      
  
 

 

     
 

  

 

Fig. 1.4 - Some typical failure modes of the second type: detachments and sliding. These 

fractures occur when the structure is close to collapse (e.g. under seismic action). 

The third one is the crushing of the material due to compression and occurs when 

the compressive stress is close to the compressive strength of the material (Fig. 1.5 

and Fig. 1.6). Generally, since masonry structures are designed to work under low 

compressive stresses (usually a mean background stress level of 10% with respect to 

the compressive strength is present), this failure mode is far less frequent. 
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Fig. 1.5 - Some typical failure modes of the third type: crushing of the material occurring 

when the compressive stress is close to the compressive strength of the material. 

Citing from Angelillo: “The first type of fractures is the most frequent and usually 

irrelevant. The second and third modes often occur when the load is critical or close 

to become a collapse load. The third one is the most dangerous since failure under 

compression is usually sudden” (Angelillo, 2014, p. 3). 

  

Fig. 1.6 - Drawing from (Mastrodicasa, 1988): a typical crushing failure of a masonry pillar. 
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1.4.2 Global failure modes: mechanisms 

Here we present the main typical collapse mechanisms. Besides the failure modes 

due to poor quality of masonry (Fig. 1.7), the typical mechanisms are classifiable into 

two main categories: out of plane failure and in-plane failure. 

      
 

 
 

 

Fig. 1.7 - Examples of poor quality masonry (Onna). 
  

 

  
 

 

Fig. 1.8 – A schematic representation of a failure of a poor quality masonry. 
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The first ones (Fig. 1.9) are the most frequent and visible collapse modes for masonry 

structures. They essentially depend either on the poor clamping between the wall 

and the remaining part of the structure or on the pushing of the roofs, slabs and 

other transverse walls. The mitigation of this kind of failures is obtained by adopting 

some geometrical and mechanical prescriptions. 

       
  

 

    

Fig. 1.9 - Some typical out of plane mechanisms. 

The second ones (Fig. 1.10 and Fig. 1.11) concern well-designed masonry structures 

failing globally. Indeed, a good design practice should avoid the first mechanism 

and allow only global mechanisms. Generally, this second mode displays itself 

through detachments and sliding (see Fig. 1.4) involving the formations of such 

internal resistant structures (see Fig. 1.12 and Fig. 1.13). 
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Fig. 1.10 - Some typical in-plane mechanisms. 

 

    

 

   
 

 

Fig. 1.11 - Some typical in-plane mechanisms for arches and vaults. 
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The aim of this work is the development of a model and of the related numerical 

code for the analysis of in-plane mechanisms and of the effects of settlements. In 

particular, it should be noted that often, with reference to these two cases, the 

approach used in the literature to analyse a masonry structure is to guess a typical 

mechanism (or select it among a given set of typical ones) and making on it the 

related assessments of safety (see Fig. 1.12, Fig. 1.13 and Fig. 1.14). 

Instead, our methods aims at determining automatically the mechanism, on which 

all the required analyses could be applied. 

 
 

 
 

      

Fig. 1.12 - Drawings from (Faccio, a.a. 2014-15): the effects of earthquake and the related 

internal resistant structures are shown. 
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Fig. 1.13 - Two typical mechanisms hypothesized for the analysis of a masonry structure 

under horizontal actions, source: (AA.VV, 1999). 

 
 

 
 

 

Fig. 1.14 - Some drawings reporting the effects of settlements on masonry structures. 

Masonry structures accommodate the settlements through the formation of rigid blocks 

(real examples redrawn from the website of “Vigili del Fuoco” Bergamo, courtesy of Paolo 

Faccio). 
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∎  1.5 SIMPLIFIED MODELS 

In order to model and characterize the behaviour of masonry-like materials in 1d, we 

adopt the same classification of (Angelillo, 2014b) sorting these models with an 

increasing number coinciding with the number of parameters required for their 

definition. The models adopted are three, namely: “model zero”, “model one” and 

“model two” and then the number of independent parameters required is 

respectively zero, one and two.  

Remark 2|1. Before discussing these models, it would be useful to fix a 

preliminary and basic concept: by using the term “elasticity”  in what follows, 

we refer to its primitive definition, namely: stress 𝑻 uniquely determined by 

strain 𝑬, namely 

 𝑻 = 𝑓(𝑬) . ∎ (1.1) 

1.5.1 Model Zero (NRNT) 

The most essential and restrictive idealization is “model zero”, that is the Normal 

Rigid No-Tension (NRNT) model. No mechanical parameter is required to define 

this model.  

  

Fig. 1.15 – Uniaxial behaviour (blue line) defining model zero compared to a typical 

stress-stain plot for masonry (red line). Both stiffness and strength are assumed to be 

infinite. Since for 𝜀 > 0 the stress is completely determined by the strain, the behaviour is 

elastic for any positive deformation, while the stress is non-constitutive for 𝜀 = 0. 
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The 𝜎 − 𝜀 plot of Fig. 1.15 illustrates the idealized behaviour of such a material 

compared to a typical stress-strain plot. The material is rigid in compression and 

completely compliant in extension, that is strength and stiffness are assumed to be 

infinite in compression and zero in tension, so such a material can exhibit an arbitrary 

stretching at zero energy dissipation price.  

It is to be noticed that a positive deformation, coupled with the absence of stress, 

could be interpreted as a fracture deformation (smeared or concentrated) for which 

the energy required for crack opening is neglected. The stress due to a positive 

deformation is zero, and according to the previous definition of elasticity the stress 

is completely determined by the actual strain. This implies that the behavior in 

elongation is elastic and perfectly reversible.  

On the other hand, the behaviour in compression is non-elastic being modelled as 

infinitely stiff and strong. This hypothesis of rigidity in compression can be seen as 

an internal constraint on the strain and consequently the stress required to realize it 

is non-constitutive (non-elastic). The fact that neither the behaviour in compression 

nor in tension does require any constitutive parameter is the key factor in giving an 

essentially geometric strength to ideal masonry structures made of this material. This 

model is widely diffused since it was first successfully introduced by Heyman (1966) 

and subsequently taken up and extended in Italy by Di Pasquale (1984) and 

developed by other members of Italian school of Structural Mechanics. 

1.5.2 Model One (NENT) 

A further step to refine model zero, is to add a mechanical parameter to it, that is to 

define an ideal uniaxial behaviour using only one parameter. Potentially two different 

options, both regarding the behaviour in compression, can be made: 

- consider a finite stiffness, still assuming an infinite strength (Fig. 1.16a); 

- limit the strength, still assuming infinite stiffness (Fig. 1.16b). 

The first way, as depicted in Fig. 1.16a, produce an elastic response (see Remark 

2|1), whilst the second choice (Fig. 1.16b), which adds a limited strength in 

compression would require a history dependent behaviour. Since, generally, model 

one is oriented to study a masonry structure under working condition, the first model 

is commonly preferred to the second and is more diffused. This model is called 

Normal Elastic No-Tension (NENT) and was introduced and widely studied by the 

Italian school of structural mechanics, see Romano and Romano (1979), Baratta and 

Toscano (1982), Como and Grimaldi (1985), Romano and Sacco (1985), Castellano 

(1988), Del Piero (1989), Angelillo (1993). 



20  Simplified models 

 

With model one the strain could be either positive or negative, and the behaviour is 

elastic: then compressive stress is also constitutive. The material is actually 

hyperelastic and it is possible to consider a stored elastic energy density: the NENT 

material is hyperelastic. In 1d, the parameter required to define the model is the 

elastic modulus 𝐸. 

 

 
(a)   (b)  

Fig. 1.16 - Two possible 1d models obtained by adding one material parameter. In (a) a 

finite stiffness is fixed while the strength is still assumed to be infinite. In (b) the strength 

has a finite value and the stiffness remains infinite. 

1.5.3 Model Two (ML) 

An additional step, to refine model one (Fig. 1.16a), is to add a limit stress in 

compression. The additional parameter is the compressive strength fc (Fig. 1.17). 

Model two can be viewed as the ultimate step of refinement for a macroscopic 

simplified model; for this reason, this model is sometimes referred to as the 

Masonry-Like (ML) model.  

The uniaxial behaviour in elongation remains still elastic (reversible), and the strain 

represents again fracture. The behaviour in compression, instead, is now elastic- 

perfectly plastic and then the compressive response is still constitutive but 

incremental and, in this sense, path dependent. Stress is determined by the global 

strain history. The plastic deformation developed in compression are, obviously, 

irreversible due to crushing. This evident difference between the behaviour in 

elongation (reversible) and compression (irreversible) causes the impossibility to 

cancel the plastic deformations (i.e. crushing) simply reversing the strain. The two 
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mechanical parameters required to define model 2 are the elastic modulus E and the 

strength in compression fc.  

  

Fig. 1.17 - Typical uniaxial behaviour of model two (blue line). The behaviour for positive 

strains remains elastic, whilst the behaviour for negative strains becomes elastic-perfectly 

plastic, and then incremental and path dependent. 

∎  1.6 EXTENSION TO CONTINUUM MODELS 

The uniaxial behaviour can be extended to continuum models. The No-Tension 

hypothesis is naturally extended restricting the stress tensor 𝑻 to belong to the 

convex cone of the semidefinite negative symmetric tensors 𝑆𝑦𝑚−, namely: 

 𝑻 ∈ 𝑆𝑦𝑚− . (1.2) 

Concerning the latent strain, that is strain needed to support the unilateral condition 

on stress, it is necessary to extend the corresponding restrictions case by case. In 

particular, the assumptions that we will do on the strain is a law of normality on the 

latent strain with respect to 𝑆𝑦𝑚−. This law of normality allows to apply Limit 

Analysis and its basic tools: the Safe Theorem and the Kinematic Theorem. For 

model zero the normality assumption entails the condition that on fracture lines 

sliding cannot occur. The fulfilling of normality, that can be formulated for the total 

strain, is equivalent to the two following restrictions: the stress does not work for the 

anelastic strain 𝑬 (i.e. the fracture strain), namely: 

 𝑻 ⋅  𝑬 = 0 , (1.3) 

and the strain 𝑬 has to belong to the semidefinite positive convex cone 𝑆𝑦𝑚+: 
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 𝑬 ∈ 𝑆𝑦𝑚+ . (1.4) 

These three-basic assumptions are the minimal ingredients needed to apply Limit 

Analysis. Also model one and two can be extended to a continuum model. Since, in 

both cases, the stress fields have to belong to a convex set, the main difference 

between them stays in the fact that whilst model one (and model zero) is governed 

by a law of elastic type (non-incremental), instead model two is governed by an 

evolutionary equation. Model one is commonly extended assuming the behaviour in 

compression as isotropic and defining a further mechanical parameter: the Poisson 

ratio ν. The behaviour of the material remains hyperelastic and so path independent. 

The extension of model two is more involved, requiring to define a limit surface in 

compression and to introduce a flow rule for the compressive plastic strain rate 

(modelling crushing). The flow rule could be associated or, taking into account 

sliding, non-associated (Romano and Sacco, 1985). Whatever be the choice, the 

response of the material becomes incremental and path dependent. 

Remark 2|1. With regards to the continuum extension, the restrictions on 𝑻, 

that must belong to the convex cone of the semidefinite negative symmetric 

tensors 𝑆𝑦𝑚− is the basic assumption for all the simplified models. In the first 

two models, since there is not any limit in compression, the stress tensor 𝑻 can 

belong to the whole cone 𝑆𝑦𝑚−. In model two, a limit surface is fixed, and the 

stress tensor 𝑻 can belong only to a finite subset of 𝑆𝑦𝑚−. In Fig. 1.18 the 

biaxial failure domain of concrete (Kupfer, 1973) and the convex cone 𝑆𝑦𝑚− 

are depicted for the plane case in the 2d space of the principal stresses. ∎ 

 
(a) (b)  

Fig. 1.18 - Two feasible stress domains: in (a) biaxial failure domain of concrete 

(Kupfer, 1973), in (b) the convex cone 𝑆𝑦𝑚−. 
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∎  1.7 OUTLINE OF CHAPTERS 

This dissertation presents a new rigid block model to solve the bvp for NRNT 

material. The main motivation that substantiates this work consists in the observation 

that real masonry structures exhibit such rigid block mechanisms when subject to 

severe settlements or when shaken by serious earthquakes. 

An energy criterion, thought of as selection criterion, to search a displacement field 

which is the solution of the boundary value problem is considered and two numerical 

methods to approximate the sought solution of the boundary value problem are 

proposed. With the PR method we search the solution of the bvp in the set of 

piecewise rigid displacements: the strain coincides with its singular part and is 

represented by line Dirac deltas: the crack pattern is concentrated along lines. The 

C0 method, instead, consists in the approximation of the solution in the set of 

continuous displacements: the strain admits only of a regular part.  

The main result obtained by using the C0 method is that, even if continuous functions 

are considered, the solution will often returns an approximate partition of the whole 

structure into essentially rigid blocks: this results confirms the observation of rigid 

block mechanisms in real masonry structures. 

The dissertation is divided into five parts. In Part I (Chapter 1, 2, 3), the motivation 

and goals of the research are given. In Chapter 2 the definition of Normal Linear 

Elastic material and, as a particular case, the definition of the Normal Elastic No-

Tension material, are introduced. 

Chapter 3 reviews the main ingredients of the theory of Normal Rigid No-Tension 

(NRNT) materials: the simplest model that can be used to study masonry structures. 

The NRNT material represents the natural way to extend the Heyman’s theory to 

masonry structures treated as continua. The main result of this chapter is that the 

NRNT model allows for the application of the theorems of Limit Analysis and then 

the safe and kinematic theorems for normal-unilateral materials are briefly recalled, 

and the compatibility of loads and distortions is discussed. 

Part II (Chapter 4, 5) presents the rigid block model, which are proposed. In Chapter 

4, an energy criterion to select the solution of the boundary value problem, dealt 

with a displacement approach, is considered and two numerical methods are 

proposed to approximate the search for the minimal solution, namely the PR method, 

based on rigid blocks (modelling the cracks as concentrated), and the C0 method, 

based on continuous functions (modelling the cracks as smeared). 
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In Chapter 5, some basic applications to trivial benchmark problems of the two 

numerical methods are proposed. It will be seen that with the application of the C0 

method, the solution will often returns a hint on a partition into rigid blocks. In 

particular, in the cases in which the fracture lines are difficult to be detected (due to 

their location or slope), the subdivision suggested by the C0 approach could be used 

to start another analysis with the PR method, based on rigid blocks. 

Part III (Chapter 6, 7, 8) presents some applications and results of rigid block model 

using both approximation methods. In Chapter 6, in order to understand the peculiar 

behavior of old masonry structures, we analyze the masonry arch handling it with the 

PR method (i.e. rigid blocks). The goal of this Chapter is two-fold: revisiting the old 

theory of the arch and demonstrating, on a simple and fundamental application, the 

effectiveness of our method in tackling the structural analysis of masonry. With 

reference to the last goal we use firstly some well-known results as benchmarks for 

our PR method and secondly we test our model comparing our results with other 

ones obtained analytically and reported in the Appendices (D and E). 

In Chapter 7 some applications concerning simple portals and wall with openings 

analysed using the two numerical methods described in Chapter 4, are proposed. In 

the final part, we present three case studies, developed with the PR method, in order 

to illustrate the way in which a particular fracture pattern can be identified. 

In Chapter 8, some applications concerning the analysis of simple masonry 

structures under horizontal actions are considered. We illustrate how the use of the 

C0 method, based on continuous functions, could simplify the problem providing an 

indication of the structure partition into rigid blocks. Finally as a case study, an arch 

under horizontal shaking action is considered. We find the static collapse multiplier 

and then, by using the partition obtained through the PR method, we develop an 

example of dynamic analysis based on the model of rocking of a rigid block. 

In Part IV, Chapter 9 provides general conclusions.  

Finally in Part V, some appendices are reported. In particular, in Appendix D and E 

analytical results concerning the Couplet’s problem and the assessment of the 

horizontal static multiplier (e.g. circular arch with a variable springing angle) are 

shown. 

 



[2]Constitutive Equation for NENT Material - Chapter 2 

CONSTITUTIVE EQUATIONS FOR 

NENT MATERIAL 

Prologue. In this Chapter, we introduce the material restrictions characterizing 

the Normal Linear Elastic materials and, as a particular case, the constitutive 

equations of Normal Elastic No-Tension materials , showing that this kind of 

unilateral material, though unilateral, is elastic and even hyperelastic. Our 

analysis follows closely the developments given by Del Piero (1989) and Šilhavý 

(2014). Some peculiarities of NENT materials, related to the stress diffusion are 

also discussed. Limit analysis for masonry-like materials is presented in Chapter 

3. 

∎  2.1 CONSTITUTIVE EQUATION FOR NORMAL LINEAR ELASTIC MATERIAL 

Limit Analysis finds its mathematical fundament on two basic theorems (the Safe and 

the Kinematic Theorems) demonstrated by Drucker et al in (1952). Firstly Kooharian 

(1952), with reference to a concrete arch, and successively Heyman (1966), with 

regards to a generic masonry structure composed by rigid blocks, used these two 

theorems with a new twist, by applying them to No-Tension materials. Only some 

years later, it was demonstrated that these materials can be described by a 

constitutive equation of elastic type, generated by a variational inequality [(Romano 

and Romano, 1979), (Del Piero, 1989)], and only recently Del Piero, in two works 

(1996) and (1998), demonstrates rigorously the applicability of the two fundamental 

theorems of limit analysis to NENT materials. In this section, after recalling some 

concepts of constrained elasticity, we discuss Normal Elastic No-Tension materials. 



26 Constitutive Equation for Normal Linear Elastic Material 

 

In Chapter 3 the reader will find the main results related to Limit Analysis for NRNT 

materials.  

The basic general principles, see (Truesdell and Noll, 1965), assumed as postulates 

governing the mechanical behaviour of materials, are: 

-  principle of material frame indifference: the response of material is 

independent from the observers; 

- principle of determinism: the actual stress is determined only by the history of 

the motion; 

- principle of local action: which asserts that the actual stress in a point depends 

only by history of the motion of a “small neighbourhood” of the considered 

particle. 

Starting only from these three basic principles and adding only the definition of 

internal constraint (both for stress and deformation), “a natural way” to define a 

normal elastic material can be introduced.  

Generally, an internal constraint could be thought of as a vector-valued function of 

a tensor variable. In particular, with reference to a kinematical internal constraint, 

according to (Truesdell and Noll, 1965) the tensor variable coincides with the history 

of the deformation gradient 𝑭 which prescribes the local motion of particles. 

Obviously, these restrictions have to be constitutive and usually expressed as: 

 𝜸(𝑭) = 𝟎 , (2.1) 

but in some case these can be written also by a set of scalar inequalities. Below we 

refer to a scalar-valued function 𝛾 of a tensor variable. For a body subjected to 

internal constraints is necessary to review the principle of determinism. One notices 

that “the description of a constraint in mechanics requires fundamentally more 

information that merely defining a set of permitted configurations” (Moreau, 1974), 

indeed a kinematical constraint is always coupled with forces.  

Then, the basic question is how to restrict the set of these generalized forces in order 

to define a constitutive equation for a constrained material. In (Truesdell and Noll, 

1965) one extends the virtual work principle from unconstrained material to 

constrained one by assuming that forces maintaining the constraints are that which 

do not work for the admissible displacements. This assumption allows to use 

kinematical internal constraint as constitutive equation and to rearrange the principle 

of determinism for simple materials: “in a simple material subject to internal 

constraints the stress is determined by the history of the deformation gradient only 

within a stress 𝑵𝑎 that does no work in any motion satisfying the constraints”.  
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Then, following this reasoning, the stress tensor 𝑻 can be split into an elastic part 𝑻𝑒 , 

determined by the actual value of 𝑭, and an anelastic one 𝑵𝑎, undetermined, which 

does not work for any virtual motion satisfying the kinematical constraints, namely: 

 𝑻 = 𝑻𝑒 + 𝑵𝑎 , (2.2) 

with 

 𝑻𝑒 = 𝑻𝑒(𝑭) , (2.3) 

 𝑵𝑎 ∙ (𝑭
∗ − 𝑭) = 0 , (2.4) 

where (𝑭∗ − 𝑭) is a variation of the gradient displacement field compatible with the 

restriction 𝛾(𝑭) = 0. Differentiating the equation (2.4), one obtains: 

 ∇𝛾(𝑭) ∙ (𝑭∗ − 𝑭) = 0 . (2.5) 

Confronting (2.4) e (2.5), one deduces that 𝑵𝑎 is collinear with the ∇𝛾(𝑭). With only 

these basic hypotheses the principle of determinism, opportune rearranged for 

simple constrained material, result in an assumption of normality for the 

undetermined part of stress 𝑵𝑎 . Moreover, if the restriction is given by an inequality:  

 𝛾(𝑭) ≤ 0 , (2.6) 

the condition (2.4), in order to be constitutive, has to be written in the following form: 

 𝑵𝑎 ∙ (𝑭
∗ − 𝑭) ≤ 0 . (2.7) 

This constitutes the main characterization of the undetermined part of the stress due 

to the kinematical restriction (Prager, 1957). 

Remark 1|2. The relation (2.7) implies that 𝑵𝑎 has to be 0 in the region: 

 Ω = {𝒑 | 𝛾(𝑭)|𝑃 < 0 } , (2.8) 

and could be different from zero only on the level set  𝜕Ω  defined by 𝛾(𝑭) =

0. Furthermore, considering a point 𝑃 ∈ 𝜕Ω  where 𝑵𝑎|𝑃 ≠ 𝟎, from (2.7) it 

follows that 𝑵𝑎 is normal in 𝑃 to 𝜕Ω and, in particular, it points out. ∎ 

On the other hand, a specular (“dual”) reasoning in presence of a unilateral constraint 

on the stress can be formulated. Likewise, a constraint on the stress is coupled with 

a restriction on the displacements, or better it causes a restriction of the set of all 

admissible deformations. Introducing, as made below, a unilateral constraint on 

stress, it is possible to describe completely and rigorously a particular class of 



28 Constitutive Equation for Normal Linear Elastic Material 

 

materials: the normal linear elastic material. By virtue of our needs, below we refer 

only to small displacements and to small deformations. A scalar unilateral restriction 

on the Cauchy stress tensor can be expressed by the following scalar-valued function 

of a tensor variable 𝑻, namely: 

 𝛿(𝑻) ≤ 0 . (2.9) 

Since it is possible to split the deformation gradient 𝑬 into an elastic part 𝑬𝑒 and an 

anelastic one 𝝀: 

 𝑬 = 𝑬𝑒 + 𝝀 , (2.10) 

and noting that the actual stress is completely determined only by elastic part 𝑬𝑒 : 

 𝑻 = 𝑓(𝑬𝑒) , (2.11) 

it follows that is possible to characterize the anelastic part 𝝀 through a specular 

“normal” relation founded on the assumption that “the complementary power of is 

non -positive for any variation of the stress which is compatible with the constraint” 

(Del Piero, 1989), namely: 

 𝝀 ∙ (𝑻∗ − 𝑻) ≤ 0 . (2.12) 

Let 𝒦 be the subset of all second-order tensors compatible with the unilateral 

constraint (2.9), namely: 

 𝒦 = {𝑻∗ ∈ 𝐿𝑖𝑛 | 𝛿(𝑻∗) ≤ 0} . (2.13) 

By introducing the well-known fourth-order elasticity tensor: 

 ℂ: 𝑆𝑦𝑚 → 𝑆𝑦𝑚 , (2.14) 

which relates the Cauchy stress tensor only with the elastic part of deformation: 

 𝑻 = ℂ 𝑬𝑒 . (2.15) 

It is possible to write the anelastic part of the deformation as: 

 𝝀 = 𝑬 − ℂ−𝟏 𝑻 . (2.16) 

Thus, the normality assumption can be expressed as: 

 (𝑬 − ℂ−𝟏𝑻) ∙ (𝑻∗ − 𝑻) ≤ 0 . (2.17) 
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This is a linear variational inequality and the problem can be posed as follows: 

“given 𝑬 ∈ 𝑆𝑦𝑚, find a 𝑻 ∈ 𝒦 satisfied the inequality (2.17) for any  𝑻∗ ∈ 𝒦.” 

The problem is well-posed since Moreau (1974) demonstrates that: 

Theorem 1|2. For any 𝑬 ∈ 𝑆𝑦𝑚, the problem (2.17) admits a unique solution 

if and only if 𝒦 is a convex region and ℂ is definite positive. 

Thus, one defines the response function or the stress function 𝑻̂ 

 𝑻̂: 𝑬 ∈ 𝑆𝑦𝑚 → 𝑻̂(𝑬) ∈ 𝑆𝑦𝑚 , (2.18) 

such that to any 𝑬 ∈ 𝑆𝑦𝑚 associate the unique solution 𝑻̂(𝑬) ∈ 𝒦 of the linear 

variation inequality (2.17). 

The definition of a Normal Linear Elastic Material, now, can be introduced: 

Definition 1|2. A Normal Linear Elastic Material is a constrained material 

characterized by the linear variational inequality 

 (𝑬 − ℂ−𝟏 𝑬𝑒) ∙ (𝑻∗ − 𝑻) ≤ 0    ∀ 𝑻∗ ∈ 𝒦 , (2.19) 

where 𝒦 is a closed convex region of 𝑆𝑦𝑚 and ℂ is a positive definite fourth 

order tensor. 

Remark 2|2. The term “Normal” in the previous definition is due to the normal 

assumption 𝝀 ∙ (𝑻∗ − 𝑻) ≤ 0 whilst “Linear” derives from the linearity of the 

variational inequality and, in this sense, it does not depend of the response 

function. ∎ 
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∎  2.2 CONSTITUTIVE EQUATIONS FOR NORMAL ELASTIC NO-TENSION MATERIAL 

In this section, one introduces the model commonly adopted for masonry-like 

material (i.e. NENT model) as a particularization of a Linear Normal Elastic Material. 

What we would like to do is to catch a twofold behaviour of the material: the absence 

of any tensile strength and the subsequent possibility to exhibit some fracture strain: 

then, before defining the NENT class, the main objects needed to formulate a precise 

characterization should be introduced, namely: 

1. the stress tensor 𝑻 and consequently the set 𝒦 of the admissible stresses; 

2. the infinitesimal strain tensor 𝑬; 

3. a linear map between 𝑻 and 𝑬; 

4. a normality rule. 

⁎   ⁎   ⁎ 

1. First of all, since we consider a material which does not support tensile stresses, 

the Cauchy stress tensor 𝑻 has to be semidefinite (see Section 1.6), namely: 

 𝑻 ∈ 𝑆𝑦𝑚− , (2.20) 

and this implies that all the eigenvalues are non-positive: 

 𝑻 = 𝜎1𝒏𝟏⨂𝒏𝟏 + 𝜎2𝒏𝟐⨂𝒏𝟐 + 𝜎3𝒏𝟑⨂𝒏𝟑  ,  𝜎1, 𝜎2, 𝜎3 ∈ ℝ0
−. (2.21) 

This result suggests to define the set 𝒦 as: 

 𝒦 = 𝑆𝑦𝑚− , (2.22) 

and the internal constraint, introduced before through the generalized scalar relation 

𝛿(𝑻∗) ≤ 0 (2.9), here could be considered as a function of the principal stresses. It is 

easy to see that 𝒦 = 𝑆𝑦𝑚− is a closed convex cone. 

⁎   ⁎   ⁎ 

2. Regarding the infinitesimal strain tensor 𝑬 ∈ 𝑆𝑦𝑚, one supposes to split it into 

two parts: an elastic part 𝑬𝑒 and an anelastic one 𝑬𝑎 : 

 𝑬 = 𝑬𝑒+ 𝑬𝑎  , (2.23) 
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where the anelastic part could be thought of as the fracture part (also called “latent 

strain”, i.e. the strain needed to sustain the constraint on stresses). It is noticed that 

the elastic part defines completely the actual stress 𝑻 as pointed out better below. 

⁎   ⁎   ⁎ 

3. One supposes that there is a linear relationship between the stress tensor 𝑻 and 

the elastic deformation 𝑬𝑒 : 

 𝑻̂: 𝑬𝑒 ∈ 𝑆𝑦𝑚 → ℂ 𝑬𝑒 ∈ 𝑆𝑦𝑚− , (2.24) 

where ℂ: 𝑆𝑦𝑚 → 𝑆𝑦𝑚 is the well known fourth-order tensor of elastic constants, 

which is also a positive definite symmetric tensor characterized by the following 

proprieties: 

 𝑨 ⋅ ℂ 𝑨 ≥ 0    ∀ 𝑨 ∈ 𝑆𝑦𝑚 , (2.25) 

 𝑨 ⋅ ℂ 𝑨 = 0 ⇔ 𝑨 = 𝟎 , (2.26) 

 𝑨1 ⋅ ℂ 𝑨2 = 𝑨2 ⋅ ℂ 𝑨1    ∀ 𝑨1, 𝑨2 ∈ 𝑆𝑦𝑚 . (2.27) 

By using the elasticity tensor ℂ, it is possible to introduce the elastic energetic scalar 

product 〈 ∙ , ∙ 〉𝐸 and the energetic norm | ∙ | defined as: 

 〈 𝑨1 , 𝑨2 〉𝐸 = 𝑨1 ⋅ ℂ 𝑨2 , (2.28) 

 |𝑨| = √〈 𝑨 , 𝑨 〉𝐸 = √𝑨 ⋅ ℂ𝑨 , (2.29) 

for all 𝑨, 𝑨1, 𝑨2 ∈ 𝑆𝑦𝑚, and where one puts in evidence the dependence of the 

energetic and scalar norm from elastic part. 

⁎   ⁎   ⁎ 

4. Finally, it remains to define a rule which allows to characterize the anelastic part 

of the deformation 𝑬𝑎 . In particular, one supposes that 𝑬𝑎 verifies the following 

hypotheses of normality: 

 (𝑻 − 𝑻∗) ⋅ 𝑬𝑎 ≥ 0        ∀ 𝑻∗ ∈ 𝒦 . (2.30) 

Considering the previous three step-points, relation (2.30) can be rewritten as: 

 (𝑻 − 𝑻∗) ⋅ (𝑬 − 𝑬𝑒) ≥ 0        ∀ 𝑻∗ ∈ 𝒦 , (2.31) 

or 

 (𝑻 − 𝑻∗) ⋅ (𝑬 − ℂ−𝟏𝑻) ≥ 0        ∀ 𝑻∗ ∈ 𝒦 . (2.32) 
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⁎   ⁎   ⁎ 

Finally, the previous four main points can be symbolically collected into the following 

system: 

 (A):  {

𝑻 ∈ 𝑆𝑦𝑚−

𝑬 = 𝑬𝑒 + 𝑬𝑎

𝑻 = ℂ 𝑬𝑒

(𝑻 − 𝑻∗) ⋅ 𝑬𝑎 ≥ 0      ∀ 𝑻∗ ∈ 𝑆𝑦𝑚−

 . (2.33) 

The problem is well-posed since the following theorem holds: 

Theorem 2|2. If 𝑬 ∈ 𝑆𝑦𝑚, there exists a unique triplet (𝑻, 𝑬𝑒 , 𝑬𝑎) solution of 

the problem (A). ∎ 

Now it is possible to introduce a rigorous definition of the Normal Elastic No-Tension 

Material. 

Definition 2|2. A Normal Elastic No-Tension (NENT) Material is a 

constrained material characterized by the normality assumption:  

 (𝑻 − 𝑻∗) ⋅ (𝑬 − 𝑬𝑒) ≥ 𝟎        ∀ 𝑻∗ ∈ 𝒦 , (2.34) 

where 𝒦 = 𝑆𝑦𝑚− is a closed convex. ∎ 

This is an essential and rigorous way to introduce this concept, but there are other 

alternatives to do it. Indeed, it is possible to demonstrate that if and only if the set 

of admissible stresses 𝒦 is equal to 𝑆𝑦𝑚− then the two following relations: 

 (𝑻 − 𝑻∗) ⋅ 𝝀 ≥ 𝟎   ∀ 𝑻∗ ∈ 𝑆𝑦𝑚−   ⇔   𝝀 ∈ 𝑆𝑦𝑚+   𝑎𝑛𝑑   𝑻 ⋅  𝝀 = 0 , (2.35) 

are equivalent. Then, a NENT can be also characterized by the following system of 

relations: 

 (B):  {

𝑻 ∈ 𝑆𝑦𝑚−, 𝝀 ∈ 𝑆𝑦𝑚+

𝑬 = 𝑬𝑒 +  𝝀
𝑻 = ℂ 𝑬𝑒

𝑻 ⋅  𝝀 = 0

 . (2.36) 

Furthermore, there exists another equivalent geometrical characterization, according 

to which a NENT material is defined starting only from these three relations: 

 (C):  {
𝑬 = 𝑬𝑒 +  𝝀
𝑻 = ℂ 𝑬𝑒

𝑬𝑒 = 𝑃(𝑬)
 , (2.37) 
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where  

 𝑃: 𝑬 ∈ 𝑆𝑦𝑚 → 𝑃(𝑬) ∈ ℂ−𝟏(𝑆𝑦𝑚−) , (2.38) 

is the projection from 𝑆𝑦𝑚 onto ℂ−𝟏(𝑆𝑦𝑚−) with respect to the energetic scalar 

product 〈 ∙ , ∙ 〉𝐸 . This is a very interesting characterization, because, on one hand, it 

condenses analytically in a single relation both the condition 𝑻 ⋅  𝝀 = 0  and the two 

restrictions, one on the stress, 𝑻 ∈ 𝑆𝑦𝑚−, and the other one on the anelastic part of 

deformation, namely 𝝀 ∈ 𝑆𝑦𝑚+, but on the other hand it characterizes in a new 

geometrical way, the behaviour of such a material. Can be useful to demonstrate the 

equivalence between relations (A) and (C). 

Proof. Assuming that characterization (C) holds, we want demonstrate that (C) ⇒ (A). In particular, 

being (A.2) and (A.3) equal to (C.1) and (C.2), it remains to demonstrate that (C.3) implies, at the 

same time, both (A.1) and (A.4). Since 𝑬𝑒 ∈ ℂ−𝟏(𝑆𝑦𝑚−) is the projection of 𝑬 ∈ 𝑆𝑦𝑚 onto the space 

ℂ−𝟏(𝑆𝑦𝑚−) with respect to the energetic scalar product 〈 ∙ , ∙ 〉𝐸, recalling 𝑻 = ℂ 𝑬𝑒, one obtains 

that 𝑻 ∈ 𝑆𝑦𝑚− (A.1.1). It is to be noted that, being 𝑆𝑦𝑚− a closed convex cone, even ℂ−𝟏(𝑆𝑦𝑚−) 

is a closed convex cone. Thus, being 𝑬𝑒the projection of 𝑬 onto the closed convex cone 

ℂ−𝟏(𝑆𝑦𝑚−), it results: 

 〈 𝑬 − 𝑬𝑒 , 𝑨 〉𝐸 ≤ 0    ∀𝑨 ∈  ℂ−𝟏𝑆𝑦𝑚− , (2.39) 

 〈 𝑬 − 𝑬𝑒 , 𝑬𝑒 〉𝐸 = 0 . (2.40) 

Using the map ℂ−𝟏: 𝑆𝑦𝑚 → 𝑆𝑦𝑚, it is possible to identify an element 𝑨 of the ℂ−𝟏𝑆𝑦𝑚− cone with 

a generic element 𝑻∗ belong to the 𝑆𝑦𝑚− cone through the relation  𝑨 = ℂ−𝟏𝑻∗; then (2.39) and 

(2.40) can be rewritten as follows: 

 〈 𝑬 − 𝑬𝑒 , ℂ−𝟏𝑻∗ 〉𝐸 ≤ 0    ∀ 𝑻
∗ ∈ 𝑆𝑦𝑚− , (2.41) 

 〈 𝑬 − 𝑬𝑒 , 𝑬𝑒 〉𝐸 = 0 . (2.42) 

From (2.41) we obtain: 

 (𝑬 − 𝑬𝑒) ⋅ 𝑻∗ ≤ 0    ∀ 𝑻∗ ∈ 𝑆𝑦𝑚− , (2.43) 

and taking into account that 𝑬 = 𝑬𝑒 +  𝝀, it follows: 

 𝝀 ⋅ 𝑻∗ ≤ 0    ∀ 𝑻∗ ∈ 𝑆𝑦𝑚− , (2.44) 

which implies that 𝝀 ∈ 𝑆𝑦𝑚+ (A.1.2). From the second one, similarly, one obtains 𝝀 ⋅ 𝑬𝑒 = 0 , and 

considering that 𝑬𝑒 = ℂ−𝟏𝑻 since 𝑻 ∈ 𝑆𝑦𝑚− it reuslts 𝝀 ⋅ 𝑻 = 0  and then also (A.4) is proved. ∎ 

Remark 3|2. Since the existence and uniqueness of the projection of a point 

onto a convex cone is a proved mathematical result, 𝑬𝑒 exists and is unique, 

then even the uniqueness and of 𝝀 and 𝑻 follows from (A.2) and (A.3): the 

existence and uniqueness of the triplet (𝑻, 𝑬𝑒 , 𝝀), which completely 

characterized the behavior of NENT, then follows. ∎ 
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Remark 4|2. According to the characterization (C), using the energetic scalar 

product 〈 ∙ , ∙ 〉𝐸 above defined, it results: 

 (𝑻 − 𝑻∗) ⋅ 𝝀 ≥ 0   ∀ 𝑻∗ ∈ 𝑆𝑦𝑚−  ⇔  〈𝑬𝑒 − 𝑬∗ , 𝝀〉𝐸 ≥ 0    ∀ 𝑬∗ ∈ ℂ−𝟏𝑆𝑦𝑚− , (2.45) 

and recalling that 𝝀 = (𝑬 − 𝑬𝑒), it follows: 

 (𝑬 − 𝑬𝑒) ∈ 𝑁𝑜𝑟𝑚(ℂ−𝟏𝑆𝑦𝑚−, 𝑬𝑒) , (2.46) 

that is the fracture part 𝝀 belongs to the normal cone to ℂ−𝟏𝑆𝑦𝑚−at 𝑬𝑒 . ∎ 

Remark 5|2. The anelastic part of the deformation 𝝀 is also called “the fracture 

tensor”: this term derives from the fact that it is directly connected to the 

fractures appearing in a body in those zones where the unilateral constraint 

on stress is verified with the equality sign. ∎ 

Remark 6|2. For NENT, the response function 𝑻̂ is the map 

 𝑻̂: 𝑬 ∈ 𝑆𝑦𝑚 → 𝑻̂(𝑬) ∈ 𝑆𝑦𝑚 , (2.47) 

which to any 𝑬 ∈ 𝑆𝑦𝑚 associates the unique solution 𝑻̂(𝑬) ∈ 𝑆𝑦𝑚 of this linear 

variation inequality 

 (𝑻 − 𝑻∗) ⋅ (𝑬 − ℂ 𝑬𝑒) ≥ 𝟎        ∀ 𝑻∗ ∈ 𝑆𝑦𝑚− . (2.48) 

In particular, it results 𝑻̂(𝑬) = ℂ(𝝀 − 𝑬) = ℂ 𝑬𝑒 . Furthermore, 𝑻̂ is 

homogeneous of degree one, monotone and Lipschitz continuous. ∎ 

Remark 7|2. Since 𝑻 ∈ 𝑆𝑦𝑚− and 𝑻 ⋅  𝝀 = 0, it results 𝝀 ⋅ 𝑻 = 0 also: then 𝝀 

and 𝑻 commute and then they are also coaxial. This is a geometrical result, 

independent of the particular elastic behaviour. Furthermore, it can be proved 

that if the tensor ℂ is isotropic all these three tensors are coaxial: 𝑻, 𝑬 and 𝝀. 

Indeed, for an isotropic material, ℂ has the following form 

 ℂ𝑬𝑒 = 𝟐𝜆𝑡𝑟(𝑬𝑒)𝟏 + 2𝜇𝑬𝑒 , (2.49) 

where 𝟏 ∈ 𝐿𝑖𝑛 is the second order identity tensor, and 𝜆 and 𝜇 are the Lame 

moduli satisfying 𝜇 > 0 and 𝜆 +  𝜇 > 0: using this expression, through some 

algebraic passages, the coaxiality between 𝑻, 𝑬 and 𝝀 can be easily achieved. ∎ 

Remark 8|2. Using the response function 𝑻̂: 𝑬 ∈ 𝑆𝑦𝑚 → 𝑻̂(𝑬) ∈ 𝑆𝑦𝑚, a scalar-

valued tensor function can be defined: 
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 𝑤̂: 𝑬 ∈ 𝑆𝑦𝑚 →
1

2
 𝑻̂(𝑬) ⋅ 𝑬𝑒 ∈ ℝ , (2.50) 

𝑤̂ is known as the stored energy. Recalling  𝑻̂(𝑬) ⋅ 𝑬𝑒 = 〈𝑬𝑒  , 𝑬𝑒〉𝐸 ≥ 0 and  

 𝑃: 𝑬 ∈ 𝑆𝑦𝑚 → 𝑃(𝑬) ∈ ℂ−𝟏(𝑆𝑦𝑚−) , (2.51) 

is the projection from 𝑆𝑦𝑚 onto ℂ−𝟏(𝑆𝑦𝑚−) with respect to the energetic 

scalar product 〈 ∙ , ∙ 〉𝐸 . ∎ 

Remark 9|2. Besides the compatibility of loads, which we will discuss in the 

Chapter 3, it is worth noting that one of the main consequences of the no-

tension assumption is the incompatibility of masonry with the phenomenon 

of load scattering. This is depicted in Fig. 2.1, where a body, occupying a 

domain Ω, is subjected, only on the boundary, to two loads. The stress vanishes 

outside any cylinder Ω̅ whose bases contain the loaded portions. 

  

Fig. 2.1 - The no-tension assumption causes the lack of the diffusion of internal 

stresses. The stress vanishes in the region Ω\Ω̅. The Saint Venant’s postulates does 

not hold for a NENT material. 

Consequently, the Saint Venant’s postulate does not hold, and then the lack 

of the diffusion of internal stresses makes the internal resistant structure 

depending only on the geometry. In Fig. 2.2 a comparison, using transmission 

photoelasticity, between the stress diffusion in an elastic body and in a NENT 

material is depicted. It is to be noted that a highly localized stress percolation 

is visible in the masonry model.  
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(a) (b)  

Fig. 2.2 - A comparison, using transmission photoelasticity, between the stress 

diffusion in an elastic body (a) and in a model (NENT) of masonry (b) in which a 

highly localized stress percolation is visible. Drawing from website of University 

of Trento, Italy Department of Civil, Environmental and Mechanical Engineering. 

As early as the 19th century, Viollet–Le Duc in the XIX grasped this behaviour: 

“The loads determine the resistant masonry structure within the actual 

masonry body: if the loads change, the resistant masonry structure will 

consequently change” (Viollet-le-Duc, 1858–1868). Four examples of the 

internal resistant structure in a masonry wall subjected to different type of load 

conditions are reported in Fig. 2.3. ∎ 
 

 
 

 

(a) (b) 

 

Fig. 2.3 - Drawings from Giuffrè (1993): four examples of the internal resistant 

structure in a masonry wall subjected to different types of loads are depicted. 



[3]  The NRNT Model: Limit Analysis - Chapter 3 

THE NRNT MODEL: 

LIMIT ANALYSIS 

Prologue. In this Chapter, we introduce the main ingredients of the theory of 

Normal Rigid No-Tension (NRNT) materials: the simplest model that can be 

used to study masonry structures. As remarked in Chapter 1, this model 

represents a way for extending Heyman’s theory to masonry structures treated 

as continua. After introducing the restrictions defining the NRNT model, the 

definitions of statically admissible and kinematically admissible fields are given. 

The NRNT model allows for the application of the theorems of Limit Analysis. 

Notice that these theorems are valid as long as normality of the anelastic strain 

(or of the anelastic strain rate) to the limit surface is enforced, then, in particular, 

they are also valid for NENT materials. The safe and kinematic theorems for 

normal-unilateral materials are briefly recalled, and the compatibility of loads 

and distortions is discussed. 

∎  3.1 NRNT MASONRY-LIKE MATERIAL 

A 2d masonry structure 𝑆 is modelled as a continuum occupying a domain Ω of the 

2d Euclidean space ℰ2. The stress inside Ω is denoted 𝑻 and the displacement of 

material points 𝒙 belonging to Ω is denoted 𝒖. We restrict to the case of small strains 

and displacements and adopt the infinitesimal strain 𝑬 as the strain measure. 

We call masonry-like material a continuum that is Normal Rigid No-Tension 

(Angelillo, 2014b) in the sense defined by the following restrictions 

 𝑻 ∈ 𝑆𝑦𝑚−  , 𝑬 ∈ 𝑆𝑦𝑚+  ,   𝑻 ∙ 𝑬 = 0  , (3.1) 
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𝑆𝑦𝑚− , 𝑆𝑦𝑚+ being the convex cones of negative semidefinite and positive 

semidefinite symmetric tensors. 

Under these restrictions, the material satisfies a law of normality with respect to the 

cone 𝑆𝑦𝑚− of the feasible stresses, in the sense that restrictions (3.1) are equivalent 

to: 

 𝑻 ∈ 𝑆𝑦𝑚−  ,   (𝑻 − 𝑻∗) ∙ 𝑬 ≥ 0  ,   ∀ 𝑻∗ ∈ 𝑆𝑦𝑚−  ,  (3.2) 

and, dually, 

 𝑬 ∈ 𝑺𝒚𝒎+  ,   (𝑬 − 𝑬∗) ∙ 𝑻 ≥ 𝟎  ,   ∀ 𝑬∗  ∈ 𝑺𝒚𝒎+  . (3.3) 

In particular, the previous assumptions represent the essential ingredients for 

proving the validity of the theorems of Limit Analysis, see also (Angelillo et al, 2014), 

(Fortunato et al, 2014) and (Fortunato et al, 2016). 

Remark 1|3. The theorems of Limit Analysis are valid if a normality law of the 

anelastic strain (or strain rate) to the limit surface is enforced. So they are 

equally valid for NENT and ML materials. ∎ 

We observe that the restrictions (3.1) essentially translate into mathematical terms 

and extrapolate to 2d-3d continua the Heyman’s assumptions on masonry behaviour 

(Heyman, 1966), namely:  

 (i) Stone has no tensile strength; 

 (ii) The compressive strength of stone is effectively infinite; 

 (iii) Sliding of one stone upon another cannot occur. 

Remark 2|3. Though Heyman analysis is not concerned with a continuum, 

condition (3.1)1 appears as a natural extension of assumptions (i), (ii). The 

presence of elastic deformations in compression, even if is not explicitly 

excluded, is never considered by Heyman. For what concerns the law of 

normality, Heyman formulates it for characteristics rather than for stresses. 

Consequently, the role of and the restrictions on the latent strain, that is the 

deformation associated to the unilateral constraint on stress, are not defined. 

In the context of the continuum model, assumption (iii), that is the no-sliding 

assumption, is implied by normality, but the no-sliding assumption, by itself, 

is not sufficient to prove normality in this broader context. ∎ 
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∎  3.2 DISPLACEMENT AND STRAIN FIELDS 

The displacement field 𝒖 is compatible if, in addition to being regular enough for the 

corresponding strain 𝑬(𝒖) to exist, satisfies the boundary conditions on the 

constrained part 𝜕Ω𝐷 of the boundary, namely:  

 𝒖 = 𝒖 ̅ on 𝜕𝛺𝐷 .  (3.4) 

Adopting a variational formulation, for linearly elastic bodies the basic request is that 

𝑬 be square summable, namely: 

√∫ 𝑬 ∙ 𝑬𝑑𝑎
𝛺

< ∞  . (3.5) 

Indeed, for some rigid, perfectly plastic (or rigid unilateral) materials, it is sufficient 

to assume that 𝑬 be summable: 

∫ √𝑬 ∙ 𝑬𝑑𝑎
𝛺

< ∞ . (3.6) 

Thus, the set of competing functions has to be enlarged to bounded measures, that 

is to summable distributions 𝑬̃; then the displacement 𝒖 can admit finite 

discontinuities, i.e. 𝒖 can be a function with bounded variation. The summability of 

∇𝒖 would imply that 𝒖 ∈ 𝐵𝑉(Ω) exactly. But 𝑬 is only the symmetric part of ∇𝒖, then 

𝒖 has to belong to a larger space: 𝐵𝐷(Ω). The strain corresponding to 𝒖 is again a 

bounded measure 

∫ |𝑬̃|𝑑𝑎
𝛺

< ∞ . (3.7) 

which, in general, can be decomposed uniquely into the sum of two parts, namely: 

 𝑬̃ = 𝑬̃𝑟 + 𝑬̃𝑠 , (3.8) 

where 𝑬̃𝑟 is absolutely continuous with respect to the area measure (that is 𝑬̃𝑟 is a 

density per unit area) and 𝑬̃𝑠 is the singular part. 𝑬̃𝑠 has support on the union of a 

set of linear 1d measure (the jump set of 𝒖) and a set of fractional measure. In what 

follows, we restrict to deformations 𝑬̃ whose singular part is concentrated on a finite 

number of regular arcs, that is bounded measures admitting on such curves a density 

𝑬̃𝑠 with respect to the length measure (that is special bounded measures with empty 

Cantor part). 
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Remark 3|3. From (Angelillo, 2014b). If 𝒖 ∈ 𝐵𝐷(Ω), that is 𝒖 can be 

discontinuous, the boundary condition 𝒖 = 𝒖 ̅ on 𝜕𝛺𝐷 makes no sense. A way 

to keep alive the boundary condition of Dirichlet type is to identify the 

masonry body rather than with the domain Ω (an open set) with the set Ω ∪

𝜕Ω and to assume that 𝒖 must comply with the constraint 𝒖 = 𝒖 ̅ on the skin 

𝜕Ω𝐷 , admitting possible singularities of the strain at the constrained boundary. 

Then, from here on, we shall deviate from standard notation referring to Ω as 

to the set Ω ∪ 𝜕Ω. Given the displacement field 𝒖 of 𝒙, by taking the gradient 

of 𝒖, in a classical sense if 𝒖 is regular, and in a generalized sense if 𝒖 is 

singular, the strain 𝑬(𝒖) is derived. Vice versa, if 𝑬 of 𝒙 is given, the possibility 

of integrating the components 𝐸𝛼𝛽 to get the (possibly discontinuous) 

components 𝑢𝛼 of 𝒖, is submitted to the necessary compatibility conditions 

(also sufficient if Ω is simply connected): 

 𝑬11,22 + 𝑬22,11 − 2𝑬12,12 = 0 ,  (3.9) 

where a comma followed by an index, say α, means differentiation with respect 

to 𝑥𝛼 . The reader will see in what follows, that, on admitting discontinuous 

displacements, this condition can be reinterpreted in a generalized sense and 

applied (with some care), also to discontinuous, and even singular, strains. ∎ 

3.2.1 Latent Strain 

For masonry-like (NRNT) materials the only possible strain is the anelastic strain. In 

particular, the material is rigid in compression, that is cannot exhibit any shortening 

in any direction since from (3.1)2 it descends 

 𝑬 ∙ 𝒏 ⨂ 𝒏  ≥ 0  ,   ∀𝒏 ∈ ℰ2 . (3.10) 

The strain 𝑬 is a positive semi-definite tensor field doing no work for the 

corresponding stress, and representing detachment fractures. As exposed in Chapter 

2, 𝑬 could be viewed as a sort of “reaction” deformation associated to the constraint 

on stress 𝑻 ∈ 𝑆𝑦𝑚−, and, therefore, is also called latent strain. 

Since we consider displacement fields 𝒖 having finite discontinuities on a finite 

number of regular arcs Γ, the strain 𝑬(𝒖) consists of a regular part 𝑬𝑟 , that is a diffuse 

deformation over Ω − Γ, and a singular part 𝑬𝑠 in the form of a line Dirac delta, 

concentrated on Γ, then either smeared cracks (𝑬𝑟) or concentrated ones (𝑬𝑠) are 

allowed. Displacement fields, admitting finite jumps, have to belong to the set of 

functions of Bounded Variation (𝐵𝑉(Ω)); the gradient of a 𝐵𝑉 function, and then the 
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strain 𝑬, is a bounded measure. In general, bounded measures can be decomposed 

into the sum of two parts 

 𝑬 = 𝑬𝑟 + 𝑬𝑠   , (3.11) 

where 𝑬𝑟 is absolutely continuous with respect to the area measure (that is 𝑬𝑟 is a 

density per unit area) and 𝑬𝑠 is the singular part. For simplicity only bounded 

measures whose singular part is concentrated on a finite number of regular arcs, that 

is bounded measures admitting on such curves a density 𝑬𝑠 with respect to the 

length measure, are usually considered. 

3.2.2 Concentrated Strain 

If the displacements exhibit a jump discontinuity on a regular curve Γ, on such a curve 

the strain is concentrated, i.e. it is a line Dirac delta whose intensity is the jump of 𝒖 

across Γ. By denoting 𝒕, 𝒏 the unit tangent and the unit normal to Γ, and calling, Ω−, 

Ω+ the two parts on the two sides of Γ, Ω+ being the part toward which 𝒏 points, the 

jump of 𝒖 on Γ can be written as 

 [𝒖] = 𝒖+ − 𝒖−  , (3.12) 

and decomposed into normal and tangential components: 

 [𝒖] = 𝑤 𝒕 + 𝑣 𝒏  , 𝑤 = [𝒖] ∙ 𝒕  , 𝑣 = [𝒖] ∙ 𝒏  . (3.13) 

Calling 𝛿(Γ) the unit line Dirac delta with support on Γ, the strain along Γ can be 

written as  

 𝑬 = 𝑣 𝛿(Γ) 𝒏⊗ 𝒏 +
1

2
𝑤 𝛿(Γ) (𝒕 ⊗ 𝒏 + 𝒏⊗ 𝒕)  . (3.14) 

For masonry-like (NRNT) materials the strain must be positive semidefinite, then, in 

the plane case, it must be: 

 𝑡𝑟𝑬 ≥ 0  , 𝑑𝑒𝑡𝑬 ≥ 0  , (3.15) 

from which 

 𝑣 ≥ 0  ,   −
1

4
𝑤2 ≥ 0  , (3.16) 

that is the two parts Ω−, Ω+ can separate but not compenetrate and the sliding 𝑤 

must vanish. So, for NRNT materials, on a fracture line Γ, it must be 
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 𝑬 = 𝑣 𝛿(Γ) 𝒏⊗ 𝒏  ,   𝑣 ≥ 0  , (3.17) 

and then we may see that Heyman’s assumption (iii) follows from (3.1)2. 

∎  3.3 STRESS FIELDS 

It is assumed that the body, occupying the domain Ω of ℝ2, is loaded by given 

tractions 𝒔 ̅ on the complementary part 𝜕Ω𝑁 = 𝜕Ω − 𝜕Ω𝐷 of the boundary. A stress 

field 𝑻 is said to be equilibrated with the given actions (𝒔 ̅, 𝒃), if it satisfies the 

equilibrium equations: 

 𝑑𝑖𝑣𝑻 + 𝒃 = 𝟎 (3.18) 

and the traction boundary conditions 

 𝑻𝒎 = 𝒔 ̅  𝑜𝑛 𝜕𝛺𝑁 , (3.19) 

where 𝒎 denotes the unit outward normal to 𝜕𝛺. 𝑻 is a tensor valued function of 𝒙 ∈

Ω, for which some kind of regularity must be assumed. If the differential equations 

of equilibrium are considered in a strong sense, the stress field 𝑻 must be 

differentiable and its divergence must be continuous. On adopting a variational 

formulation, if the material is linearly elastic, the minimal request for 𝑻 is to be square 

summable, that is 

√∫ 𝑻 ∙ 𝑻𝑑𝑎
𝛺

< ∞ . (3.20) 

For some rigid perfectly plastic materials (such as rigid unilateral materials), less 

regular and even singular stresses may be admitted. The minimal request for such 

materials is that 𝑻 be summable 

∫ √𝑻 ∙ 𝑻𝑑𝑎
𝛺

< ∞ . (3.21) 

If one admits stress fields that are only summable, the set of competing functions 

enlarges to bounded measures, that is to summable distributions) 

∫ |𝑻̃|𝑑𝑎
𝛺

< ∞ , (3.22) 

which, in general, can be decomposed into the sum of two parts 
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 𝑻̃ = 𝑻̃𝑟 + 𝑻̃𝑠 , (3.23) 

where 𝑻̃𝑟 is absolutely continuous with respect to the area measure (that is 𝑻̃𝑟 is a 

density per unit area) and 𝑻̃𝑠 is the singular part. In the examples considered in this 

work, the analysis will be restricted to bounded measures 𝑻̃ whose singular part is 

concentrated on a finite number of regular arcs, that is bounded measures admitting 

on such curves a density 𝑻̃𝑠 with respect to the length measure, that is special 

bounded measures with empty Cantor part; for reference to these function spaces 

see (Ambrosio et al, 2000). 

Remark 4|3. If the stress field is summable (and also if it is square summable), 

it is not differentiable in strong sense, and the equilibrium equations have to 

be reformulated in variational form (e.g. through the Virtual Work equation). 

Singular stresses require also special modifications of the boundary 

conditions; the trace of the stress 𝑻 on the loaded part of the boundary is not 

given by 𝑻𝒎 if 𝑻 is singular (see also Remark 5|3). ∎ 

3.3.1 Concentrated Stress 

A typical application of the safe theorem to masonry structures composed of 

Heyman’s material concerns the equilibrium of a voussoir arch. Based on the safe 

theorem, the arch cannot collapse if any line of thrust Γ in equilibrium with the given 

loads, can be constructed inside the masonry. In a continuum context, such line of 

thrust Γ can be interpreted as a 1d structure carrying the load by means of an internal 

axial contact force. The load can be transmitted to the structure from the body and 

from the boundary, by regular stresses having an unbalanced jump across Γ. In 

mathematical terms Γ is the support of a singular stress, that is a line Dirac delta 

applied along Γ having the form 

 𝑻 = 𝑃 𝛿(Γ) 𝒕 ⊗ 𝒕 . (3.24) 

The first to adopt singular stresses for the approximation of the equilibrium of a 2d 

continuum were Fraternali et al (2002). For masonry-like materials the first to 

introduce and adopt singular stresses for the application of the safe theorem to 

masonry structures were Lucchesi et al in (2013). 

Adopting this view, the stress 𝑻, is a bounded measure. As we observed in the case 

of strain, bounded measures can be decomposed into the sum of two parts 

 𝑻 = 𝑻𝑟 + 𝑻𝑠 , (3.25) 
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where 𝑻𝑟 is absolutely continuous with respect to the area measure (that is 𝑻𝑟is a 

density per unit area) and 𝑻𝑠 is the singular part. 

Let Γ be a regular curve on which the stress field exhibits a jump discontinuity. We 

denote with 𝒕, 𝒏 the unit tangent and the unit normal to Γ, and call Ω−, Ω+ the two 

parts on the two sides of Γ, Ω+ being the part toward which 𝒏 points. The stress 

vector 𝒔 is associated to the regular part 𝑻𝑟 of 𝑻. The jump of 𝒔 on Γ, that is the 

unbalanced emerging stress can be written as 

 [𝒔] = 𝒔+ − 𝒔−  = (𝑻𝑟+ − 𝑻𝑟−)𝐧 , (3.26) 

where with 𝑻𝑟+ and 𝑻𝑟− we denote the regular part of the stress on the two sides, 

Ω+ and Ω−, of Γ. 

 
 (a) (b) 

 

Fig. 3.1 - Equilibrium of the emerging stress at a singular interface. The regular stress 𝑻𝑟 

has an unbalanced jump across Γ: the equilibrium is satisfied by the singular part 𝑻𝑠 of the 

stress field with support on Γ. 

The jump of the stress vector, can be decomposed into normal and tangential 

components: 

 [𝒔] = 𝑝 𝒕 + 𝑞 𝒏  , 𝑝 = [𝒔] ∙ 𝒕  , 𝑞 = [𝒔] ∙ 𝒏 . (3.27) 

The unbalanced emerging stress is in equilibrium if it is balanced by the singular 

stress 𝑻𝑠 concentrated on Γ. Indeed, denoting 𝛿(Γ) the unit line Dirac delta with 

support on Γ, the singular part of stress along Γ can be written as  

 𝑻𝑠 = 𝑃 𝛿(Γ) 𝒕 ⊗ 𝒕 , (3.28) 

and for equilibrium (see Fig. 3.1) it must be: 

 𝑃′ + 𝑝 = 0  , 𝑃𝜌 + 𝑞 = 0 , (3.29) 

where 𝜌 denotes the curvature of the line Γ. 

For masonry-like (NRNT) materials, the stress 𝑻 must be negative semidefinite, 

therefore, in the plane case, it must be 
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 𝑡𝑟𝑻 ≤ 0  , 𝑑𝑒𝑡𝑻 ≥ 0   , (3.30) 

from which 

 𝑃 ≤ 0  , (3.31) 

that is the axial contact force 𝑃 must be compressive. For simplicity, also for stress, 

only bounded measures whose singular part is concentrated on a finite number of 

regular arcs, that is bounded measures admitting on such curves a density 𝑻𝑠 with 

respect to the length measure, are here considered. 

∎  3.4 THE BOUNDARY VALUE PROBLEM FOR MASONRY-LIKE MATERIALS 

We consider a masonry structure Ω, composed of masonry-like material in 

equilibrium under the action of body loads, and given surface loads and surface 

settlements prescribed on a fixed partition of its boundary 𝜕Ω𝑁 ∪ 𝜕Ω𝐷 = 𝜕Ω (Fig. 

3.2). 

 
 

 (a) (b) 

 

Fig. 3.2 - Loads and distortions applied to a continuum occupying a domain Ω. 

The boundary value problem (bvp) for such a structure can be formulated as follows: 

 “Find a displacement field 𝒖 and the allied strain 𝑬, and a stress field 𝑻 such that 

 𝑬 =
1

2
(𝛻𝒖 + 𝛻𝒖𝑇)  , 𝑬 ∈ 𝑆𝑦𝑚+  ,   𝒖 = 𝒖 ̅ 𝑜𝑛 𝜕𝛺𝐷  , (3.32) 

 𝑑𝑖𝑣𝑻 + 𝒃 = 0  ,   𝑻 ∈ 𝑆𝑦𝑚−  ,   𝑻𝒎 = 𝒔 ̅  𝑜𝑛 𝜕𝛺𝑁   , (3.33) 

 𝑻 ∙ 𝑬 = 0   ,” (3.34) 

𝒎 being the unit outward normal to 𝜕𝛺. 
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Remark 5|3. On admitting discontinuous displacements and singular stresses, 

the differential equations in (3.32), (3.33) must be interpreted in a weak sense. 

Besides, the boundary condition in (3.33) makes sense only if we consider that 

the domain is closed on 𝜕Ω𝐷 , that is, that the displacement must actually take 

the given value on this part of the boundary, and considering the possible 

mismatch of the displacement between the outside and the inside of the 

domain as a concentrated strain along the boundary. Finally, in the boundary 

condition in (3.33), the trace of 𝑻 at the boundary, that is the emerging stress 

vector 𝒔(𝑻) on 𝜕Ω𝑁 , is not of the Cauchy form 𝒔(𝑻) = 𝑻𝒎, unless 𝑻 is regular. 

If 𝑻 is a line Dirac delta of the form 𝑻 = 𝑃 𝛿(Γ) 𝒕 ⊗ 𝒕  and Γ crosses the 

boundary at a point 𝑋 ∈ Γ at an angle, that is∙ 𝒎 ≠ 0 , then 𝒔(𝑻) = 𝑃 𝛿(Γ) 𝒕 . 

The special case in which the line Γ is tangent to 𝜕Ω𝑁 , deserves a special 

attention. In such a case, there is not any stress vector 𝒔(𝑻) emerging at the 

boundary due to the singular stress, but still the boundary condition 𝑻𝒎 = 𝒔 ̅ 

must be modified, since the given tractions 𝒔̅ can be balanced, wholly or in 

part, by the singular stress concentrated on Γ. Therefore, there is not any local 

restriction on the sign of the normal component of the tractions given along 

the boundary: purely tangential tractions and even tensile loads may be 

applied if the boundary is locally concave. In the particular case in which the 

interface is straight, equilibrium and material restrictions can be enforced if 

and only if 𝒔̅ ∙ 𝒎 ≤ 0, but still there is no restriction on 𝒔̅ ∙ 𝒌, 𝒌 being the unit 

tangent vector to 𝜕𝛺. ∎ 

∎  3.5 TWO TRIVIAL EXAMPLES OF SOLUTIONS OF BVP'S USING SINGULAR STRESS 

AND STRAIN 

In this section, we present two examples of bvp regarding an NRNT material, 

exploiting for the solution both singular stress and strain. We consider purely singular 

strains: the deformation is concentred along a finite number of lines. As for the stress 

field, we consider both a regular part and a singular part. 

The first example is concerned with a wall of NRNT material, loaded at the top edge 

by a uniformly distributed load. The left and right edges are subjected to a prescribed 

outward settlement (see Fig. 3.3). 

In Fig. 3.4 a solution of the problem using singular stresses and strains is 

represented. Since the closed domain includes its boundary (see Remark 3|3), the 

panel shows three fractures. With the crosshatch in red lines the singular 

deformations 𝑬𝑠 along the fracture lines is represented. The dash-dotted blue line 

represents, instead, the support of a singular stress field 𝑻𝑠 in equilibrium with the 

given loads: this could be thought of as a thrust line. The regular part of the stress is 
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a uniaxial vertical stress field discontinuous across the line of thrust. The solution is 

compatible and verifies the relation  𝑻𝑠 ∙ 𝑬𝑠 = 0. 

 
 (a) (b) 

 

Fig. 3.3 - A panel of NRNT material subjected to two symmetric outward horizontal 

settlements. The only load considered is a uniform load acting along the top edge. 

 

Fig. 3.4 - A possible solution of the bvp depicted in Fig. 3.3 consisting of singular stress 

and strain fields. The crosshatch in red represents the singular deformations 𝑬𝑠 along the 

fracture lines; the dash-dotted blue line represents the support of a singular stress field 

𝑻𝑠 in equilibrium with the given loads. The solution verifies the relation  𝑻𝑠 ∙ 𝑬𝑠 = 0. 

The second example (Fig. 3.5, see also (Heyman, 1995)) concerns the problem of a 

round arch loaded only by the self-weight and subjected to given outward 

settlements at the bases. 
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 (a) (b) 

 

Fig. 3.5 - An arch of NRNT material, loaded only by the self-weight, subjected to given 

outward settlements at the bases. 

A possible solution, consisting of singular strain and stress fields, is depicted in Fig. 

3.6. In this case, three hinges form and the red crosshatch represents the singular 

deformations 𝑬𝑠 along the hinges. The dash-dotted blue line represents, instead, the 

line of thrust, that is the support of an admissible singular stress field 𝑻𝑠 in 

equilibrium with the given loads. The solution is compatible and verifies the 

relation  𝑻𝑠 ∙ 𝑬𝑠 = 0. 

 
 (a) (b) 

 

Fig. 3.6 - A possible solution of the bvp depicted in Fig. 3.5 consisting of singular stress 

and strain fields. Three hinges form and the arch becomes a statically determined 

structure. The red crosshatch represents the singular deformations 𝑬𝑠 along the hinges. 

The blue dash-dotted line is the curve Γ, that is the support of the singular stress field 𝑻𝑠 =

𝑃 𝛿(Γ) 𝒕 ⊗ 𝒕, representing the thrust line: a statically admissible singular stress field in 

equilibrium with the given load and verifying the condition 𝑻𝑠 ∙ 𝑬𝑠 = 0. 
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∎  3.6 STATICALLY AND KINEMATICALLY ADMISSIBLE FIELDS 

We introduce the sets of kinematically admissible displacements 𝒦, and of statically 

admissible stresses ℋ, defined as follows: 

 𝒦 = {𝒖 ∈ 𝑆  /  𝑬 =
1

2
(∇𝒖 + ∇𝒖𝑇) ∈ 𝑆𝑦𝑚+ &   𝒖 = 𝒖 ̅ 𝑜𝑛 𝜕Ω𝐷 }  , (3.35) 

 ℋ = {𝑻 ∈ 𝑆′ / 𝑑𝑖𝑣𝑻 + 𝒃 = 𝟎   ,   𝑻 ∈ 𝑆𝑦𝑚−   , 𝑻𝒎 = 𝒔 ̅ 𝑜𝑛 𝜕Ω𝑁  }  , (3.36) 

𝑆, 𝑆′ being two suitable function spaces. As observed in Sections 3.2 and 3.3, a 

sensible choice for these spaces is 𝑆 ≡ 𝑆𝐵𝑉 and 𝑆′ ≡ 𝑆𝐵𝑀, that is the spaces of 

Special Bounded Variation and of Special Bounded Measures. 

Remark 6|3. Taking into account the previous definitions, a solution of the 

bvp for masonry-like structures is a triplet (𝒖, 𝑬(𝒖), 𝑻) such that 𝒖 ∈ 𝒦, 𝑻 ∈ ℋ, 

and 𝑻 ∙ 𝑬(𝒖) = 0. ∎ 

Remark 7|3. With regard to a statically admissible stress field  𝑻 ∈ ℋ, the 

domain Ω can be decomposed into three parts:  

 Ω1 = {𝒙 ∈ Ω / 𝑡𝑟𝑻 ≤ 0   ,   𝑑𝑒𝑡𝑻 > 0}  , (3.37) 

 Ω2 = {𝒙 ∈ Ω / 𝑡𝑟𝑻 ≤ 0   ,   𝑑𝑒𝑡𝑻 = 0}  , (3.38) 

 Ω3 = {𝒙 ∈ Ω / 𝑻 = 𝟎}  , (3.39) 

whose two by two intersections are empty: this constitutes a partition of the 

whole domain Ω. In particular, Ω1 is characterized by a biaxial compression, Ω2 

by a uniaxial compression whilst Ω3 is inert. ∎ 

3.6.1 Compatibility of loads and distortions 

The data of a general bvp for a NRNT body can be split into two parts 

 ℓ ↔  (𝒔 ̅, 𝒃)  ≈  𝑙𝑜𝑎𝑑𝑠 , (3.40) 

 ℓ∗ ↔ (𝒖 ̅, 𝑬 ̅)  ≈  𝑑𝑖𝑠𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 . (3.41) 

For NRNT materials, the search of an admissible stress field (Equilibrium Problem) 

or of an admissible displacement field (Kinematical Problem) under given data are 

essentially independent, in the sense that they are uncoupled but for condition 𝑻 ∙

𝑬 = 0. 



50 Statically and Kinematically Admissible Fields 

 

The kinematical problem is defined as the search of kinematical admissible fields 

under given distortions. The distortions are compatible if and only if the set 𝒦 is not 

empty. A similar definition can be introduced for the Equilibrium Problem (for a 

thorough study of compatibility conditions on the loads see (Del Piero, 1989) and 

(Angelillo and Rosso, 1995)). The following two statements hold: 

 ℓ 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒   ⟺   ℋ ≠ ∅  , (3.42) 

 ℓ∗ 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒   ⟺   𝒦 ≠ ∅  . (3.43) 

The existence of a solution of the bvp for a NRNT material requires, as necessary 

condition, the compatibility both of loads and distortions, that is that ℋ, 𝒦 must be 

not empty. Such a condition is not sufficient, since it has to be verified also the 

condition: 

 𝑻 ∙ 𝑬 = 0  . (3.44) 

The formulation of incompatibility criteria either for distortions or for loads requires 

the definition of two further sets, namely: 

 𝒦0 = {𝒖0 ∈ 𝑆  /  𝑬 =
1

2
(𝛻𝒖0 + 𝛻𝒖0

𝑇
) ∈ 𝑆𝑦𝑚+ &   𝒖0 = 𝟎 𝑜𝑛 𝜕𝛺𝐷 }  , (3.45) 

 ℋ0 = {𝑻0 ∈ 𝑆′ / 𝑑𝑖𝑣𝑻0 = 0   ,   𝑻0 ∈ 𝑆𝑦𝑚−   , 𝑻0𝒎 = 0 𝑜𝑛 𝜕𝛺𝑁  }  , (3.46) 

𝒦0 represents the set of kinematically admissible displacements verifying 

homogeneous conditions at the constrained boundary  𝜕Ω𝐷 , whilst ℋ0 represents a 

self-equilibrated statically admissible stress fields. 

The incompatibility criterions can be formulated as follows: 

 ℓ 𝑖𝑠 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒   ⟺   ∃ 𝒖0 ∈ 𝒦0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 〈ℓ, 𝒖0〉 > 0 , (3.47) 

 ℓ∗ 𝑖𝑠 𝑖𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒   ⟺   ∃ 𝑻0 ∈ ℋ0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 〈𝑻0, ℓ∗〉 > 0 , (3.48) 

where 〈ℓ, 𝒖0〉 and 〈𝑻0, ℓ∗〉 represent the work of the loads ℓ  and distorsions ℓ∗ for  𝒖0 

and 𝑻0 respectively. 

Remark 8|3. If ℋ is empty the load (𝒔 ̅, 𝒃) is incompatible, in the sense that 

no possibility of equilibrium with purely compressive stresses exists. The 

incompatibility of a given set of loads means that equilibrium is not possible 

and that acceleration of the structure takes place driven by the given loads. 

The incompatibility of a given set of distortions means that the given 

kinematical data cannot be accommodated with a zero energy mechanism and 

demand for more complex, deformable, material models. ∎ 
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∎  3.7 THE KINEMATICAL PROBLEM, THE EQUILIBRIUM PROBLEM AND THE COUPLING 

OF STRESS AND STRAIN 

We call the search for a kinematically admissible displacement, that is the solution 

for the displacement 𝒖 of the boundary value problem (bvp) under Heyman’s 

restrictions: kinematical problem, as opposed to the equilibrium problem, that is the 

search of a statically admissible stress field under Heyman’s restrictions.  

Definitely the bvp for masonry-like materials can be split into two parts: the search 

of a displacement field belonging to 𝒦, and the search for a stress field belonging 

to ℋ. The first problem is called “the Kinematical Problem (KP) for NRNT 

structures”, and the second problem “the Equilibrium Problem (EP) for NRNT 

structures”. These two problems are essentially uncoupled but for condition (3.1)3, 

and can be undertaken separately. 

First of all, we observe that either of the two problems can be incompatible, in the 

sense that the sets 𝒦, ℋ can both be empty. In particular, the compatibility of the EP 

is the key issue of the two theorems of Limit Analysis, which deal with the possibility 

of collapse of the structure.  

In what follows we will assume that both 𝒦, ℋ are not empty, that is that the 

kinematical and the equilibrium problem are both compatible (that is, in particular, 

there is no possibility of collapse) and study the case in which both 𝒦 and ℋ have 

infinitely many elements. 

When trying to solve the kinematical problem, the problem arises of selecting, 

among the possibly many kinematically admissible displacement fields responding 

to the given kinematical data (settlements and eigenstrains), the ones that guarantee 

also the equilibrium of the internal stress with the loads imposed on the structure. 

Remark 9|3. A trivial case of compatibility occurs if the data are 

homogeneous. If the displacement data are zero, the KP is homogeneous and 

admits as solution 𝒖 = 𝟎. If the load data are zero, the EP is homogeneous and 

admits the solution 𝑻 = 𝟎. ∎ 

In what follows we will study thoroughly the KP in the case in which the displacement 

data (the settlements) are not zero, and also the load applied on 𝛺 are not zero. 

  



52 Displacement Approach 

 

∎  3.8 DISPLACEMENT APPROACH 

As said before, the solution of the bvp for masonry-like structures is a triplet: 

 (𝒖, 𝑬(𝒖), 𝑻) such that 𝒖 ∈ 𝒦, 𝑻 ∈ ℋ, and 𝑻 ∙ 𝑬(𝒖) = 0 .  (3.49) 

In this work, we use a displacement approach, that is for a given structure under 

given loads ℓ and distortions ℓ∗, we look for a displacement field 𝒖 ∈ 𝒦 such that 

there exists a stress field 𝑻 ∈ ℋ such that 𝑻 ∙ 𝑬(𝒖) = 0. 

To solve the bvp with the displacement approach we use the energetic criterion 

described in the Chapter 4. 

∎  3.9 LIMIT ANALYSIS 

We have seen in the preceding sections that, for RNT bodies, both force and 

displacement data are subject to compatibility conditions, that is the existence of a 

statically admissible stress field and the existence of a kinematically admissible 

displacement field, are subordinated to some necessary or sufficient conditions on 

the given data. Recalling the material restrictions defining NRNT materials, we can 

observe that restrictions (3.1) are equivalent to a rule of normality of the total strain 

to the cone of admissible stress states, and normality is the essential ingredient 

allowing for the application of the two theorems of Limit Analysis (Del Piero, 1998).  

Limit Analysis, with its two main theorems, answers to the question if a fixed structure 

under give loads ℓ (and distortions ℓ∗) is in a safe condition. Since the distortions ℓ∗ 

play no role in the assessment of collapse, the question focuses only on the loads ℓ. 

The safe theorem and the kinematic theorem can be reformulated with reference to 

this two sets: 

 ℋ = {𝑻 ∈ 𝑆′/ 𝑑𝑖𝑣𝑻 + 𝒃 = 𝟎   ,   𝑻 ∈ 𝑆𝑦𝑚−   , 𝑻𝒎 = 𝒔 ̅ 𝑜𝑛 𝜕𝛺𝑁 } , (3.50) 

 𝒦0 = {𝒖0 ∈ 𝑆  /  𝑬 =
1

2
(𝛻𝒖0 + 𝛻𝒖0

𝑇
) ∈ 𝑆𝑦𝑚+ &   𝒖0 = 𝟎 𝑜𝑛 𝜕𝛺𝐷 } , (3.51) 

𝒦0 being the set of displacement fields verifying homogeneous conditions on the 

constrained boundary 𝜕Ω𝐷 , whilst ℋ is the set of statically admissible stresses. In 

particular, each of these two sets contains the test functions to be used for the 

formalization of the statements of the two theorems. Limit Analysis deals with the 

assessment of collapse, collapse being an unbounded acceleration of the structure 

driven by the given loads. The two theorems can be formulated as follows: 
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Safe Theorem. Collapse does not occur if ℋ is not empty. ∎ 

Kinematic Theorem. Collapse occurs if there exists any displacement field 

𝒖0 ∈ 𝒦0 such that 〈ℓ, 𝒖0〉 > 0. ∎ 

The safe theorem expresses a sufficient condition for the absence of collapse, whilst 

the kinematic theorem represents a sufficient condition for collapse to take place.  

Remark 10|3. A well-known application of the safe theorem with regard to 

the arch structures, is contained in the following statement: “an arch is safe 

under fixed loadings if and only if there exists a line of thrust lying wholly 

within the geometry of the arch”. The line of thrust could be thought of as the 

the support of a concentrated statically admissible stress field 𝐓 ∈ ℋ, that is a 

singular tensor stress field, in equilibrium with the given loads, represented in 

the form: 

 𝑻𝑠 = 𝑃 𝛿(𝛤) 𝒕 ⊗ 𝒕   ,    𝑃 < 0  , (3.52) 

where Γ is the geometric image of the thrust line, 𝛿(Γ) is the unit line Dirac 

delta with support on Γ and 𝑃 is the intensity of the Dirac delta. Finding a 

statically admissible compressive singular stress field, i.e. a line of thrust in 

equilibrium with the given loads and wholly within the arch geometry, is a 

sufficient condition for the stability of an arch: this result does not depend on 

the fact that this specific line of thrust be the actual stress state of the arch, it 

is only sufficient that at least one thrust line verifying these conditions exists.∎ 
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RIGID BLOCK MODEL 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[4] An Energy Criterion - Chapter 4 

AN ENERGY CRITERION 

Prologue. In this Chapter, using a displacement approach, we propose an 

energy criterion (see Section 4.1 below) to solve the bvp for NRNT materials 

(see Chapter 3). Two numerical methods are proposed to approximate the 

search for the minimal solution. With the PR method we search the solution of 

the bvp in the set of piecewise rigid displacements. The strain coincides with its 

singular part and is represented by line Dirac deltas: the crack pattern is 

concentrated along lines. The C0 method, instead, consists in the approximation 

of the solution in the set of continuous displacements: the strain admits only of 

a regular part.  

The main motivation for using the PR approximation derives from the 

observation that real masonry structures exhibit such rigid block mechanisms, 

when subject to severe settlements (see Fig. 4.1) or when shaken by serious 

earthquakes. 

 
 

Fig. 4.1 - The effect of soil settlements on a XVII century building in 

Bergamo. Courtesy of Paolo Faccio, IUAV Venezia. 

Besides, rigid block approximations are rather popular when solving manually 

simple plasticity problems, and implementing this kind of strategy on a 

computer is quite interesting “per se”. 
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Actually with the NRNT model the material is rigid in compression, but 

extensional deformations, allowed at zero energy price, can be either regular or 

singular; then extensional deformation can appear as either diffuse (smeared 

cracks) or concentrated (macroscopic cracks), and there is not any reason to 

prefer one upon another, on an energy ground. 

The fact that rigid block deformation seems to be the preferred failure mode 

for real masonry structures stems from mechanical characteristics, such as 

toughness and cohesion, which are not inherent to the simplified NRNT 

continuum model. So, it is interesting to see if rigid block mechanisms can arise 

naturally in solving the minimum problem (4.1), and if there is any legitimate 

way to force rigid block mechanisms over diffuse cracking. 

Then, with the C0 method we explore the possibility to tackle problem (4.1) by 

restricting the search to continuous (C0) displacement fields, namely by using 

some classical Finite Element (FE) approximation. The C0 displacement 

approximations for unilateral materials were already proposed and adopted 

with success in the paper by Angelillo et al (2010), in the case of Normal Elastic 

No-Tension (NENT) materials. What can be seen from this work by looking at 

some benchmark examples, is that, when the solution presents strain 

concentrations on some internal lines, the numerical solution exhibits large 

gradients (tending to become infinite for finer mesh sizes), on narrow bands 

approximating the fracture lines. The C0 solution, though more cumbersome 

from the numerical point of view, appears as more adaptable than the rigid 

block approximation, in approximating fracture lines that are far from being 

located on the skeleton of the mesh.  

This sluggishness of the rigid block approximation in reproducing “slanted” 

cracks (that is cracks not developing along the boundary of the rigid elements), 

is one of the main critical issues inherent to the piecewise rigid (PR) 

approximation. Then there is another reason to adopt the C0 approximation, 

namely for seeing if the C0 approximation can be used, in combination with the 

PR approximation, as a preliminary analysis for suggesting the optimal rigid 

block partition. 

After the two methods are introduced, some benchmark problems are analysed 

to illustrate the numerical performances of the two approaches and the “pro et 

contra” of these two opposed strategies. 

∎  4.1 THE KP: AN ENERGY CRITERION 

The solution of the bvp for masonry-like structures is represented by a triplet 

(𝒖, 𝑬(𝒖), 𝑻) such that 𝒖 ∈ 𝒦, 𝑻 ∈ ℋ, and 𝑻 ∙ 𝑬(𝒖) = 0. With respect to a given 

structure under given loads ℓ and distortions ℓ∗, the use of a displacement approach 

consists in the search of a displacement field 𝒖 ∈ 𝒦 for which there exist a stress field 

𝑻 ∈ ℋ such that 𝑻 ∙ 𝑬(𝒖) = 0. In order to solve the bvp using a displacement 

approach we can use an energetic criterion. 
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Several problems in physics and Engineering can be formulated as a minimum 

search: a functional describing the energy of the system and depending on an 

unknown function has to be minimized over the set of all admissible functions. When 

trying to solve the kinematical problem, that is the boundary value problem for the 

displacement 𝒖 under Heyman’s restrictions, the problem arises of selecting, among 

the possibly many kinematically admissible displacement fields, the ones that 

guarantee also the equilibrium of the loads imposed on the structure. 

For elastic, and even for some elastic-brittle materials, these states, that we can call 

solutions of the boundary value problem, can be found by searching for the 

minimum of some, suitably defined, form of energy. For Heyman’s materials it is just 

the potential energy of the loads. 

Then the idea is to search a displacement field which is the solution of the boundary 

value problem, by minimizing the potential energy ℘ of the loads. Such minimum 

problem is formulated as follows: 

“Find a displacement field 𝒖° ∈ 𝒦, such that 

 ℘(𝒖°) = min
𝒖∈𝒦

℘(𝒖)  ,” (4.1) 

where 

℘(𝒖) = − ∫ 𝒔̅

𝜕𝛺𝑁

 ∙ 𝒖 𝑑𝑠 − ∫ 𝒃 ∙ 𝒖 𝑑𝑎

𝛺

  , (4.2) 

is the potential energy of the given loads and 𝒦 is the set of kinematically admissible 

displacements, defined in Chapter 3. 

∎  4.2 MINIMUM OF ℘ AND EQUILIBRIUM  

The proof of the existence of the minimizer 𝒖° of ℘(𝒖) for 𝒖 ∈ 𝒦, is a complex 

mathematical question and is beyond the scopes of the present text. On assuming 

that the KP is compatible (that is 𝒦 ≠ ∅), what we can easily show is that: 

Theorem a. If the load is compatible (that is ℋ ≠ ∅) the linear functional ℘(𝒖) 

is bounded from below. ∎ 

Theorem b. If the triplet (𝒖°, 𝑬(𝒖°), 𝑻°) is a solution of the bvp, it corresponds 

to a weak minimum of the functional ℘(𝒖). ∎ 
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The proofs of this two theorems are reported below. 

Proof. a. If the load is compatible then there exists a stress field 𝑻 ∈ ℋ, through which the 

functional ℘(𝒖) defined on 𝒦, for any 𝒖 ∈ 𝒦, can be rewritten as follows 

℘(𝒖) = −∫ 𝒔̅ ∙ 𝒖 𝑑𝑠
𝜕Ω𝑁

−∫ 𝒃 ∙ 𝒖 𝑑𝑎
Ω

= ∫ 𝒔(𝑻) ∙ 𝒖̅ 𝑑𝑠
𝜕𝛺𝐷

−∫ 𝑻 ∙ 𝑬(𝒖)𝑑𝑎
Ω

 , (4.3) 

𝒔(𝑻) being the trace of 𝑻 at the boundary (see Remark 5|3). Assuming that the displacement data 

are sufficiently regular (say continuous), being 𝒔(𝑻) a bounded measure (see Remark 5|3), the 

integral ∫ 𝒔(𝑻)
𝜕Ω𝐷

 𝒖̅ 𝑑σ is finite; then, since 𝑻 ∈ 𝑆𝑦𝑚− and 𝑬 ∈ 𝑆𝑦𝑚+, the volume integral is non 

negative, and ℘(𝒖) is bounded from below. ∎ 

Proof b. If (𝒖°, 𝑬(𝒖°), 𝑻°) is a solution of the bvp, then, for any 𝒖 ∈ 𝒦, we can write 

℘(𝒖) − ℘(𝒖°) = −∫ 𝒔̅ ∙ (𝒖 − 𝒖°)𝑑𝑠
𝜕Ω𝑁

−∫ 𝒃 ∙ (𝒖 − 𝒖°)𝑑𝑎
Ω

= −∫ 𝑻° ∙ (𝑬(𝒖) − 𝑬(𝒖°)) 𝑑𝑎
Ω

. (4.4) 

The result ℘(𝒖) − ℘(𝒖°) ≥ 0  , ∀𝒖 ∈ 𝒦, follows form normality (3.3). ∎ 

The physical interpretation of the above result is the following. Since the 

displacement field solving the bvp corresponds to a state of weak minimum for the 

energy, then it is a neutrally stable equilibrium state, in the sense that the transition 

to a different state requires a non negative supply of energy. 

Remark 1|4. Based on the minimum principle, if the EP is compatible and the 

KP is homogeneous, 𝒖 = 𝟎 is a minimum solution. Indeed, in such a case 

℘(𝒖) = − ∫ 𝒔̅

𝜕Ω𝑁

 ∙ 𝒖 𝑑𝑠 − ∫ 𝒃 ∙ 𝒖 𝑑𝑎 = 

Ω

− ∫ 𝑻 ∙ 𝑬(𝒖)𝑑𝑎

Ω

 , (4.5) 

𝑻 being any element of ℋ. Since the right hand side of (4.2) is non negative, 

℘(𝟎) = 0 is the minimum of ℘ and 𝒖 = 𝟎 is a minimizer of the potential 

energy. Notice that, in this case, any 𝑻 ∈ ℋ is a possible solution in terms of 

stress, since 𝑻 ∙ 𝑬(𝟎) = 0 for any 𝑻. ∎ 
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∎  4.3 PR METHOD, PIECEWISE RIGID DISPLACEMENTS: RIGID BLOCKS 

4.3.1 PR Method: theory 

We consider the approximate solution of the minimum problem (4.1) obtained by 

restricting the search of the minimum in the restricted class 𝒦𝑝𝑟 of piecewise rigid 

displacements. This infinite dimensional space is discretized by considering a finite 

partition 

 (Ω𝑖)𝑖∈{1,2,..,𝑀}  , (4.6) 

of Ω into a number 𝑀 of rigid pieces, such that 

∑𝑃(Ω𝑖) <

𝑀

𝑖=1

 ∞  , (4.7) 

𝑃(Ω𝑖) being the perimeter of Ω𝑖 . In particular, restricting to convex polygonal 

elements, the boundary 𝜕Ω𝑖 of the n-polygon Ω𝑖 , is composed of n segments Γ, of 

length ℓ, whose extremities are denoted generically 0,1. We call interfaces the 

segments Γ that are, either the common boundaries between adjacent elements, or 

part of the constrained boundary (that is those Γ representing interfaces with the 

soil). We call 𝒦𝑝𝑟
𝑀  the finite dimensional approximation of 𝒦𝑝𝑟 generated by this 

partition. The minimum problem becomes: 

 ℘(𝒖̂) = min
𝒖∈𝒦𝑝𝑟

𝑀
℘(𝒖)  . (4.8) 

 

 (a) (b)  

Fig. 4.2 - The infinite dimensional space 𝒦𝑝𝑟 of piecewise rigid displacement with support 

in 𝛺 (a) is discretized considering a partition of the whole domain into convex polygonal 

elements: in (b) an example of the partition of the domain 𝛺 with a grid of M squares is 

shown. The finite dimensional approximation generated by the fixed partition is called 

𝒦𝑝𝑟
𝑀 . 
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To represent a generic piecewise rigid displacement 𝒖 ∈ 𝒦𝑝𝑟
𝑀  we may use the vector 

𝑼 of 3𝑀 components represented by the 3𝑀 rigid body parameters of translation 

and rotation of the elements. These parameters are restricted by the assumption that 

the strain must be positive semidefinite. For piecewise rigid displacements, the strain 

coincides with its singular part (see Section 3.2), namely: 

 𝑬 = 𝑬𝑠 = 𝑣 𝛿(Γ) 𝒏⊗ 𝒏 +
1

2
𝑤 𝛿(Γ) (𝒕 ⊗ 𝒏 + 𝒏⊗ 𝒕) , (4.9) 

and it is concentrated along the interfaces among blocks, that is, in the present case, 

along the segments Γ. Since the sliding is not allowed, only detachments are possible, 

then: 

 𝑣 = [𝒖] ∙ 𝒏 ≥ 0 , (4.10) 

 𝑤 = [𝒖] ∙ 𝒕 = 0  , (4.11) 

and the strain takes the form: 

 𝑬 = 𝑣 𝛿(Γ) 𝒏⊗ 𝒏 . (4.12) 

Notice that conditions (4.10), (4.11), derived from the assumption of normality, 

represent a condition of unilateral contact with no-sliding among blocks. 

The static counterpart of these constraints concerns the stress vector 𝒔 applied along 

Γ. Such a stress vector represents, along the interfaces (that is the internal interfaces 

and the external interfaces with the soil), the reaction associated to the constraints 

(4.10), (4.11). The stress vector 𝒔 coincides with the given applied tractions 𝒔̅ where 

the boundary of the blocks becomes the loaded part of the boundary. By calling  

 𝜎 =  𝒔 ∙ 𝒏  , 𝜏 =  𝒔 ∙ 𝒕  , (4.13) 

the normal and tangential stress along Γ, the condition on 𝒔 is 

 𝜎 ≤ 0 . (4.14) 

Notice that the tangential component of 𝒔 is not constrained and can be applied 

along the straight interface Γ, even if 𝜎 = 0 (see Remark 5|3). 

By calling 𝑁 the number of the interfaces Γ, and 𝑣(0), 𝑣(1), 𝑤(0), 𝑤(1) the normal 

and tangential components of the relative displacements of the ends 0, 1 of the 

segment Γ, restrictions (4.10), (4.11) are equivalent to the 2𝑁 inequalities  

 𝑣(0) ≥ 0 , 𝑣(1) ≥ 0  , (4.15) 
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and the 2𝑁 equalities 

 𝑤(0) = 0 , 𝑤(1) = 0  . (4.16) 

The restrictions (4.15), (4.16) can be easily expressed in terms of 𝑼̂, rewriting them in 

the matrix forms: 

 𝑨 𝑼̂  ≥ 𝟎  , (4.17) 

 𝑩 𝑼̂ = 𝟎  . (4.18) 

Finally, the minimum problem (4.8) which approximates the minimum problem (4.1) 

can be transformed into: 

 ℘(𝑼̂0) = min
𝑼̂∈𝕂𝑀

℘(𝑼̂)  , (4.19) 

𝕂𝑀 being the set: 

 𝕂𝑀 = {𝑼̂ ∈ ℝ3𝑀 / 𝑨 𝑼̂  ≥ 𝟎  , 𝑩 𝑼̂ = 𝟎}  . (4.20) 

Remark 2|4. The minimization problem (4.19) that we propose for 

approximating the minimization problem (4.1), transforms the original 

minimization problem for a continuum, into a minimization problem for a 

structure composed of rigid parts, acted on by given loads and given 

settlements and subject to unilateral contact conditions along the interfaces. 

Problem (4.19) is a standard linear finite dimensional minimization problem, 

since the function ℘(𝑼̂) is a linear function of the 3M-vector 𝑼̂ and the 

constraints are linear. The existence of the solution of this approximate 

problem is trivially guaranteed if the original problem is bounded from below. 

For a small number of variables it can be solved exactly with the simplex 

method (Dantzig et al, 1955), and for large problems there exist a number of 

well-known, and efficient, approximate alternatives [see (Mehrotra, 1992), 

(Vanderbei, 2015) and (Dantzig et al, 2016)]. ∎ 

4.3.2 PR Method: numerical strategy 

The examples presented in this work are developed with the program Mathematica® 

(Wolfram, 2003). Generally, the application of the method proceeds into the 

following steps:  

1. definition of the structural geometry and of its discretization;  

2. discretization of the displacement field as piecewise rigid displacement; 
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3. definition of the potential energy as a linear functional of the rigid 

displacement parameters; 

4. definition of the internal and external boundary conditions; 

5. numerical solution of the problem with a linear programming routine; 

6. post-processing (evaluation of the displacement corresponding to the 

solution). 

⁎   ⁎   ⁎ 

1. Let us denote Ω∗ the domain representing the structural geometry in ℰ2; consider 

the minimum rectangular domain Ω∗ containing Ω∗. The whole domain Ω∗ is 

partitioned into N rectangular basic units Ω𝑖 , we call them subdomains. The set 

𝜋∗ = (Ω𝑖)𝑖∈{1,…,𝑁}  constitutes a partition of Ω∗, that is: 

⋃Ω𝑖

𝑁

𝑖=1

= Ω∗    &    Ω𝑖 ∩ Ω𝑗 = ∅  ,   ∀𝑖, 𝑗 ∈ {1, … , 𝑁}   /  𝑖 ≠ 𝑗 .  (4.21) 

To take into account the presence of voids in the domain Ω∗ is necessary to perform 

an appropriate elimination of some elements belonging to 𝜋∗. To this purpose, we 

consider the set 

 𝜋𝑀 = {Ω𝑖 ∈  𝜋
∗ / Ω𝑖⋂ Ω∗ ≠ ∅} , (4.22) 

where M is the cardinality of 𝜋𝑀 . Defining Ω = ⋃ ΩjΩj∈𝜋𝑀
 from (4.22) it follows: 

 Ω ⊇ Ω∗ . (4.23) 

Therefore 𝜋𝑀 is a particular cover of the real structural domain Ω∗: it is the minimum 

cover of Ω∗ (with respect to the cardinality) and at the same time it constitutes a finite 

partition of Ω, which becomes our structural model domain. Finally, it is to be noticed 

that 𝜋𝑀 is a countable set of subdomains having finite perimeter, therefore, is a 

Caccioppoli partition of Ω in the sense of Chambolle et al (2007). 

⁎   ⁎   ⁎ 

2. The displacement field 𝒖 = 𝒖(𝒙), defined in Ω, is approximated as piecewise rigid. 

We use 𝜋𝑀 to introduce this approximation, namely: 

  𝒖: 𝒙 ∈ Ω →

{
 
 

 
 
𝒖1  , 𝑖𝑓 𝒙 ∈ Ω1 ,

⋮
𝒖𝑗  , 𝑖𝑓 𝒙 ∈ Ω𝑗   ,

⋮
𝒖𝑀  , i𝑓 𝒙 ∈ Ω𝑀 ,

 (4.24) 
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where 𝒖𝑗 = 𝒖|Ω𝑗 ∀ 𝑗 ∈ {1, … ,𝑀} is an infinitesimal rigid displacement. In 2d problems, 

𝒖𝑗 is a function of three Lagrangian parameters assumed as the two translations of 

the centroid 𝐺𝑗 of Ω𝑗 and the rotation about 𝐺𝑗. In vector form: 

 𝒖𝑗 = 𝒗𝑗 +𝚽𝑗(𝒙 − 𝒙𝑗
0) , (4.25) 

where 𝒙𝑗
0 is the position vector of 𝐺𝑗 , and 

 𝚽𝑗 ∈ 𝑆𝑘𝑤 , (4.26) 

and then 

 Sym∇𝒖𝑗 = 𝟎 . (4.27) 

In (4.25) 𝒗𝑗 = (𝑈𝑗 , 𝑉𝑗) is the translation vector, whose components are the two 

translation parameters in a fixed global Cartesian reference, and: 

 𝚽𝑗 = (
0 −𝛷𝑗
𝛷𝑗 0

) (4.28) 

is the infinitesimal rotation matrix in the same reference. Therefore, the displacement 

field 𝒖 = 𝒖(𝒙) depends on 3𝑀 unknown Lagrangian parameters: 

 (𝑈𝑗 , 𝑉𝑗 , 𝛷𝑗)𝑗∈{1,..,𝑀}  . (4.29) 

The 3𝑀 independent parameters can be collected in the single vector: 

 𝑼̂ = (𝑈1, 𝑉1, 𝛷1, . . , 𝑈𝑗 , 𝑉𝑗 , 𝛷𝑗, . . , 𝑈𝑀 , 𝑉𝑀, 𝛷𝑀)  ,    𝑼̂ ∈ ℝ
3𝑀   . (4.30) 

⁎   ⁎   ⁎ 

3. Since in our theory, both fracture energy and elastic energy are neglected, the 

potential energy ℘ coincides with the potential energy of the external forces only, 

and can be expressed in terms of the components of 𝑼̂. ℘ is the opposite of the 

scalar product of the applied forces times the displacements of their points of 

application, and is a linear function of 3𝑀 unknown Lagrangian parameters, that can 

be symbolically expressed as follows: 

 ℘ = ℘(𝑼̂)  , 𝑼̂ ∈ ℝ3𝑀 . (4.31) 

The problem can be formulated, as already described in (4.19), as a linear 

programming one, in the form: 
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 min
𝑼̂∈𝕂𝑀

℘(𝑼̂) , (4.32) 

𝕂𝑀 being the subset of ℝ3𝑀 defined by the unilateral and bilateral constraints 

associated to the contact and fixing conditions. It remains to define explicitly the 

subset 𝕂𝑀 ⊆ ℝ3𝑀 from Heyman’s restrictions defining the NRNT materials. The 

kinematical consequence of Heyman’s assumptions (i.e. (i), (ii) and (iii)) are 

summarized in Section 3.2 and condensed in the conditions (3.15), (3.16). In the 

subsequent point such restrictions are rewritten as contact conditions along the 

element interfaces, in terms of relative displacements, taking into account the 

analysis presented in Section 4.3.1 (see conditions (4.10), (4.11) and (4.15), (4.16)). 

⁎   ⁎   ⁎ 

4. To fix ideas, let Ω𝑖 and Ω𝑗 be two contiguous subdomains, with the 𝑙(𝐴, 𝐵) side in 

common (see Fig. 4.3). Let 𝒏 and 𝒕 be the normal and tangential unit vectors to 

𝑙(𝐴, 𝐵) (see Fig. 4.3b), and 𝒖𝑗(𝐴) the nodal displacement of the material point 𝐴 

belonging to the Ω𝑗 subdomain. 

 

(a) (b)  

Fig. 4.3 - Example of the partition of the domain with a grid of squares (a). Close up of 

two adjacent elements 𝛺𝑖 and 𝛺𝑗 and showing the common interface 𝑙(𝐴, 𝐵) (b). 

The kinematical conditions between Ω𝑖 and Ω𝑗 along 𝑙(𝐴, 𝐵)  can be expressed 

(recalling (4.10), (4.11)) as follows: 

 (𝒖𝑗(𝑃) − 𝒖𝑖(𝑃)) ∙ 𝒏 ≥ 0     ∀ 𝑃 ∈ 𝑙(𝐴, 𝐵) , (4.33) 

 (𝒖𝑗(𝑃) − 𝒖𝑖(𝑃)) ∙ 𝒕 = 0     ∀ 𝑃 ∈ 𝑙(𝐴, 𝐵) , (4.34) 

Ω𝑗 being the subdomain toward which the unit normal 𝒏 points. Taking into account 

the linearity of 𝒖𝑘  ∀ 𝑘 ∈ {1, … ,𝑀}, the first of the previous conditions is equivalent 

to two inequalities (see (4.15)): 

 (𝒖𝑗(𝐴) − 𝒖𝑖(𝐴)) ∙ 𝒏 ≥ 0 , (4.35) 

 (𝒖𝑗(𝐵) − 𝒖𝑖(𝐵)) ∙ 𝒏 ≥ 0 . (4.36) 
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Similarly, the no-sliding condition can be expressed (in a redundant way) through 

the two equations (see (4.16)): 

 (𝒖𝑗(𝐴) − 𝒖𝑖(𝐴)) ∙ 𝒕 = 0 , (4.37) 

 (𝒖𝑗(𝐵) − 𝒖𝑖(𝐵)) ∙ 𝒕 = 0 , (4.38) 

that, due to the rigidity, can be rewritten into one of the two equivalent forms: 

 (𝒖𝑗(𝐴) − 𝒖𝑖(𝐵)) ∙ 𝒕 = 0 ⇔  (𝒖𝑗(𝐵) − 𝒖𝑖(𝐴)) ∙ 𝒕 = 0 . (4.39) 

Finally, the Heyman conditions (3.15) and (3.16) relative to 𝑙(𝐴, 𝐵) are synthesized 

into three relations: 

 (𝒖𝑗(𝐴) − 𝒖𝑖(𝐴)) ∙ 𝒏 ≥ 0  , (4.40) 

 (𝒖𝑗(𝐵) − 𝒖𝑖(𝐵)) ∙ 𝒏 ≥ 0  , (4.41) 

 (𝒖𝑗(𝐴) − 𝒖𝑖(𝐵)) ∙ 𝒕 = 0  , (4.42) 

which can be easily expressed in terms of the 6 Lagrangian parameters 
(𝑈𝑘, 𝑉𝑘 , Φ𝑘)𝑘∈{𝑖,𝑗}.  

 
(a) (b) 

 

Fig. 4.4 - The three conditions (4.40-42) between two adjacent domains 𝛺𝑖 and 𝛺𝑗 could 

be represented by three internal constraints: two unilateral (horizontal black connections 

in the Figure) and a bilateral (vertical red connection in the Figure). 

If 𝑛 denotes the number of internal interfaces, the internal boundary conditions 

consist of 2𝑛 linear inequalities and 𝑛 linear equalities; with some easy 

transformations, the external boundary conditions can be implemented as fictitious 

internal contact conditions. If the constraints are perfect, then the corresponding 

equalities and inequalities are homogeneous. The given settlements (or eigenstrains) 

are the known terms of the non-homogeneous conditions. All together the 

constraints define a domain 𝕂𝑀 ⊆ ℝ3𝑀, in which the optimal solution has to be 

found; such domain is a convex polytope of the ℝ3𝑀space. 

⁎   ⁎   ⁎ 



68 PR Method, Piecewise Rigid Displacements: Rigid Blocks 

 

5. With the above approximation the structural problem is formulated as a minimum 

problem: “find a piecewise rigid displacement 𝑼̂0 which minimizes the potential 

energy ℘ in 𝕂𝑀 : 

 𝑚𝑖𝑛
𝑼̂∈𝕂𝑀

℘(𝑼̂)  .” (4.43) 

This linear programming problem is solved with the simplex method, or with the 

interior point method if the number of unknowns and conditions is large. 

⁎   ⁎   ⁎ 

6. Once the minimizer 𝑼̂0 has been obtained it is an easy task to construct the 

deformed shape of the structure. The moving part of the structure represents a one 

degree of freedom mechanism controlled by the form of the given settlements, i.e. 

it is statically determined. The relative displacements among the blocks play the role 

of fractures, and hopefully give an approximation of the real fracture pattern 

produced by known settlements. 

Remark 3|4. Usually, the kinematical problem to be solved for real structures 

presents itself in a different way, since cracks are detectable and the 

settlements producing them are usually unknown. Therefore, to adopt our 

scheme in practical applications, a sort of inverse identification procedure 

must be implemented. ∎ 
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∎  4.4 C0 METHOD, CONTINUOUS DISPLACEMENTS: SMEARED CRACKS 

4.4.1 C0 Method: theory 

In the previous sections, we formulated an approximate solution of the minimum 

problem (4.1) by restricting the search of the minimum in the class 𝒦𝑝𝑟 of piecewise 

rigid displacements. 𝒦𝑝𝑟 is a particular subspace of SBV functions which allows us to 

simulate the cracks forming in the structure through gap “openings” between 

adjacent rigid blocks, that is concentrated strains in the form of line Dirac delta 

functions defined over the skeleton of the mesh.  

In the present section, we consider a completely different approximation strategy 

based on continuous (C0) displacement fields, namely we consider a classical 

approximation based on a Finite Element (FE) mesh. It is to be pointed out, that whilst 

the use of piecewise rigid displacements belongs the class of so-called discrete 

element methods [see (Cundall, 1971) and (Sarhosis et al, 2016) and for applications 

(Tóth et al, 2009), (Simon and Bagi, 2016) and (Forgács et al, 2017)], the 

approximation of the minimum problem (4.1) through C0 functions yields a FEM-like 

formulation. The formulation of the C0 method proceeds as follows. The first 

simplification made is to considerer only the infinite dimensional set of 𝒦 constituted 

by continuous functions. The second approximation is to restrict to a finite subset of 

it, by discretizing the domain Ω into a number 𝑀 of elements with the finite partition  

 (Ω𝑖)𝑖∈{1,2,..,𝑀}  , (4.44) 

such that 

∑𝑃(Ω𝑖) <

𝑀

𝑖=1

 ∞ , (4.45) 

𝑃(Ω𝑖) being the perimeter of Ω𝑖 . In particular, in what follows, we refer to polygonal 

elements, such that the boundary 𝜕Ω𝑖 of the n-polygon Ω𝑖 , is composed of n 

segments Γ linking n points.  

Remark 4|4. We remark that, whilst with the PR method, the interfaces 

between blocks plaid a crucial role being potential fracture lines, in the second 

formulation two nodes belonging to two different elements must have the 

same displacements, and so the interfaces play a secondary role. ∎ 
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Assuming the continuity of the displacement field at the nodes, the NRT material 

restrictions have to be enforced inside the elements. In particular, recalling definition 

(3.1), the Normal Rigid No-Tension material is completely defined by the restrictions: 

 𝑻 ∈ 𝑆𝑦𝑚−  , 𝑬 ∈ 𝑆𝑦𝑚+  ,   𝑻 ∙ 𝑬 = 0  . (4.46) 

On approaching the problem as an energy minimization of the type (4.1), the latent 

strain 𝑬 has to belong to the positive semidefinite cone: 

 𝑬 ∈ 𝑆𝑦𝑚+  . (4.47) 

This restriction, for 2d problems, is equivalent to the two following inequalities: 

 𝑡𝑟𝑬 ≥ 0  , 𝑑𝑒𝑡𝑬 ≥ 0  . (4.48) 

In the 2d Euclidean space, a generic tensor, such as the latent strain 𝑬, can be 

represented, in a fixed Cartesian reference, by a 2x2 matrix: 

 𝑬 = [
𝜀11 𝜀12
𝜀21 𝜀22

] . (4.49) 

Geometrically, the condition 𝑑𝑒𝑡𝑬 ≥ 0 defines a double cone in the space 𝑆𝑦𝑚, and 

the additional condition 𝑡𝑟𝑬 ≥ 0 selects one of the two parts of the cone, namely the 

semidefinite positive space which is a convex cone. In particular, analytically, with 

reference to the three dimensional space 𝑆𝑦𝑚 spanned by the dyadic orthonormal 

base (𝒆1⨂𝒆1 , 𝒆2⨂𝒆2 , √2(𝒆1⨂𝒆2 + 𝒆2⨂𝒆1)), conditions (4.48) or equivalently (3.15) 

can be written in terms of Cartesian components, as: 

 𝜀11𝜀22 − 𝜀12
2 ≥ 0  ,   𝜀11 + 𝜀22 ≥ 0 , (4.50) 

which is actually a condition on the displacement field 𝒖 since 𝑬 = Sym∇𝒖. We 

choose to implement numerically conditions (4.50) in an approximate way in order 

not to loose the linearity of the problem. The idea is to approximate the cone 𝑆𝑦𝑚+ 

by a plane envelope.  

The partition (Ω𝑖)𝑖∈{1,2,..,𝑀} constitutes a discretization of the geometrical domain, the 

displacement field 𝒖 is a function of the nodal displacements. In particular, let 𝑼̂ ∈

ℛ2𝑁 be the vector which collects the displacement components of the 2𝑁 nodes, the 

displacement field can be expressed as a functions of the node displacement:  

 𝒖 = 𝒖(𝑼̂) , (4.51) 

where 𝑼̂ = (𝑈1, 𝑉1, . . , 𝑈𝑖 , 𝑉𝑖 , . . , 𝑈𝑁 , 𝑉𝑁) and (𝑈𝑖 , 𝑉𝑖) denotes the displacement of the 

node 𝑖. If 𝒦𝑐
𝑁 denotes the finite subspace of SBV defined by the continuous functions 
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associated with the finite element chosen, the minimum problem can be written as 

follows: 

 ℘(𝒖̂) = min
𝒖∈𝒦𝑐

𝑁
℘(𝒖) , (4.52) 

in which the continuous displacement 𝒖 ∈ 𝒦𝑐
𝑁 is expressed by 2𝑁 scalar parameters, 

that are the components of the displacements of the 𝑁 nodes of the given mesh.  

 

(a) (b) (c) 
 

Fig. 4.5 - The infinite dimensional space 𝒦𝑐 of continuous displacements with support in 

𝛺 (a) is discretized considering a partition (Ω𝑖)𝑖∈{1,2,..,𝑀} of the whole domain into e.g. 

quadrangular elements (b): the finite dimensional approximation generated by the fixed 

partition is called 𝒦𝑐
𝑁, where 𝑁 is the number of nodes. In (c) a subdomain Ωk and the 

second order Lagrangian element with 9 nodes is shown. 

These parameters are restricted by the assumption that the strain must belong to 

the linearized envelope of the cone 𝑆𝑦𝑚+. Thus, whilst for piecewise rigid 

displacements the strain is concentrated along the interfaces among blocks, in this 

case the latent strain is diffused inside the elements (smeared cracks). In some cases, 

the latent strain could coagulate in narrow bands which could be viewed as an 

approximation of fracture lines. We recall that the condition  

 𝑬 ∈ 𝑆𝑦𝑚+ ,  (4.53)  

is enforced in an approximated way by restricting 𝑬 to belong to a tangent plane 

envelope. Therefore the only internal restrictions that we have in this case are linear 

inequalities, which can be expressed in terms of the unknown nodal displacements 

in the matrix form: 

 𝑨 𝑼̂  ≥ 0 . (4.54) 

Finally, with the proposed FE approximations, the minimum problem (4.8) which 

approximates the minimum problem (4.1) can be transformed into 

 ℘(𝑼̂𝟎) = min
𝑼̂∈𝕂𝑁

℘(𝑼̂)  , (4.55) 

𝕂𝑁 being the set 
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 𝕂𝑁 = {𝑼̂ ∈ ℝ2𝑁 / 𝑨 𝑼̂  ≥ 0}  . (4.56) 

4.4.2 C0 Method: numerical strategy 

Also in this case the solution of the specific problems here analysed is obtained by 

implementing the method with the program Mathematica ® (Wolfram, 2003). The 

analysis proceeds into the following steps:  

1. definition of the structural geometry and of its discretization;  

2. discretization of the displacement field; 

3. definition of the potential energy as a linear functional of the nodal 

displacement parameters; 

4. definition of the side conditions; 

5. definition of the external boundary conditions; 

6. numerical solution of the problem with a linear programming routine; 

7. post-processing (evaluation of the displacement and of the strain 

corresponding to the approximate solution). 

⁎   ⁎   ⁎ 

1. Let us denote Ω∗ the domain representing the structural geometry in ℰ2; consider 

the minimum rectangular domain Ω∗ containing Ω∗. The whole domain Ω∗ is 

partitioned into N basic units (i.e. rectangular, triangular units) Ω𝑖 , we call them 

subdomains. The set 𝜋∗ = (Ω𝑖)𝑖∈{1,…,𝑁}  constitutes a partition of Ω∗, that is: 

⋃Ω𝑖

𝑁

𝑖=1

= Ω∗    &    Ω𝑖 ∩ Ω𝑗 = ∅  ,   ∀𝑖, 𝑗 ∈ {1, … , 𝑁}   /  𝑖 ≠ 𝑗 .  (4.57) 

To take into account the presence of voids in the domain Ω∗ is necessary to perform 

an appropriate elimination of some elements belonging to 𝜋∗. To this purpose, we 

consider the set 

 𝜋𝑀 = {Ω𝑖 ∈  𝜋
∗ / Ω𝑖⋂ Ω∗ ≠ ∅} , (4.58) 

where M is the cardinality of 𝜋𝑀 . Defining Ω = ⋃ ΩjΩj∈𝜋𝑀
 from (4.58) it follows: 

 Ω ⊇ Ω∗ . (4.59) 

Therefore 𝜋𝑀 is a particular cover of the real structural domain Ω∗: it is the minimum 

cover of Ω∗ (with respect to the cardinality) and at the same time it constitutes a finite 

partition of Ω, which becomes our structural model domain. Finally, it is to be noticed 



 Chap. 4 – An Energy Criterion 73 

 

that 𝜋𝑀 is a countable set of subdomains having finite perimeter, therefore, is a 

Caccioppoli partition of Ω in the sense of Chambolle et al (2007). 

⁎   ⁎   ⁎ 

2. The displacement field 𝒖 = 𝒖(𝒙), defined in Ω, is approximated through 𝐶0 

functions belonging to a subset of 𝐶0 depending strictly to the finite element 

considered (Bathe and Wilson, 1976). In our analysis, we try to adopt various finite 

element, but the best choice, balancing accuracy and simplicity, turned out to be a 

second order Lagrangian quadrangular element (Fig. 4.6). In what follows, we refer 

to this special kind of element and to its shape functions. 

 
(a) (b)  

Fig. 4.6 - The generic domain Ωk and the second order Lagrangian element with 9 nodes 

is shown. The functions f represents the diffeomorphism from these two domains. 

With reference to Fig 4.7, in the plane (𝜉, 𝜂) the shape function 𝑁𝑖𝑗 = 𝑁𝑖𝑗(𝜉, 𝜂) 

with (𝑖, 𝑗)  ∈ {1,2,3} × {1,2,3} is referred to the point of coordinates (𝜉𝑖 , 𝜂𝑗). In 

particular, has to result 𝑁𝑖𝑗(𝜉𝑖 , 𝜂𝑗) = 1 and 𝑁𝑖𝑗(𝜉𝑘 , 𝜂𝑙) = 0 for all (𝑘, 𝑙)  ∈ {1,2,3} ×

{1,2,3}\(𝑖, 𝑗). 

 
(a) (b) 

 

Fig. 4.7 - The generic subdomain Ωk and the second order Lagrangian element with 9 

nodes is shown. 
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The generic shape function could be obtained as the product of two one-

dimensional second order Lagrangian shape functions, e.g. the shape function 𝑁23 

is: 

 𝑁23 =
(𝜉−𝜉1)(𝜉−𝜉3)

(𝜉2−𝜉1)(𝜉2−𝜉3)
∙
(𝜂−𝜂1)(𝜂−𝜂2)

(𝜂3−𝜂1)(𝜂3−𝜂2)
 (4.60) 

and, obviously, results 𝑁23(𝜉2, 𝜂3) = 1 and 𝑁23(𝜉𝑖 , 𝜂𝑗) = 0 for all (𝑖, 𝑗)  ∈ {1,2,3} ×

{1,2,3}\(2,3). It is well-known that the maximum one-dimensional polynomial degree 

is of the second order (i.e. ∝ 𝜉2, 𝜂2) whilst the maximum polynomial term is of the 

fourth order (i.e. ∝ 𝜉2𝜂2). 

Remark 5|4. In the elastic case, Lagrangian shape functions needing the 

definition of many internal nodes, are not convenient since the process of 

global assembly gets rid of superfluous internal stiffness contributions. 

Anyhow, in our analysis, since the stiffness plays no role, the internal nodes 

are more useful because they allow a better description of displacement fields 

with sharp gradients inside the domain. ∎ 

Using the diffeomorphism f, namely: 

 𝑓: (𝑥, 𝑦) ∈ Ωk → (𝜉(𝑥, 𝑦), 𝜂(𝑥, 𝑦)) , (4.61) 

it is possible to associate to each node belonging to the domain 𝛺𝑘 in the plane 

(𝑥, 𝑦) the relative shape function 𝑁𝑖𝑗
𝑓(𝑥, 𝑦) defined as: 

 𝑁𝑖𝑗
𝑓
: (𝑥, 𝑦) ∈ Ωk → 𝑁𝑖𝑗 ∘ 𝑓(𝑥, 𝑦) . (4.62) 

In the global reference (𝑂, 𝑥, 𝑦), denoting with 𝑙 ∈ {1, . . ,9} the generic node of the 

finite element Ωk, the displacement 𝒖𝑘 can be expressed as: 

𝒖𝑘: (𝑥, 𝑦) ∈ Ωk  →  ∑𝑁𝑙
𝑓(𝑥, 𝑦) ∙ (𝑈𝑙 , 𝑉𝑙)

9

𝑙=1

 , (4.63) 

where (𝑈𝑙 , 𝑉𝑙) is the vector collecting the two unknown scalar translations of the 

nodes 𝑙. The global displacement is written as: 

 𝒖: 𝒙 ∈ Ω →

{
 
 

 
 
𝒖1  , 𝑖𝑓 𝒙 ∈ Ω1 ,

⋮
𝒖𝑗   , 𝑖𝑓 𝒙 ∈ Ω𝑗   ,

⋮
𝒖𝑀  , i𝑓 𝒙 ∈ Ω𝑀  ,

 (4.64) 
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where 𝒖𝑘 = 𝒖|Ω𝑘 ∀ 𝑘 ∈ {1, … ,𝑀}. In particular, the continuity on the boundary is 

ensured by the finite element chosen ad its relative shape function. Furthermore, it 

is to be notice that the global displacement field 𝒖 depends on 2𝑁 scalar translational 

parameters: 

 (𝑈𝑙 , 𝑉𝑙 , )𝑙∈{1,..,𝑁}  . (4.65) 

These 2𝑁 independent parameters can be collected in the single vector: 

 𝑼̂ = (𝑈1, 𝑉1, . . , 𝑈𝑗 , 𝑉𝑗, . . , 𝑈𝑁 , 𝑉𝑁)  ,    𝑼̂ ∈ ℝ
2N  . (4.66) 

⁎   ⁎   ⁎ 

3. The potential energy ℘, coincident with the potential energy of the external forces 

only, can be expressed again in terms of the components of 𝑼̂, ℘ being the opposite 

of the scalar product of the applied forces times the displacements of their points of 

application, that is a linear function of 2𝑁 unknown Lagrangian parameters, that can 

be symbolically expressed as follows: 

 ℘ = ℘(𝑼̂)  , 𝑼̂ ∈ ℝ2N  . (4.67) 

The problem can be formulated, as already described in (4.55), as a linear 

programming one, in the form: 

 min
𝑼̂∈𝕂𝑁

℘(𝑼̂) , (4.68) 

𝕂𝑁 being the subset of ℝ2𝑁 defined by the unilateral constraints enveloping the 

convex cone 𝑆𝑦𝑚+ to which the latent strain 𝑬 must belong. It remains to define 

explicitly the subset 𝕂𝑁 ⊆ ℝ2𝑁. 

⁎   ⁎   ⁎ 

4. Since the subset 𝕂𝑁 is substantially identified by a number of inequalities on the 

latent strain 𝐄, in what follows we summarize how to write such unilateral restrictions 

in terms of the displacements of the nodes of the element Ω𝑘 . Recalling that the 

displacement field in each finite element Ω𝑘 can be expressed as follows: 

𝒖𝑘 = 𝒖|Ω𝑘 = ∑𝑁𝑙
𝑓(𝑥, 𝑦) ∙ (𝑈𝑙 , 𝑉𝑙)

9

𝑙=1

  , (4.69) 

the latent strain, obtained as the symmetric part of the gradient of 𝒖𝑘, is: 
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 𝐄𝑘 = 𝑬|Ω𝑘 = Sym∇𝒖𝑘  . (4.70) 

The latent strain has to belong to the semidefinite positive space 𝑆𝑦𝑚+. This 

condition, in the space (𝜀11, 𝜀22, √2𝜀12), is represented geometrically in Fig. 4.8 where 

he intersection between the cone 𝐶: 𝑑𝑒𝑡𝑬 ≥ 0 and the half-space 𝑡𝑟𝑬 ≥ 0 is depicted.  

 
 

v 

E 

e11 

e22 

√2e12 

√2 

 

Fig. 4.8 - Three-dimensional representation, in the space (𝜀11, √2𝜀12, 𝜀22), of the cone 

𝐶: 𝑑𝑒𝑡𝑬 ≥ 0 and of the plane 𝜋: 𝑡𝑟𝑬 = 0. The vector 𝒗 is orthogonal to the 𝜋 plane and 

points to the half-space 𝑡𝑟𝑬 ≥ 0. The intersection between the half-space and the cone 

individuates the semidefinite positive convex cone 𝑆𝑦𝑚+. A compatible vector 𝑬 

belonging to 𝑆𝑦𝑚+ is depicted in red. 

As already said, the condition on 𝑬 is non-linear. Anyhow it is possible to 

approximate it with a finite set of linear relations, in order to reduce the non-linear 

problem to a linear one. 

The idea at the base of this transformation is to linearly approximate the convex cone 

through a certain number of tangent planes. The construction can be based on a set 

of points, equally spaced along a cross-section of the cone. For each point of this set 

we define a tangent plane. The set of all tangent planes constitutes an envelope of 

the cone. Increasing the number of points the envelope tends to give a better fit of 

the non-linear surface as depicted in Fig 4.9. 
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Fig. 4.9 - Two envelopes are presented in a comparative way. In (a) envelope formed by 

6 tangent planes and in (b) by 16 planes. The cross-section between the cone and a plane, 

orthogonal to the axis of the cone, is represented by the red curve. The blue dots, 

belonging to the curve, are the “generators” of the plane envelope. 

Thus, being (𝑥̃, 𝑦̃) the coordinates of the node 𝑙 belonging to the domain Ωk, the 

condition 𝑬 ∈ 𝑆𝑦𝑚+ , can be written punctually as: 

 𝐄𝑘(𝑥̃, 𝑦̃) ∈ 𝑆𝑦𝑚
+ , (4.71) 

and it is transformed, using n tangent planes, to the following inequalities: 

 𝐀𝑘(𝑥̃, 𝑦̃) 𝑼̂𝑘  ≥ 𝟎 , (4.72) 

where 𝐀𝑘(𝑥̃, 𝑦̃)  is a matrix collecting the components of normal vectors (see Fig. 

4.10) to the tangent planes and 𝑼̂𝑘 is the vector of the nodal translational parameters 

relative to the element k. 

These unilateral relations have to be written for all nodes of the element Ωk and for 

all elements of the global domain Ω. Collecting all these relations in matrix form, we 

have a set of unilateral constraints, of the type: 

 𝑨 𝑼̂  ≥ 𝟎  . (4.73) 

These relations can be viewed as restriction on the vector 𝑼̂ = (𝑈𝑘 , 𝑉𝑘)𝑘∈{1,..,𝑁} ∈ ℝ
2𝑁 , 

defining the set  

 𝕂𝑁 = {𝑼̂ ∈ ℝ2𝑁 / 𝑨 𝑼̂  ≥ 𝟎}  . (4.74) 
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Fig. 4.10 - The envelope of the cone with 6 tangent planes and the surface gradients at 

the generating points are shown. The condition 𝐄𝑘(𝑥̃, 𝑦̃) ∈ 𝑆𝑦𝑚
+ can be discretized by 

using the gradient vectors through inequalities expressed symbolically in the form 

𝐀𝑘(𝑥̃, 𝑦̃) 𝑼̂𝑘  ≥ 𝟎. 

Finally to this set must be added the external boundary conditions, written as for the 

PR method, and concerning the given settlements (or eigenstrains) and the fixing 

conditions. All together the constraints define a domain 𝕂𝑁 ⊆ ℝ2𝑁, in which the 

optimal solution has to be found; such domain is a convex polytope of the ℝ2𝑁space. 

⁎   ⁎   ⁎ 

5.  With the above approximation the structural problem is formulated as a minimum 

problem: “find a piecewise rigid displacement 𝑼̂0which minimizes the potential 

energy ℘ in 𝕂𝑁 : 

 𝑚𝑖𝑛
𝑼̂∈𝕂𝑁

℘(𝑼̂)  .” (4.75) 

This linear programming problem is solved with the simplex method, or with the 

interior point method if the number of unknowns is large. 

⁎   ⁎   ⁎ 

6.  Once the minimizer 𝑼̂0 has been obtained it is an easy task to construct the 

deformed shape of the structure, and graphically represent the corresponding 

rotation and strain.  
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Remark 6|4. We have to point out that the appearance of piece-wise rigid 

mechanisms (producing concentrated fractures) rather than continuous 

mechanisms (entailing diffuse fractures), is often due, in real structures, to 

mechanical characteristics, such as cohesion, toughness and finite friction, 

which are not accounted for by the NRNT model. 

Indeed for NRNT materials, on an energetical ground, in general, it is not 

possible to prefer one way of deformation over the other. On formulating the 

bvp for NRNT materials as a minmum search, this peculiar behaviour is 

essentially ascribable to the absence of any growth property of the energy 

with respect to unbounded fracture strains. A growth property of the energy 

for displacement fields in 𝐵𝐷(Ω) is restored by introducing the so-called "Safe 

Load Condition", a condition which is necessary, with the known theorems, 

to prove the existence of a displacement solution for the parent equilibrium 

problem concerning NENT materials, see (Giaquinta and Giusti, 1985), 

(Anzellotti ,1985). 

There is then a legitimate way to encourage rigid block mechanisms over 

diffuse deformations. It consists in adding, all over the loaded boundary, an 

evanescent uniform pressure (say of the order of a small fraction of the 

atmospheic pressure). This trick is sufficient to provide the bvp with the "Safe 

Load Condition", and to make concentrated fractures, and then rigid block 

deformations, as the favorite minimizing mechanisms. 
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[5] Some Trivial Examples - Chapter 5 

SOME TRIVIAL EXAMPLES 

Prologue. In this Chapter, we present some basic applications to trivial 

benchmark problems of our two numerical methods, namely the PR method 

based on rigid blocks (modelling the cracks as concentrated), and the C0 

method based on continuous functions (modelling the cracks as smeared). It 

will be seen that with the C0 method the solution will often returns a hint on a 

partition into rigid blocks. In particular, in the cases in which the fractures lines 

are difficult to be detected (due to their location or slope), the subdivision 

suggested by the continuous approach could be used to start another analysis 

with the PR method. 

∎  5.1 EXAMPLE 1: A TRIVIAL BENCHMARK CASE 

As a first paradigmatic example we consider the first benchmark problem, illustrated 

in Section 3.5 (see also Fig. 3.3 and Fig. 3.4). 

 
 (a) (b) 

 

Fig. 5.1 - A panel of NRNT material, loaded on the top edge by a uniformly distributed 

load and subjected along the left and right sides to given outward settlements. 
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The example concerns a wall of NRNT material, loaded on the top edge by a 

uniformly distributed load and subjected along the left and right constrained sides 

to given outward settlements (see Fig. 5.1). The base is unconstrained and loaded 

by zero tractions. 

5.1.1 Analytical solution 

A possible analytical solution of the problem shown in Fig. 5.1, obtained considering 

singular stress and strain fields, is represented in Fig. 5.2 (see Section 3.5). 

 

Fig. 5.2 - A solution of the bvp using singular stress and strain fields. The crosshatch in 

red represents the singular deformations 𝑬𝑠 along the fracture lines whilst the dash-

dotted blue line represents the support of the singular part 𝑻𝑠 of the stress field, in 

equilibrium with the given loads. 

5.1.2 Numerical analysis with the PR method (quadrilateral elements) 

The NRNT panel is discretized with rigid blocks using 160 square elements. The load 

is applied on the top edge (yellow stripe). The left and right edge are subjected to a 

given outward settlement δ as shown below (Fig. 5.3). The boundary constraints, 

expressing the settlements, can be written in terms of the displacements of the nodes 

belonging to the interfaces lying on the constrained boundary. In particular, let 𝒏 

and 𝒕  be the outward normal and tangential unit vectors to 𝑙(𝐴, 𝐵) side (see Fig. 

5.3), 𝒖 the piecewise rigid displacement of the whole structure and 𝑃 a generic node 

belonging to 𝑙(𝐴, 𝐵). 
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Fig. 5.3 - A panel of NRNT material loaded on the top edge by a uniformly distributed 

load (represented by the yellow strip) and subjected, on the left and right edges, to given 

outward settlements is discretized with 160 square elements. 

The boundary relations for the right side 𝑙(𝐴, 𝐵) can be expressed as: 

𝒖(𝑃) ∙ 𝒕 = 0       ∀ P ∈ 𝑙(𝐴, 𝐵) , 
𝒖(𝑃) ∙ 𝒏 ≤ δ       ∀ P ∈ 𝑙(𝐴, 𝐵) . 

Similar relations have to be written for the left constrained side. These boundary 

relations combined with the internal ones (relative to the interfaces between the 

blocks) will define the subset 𝕂𝑀 in which the optimal solution has to be found.  Since 

the number of elements is 160, the total unknowns are 480 (i.e. the dimension of 𝑼̂). 

The number of internal relations, both equalities and inequalities, defining the subset 

of 𝕂𝑀 ⊆ ℛ480 is 1920 (to which the external boundary conditions have to be added). 

The solution 𝑼̂0 of the minimum problem:  

min
𝑼̂∈𝕂𝑀

℘(𝑼̂) , 

reached through the simplex method in 0.09s (with an Intel® Core™ i7-6700HQ), is 

shown in Fig. 5.4. 

 
 

  
 
 
 

δ 

δ 

δ 

δ 

 

Fig. 5.4 - A graphical representation of the solution 𝑼̂0 of the minimum problem obtained 

with the PR method: the panel forms an isostatic substructure (three-pin arch). 



84 Example 1: a Trivial Benchmark Case 

 

From Fig. 5.4, it should be noted that three hinges formed. Initially the panel was 

hyperstatic with many redundancies, but the formation of these three hinges turns it 

into an isostatic substructure. By adopting a thrust line solution for the stress, the 

position of the hinges determines three conditions, which are sufficient to determine 

a unique pressure line, as shown in Fig. 5.5. 

 
 

  
 

 

 

δ 

δ 

δ 

δ 

 

Fig. 5.5 - Hinges and corresponding thrust line. 

Remark 1|5. It should be noted that the solution 𝑼̂0 of the minimum problem 

returns, as we expect, a partition of the whole domain into two rigid blocks. 

Accordingly, in this case, a discretization with a large number of elements is 

not necessary. ∎ 

5.1.3 Numerical analysis with the PR method (triangular elements) 

In order to test the PR method on different discretizations, we use here a structured 

triangular mesh. This choice would allow the panel to show also diagonal cracks. The 

NRNT panel is discretized with rigid blocks using 640 triangular elements. The load 

is applied as before and a given outward settlement δ is considered (see Fig. 5.6). 

The boundary constraints are expressed essentially in the same way. Since the 

number of elements is 640, the unknowns are 1920 (that is the dimension of 𝑼̂). The 

number of internal relations, both equalities and inequalities, defining the subset of 

𝕂𝑀 ⊆ ℛ1920 is 5760 (to which the external boundary relations have to be added).  

The solution 𝑼̂0 of the minimum problem is reached through the simplex method in 

0.70s with an Intel® Core™ i7-6700HQ (see Fig. 5.7). The solution is the same as 

before: three hinges form then the panel becomes isostatic and the exact line of 

thrust can be determined (Fig. 5.8). 
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Fig. 5.6 - The same panel of NRNT material is discretized with triangular element. The 

load is uniform and acts on the top edge (yellow strip). The left and right edges are 

subjected to given outward settlements. 
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Fig. 5.7 - Solution 𝑼̂0 of the minimum problem obtained with the PR method. 
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Fig. 5.8 - The hinges formed and the relative thrust line are represented. 
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5.1.4 Numerical analysis with the C0 method (square FE mesh) 

Here we analyse the problem of Fig. 5.1 with the C0 method, based on an 

approximation with continuous functions. The panel of NRNT material of Fig. 5.1 is 

discretized using 40 9-nodes square elements (a second order Lagrangian 

quadrangular element). We consider only the load due to the self-weight applied to 

the Gaussian points of each element. The left and right edge are subjected to given 

outward settlements δ as shown in Fig. 5.9. 

   
 

 

 

δ δ 

 

Fig. 5.9 - A panel of NRNT material discretized with 40 square elements. The load due to 

the self-weight is applied at the Gauss points of each element. The left and right edges 

are subjected to given outward settlements δ. 

The solution 𝑼̂0 of the minimum problem is reached through the minimization of the 

energy into the finite element space defined previously (see Section 4.4). The solution 

obtained with the interior point method in 25s (with an Intel® Core™ i7-6700HQ) is 

shown graphically in Fig. 5.10.  
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Fig. 5.10 - Solution 𝑼̂0 of the minimum problem defined in Fig. 5.9. 
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Below a stream plot of the displacement field is reported in Fig. 5.11. This graph 

indicates clearly two centres of rotation. 
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Fig. 5.11 - The stream plot of the displacement field is reported: two centres of rotation 

are clearly shown. 

To represent the strain field 𝑬, in Fig. 5.12 we report a measure of the deformation, 

namely |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇). From Fig. 5.12 we see that the gradient of deformation is 

concentrated on the central strip of elements, whilst the other elements are 

characterized by strains whose norm is close to zero. 

  

Fig. 5.12 - The field |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇) is reported. 

The skew-symmetric part of the displacement field, representing the local rotation 

field, is depicted in Fig. 5.13. It should be noticed that the gradient of rotation is 

essentially concentrated along the middle vertical line (Fig. 5.13). 
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Fig. 5.13 - Rotation field over the whole domain. 

By depicting the positive rotations in red and the negative ones in blue (Fig. 5.14), 

we obtain a neat subdivision of the domain into two blocks. Such blocks deform 

essentially as rigid bodies since the rotation is piece-wise constant and the 

deformation is practically constant (see Fig. 5.14). Notice that the strain, though we 

are using continuous functions, is practically all concentrated on a line, whose size 

would reduce if use a finer mesh were used. 

 
 

 

 

Fig. 5.14 - By depicting the positive rotations in red and the negative ones in blue, a neat 

partition of the whole domain into two rigid blocks can be seen. 

Remark 2|5. By comparing the solution obtained with the C0 method (see 

Figs. 5.10-14) with that obtained with the PR method (see e.g. Fig. 5.4 or Fig. 

5.7), the solution obtained with the C0 method suggest the possibility of using 

them in combination: first run the solution with the C0 method obtaining the 

optimal partition, then run another numerical solution, based on this optimal 

partition, by using the PR method. 
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5.1.5 Example 1 modified: numerical analysis with the C0 method (square FE 

mesh) 

Here we show an application of the C0 method for the same kind of problem 

analysed in the previous section but considering a panel with a different 

discretization and aspect ratio (i.e. the hypothetical crack here should cross the 

internal part of the Lagrangian elements). The panel of NRNT material of Fig. 5.1 is 

discretized using 45 9-nodes square elements (a second order Lagrangian 

quadrangular element). Even in this case the self-weight is applied to the Gaussian 

points of each elements and the left and right edge are subjected to given outward 

settlements δ as shown in Fig. 5.15a. 
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(a) (b) 

 

Fig. 5.15 - A panel of NRNT material discretized with 45 square elements (a): the self-

weight is applied at the Gauss points of each element, and the left and right edges are 

subjected to given outward settlements δ. In (b) the displacement field corresponding to 

the solution 𝑼̂0 of the minimum problem is depicted. 

The solution 𝑼̂0 of the minimum problem is reached through the minimization of the 

energy into the finite element space defined previously (see Section 4.4). The 

solution obtained with the interior point method in 30s (with an Intel® Core™ i7-

6700HQ) is shown graphically in Fig. 5.15b. 

The stream plot of the displacement field, showing clearly two centres of rotation, is 

reported in Fig. 5.16a. The measure of the deformation |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇) is depicted 

in Fig. 5.16b and shows that the gradient of deformation is concentrated, even in 

this case, on the central strip of the elements (cutting them in their centreline), whilst 

other elements are characterized by strains whose norm is close to zero. The skew-

symmetric part of the displacement field (i.e. the local rotation field) is reported in 

Fig. 5.16c: the gradient of rotation is essentially concentrated along the middle 

vertical line. In Fig. 5.16d a neat partition of the domain into two blocks is 

highlighted. Notice that from Fig. 5.16b and Fig. 5.16c such blocks behave as rigid 

bodies since both the deformation and the rotation fields are constant. 
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Fig. 5.16 - The stream plot of the displacement field (a), the field |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇) (b) and 

the rotation field (c) over the whole domain are reported. By depicting the positive 

rotations in red and the negative ones in blue, in (d) a neat partition of the whole domain 

into two rigid blocks can be seen. 
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∎  5.2 EXAMPLE 2: DETECTING A VERTICAL CRACK 

Let us consider the case of a panel of NRNT material, loaded by its own weight and 

constrained as shown in Fig. 5.17a.  This is a so called mixed problem, since part of 

the boundary is loaded and the remaining part is constrained. Part of the bottom 

constraint is subjected to a given linear settlement distribution as shown in Fig. 

5.17a. A vertical crack is expected as shown with a red line in Fig. 5.17b.  

   
(a) (b) 

 

Fig. 5.17 - Mixed bvp for a panel of NRNT material (loaded by its own weight and 

constrained as shown) subjected to a given linear settlement distribution (a). A vertical 

crack is expected (b) 

5.2.1 Analytical solution 

Using singular strain and stress fields, a possible analytical solution of the mixed bvp 

(shown in Fig. 5.17a) is represented in Fig. 5.18. 

  

Fig. 5.18 - A possible analytical solution of the bvp depicted in Fig. 5.17a, using singular 

stress and strain fields, is reported. A hinge forms and the crosshatch in red represents 

the singular deformations 𝑬𝑠 along the fracture line. 
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5.2.2 Numerical analysis with the PR method (quadrangular elements) 

The NRNT panel is discretized with rigid blocks using 60 square elements. The load 

considered is the self-weight applied at the centres of gravity of each block. Part of 

the boundary is constrained (see Fig. 5.19) whilst a part of the bottom edged is 

subjected to a given linear settlement. 

  
 
 
 
 
 

δ 

 

Fig. 5.19 - The NRNT panel of Fig. 5.17a is discretized with 60 rigid blocks. Part of the 

bottom edge is subjected to a given linear settlement δ. 

The solution 𝑼̂0 of the minimum problem is reached through the minimization of the 

energy into the finite space of piecewise rigid displacements (see Section 6.3). The 

solution obtained with the interior point method in 0.03s (with an Intel® Core™ i7-

6700HQ) is shown graphically in Fig. 5.20: the PR method returns a vertical crack.  

 

   
 
 
 
 
 

δ 

 

Fig. 5.20 - The solution 𝑼̂0 of the minimum problem is reported. 
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5.2.3 Numerical analysis with the PR method (triangular elements) 

The NRNT panel is discretized with rigid blocks using 240 rigid triangular elements. 

The load considered is the self-weight applied at the centres of gravity of each 

triangle. Part of the boundary is constrained (see Fig. 5.21) whilst a part of the 

bottom edged is subjected to a given linear settlement. 

   
 
 
 
 
 

δ 
 

Fig. 5.21 - The NRNT panel of Fig. 5.17a is discretized with 240 rigid triangular blocks. 

Part of the bottom edge is subjected to a given linear settlement δ. 

The solution 𝑼̂0 of the minimum problem is reached through the minimization of the 

energy into the finite space of piecewise rigid displacements (see Section 6.3). The 

solution obtained with the interior point method in 0.03s (with an Intel® Core™ i7-

6700HQ) is shown graphically in Fig. 5.22: the PR method returns even in this case a 

vertical crack.  

 

    
 
 
 
 
 

δ 

 

Fig. 5.22 - The solution 𝑼̂0 of the minimum problem is reported. 
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5.2.4 Numerical analysis with the C0 method (square FE mesh) 

A panel of NRNT material is discretized with 60 9-nodes square elements (a second 

order Lagrangian quadrangular element). We consider only the load due to the self-

weight applied to the Gaussian points of each element. Part of the bottom edge is 

subjected to a given linear settlement δ as shown in Fig. 5.23. 

  
 
 
 
 
 

δ 

 

Fig. 5.23 - A panel of NRNT material is discretized by 60 square elements. The load due 

to the self-weight is applied at the Gaussian points of each element. Part of the bottom 

edge is subjected to a given linear settlement δ. 

The solution 𝑼̂0 of the minimum problem is reached through the minimization of the 

energy into the finite element space defined previously (see Section 4.4). The solution 

obtained with the interior point method in 47s (with an Intel® Core™ i7-6700HQ) is 

shown graphically in Fig. 5.24.  

  
 
 
 
 
 

δ 
 

Fig. 5.24 - Solution 𝑼̂0 of the minimum problem defined in Fig. 5.23. 

In Fig. 5.25 a stream plot of the displacement field is reported: the graph indicates 

clearly the centre of rotation. 
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Fig. 5.25 - The stream plot of the displacement field is reported 

To represent the strain field 𝑬, in Fig. 5.26 we report a measure of the deformation, 

namely |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇). From Fig. 5.26 we see that the gradient of deformation is 

concentrated on the central strip of elements, whilst the other elements are 

characterized by strains whose norm is close to zero. 

 
 

 

 

Fig. 5.26 - The field |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇) is reported. 

The skew-symmetric part of the displacement field, representing the local rotation 

field, is depicted in Fig. 5.27. It should be noticed that the gradient of rotation is 

essentially concentrated along a vertical line (Fig. 5.27). 
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Fig. 5.27 - Rotation field over the whole domain. 

By depicting the positive rotations in red and the negative ones in blue (Fig. 5.28), 

even in this case we obtain a neat subdivision of the domain into two blocks 

deforming as rigid bodies. 

 
 

 

 

Fig. 5.28 - By depicting the positive rotations in red and the negative ones in blue, a neat 

partition of the whole domain into two rigid blocks can be seen. 
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∎  5.3 EXAMPLE 3: DETECTING A DIAGONAL CRACK 

Let us consider the case of a panel of NRNT material, loaded by its own weight and 

constrained as shown in Fig. 5.29a. This is a so called mixed problem, since part of 

the boundary is loaded and the remaining part is constrained. Part of the bottom 

constraint is subjected to a given linear settlement as shown in Fig. 5.29a. A diagonal 

crack is expected as shown with a red line in Fig. 5.29b. 

 
(a) (b)  

Fig. 5.29 - Mixed bvp for a panel of NRNT material (loaded by its own weight and 

constrained as shown) subjected to a given linear settlement (a). A diagonal crack is 

expected (b). 

5.3.1 Analytical solution 

Using singular strain and stress fields, a possible analytical solution of the mixed bvp 

(shown in Fig. 5.29a) is represented in Fig. 5.30.  

  

Fig. 5.30 - A possible analytical solution of the bvp depicted in Fig. 5.29a, using singular 

stress and strain fields, is reported. A hinge forms and the crosshatch in red represents 

the singular deformations 𝑬𝑠 along the fracture line. 
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5.3.2 Numerical analysis with the PR method (quadrangular elements) 

The NRNT panel is discretized with rigid blocks using 160 square elements. The load 

considered is the self-weight applied at the centres of gravity of each block. Part of 

the boundary is constrained (see Fig. 5.31) whilst a part of the bottom edged is 

subjected to a given linear settlement. 

  
 
 
 

δ 
 

Fig. 5.31 - The panel of NRNT material of Fig. 5.29 is discretized with 160 rigid blocks. 

Though a diagonal crack is expected, the solution 𝑼̂0 of the minimum problem with 

the PR method returns a vertical crack (Fig. 5.32).  

  
 
 
 
 
 

δ 
 

Fig. 5.32 - The solution 𝑼̂0 of the minimum problem is reported. 
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5.3.3 Numerical analysis with the PR method (triangular elements) 

The mixed problem relative to the NRNT panel (Fig. 5.29a) and analysed previously 

(see Fig. 5.31) is here discretized with a mesh of 640 triangular elements as shown 

in (Fig. 5.33). The load considered is again the self-weight applied to the centres of 

gravity of each block and the boundary conditions are the same as those shown in 

Fig. 5.29a. 

  
 

 

 

 

 

δ 

 

Fig. 5.33 - The NRNT panel is discretized with 640 triangular rigid blocks. Part of the 

boundary is constrained whilst part is subjected to a given linear settlement as shown. 

The numerical solution 𝑼̂0 of the minimum problem, with the PR method, now 

returns the crack pattern shown in Fig. 5.34. 

  
 

 

 

 

 

δ 
 

Fig. 5.34 - The solution 𝑼̂0 of the minimum problem is reported. 

The method cannot identify the expected crack since the given interfaces do no run 

along the expected direction of the crack. 

Remark 3|5. The previous example points out a shortcoming of the PR 

method:  the solution is unable to converge to a concentrated crack whose 
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support is not parallel to the skeleton of the mesh. The C0 method does not 

suffer to this defect, and through more cumbersome from the numerical point 

of view, can converge to cracks whose support is not parallel to the interfaces 

of the elements. 

Remark 4|5. The inability to catch the diagonal crack inherent to the PR 

method, can be explained as follows. Let us consider the same problem of Fig. 

5.29 and the coarse mesh of Fig. 5.35a. 

 
(a) (b)  

Fig. 5.35 - The NRNT panel of Fig. 5.29a discretized with 40 square elements (a). 

The approximation of a diagonal crack using square elements (b): two adjacent 

blocks lying along the opening exhibit relative sliding (e.g. for the two highlighted 

with the red rectangle). 

The mechanism associated with an hypothetical diagonal crack is shown in 

Fig. 5.35b. It should be noted that such a diagonal crack using square 

elements would produce relative sliding among elements lying along a zig-

zag line approximating the crack. Heyman’s model is based on the assumption 

that two adjacent elements cannot slide one upon another, then such PR 

displacement fields, discontinuous along zig-zag lines, are not kinematically 

admissible. ∎ 
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5.3.4 Example 3 modified: numerical analysis with the PR method (triangular 

elements) 

The NRNT panel is discretized with rigid blocks using 384 triangular elements (see 

Fig. 5.36). The load considered is again the self-weight applied to the centres of 

gravity of each block and the problem is of the same kind of that shown in Fig. 5.29a, 

only the aspect ratio is different. 

  
 

 

 

 

 

δ 
 

Fig. 5.36 - A panel of NRNT material is discretized with 384 triangular rigid elements. 

Notice that the interfaces of the elements now run along the expected crack. 

The solution 𝑼̂0 of the minimum problem with the PR method now returns the 

expected diagonal crack (Fig. 5.37). 

  
 

 

 

 

 

δ 
 

Fig. 5.37 - The solution 𝑼̂0 of the minimum problem shown in Fig. 5.36 is reported. 

Remark 5|5. As consequence of the Remark 2|5, here is clear that the 

possibility of obtain the expected solution is due to the right guessing of the 

orientation of the crack. ∎ 
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5.3.5 Numerical analysis with the C0 method (square FE mesh) 

A NRNT panel under the bvp described in Fig. 5.29a is discretized with 240 square 

finite elements using a second order 9-nodes Lagrangian elements (Fig. 5.38). We 

consider only the load due to the self-weight applied at the Gauss points of each 

element. 

  
 

 

 

 

 

δ 

 

Fig. 5.38 - A panel of NRNT material is discretized by 240 square finite elements. The load 

due to the self-weight is applied at the Gaussian points of each element. Part of the 

constrained boundary is subjected to a given linear settlement as shown. 

The solution 𝑼̂0 of the minimum problem is obtained through the interior point 

method in 600s (with an Intel® Core™ i7-6700HQ). The corresponding displacement 

is depicted in Fig. 5.39. 

  
 

 

 

 

 

δ 
 

Fig. 5.39 - Displacement field corresponding to the solution 𝑼̂0 of the problem. 
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The streamlines of the displacement field are reported in Fig. 5.40 where a centre of 

rotation can be clearly identified. 
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Fig. 5.40 - The stream plot of the displacement field is reported. 

To represent the strain field 𝑬, in Fig. 5.41 we report a measure of the deformation, 

namely |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇). From Fig. 5.41, we see that the gradient of deformation is 

concentrated along an oblique line, whilst the other elements are characterized by 

strains whose norm is close to zero. 

 
 

 

 

Fig. 5.41 - The field |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇) is reported. 

The skew-symmetric part of the displacement field, representing the local rotation 

field, is depicted in Fig. 5.42. It should be noticed that the gradient of rotation is 

essentially concentrated along a diagonal line (Fig. 5.42). 
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Fig. 5.42 - Rotation field over the whole domain. 

By depicting the positive rotations in red and the negative ones in blue (Fig. 5.43), 

even in this case we obtain a neat subdivision of the domain into two blocks 

deforming as rigid bodies. 

 
 

 

 

Fig. 5.43 - By depicting the positive rotations in red and the negative ones in blue, a neat 

partition of the whole domain into two rigid blocks can be seen. 
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[6] The Masonry Arch - Chapter 6 

THE MASONRY ARCH 

Prologue. In this Chapter, we analyze the masonry arch handling it with the PR 

method discussed in Section 4.3. The comprehension and the study of the 

masonry arch is a necessary element to understand the peculiar behavior of old 

masonry structures. The scope of the present Chapter is two-fold: revisiting the 

old theory of the arch and demonstrating, on a simple and fundamental 

application, the effectiveness of our method in tackling the structural analysis 

of masonry. With this aim, we make a brief introduction about the historical 

development of the architecture of the arch and subsequently an historical 

review about the mechanics of the arches (see also (Heyman, 1998)).  

In the last part, we show some applications on masonry arches, carried out by 

applying the energy criterion with the proposed PR method. 

Generally, the application of the kinematic theorem is made fixing a finite 

number of mechanism and finding between them the mechanism associated 

with the minimum multiplier of the loads. The application of the energy criterion 

(Chapter 4) allows us to find directly the mechanism solution of the kinematical 

problem considering either given loads and settlements. With this in mind, we 

use firstly some well-known results as benchmarks for PR method and secondly 

we test our model comparing our results with other our ones obtained 

analytically and reported in the Appendix D and E. 

∎  6.1 THE MASONRY ARCH: HISTORICAL NOTES 

A common definition of an arch says: “an arch is a curved structure that spans a space 

and may or may not support weight above it”. The masonry arch is the most 

important and one of the most ancient masonry elements expressing in itself the 

most significant peculiarities, both conceptual and geometrical, of other more 
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complex masonry structures. The realization of the arch is one of the most 

revolutionary ideas in the history of constructions contributing significantly to the 

development of structures and to the human progress. Starting from the arch 

structure there was, during the history, the development of masonry vaults, which 

may be defined as a continuous arch forming a roof. Arches appeared as early as the 

2nd millennium BC in the Mesopotamian brick architecture, and their systematic use 

started with the Ancient Romans who were the first to apply this technique to a wide 

range of structures. In a certain way, it is a primitive element whose structural analysis 

could conduct us to know better and to understand the intimate behavior of old 

masonry structures. With this aim, in this section, a brief analysis, both historical and 

structural, about masonry arch is presented. 

Since the arch finds its function on the need to span on opening, probably its form 

derives from an evolution of some other primitive systems used for the same 

purpose. In Fig. 6.1, a schematic evolution which conducts to the arch passing 

through the post and lintel system and the corbelled arch is shown. 

 
 (a) (b) (c) 

 

Fig. 6.1- Three methods of spanning a passageway: (a) post and lintel (b) corbelled arch 

(c) arch. 

Post and lintel system (Fig. 6.1a), or a trabeated system, is a building system where 

strong horizontal elements are held up by vertical elements with spaces between 

them. The horizontal elements are called by a variety of names like lintel, header or 

architrave, whilst the supporting vertical elements may be called posts, columns or 

pillars.  

Often, in many architectural traditions, to help the posts spreading the load 

transmitted by the lintel, wider elements (called capitals) at the top of the post were 

used. This structural system is a fundamental principle of Neolithic architecture and 

Ancient Indian, Greek and Egyptian architecture also; moreover, it was diffused in 

North and Central America by Mayan and in South America by Inca architecture also. 

Some typical examples of post and lintel ancient structures are shown in Fig. 6.2. In 

particular, with regard to the Lion Gate of Mycenae shown in Fig. 6.2c, it is possible 

to see an additional architectural innovation: the relieving triangle. It is designed to 
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reduce the weight putted on the lintel: the curved piece exhibiting the famous lions 

is composed of a stone lighter in weight than the surrounding blocks. 

    
  

(a) (b) 
 

  
 

 (c) (d)  

Fig. 6.2 - Some typical historical post and lintel systems: Stonehenge (a), Machu Picchu 

(b), The Lion Gate at Mycenae (c), Karnak (d). 

The post and lintel system, by a structural point of view, whilst the two posts are 

under compression, the lintel is subjected to flexural compressive and tensile stresses 

due to the self-weight and the loads above it: this represents the biggest 

disadvantage to a post and lintel construction both for the limited weight that can 

be sustained and for the small distance that can be spanned. 

⁎   ⁎   ⁎ 

At least from a geometrical aspect the corbelled arch (Fig. 6.1b) is a sort of 

intermediate step between a post-lintel structure and the proper arch. It could be 

imagined as a first step to achieve the structural behavior of the proper arch, but 

contrary to what one might guess, their similarity is only geometrical because the 

structural behavior is different. Corbelled arches were commonly used by ancient 
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civilization around 2000 BC, but first examples of this kind of constructions go back 

around 3000 BC like tholos tomb on the Iberian Peninsula and elsewhere around the 

Mediterranean. In many parts of the world it is possible to see constructions related, 

more or less directly, to the corbelled arch: Ancient Egyptian pyramids from around 

the time of Sneferu, Ebla in Syria, Ugarit, Nuraghe constructions in ancient Sardinia, 

Hittites constructions in ancient Anatolia, certain pre-Columbian Mesoamerican 

constructions, and many others in India and Cambodia. In Fig. 6.3 some of these 

examples are shown.  

     
  

(a) (b) 

 

  
 

 (c) (d)  

Fig. 6.3 - Some historical examples of a corbelled arch: Treasury of Atreus or Tomb of 

Agamemnon at Mycenae (a), Kompong Kdei Bridge of Cambodia (b), Entrance of Royal 

Palace of Ugarit (c),False arch at “Cuadrángulo de las monjas” at Uxmal in Yucatán - Maya 

architecture (d). 

This structure takes its name from the corbel: a structural piece of stone jutting from 

a wall to carry a superincumbent weight, a type of bracket, nay a solid piece of 

material in the wall (see Fig. 6.4a). Corbel structures were often used in gothic 

architecture finding a combination between structural and ornamental functions (see 

Fig. 6.4). 
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A corbel arch is constructed by offsetting successive courses of stone at the 

springline of the walls so that they project towards the archway's center from each 

supporting side, until the courses meet at the apex of the archway (often, the last 

gap is bridged with a flat stone): so, each halve of arch is built with cantilever blocks. 

Although an improvement in load-bearing efficiency over the post and lintel design, 

corbeled arches are not entirely self-supporting structures, and the corbeled arch is 

sometimes termed a "false arch" for this reason. This conducts to an important 

difference from “proper” arches: not all of the structure's tensile stresses caused by 

the weight of the superstructure are transformed into compressive stresses. 

   
 

(a) (b) 
 

   
 

 (c) (d)  

Fig. 6.4 - The corbel element of a false arch (a), corbel outside the Lisbon Cathedral (b), 

triple corbels in the Silvacane Abbey – Provence (c), corbel of Southwell Minster - 

Nottinghamshire (d). 

Corbel arches require significantly thickened walls and an abutment of other stone 

or fill to counteract the effects of gravity, which otherwise would tend to collapse 

each side of the archway inwards. One should evaluate, before masonry starts to tilt, 

where the centre of gravity is of the arch being built. It should not go beyond the 
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limit of stability, which is the inner side of the pier. Then, for building such an arch, it 

is essential to pay attention to the balance of the masonry when courses rise (Fig. 

6.5). In particular, the stability of a false arch depends first strictly on positioning the 

vertical joints in order to prevent the overturning of the blocks. If the arch is 

unloaded, each half-arch could be imaged as global freestanding corbel and the set 

of two halves oppose each other. Since the capacity of the blocks at the “key” 

position to transfer thrust is due to the super imposed load, the stability of an 

unloaded arch is ensured by the friction between stones and by the global stability 

with respect to the overturning of each haves.  

 
(a) 

 

 

Fig. 6.5 – Drawing from (Como, 2013): “The safety of a false arch depends on positioning 

the vertical joints in such a way as to prevent the overturning of any of the blocks, which 

are set and therefore act in groups” (Como, 2013, p. 130). 

Then, if a geometric similarity between corbelled arch and proper arch can be found, 

their structural behaviors are very different. Another important difference between 

these two kinds of structures, which probably caused the late spreading of the proper 

arch, stays in the ease of construction of the corbel arch: without support or 

centering, whilst the other need a more delicate and engineering building process. 

Though the passing from the structural scheme of a corbelled arch to the proper one 

would have needed only the rotation of the joints between stone blocks in a radial 

position, the historical development from one to the other required many centuries.  

In what follows when we use the term “arch” we will refer exclusively to the proper 

arch. 

⁎   ⁎   ⁎ 

The arch (Fig. 6.1c), from a structural point of view, is a pure curved compression 

form, which could span a large area by resolving forces into compressive stresses 

eliminating tensile stresses.  

Even if some ancient Sumerian buildings contain examples of simple small arches 

and brick masonry arches were found in the ruins of Ur in Mesopotamia (1400 BC), 

the development and the wide spreading of the arch structure happened later. If the 

Etruscans were the first to make a systematic use of the masonry arches (see Fig. 
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6.6a), the Romans employed extensively this structure (in particular the round arch) 

diffusing this kind of structure in Europe by constructing many relevant masonry arch 

structures such as aqueducts (Fig. 6.6d), bridges, and finally the most famous ancient 

building constructed with arches: The Colosseum (see Fig. 6.6b). 

   
 

(a) (b) 

 

   
 

 (c) (d)  

Fig. 6.6 - Some historical arch structures: Etruscan arch in Volterra (a), Colosseum (b), Arch 

of Triumph (destroyed) in Syria's Palmyra ruins (c), aqueduct in the Old Town of Segovia 

(d). 

The arch is not the first curved masonry structure in human history: as observed in 

(Como, 2013) it was preceded by corbeled vault. Nevertheless, the arch is the 

essential core and the elementary structural model whose knowledge is necessary to 

understand intimately the behavior of old masonry structure. With this aim, in the 

following pages, we review the historical essential steps conducting to the modern 



114 The Masonry Arch: Historical Notes 

 

scientific comprehension of the arch. Before discussing it, it is worthwhile to recall 

some definitions and nomenclatures concerning arch terminology (see Fig. 6.7): 

- voussoirs: stones that make the arch (usually brick or wedge-shaped);  

- keystone: the central stone of an arch; 

- impost:  the part of the arch's wall on which the arch rests; 

  

Fig. 6.7 - Arch terminology. 

- thrust: the force which the arch makes; 

- abutment and pier: the part of the arch's wall which balances the thrust; if it is 

in an intermediate position between two arches is called pier; 

- center: the center point of the arch; 

- span: the width of the arch's opening; 

- crown: the top part of an arch; 

- intrados: the inner curve of the arch; 

- extrados: the outer curve of the arch; 

- spandrel: a triangular walling enclosed by the extrados of the arch, a horizontal 

line from the crown and a perpendicular one from the springing of the outer 

curves; 

- depth of arch: is the perpendicular distance between the intrados and extrados; 

- springing line: is the imaginary line from which starts the arch; 

- springing stone or springer: the first voussoir at springing level on either side 

of the arch; 
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- rise: is the distance from the springing line of the arch to the top of the arch;  

- skew back: the surface of the abutments on which the arch rests; 

- haunch: The lower half of the arch between the crown and skewback is called 

haunch. 

In Fig. 6.8 some typical shapes of arch are reported.   

 

   
 

 

  
 

 

 

Fig. 6.8 - Some types of arch. Drawings from (Fisher, 1992). 
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∎  6.2 A BRIEF HISTORICAL SURVEY OF THE MECHANICAL THEORY OF THE MASONRY 

ARCH 

The Ancient Theory. The first static theories about the arches were formulated in 

the XVI centuries. Before them, even if magnificent constructions were built, the rules 

existing and used were only geometric. In Fig. 6.9 is reported the so-called Derand’s 

rule (Derand, 1643), a geometric empiric method used for proportioning the 

dimensions of the piers of a round arch (Fig. 6.9a) and a pointed one (Fig. 6.9b). It 

is well known that the thrust of the round arch is greater than that of the pointed 

one, and consequently the thickness of the pier in the first case must be greater. 

 
 

(a) (b)  

Fig. 6.9 –An ancient empirical rule used to proportion the thickness of the piers of a round 

arch (a) and a pointed one (b), derived from (Derand, 1643). 

Leonardo Da Vinci. Probably, the first mechanical study on the arch was made by 

Leonardo Da Vinci. He gave also a definition which contains an in-depth 

understanding of the mechanical behaviour, namely: 

“… arco non è altro che una fortezza causata da due debolezze, imperò 

che l'arco negli edifizi è composto di 2 parti di circulo, i quali quarti 

circuli, ciascuno debolissimo per sé, desidera cadere, e opponendosi alla 

ruina l'uno dell'altro, le due debolezze si convertano in unica fortezza...” 

(Marcolongo, 1937). 

“… an arch is nothing but a strength caused by two weaknesses; that is 

why an arch in buildings is composed of two quarter-circles; these 

quarter-circles, each very weak in itself, wish to fall, and opposing each 

other's ruin, convert weakness into a single strength…” (Benvenuto, 

1991). 
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As reported in a drawing of the Forster Codex (Fig. 6.10a), it seems that Leonardo, 

by making some experimental tests on an arch, came up with a criterion of safety 

reported in Fig. 6.10b and a failure rule reported in Fig. 6.10c: someone could think 

that the line depicted in Fig. 6.10b and in Fig. 6.10c represent a line of thrust due 

to a load acting at the key stone (Fig. 6.10a) and much larger than the self-weight 

of the arch. Leonardo synthetized the failure rule with these words: 

… l’arco non si romperà se la corda dell’archi di fori non tocherà l’arco 

di dentro …” 

“… the arch will not crack if the chord of the outer arch will not touch 

the inner arch … " 

in which is possible to see a first a primitive formulation of the rule according to 

which the line of thrust has to lie within the arch geometry.  

 

(a) (b) (c)  

Fig. 6.10 - A famous drawing from the Forster Codex (a) which shows an experimental 

test on an arch made by Leonardo da Vinci. He formulated a safety criterion (b) and a 

failure rule (c). 

⁎   ⁎   ⁎ 

Robert Hooke. The first rational study on the mechanics of the arch can be traced 

back to Robert Hooke. He knew the intimate physical behaviour of the arch, and 

during his career showed experiments on model arches, but during his life he did not 

provide the corresponding mathematical theory. Indeed, in a his famous work 

(Hooke, 1676) on helioscopes, he published a series of anagrams 'to fill the vacancy 

of the ensuing page'. Beside his famous “ut tensio sic vis” one of them is concerned 

with 'the true Mathematical and Mechanichal form of all manner of Arches for 

Building'. He wrote only the letters in an alphabetic order, namely: 

«abcccddeeeeefggiiiiiiiiillmmmmnnnnnooprrsssttttttuuuuuuuvx» 

and, deciphered, reads  

“…ut pendet continuum flexile, sic stabit contiguum rigidum inversum…” 
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“… as hangs the flexible line, so but inverted will stand the rigid arch…”. 

The solution of the anagram was published only after Hooke's death, but Hooke 

understood that if he could solve the catenary problem, he would at the same time 

have found the solution of the shape of the perfect arch carrying the same loads in 

compression. The search of the solution of the problem of the catenary was not 

trivial: Leibniz first (1691), and after Huygens and John Bernoulli also seem to have 

solved the problem at about the same time: anyhow their solutions were not rigorous 

mathematically. The problem, though with some mistakes, was solved some years 

later (1697) by David Gregory. Gregory states: 

“In a vertical plane, but in an inverted situation, the chain will preserve 

its figure without falling, and therefore will constitute a very thin arch, 

or fornix; that is, infinitely small rigid and polished spheres disposed in 

an inverted arch of a cateneria will form an arch; no part of which will 

be thrust outwards or inwards by other parts, but, the lowest part 

remaining firm, it will support itself by means of its figure ... And, on the 

contrary, none but the catenaria is the figure of a true legitimate arch, 

or fornix. And when an arch of any other figure is supported, it is 

because in its thickness some catenaria is included. Neither would it 

be sustained if it were very thin, and composed of slippery parts. From 

Corol. 5 it may be collected, by what force an arch, or buttress, presses 

a wall outwardly, to which it is applied; for this is the same with that part 

of the force sustaining the chain, which draws according to a horizontal 

direction. For the force, which in the chain draws inwards, in an arch 

equal to the chain drives outwards.” (from (Ware, 1809): translation from 

the Latin) 

The bold phrase was added by Ware, but it is completely clear that Gregory realized 

that if the thrust line lies within the arch can be found, then the arch is stable. 

Last but not least, Gregory understood that the horizontal action on the abutment 

of an arch is the same of the pull of an equivalent hanging chain. This approach, as 

we will see, was used in the middle of the XVIII century by Poleni in his studies on 

the stability of St Peter's dome in Rome. 

⁎   ⁎   ⁎ 

Philippe de La Hire. La Hire gave important contributions to development of the 

static of the arch, applying for the first time the mechanics on the study of an arch, 

considered as composed by rigid bodies. In his first work (La Hire, 1695) he studied 

a semi-circular arch assembled from rigid voussoirs and considered the joints 

between them were frictionless. 
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(a) (b) (c)  

Fig. 6.11 - Three famous drawings about force equilibrium. Stevin (1586) introduced the 

parallelogram rule describing the equilibrium graphically: (a). Varignon introduced the 

polygon of forces and the funicular polygon in Nouvelle Mecanique ou Statique published 

posthumously in (1725): (b) and (c). Varignon in (c) described a way to construct 

graphically the form of a hanging rope with attached weights: this principle established 

the birth of the graphic statics, widely used in the 19th century. 

The innovation in La Hire’s consists in the use of the force polygon and the 

corresponding funicular polygon for the arch. Although the funicular polygon (Fig. 

6.11) for an arch can be viewed as a “discrete” line of thrust (that is the shape of the 

inverted hanging chain) La Hire did not use these terms. He posed himself the 

problem of finding the weights of the voussoirs such that equilibrium should be 

maintained. Since he assumed that the contact joints are smooth, the line of thrust 

must be orthogonal to the joints conducting to a paradoxical statement: if the 

springing line is horizontal, it follows that the springing voussoirs must have an 

infinite weight for guarantee the stability of the arch. 

La Hire, anyhow, noted that friction between the voussoirs would confer the 

necessary stability to the structure and in (La Hire, 1712) he returned to the arch, but 

he made a completely different hypothesis: the friction was taken to be so large that 

sliding could not occur. Then, the direction of the line of thrust was no longer fixed 

as before, and the line of thrust, is in this case, undetermined. He overcame this 

problem introducing a powerful idea to catch the arch behaviour. He asked himself: 

what happens if the abutments are too weak, showing some little outward 

settlements, and how would the arch behaviour be? 

He answered to this question stating that the arch would break in a critical section 

LM between the springing and the keystone (Fig. 6.12a). In L, a hinge, needed to 

accommodate the abutments settlements, was formed and consequently the line of 

thrust became completely determined, being the thrust P tangential to the arch in L. 

From some considerations about the equilibrium of the portions LMF and LMI, he 

determined the value of P (Fig. 6.12b) and then the stability of the whole structure, 

writing the moment about the corner H, can be checked. 
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(a) (b) 
 

Fig. 6.12 - Two drawing from (La Hire, 1712). In (a) the section LM is taken to be critical 

and the increase of the outward settlements of the abutments is accommodated by a 

hinge in L: this point represents the only contact between the above portion LMF and the 

bottom portion LMI of the arch. In (b) the line of thrust has to pass tangentially through 

L. Knowing the weight of LMF, the value of the force P can be evaluated and can be used 

to check the stability of the whole structure around H. 

Although there were some mistakes (conducting a conservative assessment) and no 

rule for finding the point L was given, this form of reasoning unlocks the statics of 

the arch and is the most important and original result achieved by La Hire. 

Was in that period that the French engineer Bernard Forest de Bélidor made a 

widely use of the La Hire’s method and in his work (Belidor, 1729) he spent an entire 

section on arches treating them approximately in this way but applying some 

changes with the basic aim to establish a set of design rules. 

⁎   ⁎   ⁎ 

Pierre Couplet. In this historical context, Couplet wrote in (1729) and in (1730) two 

remarkable memoirs on arch thrust. In particular, in (Couplet, 1730) he noted that 

the voussoirs could not slide each other allowing only detachments and excluded 

from the calculation any resistance in compression of the masonry. In effect, Couplet 

implicitly assumed true the three basic assumptions of Heyman: no tensile strength, 

infinite compressive strength, and sliding cannot occur. Furthermore, Couplet 

formalized in this work two ways of approaching any structural problem: through 

equilibrium (statics), considering the thrust lines, and through deformation 

(mechanisms). 
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Fig. 6.13 - Drawing from (Couplet, 1730): the arch cannot collapse under a vertical force 

acting at the crown A if the straight lines AFB and AGC are entirely lying within the arch 

geometry 

In particular, he states that an arch will not collapse if the chord of half the extrados 

does not touch the intrados, but is entirely lying within the arch geometry: this results 

comes out by considering a round arch of negligible self-weight subjected at the 

crown A to a single vertical force (Fig. 6.13). This safety criterion is very similar to 

that of Leonardo (Fig. 6.10b).  

Couplet, in his work, tackled the problem to find the minimum thickness of a round 

arch subjected only its own weight. He hypothesized a mechanism (see Fig. 6.14) 

dividing the arch in four rigid pieces, connected each other by hinges R, T, A, K and 

F, where the hinges T and K are placed at 45°. Couplet solved the equilibrium 

problem and found a relation between the thickness s and the mean radius Rm of the 

arch, namely: s/Rm = 0.101.  

 
 

 

Fig. 6.14 - Drawing from (Couplet, 1730): a round arch of minimum thickness collapsing 

under its self-weight. 
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Remark 1|6. The correct solution was found first by Heyman in (Heyman, 

1969) and later recalculated, with a different partition of the domain, by 

Ochsendorf in (Ochsendorf, 2006): the exact intrados position is at 31° rather 

than at 45°, anyhow the analysis is not sensitive to the position of this hinge, 

since the varying the hinge angle the correct value of t/R differs little. ∎ 

Later, he reworks the La Hire and Belidor approaches in order to evaluate the 

abutment thrust and to assess the stability of the whole structure (Fig. 6.15). 

“Couplet's contribution is outstanding. He had clear ideas of lines of 

thrust, and of mechanisms of collapse caused by the formation of 

hinges; he made explicit his simplifying assumptions; and he used these 

ideas to obtain an essentially correct and complete solution to the 

problem of arch design.” from (Heyman, 1998). 

The Couplet’s work was noted immediately and had a big spread. Indeed, Danyzy in 

(Danyzy, 1732) made several tests in Montpellier following the Couplet’s approach. 

He used arches made from plaster voussoirs and he found confirmations of Couplet’s 

results. Although the Danyzy’s results were clearly published not before 1778, Frezier 

reported in his work (Frézier, 1737-39) a plate showing the Danyzy’s experimental 

tests (Fig. 6.16): all arches shown are in the collapse state with piers having the 

minimum dimension. The sketch 241 in Fig. 6.16 confirms clearly the use of Couplet’s 

approach.  

 
 

 

Fig. 6.15 - Drawing from (Couplet, 1730): the force system for design of abutments is 

shown. The thrust is referred to the curve centre line SX of the arch. The thrust at S is 

horizontal, and the weight of half the arch is represented in the line LR; by resolving the 

equilibrium Couplet valuates the magnitude of the abutment thrust (line LX) in order to 

size the piers and to assess the stability of the whole structure. 
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Fig. 6.16 - Drawing from (Frézier, 1737-39): the experimental tests made by Danyzy in 

Montpellier are reported. Danyzy follows the Couplet’s approach (241) and obtain 

experimental confirmations of the Couplet’s mechanism as shown in 241 (the exactly 

representation of the collapse mechanism predicted by Couplet and reported above in 

Fig. 6.13). The flat arch of 240 is in a collapse state because the abutments are tilting, 

otherwise it would be stable. 

⁎   ⁎   ⁎ 
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St Peter's Dome. Beginning these days and starting from these researches, it can be 

said that the mechanics of the arch is almost totally understood. This is completely 

demonstrated the story of the restructuring of St Peter's in Rome and in particular 

by the studies made by Poleni: the first considerable application of the mechanics 

to the arches.  

The dome of St Peter's was designed by Michelangelo and constructed a century 

and a half earlier but a few years later, cracks began to develop and grow gradually. 

In the early years of the XVIII century the dome showed a widespread crack pattern 

(see e.g. Fig. 6.17). This is the description of Saverio Brunetti reported by Poleni in 

hi “Memorie istoriche della gran cupola del tempio Vaticano e de'danni di essa e 

detristoramenti loro, divisi in libri cinque” (1748): 

“… the entire wall of the drum and the attic, together with the columns 

and buttresses, have rotated outwards, dilating the dome and lowering 

the lantern….” 

 
 

 

Fig. 6.17 – Drawing from (Poleni, 1748). The drawing, made by Vanvitelli, illustrates in 

detail the crack pattern running along the dome intrados. 
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The crack pattern was recognized during the years 1742 and 1743 by Vanvitelli and 

his drawings were even published in (Poleni, 1748) (Fig. 6.17 and Fig. 6.18): meridian 

cracks, running up from the drum, divided the dome into many portions (lunes). The 

alarm grew up and then Pope Benedict XIV in 1742 called Le Seur, Jacquier, and  

Boscovich (the three scientists known as “Tre Mattematici”) to report on the 

condition of the dome. 

 
  

Fig. 6.18 - Drawing from (Poleni, 1748). The drawing is made by Vanvitelli and the crack 

pattern running along the dome extrados and affecting also the drum is shown. 
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These scientists probably knew the virtual work principle (see Fig. 6.19), although 

it was first formulated only in 1717 by Giovanni Bernoulli in a letter addressed to 

Varignon and published in (Varignon, 1725) though “there is actually a misprint and 

the correct date of the letter is February 26th, 1715” (Capecchi, 2012).  

 
 

 

Fig. 6.19 - Drawing from (Le Seur, Jacquier and Boscovich, 1742): the crack pattern (a 

drawing of Vanvitelli) is reported. On the top, the mechanism analysed by the “tre 

mattematici” with the virtual work principle is depicted. 

Using this principle, they assessed in their work “Parere di tre mattematici sopra i 

danni che si sono trovati nella cupola di S. Pietro” (1742) that the dome was damaged 

and needed an extensive restructuration: in addition to encircling the dome with iron 
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hoops, they also wanted to thicken the buttresses placing also on them heavy 

statues. Anyhow, Benedict XIV, not completely convinced of their proposal, decided 

to require the assessment of an important Italian scientist: Giovanni Poleni.  

The analysis of Poleni estabilished that the Dome was safe and that the craks was 

caused by defects in construction and the use of poor masonry. Anyhow, the 

importance of this study stays in the application of main results achieved in the 

previous years. Indeed, in his Memoir (Poleni, 1748), Poleni showed a deep 

knowledge of the work of La Hire and Couplet and a profound understanding of the 

concept of Hooke's hanging chain (see Fig. 6.21). 

  

Fig. 6.20 – Drawing (Poleni, 1748): a deep knowledge of the Stirling’s work (Stirling, 1717) 

is shown in Fig. XI with the use of an catenary formed by smooth spheres. Poleni sliced 

the dome hypothetically into 50 such lunes: a schematic view of a half “lune” is shown in 

Fig. XIII. 

Furthermore, he quoted Gregory stating that an arch, in order to be stable, needs 

that the line of thrust has to lie within the geometry. He drew inspiration even from 

a work by Stirling (1717) (cited explicitly in (Poleni, 1748, p. 33)) using a catenary 

formed by smooth spheres (see “Fig. XI.” in Fig. 6.20). Poleni treated the dome slicing 

it into 50 "lunes" and considering one of them solved the problem of equilibrium of 
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a two dimensional arch with almost zero thickness at the crown (see “FIG. XIII.” in Fig. 

6.20). The thrust line was determined experimentally by loading a flexible string with 

some spheres of variable mass considering also the loading of the superimposed 

lantern (see Fig. 6.21). 

  

Fig. 6.21 – Drawing (Poleni, 1748). Poleni analysed a “lune” using the concept of hanging 

chain of Hook; He modelled the weight of a lune with 32 spheres of variable mass 

considering also the loading of the superimposed lantern. 

The result of this experimental test, made in the laboratory in Padua, was that the 

inverted chain lain within the thickness of the dome and therefore each lune was 

safe and consequently the whole dome also. He concluded that crack pattern was 

due only to the poor material used for the inferior part of the construction. The Pope 

agreed the work of Poleni and entrusted to him the restructuration under the 

technical supervision of Vanvitelli: the dome was repaired and reinforced between 

1743 and 1744 with iron hoops and the cracks were patched (through “scuci e cuci”) 

(see Fig. 6.22). No other restructuring was made during the last three centuries and 

the Dome is currently in a perfectly stable condition: the analysis of Poleni was 

correct. 
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Fig. 6.22 - Drawing of Vanvitelli treated taken from (Poleni, 1748): six new iron hoops (A, 

B, C, D, E, Z) were installed under the supervision of Vanvitelli whilst (u,n) was already 

present. 

⁎   ⁎   ⁎ 

Charles Augustin de Coulomb. The last further decisive development into the study 

of the arch was due to Coulomb. He in his famous memoir “Essai sur une application 

des regies de maximis & minimis a quelques problemes de statique, relatifs a 

l'architecture” (1773) made several contributions to many problems of civil 

engineering and in particular to the thrust of soil and the thrust of arches. In this 

work, Coulomb solved many problems considering failure imaginary planes along 

which the slip could occur in relation to the cohesion and the friction of the material. 

Nevertheless, with regard to the masonry arches Coulomb took into account 

marginally the strength of the material and assess the stability only with equilibrium 

considerations through principles of maximum and minimum. Furthermore, he 

stated that the failure of the arch could occur only with the formation of hinges 

between voussoirs, concluding that the friction was enough to prevent any sliding 

(see Fig. 6.23). 
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Fig. 6.23 - Drawing from (Coulomb, 1773): the equilibrium of an arch with a generic shape 

is shown. The half arch is in equilibrium and the thrust acts horizontally in f at the crown. 

Coulomb supposed that the failure could have been occurred at a generic joint between 

two voussoirs (defined by the section Mm). He considered two limit situations. First, 

supposing that a hinge was formed in the intrados in M, he wrote an expression for the 

value of the thrust H in M and stated that the exact position of M and the relative value 

of H could be found maximizing the value of H: this solution corresponds to the minimum 

value of H for which the arch is safe. With a specular reasoning, he found the position of 

the hinge that was formed in the extrados in m and the related value of H. Definitively, he 

did not fix the position of the section Mm, but considered it variable and furthermore he 

found a range to which H had to belong. 

Furthermore, Coulomb made some consideration regarding the crushing failure 

when the stress is concentrated in a point, i.e. when a hinge was formed. Almost 

surely Coulomb did not know the studies of Couplet or Poleni and probably he had 

the only possibility to read the handbook of Belidor reporting La Hire’s analysis. 

Nevertheless, during the years he had spent in Montpellier, he knew Danyzy, then he 

was surely aware of the collapse of the arch through the making of hinges. This 

mindset is particularly clear on his works, but his main original result was to couple 

the definition of bounds regarding the thrust: hinges may form in different 

positions and not uniquely at 45°. 

⁎   ⁎   ⁎ 
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The Coulomb’s idea was demonstrated experimentally by Barlow (1846) at the 

Institution of Civil Engineers. He analysed the problem of the minimum thickness for 

the stability of the arches showing a deep knowledge either of the work of Coulomb 

and either of the equivalence between the line of thrust and the hanging chain (Fig. 

6.25). Furthermore, he investigated the horizontal component H of the thrust on the 

abutments fixing the bounds corresponding to the least and greatest values of H 

(see Fig. 6.24). 

 
 

 

Fig. 6.24 - Drawing from (Barlow, 1846): the experimental model of a voussoir arch 

designed by Barlow with the alternative positions (experimentally verified) of the thrust 

line is shown. 

Coulomb's work represented a milestone in the development of the mechanics of 

the arches, and also Claude-Louis Navier in (1833-38), although only in the second 

edition, dedicated a section to the arches theory following the Coulomb approach. 

Later, the French engineer Yvon Villarceau gave a complete exposition of arch 

theory in his “L'établissement des arches de pont” (1854). In particular, he understood 

clearly that since the arch is essentially a statically indeterminate structure, there exist 

an infinite number of equilibrated line of thrust. 

It could seem strange, but although every other structural elements, during that 

period, were treated taking into account the material properties, at least until the 

end of the XIX the arch and some other masonry structures were analysed purely 

with equilibrium considerations neglecting all the characteristics regarding the 

resistance and the deformability widely used after Galileo Galilei. 
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Fig. 6.25 - Drawing from (Barlow, 1846): the equivalence between the arch and the 

hanging chain. Barlow used this model to calculate the horizontal component of the 

abutment thrust (as Poleni before him). 

Indeed, as we saw, until that period, generally in main works no questions about the 

failure or the ultimate load were posed, and if the fractures or the crack pattern were 

considered, they were used only to assess the working condition of the arch and to 

calculate in such a way the thrust. 

⁎   ⁎   ⁎ 

Advent and spread of the Theory of Elasticity. Nevertheless, during the XIX 

century the fast development of both the elasticity and of graphic statics (with the 

milestone of Culmann (1866) and later with the works of Luigi Cremona 

[(1872),(1874)] on one hand rendered the study on masonry obsolescent and, on the 

other hand, marked the birth of the application of some elastic principles to masonry 

with particular regard to the arch: it was in that period that often the concept of line 

of thrust was associated with the elastic rule of the middle third. Indeed, e.g. Alberto 

Castigliano in his “Théorie de l'équilibre des systèmes élastiques et ses applications” 

(1879) his applied his elastic energy theorems also to the masonry bridge (see Fig. 

6.26), considering the elastic properties of stones and mortar, and stating that the 

line of thrust had to lie into the “middle-third” of the section. 
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Fig. 6.26 – Drawing from (Castigliano, 1879): the “Mosca Bridge” in Turin. 

At the beginning of the XX century, with the starting of the development of the 

Plasticity, Pippard in (Pippard et al, 1936) and in (Pippard and Ashby, 1939) made 

experimental tests modelling arches with steel voussoirs: Pippard noted that small 

imperfection of the abutments (e.g. settlements) were accommodated by the arch 

through hinges: the arch, initially hyperstatic, became statically determined (three-

pin arch). Anyhow, Pippard interpreted wrongly his results using principles of 

minimum of elastic energy.  

The urgency for the search of the actual line of thrust was actually extraneous to the 

inventors and the followers of the line of thrust, from (Hooke, 1676) to (Moseley, 

1843), and is mainly motivated by elastic-like considerations [see also (Foce and Aita, 

2003) and (Becchi and Foce, 2002)]. In modern times the stability of the arch falls 

within the frame of Limit Analysis, through which the degree of safety of the structure 

can be assessed. 

⁎   ⁎   ⁎ 

The New Theory. The modern milestone study, which fills a theoretical gap of almost 

one hundred years existing in the scientific literature on voussoir arches, came with 

a new approach and is due to Kooharian with his work “Limit Analysis of Voussoir 

(Segmental) and Concrete Arches” (1952). This paper represents the starting point 

for the application of Limit Analysis to masonry structures. With this work, all the 
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applications of Poleni, Coulomb, Barlow and Yvon Villarceau based on “equilibrium 

approach” find finally a theoretical base.  

Although Kooharian did not fix rigorously the basic assumptions necessary to apply 

the limit analysis theorems to masonry structures and considered only the problem 

of the voussoir arch, his work is the departure point of a new era.  Indeed, few years 

later, Heyman in (Heyman, 1966) fixed a rigorous theoretical base through three 

clear fundamental hypotheses, sufficient for the application of Limit Analysis to 

masonry structures. In his work Heyman, studied in deep the arch and extended the 

analysis to a wide range of masonry structures, with particular reference to Gothic 

cathedrals and their peculiar structural elements.  

Kooharian in (Kooharian, 1952) treated the voussoir arch, defined as a structure 

“composed of many individual sections fitted one upon another”.  The basic 

assumption was: “the voussoir arch can take large compressive stress but cannot take 

any tensile stress at its joints, even when the joints are filled by mortar”, it is noticed 

that this assertion corresponds with two of the three hypotheses of Heyman).  

Starting from these considerations, he applied the two theorems of Limit Analysis to 

arches and clarified the secondary role of the middle third rule usually adopted since 

the later years of the XIX century.   

Since the only action between two adjacent voussoirs is a compressive force and no 

tensile stress can be supported at joints, Kooharian browsed vary possible positions 

of the normal compressive stress N in an attempt to answer to this question: where 

can the resultant 𝑁 act? (see Fig. 6.27) 

 
 

 

Fig. 6.27 - Drawing from (Kooharian, 1952): the compressive force N acting at various 

positions along a voussoir. The position 1, 2, 3, 4, 5 are certainly possible and safe. Position 

3 corresponds to the “third-middle”: in the elastic analysis of the arch it is considered, 

mistakenly, as a limit position. 



 Chap. 6 – The Masonry Arch 135 

 

He, assuming a linear distribution of stress due to the axial force N, checked which 

positions of N, qualitatively represented in Fig. 6.27, are safe. Firstly, Kooharian 

clarified the interpretation about the position 3, associate with middle-third rule: this 

position often gave rise to some misunderstanding since with elastic analysis it was 

interpreted as a limit position. Starting from many experimental tests of design and 

analysis of arches made in that years (e.g. Pippard), Kooharian stated firstly that this 

position is not only possible but even safe, that is the collapse does not occur. In 

short, he concluded by pointing out that the positions 1, 2, 3, 4, 5 (Fig. 6.27) are as 

possible as safe, and that the collapse occurs if and only if N acts outside the cross-

section (position 6 of Fig. 6.27). Thus, the limit condition represented by the middle-

third rule is replaced by another one schematically represented by a resultant N 

acting exactly on the edge of a section: in this state, we could image that two 

adjacent elements can exhibit a relative rotation about that edge.  

In the same work he applied the two theorems of Limit Analysis on the arch and 

solved the problem concerning the determination of the “exact” line of thrust. In 

what follows we show the rationale behind the approach proposed by Kooharian. 

In the previous centuries the stability of the arch was assessed searching a line of 

thrust (balancing the weight of the voussoirs and the acting loads) located within the 

arch. Since the number of all possible lines of thrust, compatible with the loads, is 

infinite, the search of the actual line of thrust is not trivial; furthermore the actual one 

depends on external factors that are far from being known. Nevertheless, was this 

empirical guess of the masters correct? 

To answer this question, we need to introduce the theorems of Limit Analysis, proved 

at the beginning of the XX century and in particular, the Safe Theorem.  

Safe Theorem. The collapse doesn’t occur if a statically admissible internal 

force system, in equilibrium with the external loads, can be found. ∎ 

The line of thrust represents geometrically a system of internal compressive forces in 

equilibrium with the loads, but when is it also statically admissible? In agreement 

with the observations made by Kooharian (Fig. 6.27), the statically admissibility is is 

owed to the fact that the line of thrust lies within the arch. Then, the Safe Theorem 

for the arch states: the arch is safe under fixed loads if and only if there exists a line 

of thrust lying wholly within the geometry. The relevance of the safe theorem resides 

in the fact that finding the actual line of thrust does not matter, it is sufficient that 

there exits at least one lying wholly in the masonry.  

Then we can answer to the previous question: whenever in the past the analysis of 

an arch was led back to find of a line of thrust lying within the arch geometry, it was 
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applied unwittingly the Safe Theorem (the most relevant example was the work of 

Poleni on St Peter's dome).  

 
 

Fig. 6.28 - Drawing from (Kooharian, 1952). An application of the Safe Theorem: a 

graphical analysis through the funicular polygon of voussoir arch loaded by a force P is 

shown. The weight of each voussoir is think as concentrated in the relative center of 

gravity, and then the line of thrust coincides with the funicular polygon, and is uniquely 

determined fixing a pole O. 

The Safe Theorem permits also to evaluate a lower bound multiplier for the load in 

the case of proportional loads. By applying the Safe Theorem a safe or a lower bound 

value of the load can be determined but it would be extremely important to know 

how safe it is: this could be done by determining an upper bound value of the 

collapse load. The Kinematic Theorem answers to this question being concerned 

with loads producing collapse. A structure reaches the collapse state when a 

sufficient number of plastic hinges form so as to reduce it to a mechanism.   

 
 

 

Fig. 6.29 - Drawing from (Kooharian, 1952): an application of the Kinematic Theorem. 

A “kinematical admissible” collapse state is characterized by the condition that in a 

virtual displacement of the mechanism the work of the external loads must be at 



 Chap. 6 – The Masonry Arch 137 

 

least as large as that of the internal forces. Since an arch could view as a statically 

indeterminate structure with three unknown reactions, a generic collapse mechanism 

needs at least four hinges. A hinge for the voussoir arch form when the resultant of 

the compression stress N acts on the edge of a section: in this situation, relative 

rotation among two adjacent elements are allowed. The application of the Kinematic 

Theorem comes about with the choice of all possible mechanics for which the work 

of the external forces is greater than the work of internal one and consequently with 

a valuation of the minim of the upper bounds multipliers. In the case of proportional 

loadings, the integrated use of both safe and kinematic theorems allows to define 

an interval [𝑠′, 𝑠′′] to which the collapse multiplier has to belong.  In a limit condition, 

that is 𝑠′ = 𝑠′′, the line of thrust touches the extrados and intrados in a certain 

number of point such that the structure becomes a mechanism (kinematic theorem).  

⁎   ⁎   ⁎ 

Jaques Heyman. A rigorous framework for the application of the theorems of Limit 

Analysis to masonry, was given by (Heyman, 1966) by introducing these three 

necessary assumptions:  

(i) masonry has no tensile strength, 

(ii) masonry has infinite compressive strength,  

(iii) sliding does not occur. 

These assumption, and the subsequent application of Limit Analysis give a 

justification of the equilibrium approach of Poleni, Coulomb, Barlow and Yvon 

Villarceau. Assuming true the hypotheses (i) and (ii), the real yield surface (see Fig. 

6.30) represented by the curved boundary OCDEO has to be replaced by the bilateral 

AOB.  

 
 

(a) (b)  

Fig. 6.30 – From (Heyman, 1966): an hinge (a) and the yield surface for masonry are 

shown. 

However, although the simplification might seem substantial, Heyman pointed out 

that, generally, a typical value of permitted stress used in design is 10 per cent of the 
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crushing strength. For such a level of compressive stresses, the curved triangle OCE 

is practically coincident with the bilateral AOB.  

For low stressed masonry structures, the compressive strength does not play any 

role, and the design rules consist only in static assessment in which the structural 

geometry becomes the pin point: that is the design rules become geometric rules. 

Remark 2|6. As we have seen, 15 years before Kooharian had enunciated two 

of them, but it should be noted that Couplet in the XVIII century made already 

similar assumptions, although not so clearly. ∎ 

Remark 3|6. The limit condition, represented by N acting on the edge of the 

section, obviously conducts to a concentration of compressive stress in that 

zone and could cause a failure by crushing. According to the basic assumption 

of infinite compressive strength, this kind of failure is neglected. Already 

Coulomb, at the end of the XVII century, made this observations and discussed 

also the necessary modifications if the stone were in danger of crushing. ∎ 

Remark 4|6. In his milestone work (1966), Heyman never wrote anything 

about the elastic behaviour of masonry, neglecting completely any elastic 

behaviour of the masonry material. ∎ 
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∎  6.3 THE MASONRY ARCH: NUMERICAL MODEL AND BENCHMARKS 

In this section, in order to test the PR method introduced in Section 4.3, we present 

some applications on arches by using the PR method (i.e. modelling the cracks as 

concentrated). The voussoir arch suggests directly the optimal partition (radial cuts) 

to be used and consequently a preliminary analysis, using the C0 method (i.e. 

modelling the cracks as smeared), is not necessary. The application of the energy 

criterion (see Chapter 4) allows us to find directly the mechanism solution of the 

kinematical problem, considering variable both the given settlements (as show in 

Section 6.4.1) or the loads (Sections 6.4.2 and Sections 6.4.3). 

In what follows, we use as benchmark either well-known results or other results 

obtained analytically and reported in the appendix. In particular, the applications are: 

- the analysis of a round arch subjected to given settlements; 

- the evaluation of the minimum thickness;  

- the analysis of the arch under horizontal actions. 

As we will see, in all these cases, a perfect concordance between our numerical results 

and the benchmarks is obtained. 

6.3.1 Arch, numerical analysis with PR method: model and discretization 

In what follows, we consider a circular arch with a variable angle of embrace, 

subjected only to the self-weight q (Fig. 6.31).  

 
 

 

 

Fig. 6.31 - The discretization and the symbology used for the arch is shown. Since an arch 

could be thought of as composed by many individual sections fitted once upon another, 

the basic element of the discretization is chosen coinciding with a sector of annulus: this 

conducts to a distribution of the self-weight as depicted (see also Section C.2). 
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The application of the PR method to the arch proceeds through the following steps 

(specializing the procedure shown in Section 4.3.2). 

⁎   ⁎   ⁎ 

1. The domain Ω∗ representing the structural geometry of the arch is partitioned 

into 𝑀 sectors of annulus Ω∗𝑖 . Each subdomain Ω∗𝑖 is approximated through a 

quadrilateral element Ω𝑖 as shown in (Fig. 6.32) and then the domain: 

 Ω = ⋃ Ωjj∈ {1…𝑀}  , (6.1) 

becomes our structural model domain. In particular, the set 

 𝜋𝑀 = {Ω𝑖  with 𝑗 ∈  {1…𝑀} 𝑠. 𝑡.  Ω𝑖 ⋂Ωj ≠ ∅ for 𝑖 ≠ 𝑗 } , (6.2) 

is a partition of the structural domain Ω constituted by a countable set of subdomains 

having finite perimeter, therefore, is a Caccioppoli partition of Ω in the sense of 

Chambolle et al (2007). 

 
 

 
 

Fig. 6.32 - The basic element Ω𝑖 of the partition 𝜋𝑀 is depicted. The subdomain Ω𝑖 

approximates the sector of annulus Ω∗𝑖, and consequently, increasing the number of 

elements 𝑀, Ω will tend to real arch domain Ω∗. 

2. The displacement field 𝒖 = 𝒖(𝒙), defined in Ω, is approximated as piecewise rigid. 

Since the number of elements of the discretization is 𝑀, the number of independent 

Lagrangian parameters is 3𝑀, collected in the vector: 

 𝑼̂ = (𝑈1, 𝑉1, 𝛷1, . . , 𝑈𝑗 , 𝑉𝑗 , 𝛷𝑗, . . , 𝑈𝑀 , 𝑉𝑀, 𝛷𝑀)  ,    𝑼̂ ∈ ℝ
3𝑀  . (6.3) 

⁎   ⁎   ⁎ 

3. The potential energy ℘ of the external forces can be expressed in terms of the 

components of 𝑼̂ and is a linear function of 3𝑀 unknown Lagrangian parameters, 

symbolically expressed as follows: 
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 ℘ = ℘(𝑼̂)  , 𝑼̂ ∈ ℝ3𝑀 . (6.4) 

The problem can be formulated as a linear programming one, in the form: 

 min
𝑼̂∈𝕂𝑀

℘(𝑼̂) , (6.5) 

𝕂𝑀 being the subset of ℝ3𝑀 defined by the unilateral and bilateral constraints 

associated to the contact and fixing conditions. 

⁎   ⁎   ⁎ 

4. To fix ideas, let Ω𝑖 and Ω𝑗 be two contiguous subdomains, with the 𝑙(𝐴, 𝐵) side in 

common. Let 𝒏 and 𝒕 be the normal and tangential unit vectors to 𝑙(𝐴, 𝐵) (see Fig. 

6.33), and 𝒖𝑗(𝐴) the nodal displacement of the material point 𝐴 belonging to the Ω𝑗 

subdomain. 

  

Fig. 6.33 - Two adjacent subdomains Ω𝑖 and Ω𝑗 are shown. 

The kinematical conditions between Ω𝑖 and Ω𝑗 along 𝑙(𝐴, 𝐵)  can be expressed as 

follows: 

 (𝒖𝑗(𝐴) − 𝒖𝑖(𝐴)) ∙ 𝒏 ≥ 0  , (6.6) 

 (𝒖𝑗(𝐵) − 𝒖𝑖(𝐵)) ∙ 𝒏 ≥ 0  , (6.7) 

 (𝒖𝑗(𝐴) − 𝒖𝑖(𝐵)) ∙ 𝒕 = 0  . (6.8) 

These relations, written for all adjacent blocks, can be thought of as constraints on 

the displacement field 𝒖 and then on the 3M Lagrangian parameters 𝑼̂. Similar 

relations can be written to take into account the boundary conditions (see examples 

below). 
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Remark 5|6. It should be noted that previous restrictions imply that two 

adjacent voussoirs can rotate and detach each other, but cannot exhibit any 

relative sliding. ∎ 

 
 

(a) 

 

 

Fig. 6.34 - . All the three admissible relative displacements between two adjacent 

voussoirs are shown. The relative displacement between them represents the 

singular deformation 𝑬𝑠. 

Being 𝑀 is the number of elements, the interfaces are 𝑀 + 1 (𝑀 − 1 internal and 2 

relative to the boundary) and consequently 3(𝑀 + 1) is the total number of 

restrictions, both equalities and inequalities. These linear restrictions define a convex 

polytope 𝕂𝑀 of the ℝ3𝑀 in which the solution 𝑼̂0 of the kinematical problem has to 

belong. 

⁎   ⁎   ⁎ 

5. With the above approximation the structural problem is formulated as a minimum 

problem: “find a piecewise rigid displacement 𝑼̂0 which minimizes the potential 

energy ℘ in 𝕂𝑀 : 

 𝑚𝑖𝑛
𝑼̂∈𝕂𝑀

℘(𝑼̂)  .” (6.9) 

This linear programming problem is solved with the simplex method, or with the 

interior point method if the number of unknowns and conditions is large. 

⁎   ⁎   ⁎ 

6. Found the minimizer 𝑼̂0, it is an easy task to evaluate the corresponding 

deformed shape of the arch, the hinges formed and the line of thrust. It will be noted 

that the moving part of the arch represents a one degree of freedom mechanism. 
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6.3.2 Benchmarks 

The benchmarks we will present in the next sections refer to the following cases: 

1. a round arch subjected to settlement: 

a. with supports subjected to given horizontal outward settlements; 

b. with supports subjected to given horizontal inward settlements; 

c. with a support subjected to a given vertical bottom settlement;  

2. the assessment of the minimum thickness for: 

a. a round arch; 

b. a circular arch with a springing angle 𝛽 = 30°; 

c. a circular arch with a springing angle 𝛽 = 60°;  

3. the assessment of the horizontal static multiplier for: 

a. a round arch; 

b. a circular arch with a springing angle 𝛽 = 15°; 

c. a circular arch with a springing angle 𝛽 = 30°; 

d. a circular arch with a springing angle 𝛽 = 45°. 

∎  6.4 BENCHMARK 1: THE EFFECT OF THE SETTLEMENTS 

In this section, we present three cases regarding a round arch subjected to given 

settlements. In all these cases, the round arch, with an internal radius 𝑟 = 1𝑚 and a 

thickness 𝑠 equals to 0.25m (𝑠/𝑟 = 0.25), is discretized with 500 elements and loaded 

only by the self-weight applied at the centres of gravity of each element. 

6.4.1 Round arch subjected to given outward settlements 

In this example, both supports are subjected to given outward settlements δ as 

shown in Fig. 6.35 (see also Section 3.5). 

    
 

 

 

δ 

 

δ 

 
 

Fig. 6.35 - A round arch, loaded by the self-weight and discretized with 500 elements, is 

subjected to given horizontal outward settlements δ. 
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Remark 6|6. As for the implementation of the boudary constraints, with 

reference to the right base element Ω𝑘 , let A and B the two contact points with 

the base support (Fig. 6.36). 

     

Fig. 6.36 - The way to implement the horizontal outward settlement δ with 

respect to the right base element Ω𝑘 is shown. 

The constraints, expressing the settlements, can be written as function of the 

displacements of the points A and B, namely: 

𝒖𝑘(𝐴) ∙ 𝒕 = δ           or         𝒖𝑘(𝐵) ∙ 𝒕 = δ  ,  
𝒖𝑘(𝐴) ∙ 𝒏 ≥ 0                       𝒖𝑘(𝐵) ∙ 𝒏 ≥ 0  . 

The first two relations express the support settlement, whilst the unilateral 

ones represent the unilateral contact with the base support. Similar relations 

have to be written for the left base element. These boundary relations 

combined with the internal ones will define the subset 𝕂𝑀 in which the optimal 

solution has to be found. ∎ 

Since the number of elements is 500, the total unknowns are 1500 (i.e. the dimension 

of 𝑼̂). The number of relations, both equalities and inequalities, defining the subset 

of 𝕂𝑀 ⊆ ℛ1500 is 1503. The solution 𝑼̂0 of the minimum problem:  

min
𝑼̂∈𝕂𝑀

℘(𝑼̂) , 

reached through the simplex method in 16.55s (with an Intel® Core™ i7-6700HQ), is 

shown in Fig. 6.37. It should be noted that the solution is symmetric and three hinges 

form (0.5027rad,  𝜋/2 and (𝜋 − 0.5027)rad). Initially the arch was hyperstatic with 

many redundancies, but the formation of these three hinges turns it into an isostatic 

substructure. 
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δ 

 

δ 

 
 

Fig. 6.37 - A graphical representation of the solution 𝑼̂0 of the minimum problem 

obtained with the PR method: three hinges form and the arch becomes isostatic. 

By adopting a thrust line solution for the stress, the position of the hinges determines 

three conditions, which are sufficient to determine a unique pressure line, as shown 

in Fig. 6.38. 

   
 

 

 

W/2 

Hmin Hmin 

W/2 

 

Fig. 6.38 - The hinges formed and the relative thrust line are represented. Since 𝑊 

indicates the weight of the whole structure, 𝐻𝑚𝑖𝑛 represents the horizontal thrust on the 

base supports. 

Remark 7|6. The solution of the problem does not depend on the value 𝛿 of 

the settlement: indeed, by varying the value of δ, the numerical solution is self-

similar and returns exactly the same position of the hinges. ∎ 

Remark 8|6. The outward settlements of the supporting structures represent 

the ultimate cause of the cracking at the in the intrados of the key section 

(often the only visible of the three ones) and, consequently, of the drop of the 

thrust with respect to the initial configuration. ∎ 
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6.4.2 Round arch subjected to given inward settlements 

In this case, both supports are subjected to given inward settlements δ as shown in 

Fig. 6.39. 

    
 

 

 

δ 

 
δ 

 
 

Fig. 6.39 - A round arch, loaded by the self-weight and discretized with 500 elements, is 

subjected to given horizontal inward settlements δ. 

Remark 9|6. The supports settlements are expressed analytically through 6 

indipendent relations involving only two base blocks. With reference to the 

right base element Ω𝑘 (Fig. 6.40), the relations can be expressed as follows 

   𝒖𝑘(𝐴) ∙ 𝒕 = −δ        or       𝒖𝑘(𝐵) ∙ 𝒕 = −δ  ,  
 𝒖𝑘(𝐴) ∙ 𝒏 ≥ 0                      𝒖𝑘(𝐵) ∙ 𝒏 ≥ 0  . 

     

Fig. 6.40 - The way to implement the horizontal inward settlement δ with respect 

to the right base element Ω𝑘 is shown. 

The first two relations express the support settlement, whilst the unilateral 

ones represent the unilateral contact with the base support. Similar relations 

have to be written for the left base element. ∎ 

The solution 𝑼̂0 of the minimum problem, reached both with the simplex method 

(19.82s with an Intel® Core™ i7-6700HQ) and with the interior point method (0.11s 
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with an Intel® Core™ i7-6700HQ), is shown in Fig. 6.41 and in Fig. 6.42. Even in this 

case, the arch, initially hyperstatic with many redundancies, is turned into an isostatic 

substructure. 

    
 

 

 
δ 

 

δ 

 
 

Fig. 6.41 - A graphical representation of the solution 𝑼̂0 obtained with the simplex 

method is reported: three hinges form respectively at 0.0 rad, 1.238rad and at 𝜋. 

 

    
 

 

 
δ 

 

δ 

 
 

Fig. 6.42 - The solution 𝑼̂0 obtained with the interior point method is reported: four 

hinges form respectively at 0.0 rad, 1.238rad, (𝜋 − 1.238)rad and at 𝜋. 

With reference to the solution obtained with the simplex method, by adopting a 

thrust line solution for the stress, the position of the hinges determines three 

conditions, which are sufficient to determine a unique pressure line, as shown in Fig. 

6.43. 
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Fig. 6.43 - The hinges formed and the relative thrust line are represented. 𝑊 indicates 

the weight of the whole structure whilst 𝐻𝑚𝑎𝑥 the horizontal thrust on the base supports. 

Remark 10|6. By comparing the lines of thrust depicted in Fig. 6.43 and Fig. 

6.38, since the weight of the arch is the same, the change of the angle of 

incidence on the supports causes the increase of the horizontal thrust  from 

𝐻𝑚𝑖𝑛 to 𝐻𝑚𝑎𝑥 : small changes in external conditions (an abutment gives way 

slightly or the external structure pushes the arch inward) force the thrust line 

to assume two widely different positions altering markedly the actual 

equilibrium state of the arch. In both cases, the arch accommodates the 

external changes by  forming an isostatic substructure, i.e. a three-pin arch. ∎ 

Remark 11|6. By comparing the solutions depicted in Fig. 6.41 and in Fig. 

6.42, the total relative rotation of  two internal hinges shown in Fig. 6.42 is 

equal to the relative rotation of the single hinge of Fig. 6.41. It should be 

noted that if there is a little asymmetric change, either in the geometry or in 

the load, one of the two hinges of Fig. 6.42 will not form. ∎ 
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6.4.3 Round arch subjected to a given bottom settlement 

Here, the right support is subjected to a given vertical settlement δ as shown in Fig. 

6.44. 

    
 

 

 

δ 

  

Fig. 6.44 - A round arch, loaded by the self-weight and discretized with 500 elements, is 

subjected to a given vertical settlement δ. 

Remark 12|6. The settlement is expressed analytically (Fig. 6.45) through 

three relations involving only the right base element Ω𝑘 : 

𝒖𝑘(𝐴) ∙ 𝒕 = 0      or     𝒖𝑘(𝐵) ∙ 𝒕 = 0  , 
𝒖𝑘(𝐴) ∙ 𝒏 ≥ −δ       𝒖𝑘(𝐵) ∙ 𝒏 ≥ −δ  . 

     

Fig. 6.45 - The way to implement the vertical settlement δ with respect to the 

subdomain Ω𝑘 is shown. 

The first two relations express the no sliding condition, whilst the unilateral 

ones represent the unilateral contact with the base support taking also into 

account the given vertical settlment. ∎ 

The solution 𝑼̂0 of the minimum problem, reached both with the simplex method 

(20.56s with an Intel® Core™ i7-6700HQ) is shown in Fig. 6.46.  Also in this case, the 
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arch, initially hyperstatic with many redundancies, is turned into an isostatic 

substructure. 

  
 

 

 

δ 

δ 
 

 

Fig. 6.46 - A graphical representation of the solution 𝑼̂0 obtained with the simplex 

method is reported: three hinges form respectively at 0.0 rad, 1.382rad and 2.564rad. 

The positions of these three hinges return three conditions, which are sufficient to 

determine a unique pressure line, as shown in Fig. 6.47. 

   

Fig. 6.47 - The hinges formed and the relative thrust line are represented. 
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∎  6.5 BENCHMARK 2: COUPLET’S PROBLEM 

Let us consider the following problem: what is the minimum thickness for which an 

arch is yet safe under its own weight?  

Remark 13|6. This is a well-known problem in literature, known as the 

minimum thickness problem or also the Couplet’s problem because, the first 

who posed this question and gave a solution was Couplet.  Almost two 

centuries later, Heyman (1969) solved the problem for a round arch 

(partitioning the domain with vertical cuts), and successively the solution was 

recalculated by Ochsendorf (2006) with a different partition of the domain 

(sectors of annulus). For a detailed analysis see Appendix D and (Heyman, 

2009). 

In this section, by using the PR method, we propose some applications concerning 

the evaluation of the minimum thickness of a circular arch (with an internal radius 

𝑟 = 1.00𝑚) subjected only to the self-weight and with different springing angles 𝛽 

(i.e. the total angle of embrace is 𝜋 − 2𝛽). 

  

Fig. 6.48 – The symbology adopted for a circular arch with a springing angle 𝛽 is shown. 

When the thickness 𝑠 reaches its minimum value, the arch becomes a mechanism: 

four rigid bodies hinged in five points as shown in Fig. 6.49. The positions of the 

hinges are defined by the angles 𝜃𝑖 . 

The procedure of finding the solution is provided by the following observation.  

Remark 14|6. With reference to a structure with a fixed discretization, the 

subset 𝕂𝑀 of ℝ3𝑀, defined by the internal and boundary restrictions, can be 

thought of as the subset of all mechanisms compatible with the constraints: in 

this sense the energy criterion is a selection criterion of the mechanism solving 

the kinematical problem in 𝕂𝑀 . 
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If the boundary conditions are homogeneous, the homogeneous solution, i.e. 𝑼̂0 =

𝟎, belongs to the subset 𝕂𝑀 . When the minimizer is 𝑼̂0 = 𝟎  the initial configuration 

is safe and no one mechanism can occur. Instead, when then initial configuration is 

not stable, the solution 𝑼̂0 of the minimum problem is not homogeneous, that is 

𝑼̂0 ≠ 𝟎. 

  

Fig. 6.49 - The mechanism associated with the solution of the Couplet’s problem for an 

arch with springing angle 𝛽 = 15°. The crosshatch in red represents the singular 

deformations 𝑬𝑠 along the hinges whilst the dash-dotted blue line represents the support 

of the singular part 𝑻𝑠 of the stress field. 

We perform a numerical procedure based on the following two steps: 

(i) initially we fix a value 𝑠𝑠 of the thickness to which there corresponds a safe 

configuration (i.e. 𝑼̂0 = 𝟎); 

(ii) by decreasing the thickness 𝑠, we find the least value of 𝑠 (say 𝑠𝑚) for which the 

arch becomes a mechanism (i.e.  𝑼̂0 ≠ 𝟎). 

In this way, rather than find an exact value of 𝑠𝑚𝑖𝑛 , we define an interval [𝑠𝑚 , 𝑠𝑠] to 

which the minimum thickness, solution of the Couplet’s problem, has to belong.  

In what follows we evaluate the minimum thickness for a circular arch considering 

four springing angles 𝛽: 0°, 30°, and 60°. In Tab. 6.1 (extracted from Tab D.1) the 

relative analytical solutions are reported. 

𝛽 [ ° ] 𝑠𝑚𝑖𝑛/𝑟  𝜃2 [ ° ] 𝜃2 − 𝛽 [ ° ] 

0.00 0.1135818 35.52 35.52 

30.00 0.0231130 50.54 20.54 

60.00 0.0015265 69.19 9.19 

 

Tab. 6.1 - The minimum thickness 𝑠𝑚𝑖𝑛/𝑟, the angle 𝜃2 and the angle 𝜃4 = 𝜃2 − 𝛽 as 

functions of  the springing angle 𝛽  are reported.  
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6.5.1 Couplet’s problem: numerical solution for β=0° 

A round with an internal radius 𝑟 = 1m is discretized with 500 elements (Fig. 6.50a). 

The only load considered is the self-weight applied at the centres of gravity of each 

voussoir. In Fig. 6.50 the solutions corresponding to a safe value of 𝑠𝑠 and to the 

unstable one 𝑠𝑚 are shown. 

    
 

 

 

    
 

 

 

 
(a) (b)  

Fig. 6.50 – In (a) the solutions corresponding to a safe value of the thickness (𝑠𝑠 =

0.11359). In (b) the mechanism corresponding to 𝑠𝑚 = 0.11357. 

The solution 𝑼̂0 of the minimum problem, reached through the simplex method, is 

practically coincident to the analytical one (Tab. 6.2) and corresponds exactly to that 

found by Ochsendorf (2006). The mechanism, the relative hinges and the associated 

line of thrust are depicted in Fig. 6.51. 

𝛽 = 0° 𝑠𝑚𝑖𝑛/𝑟 ϑ2 [°] 

Numerical solution [0.11357 , 0.11359] 35.64 

Analytical solution 0.11358 35.52 

 

Tab. 6.2 - The numerical solution reached with the simplex method and the analytical one 

(extracted from Tab. D.1) are reported.  

    
 

 

 

 

Fig. 6.51 - The mechanism, the hinges and the associated line of thrust corresponding to 

the value  𝑠𝑚 = 0.11357 are shown. 
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6.5.2 Couplet’s problem: numerical solution for β=30° 

In this case we consider a circular arch, discretized with 100 elements, with a 

springing angle 𝛽 = 30° and an internal radius 𝑟 = 1m (Fig. 6.52a). The arch is 

loaded by the self-weight. In Fig. 6.52 the solutions corresponding to a safe value 

of 𝑠𝑠 and to the unstable one 𝑠𝑚 are shown. 

    
 

 

 

 

    
 

 

 

 

(a) 

(b) 

 

Fig. 6.52 - In (a) the solutions corresponding to a safe value of the thickness (𝑠𝑠 = 0.0233). 

In (b) the mechanism corresponding to 𝑠𝑚 = 0.0230. 

The solution 𝑼̂0 of the minimum problem, reached through the simplex method, is 

coincident to the analytical one (Tab. 6.3). The mechanism, the relative hinges and 

the associated line of thrust are depicted in Fig. 6.53. 

𝛽 = 30° 𝑠𝑚𝑖𝑛/𝑟 ϑ2 [°] 

Numerical solution [0.0230 , 0.0233] 50.40 

Analytical solution 0.02311 50.54 

 

Tab. 6.3 - The numerical solution reached with the simplex method and the analytical one 

(extracted from Tab. D.1) are reported.  

    
 

 

 

 

Fig. 6.53 - The mechanism, the hinges and the associated line of thrust corresponding to 

the value  𝑠𝑚 = 0.0230 are shown 
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6.5.3 Couplet’s problem: numerical solution for β=60° 

The circular arch of Fig. 6.54a (𝛽 = 60°, 𝑟 = 1m) is discretized with 500 elements and 

is subjected to its self-weight. In Fig. 6.54 the solutions corresponding to a safe value 

of 𝑠𝑠 and to the unstable one 𝑠𝑚 are shown. 

    
 

 

 

 

    
 

 

 

 

(a) 

(b) 
 

Fig. 6.54 - In (a) the solutions corresponding to a safe value of the thickness (𝑠𝑠 =

0.00155). In (b) the mechanism corresponding to 𝑠𝑚 = 0.00151. 

The solution 𝑼̂0 of the minimum problem, reached through the simplex method, is 

coincident to the analytical one (Tab. 6.4). The mechanism, the relative hinges and 

the associated line of thrust are depicted in Fig. 6.55. 

𝛽 = 60° 𝑠𝑚𝑖𝑛/𝑟 ϑ2 [°] 

Numerical solution [0.00151 , 0.00155] 69.00 

Analytical solution 0.001526 69.19 

 

Tab. 6.4 - The numerical solution reached with the simplex method and the analytical one 

(extracted from Tab. D.1) are reported.  

 

    
 

 

 

 

Fig. 6.55 - The mechanism, the hinges and the associated line of thrust corresponding to 

the value  𝑠𝑚 = 0.11357 are shown. 
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∎  6.6 BENCHMARK 3: THE ARCH UNDER HORIZONTAL ACTION 

In this section, we present some applications concerning the arch subjected to 

horizontal actions, as those produced by a seismic action. The only load considered 

is the self-weight and the horizontal incremental action is represented by forces, 

proportional to the mass through the scale parameter 𝜆, and acting in centres of 

gravity of each block. (Fig. 6.56). 

 
 

Fig. 6.56 - The arch is subjected to vertical and horizontal loads applied to the centroids 

of each voussoir. 

When 𝜆 reaches a certain value, say 𝜆𝑐 , four hinges form and the arch becomes a 

mechanism (Fig. 6.57) with the moving part composed by three rigid blocks hinged 

in four points.  

  

Fig. 6.57 - When the scale parameter 𝜆 reaches a certain value, the arch becomes a 

mechanism constituted by three rigid blocks hinged in four points. 

The numerical strategy adopted to solve the problem is the same as that used for 

the minimum thickness problem. The interval [λ𝑠, λ𝑚], to which the collapse multiplier 

𝜆𝑐 has to belong, is found through a numerical procedure. In particular, λ𝑠 represents 

an approximation of the supremum of the multipliers for which the initial 

configuration is still safe (i.e. the minimizer is homogeneous, namely 𝑼̂0 = 𝟎), whilst 
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λ𝑚 represents an approximation of the infimum of the multipliers for which the 

structure becomes a mechanism, that is 𝑼̂0 ≠ 𝟎.  

In the next sections, we present some applications regarding a circular arch with a 

different springing angle, and, in order to test our numerical method, we compare 

these results to those obtained analytically (see Appendix E, Tables E.1, E.2, E.3 and 

E.4). 

The goal of this analysis is to search the exact position of four hinges (defined by the 

angles 𝜃𝑖 for 𝑖 ∈ {1, … ,4}) and of the interval to which the collapse multiplier 𝜆𝑐 has 

to belong. 
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6.6.1 Circular arch under horizontal action: β=0° 

In this section, we analyse a round arch (𝛽 = 0°) with an internal radius 𝑟 = 1.00𝑚, 

and thickness 𝑠 = 0.25𝑚. The arch is discretized with 80 rigid quadrangular elements 

(Fig. 6.58a).  

     
 

 

 

     
 

 

 

 
(a) (b)  

Fig. 6.58 – In (a) the round arch, discretized with 80 rigid elements, is depicted. In (b) the 

solution 𝑼̂0 corresponding to 𝜆 = 0.340 is reported. 

The solution 𝑼̂0 of the minimum problem (Fig. 6.58b), reached through the simplex 

method, is close to the analytical one (Tab. 6.5). The mechanism, the relative hinges 

and the associated line of thrust are depicted in Fig. 6.59. 

𝑠 =0.25m 𝜆𝑐 𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

Numerical solution [0.334 , 0.340] 171.00 108.00 47.25 0.00 

Analytical solution 0.340 170.04 108.75 47.47 0.00 

 

Tab. 6.5 - The numerical solution reached with the simplex method and the analytical one 

(extracted from Tab. E.1) are reported.  

     
 

 

 

 

Fig. 6.59 - The mechanism corresponding to 𝜆 = 0.340, the hinges formed and the 

associated thrust line are represented. 
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6.6.2 Circular arch under horizontal action: β=15° 

The circular arch with a total angle of embrace equals to 150° (𝛽 = 15°), internal 

radius 𝑟 = 1.00𝑚 and thickness 𝑠 = 0.15𝑚 is discretized with 100 rigid elements (Fig. 

6.60a). 

      
 

 

 

        
 

 

 

 
(a) (b) 

 

Fig. 6.60 - The depressed arch (𝛽 = 15°) is discretized with 100 rigid elements. In (b) the 

solution 𝑼̂0 corresponding to 𝜆 = 0.395 is reported. 

The solution 𝑼̂0 of the minimum problem (Fig. 6.60b), reached through the simplex 

method, is coincident to the analytical one (Tab. 6.6). 

𝑠 =0.15m 𝜆𝑐 𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

Numerical solution [0.390 , 0.395] 165.00 111.00 54.00 15.00 

Analytical solution 0,392 165,00 111,32 54,29 15,00 

 

Tab. 6.6 - The numerical solution reached with the simplex method and the analytical one 

(extracted from Tab. E.2) are reported. 

The mechanism, the hinges formed and the line of thrust are reported in Fig. 6.61. 

         
 

 

 

 

Fig. 6.61 - The mechanism corresponding to 𝜆 = 0.395, the hinges formed and the 

associated thrust line are represented. 
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6.6.3 Circular arch under horizontal action: β=30° 

The circular arch with a springing angle 𝛽 = 30°, internal radius 𝑟 = 1.00𝑚 and a 

thickness 𝑠 = 0.10𝑚 is discretized with 120 rigid elements (Fig. 6.62a). 

       
 

 

 

        
 

 

 

 
(a) (b) 

 

Fig. 6.62 – In (a) the depressed arch (𝛽 = 30°) is discretized with 120 rigid elements. In 

(b) the solution 𝑼̂0 corresponding to 𝜆 = 0.549 is reported. 

The solution 𝑼̂0 of the minimum problem (Fig. 6.62b), reached through the simplex 

method, is coincident to the analytical one (Tab. 6.7). 

𝑠 =0.10m 𝜆𝑐 𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

Numerical solution [0.548 , 0.549] 150.00 115.00 64.14 30.00 

Analytical solution 0.549 150.00 114.97 63.59 30.00 

 

Tab. 6.7 - The numerical solution reached with the simplex method and the analytical one 

(extracted from Tab. E.3) are reported. 

The mechanism, the corresponding hinges and the line of thrust are reported Fig. 

6.63. 

        
 

 

 

 

Fig. 6.63 - The mechanism corresponding to 𝜆 = 0.549, the hinges formed and the 

associated thrust line are represented. 
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6.6.4 Circular arch under horizontal action: β=45° 

The circular arch with a total angle of embrace equals to 90° (𝛽 = 45°), internal radius 

𝑟 = 1.00𝑚 and thickness 𝑠 = 0.03𝑚 is discretized with 120 rigid elements (Fig. 

6.64a). 

        
 

 

 

         
 

 

 

 
(a) (b)  

Fig. 6.64 - The depressed arch (𝛽 = 45°) is discretized with 120 rigid elements. In (b) the 

solution 𝑼̂0 corresponding to 𝜆 = 0.3700 is reported. 

The solution 𝑼̂0 of the minimum problem (Fig. 6.64b), reached through the simplex 

method, is close to the analytical one (Tab. 6.8). 

𝑠 =0.03m 𝜆𝑐 𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

Numerical solution [0.3765 , 0.3700] 135.00 107.25 67.75 45.00 

Analytical solution 0.377 135.00 107.20 67.06 45.00 

 

Tab. 6.8 - The numerical solution reached with the simplex method and the analytical one 

(extracted from Tab. E.4) are reported. 

The mechanism, the hinges formed and the associated line of thrust are depicted in 

Fig. 6.65. 

 

          
 

 

 

 

Fig. 6.65 - The mechanism corresponding to 𝜆 = 0.340, the hinges formed and the 

associated thrust line are represented. 
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[7] Applications and Case Studies - Chapter 7 

APPLICATIONS AND 

CASE STUDIES 

Prologue. In the first part of this Chapter, we present some applications 

concerning simple portals analysed using the two numerical methods described 

in Chapter 4, namely the PR method, based on rigid blocks (modelling the 

cracks as concentrated), and the C0 method, based on continuous functions 

(modelling the cracks as smeared). It will be seen that with the application of 

the continuous model, the solution will often give a hint on a partition into rigid 

blocks. In the central part of this Chapter, some examples regarding simple walls 

with openings, analysed with the PR method, are shown. In the final part, we 

present three case studies, developed with the PR method, in order to illustrate 

the way in which a particular fracture pattern can be identified. 

∎  7.1 EXAMPLE 1: PORTAL (CASE A) 

In this section, we present two applications concerning the same portal analysed with 

the two methods: the PR method (rigid blocks), and the C0 method (based on 

continuous functions). 

7.1.1 Numerical analysis with the PR method 

The NRNT portal, subjected to a piecewise uniformly distributed load (represented 

in Fig. 7.1a with yellow strips), is discretized with rigid blocks using 1536 triangular 

elements (Fig. 7.1a). As shown in the figure, the right support is subjected to a given 

vertical settlement δ. 
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Remark 1|7. The settlement of the right support is expressed analytically on 

each interface through four restrictions: 

𝒖𝑘(𝐴) ∙ 𝒕 = 0                 𝒖𝑘(𝐵) ∙ 𝒕 = 0  , 
𝒖𝑘(𝐴) ∙ 𝒏 ≥ −δ         𝒖𝑘(𝐵) ∙ 𝒏 ≥ −δ  , 

being 𝒕 and 𝒏 the tangential and normal unit vectors whilest 𝐴 and 𝐵 represent 

the two end nodes of the interface. 

The solution 𝑼̂0 of the minimum problem is reached through the interior point 

method in 6.04s with an Intel® Core™ i7-6700HQ (see Fig. 7.1b). 

    
 

 

 

q 

 

δ 

  
(a)  (b) 

    
 

 

 

δ 

 

δ 

 

Fig. 7.1 - A portal of NRNT material, loaded by a piecewise uniformly distributed load 

(represented by the yellow strips) and subjected, on the right support, to a given vertical 

settlement, is discretized with 1536 triangular elements (a). The solution 𝑼̂0 obtained 

through the interior point method is reported in (b). 

Three hinges form and then the moving part of the structure becomes isostatic. The 

corresponding line of thrust can be determined (Fig. 7.2). 



 Chap. 7 – Applications and Case Studies 165 

 

     
 

 

 

δ 

 

δ 

 

Fig. 7.2 - The hinges formed and the relative thrust line are represented. 

7.1.2 Numerical analysis with the C0 method 

Here we analyse the same portal of Fig. 7.1a with the C0 method, based on an 

approximation with continuous functions. The portal of NRNT material (Fig. 7.3a) is 

discretized using 96 9-nodes square elements (a second order Lagrangian 

quadrangular element) and is loaded by its self –weight represented with a piecewise 

uniformly distributed load (yellow strips). The right support is subjected to a given 

vertical settlement δ. 

The solution 𝑼̂0 of the minimum problem is reached through the minimization of the 

energy into the finite element space defined in Section 4.4. The solution, obtained 

with the interior point method in 89.53s (with an Intel® Core™ i7-6700HQ), is shown 

graphically in Fig. 7.3b.  
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Fig. 7.3 – In (a) a portal of NRNT material, discretized with 96 9-nodes square elements 

and loaded by a piecewise uniformly distributed load (yellow strips), is subjected to a 

given vertical settlement δ at the right support. In (b): representation of the solution 𝑼̂0 

obtained through the interior point method. 

To represent the strain field 𝑬, we report in Fig. 7.4 a measure of the deformation, 

namely |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇). From Fig. 7.4 we see that the gradient of deformation is 

concentrated on two vertical strip of elements, whilst the other elements are 

characterized by strains whose norm is close to zero. 
 

 

  
 

 

Fig. 7.4 - The field |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇) is reported. 
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The skew-symmetric part of the displacement field, representing the local rotation 

field, is depicted in Fig. 7.5: it should be noticed that the gradient of rotation is 

essentially concentrated along two vertical lines. 

 
 

 

 

Fig. 7.5 - Rotation field over the whole domain. 

∎  7.2 EXAMPLE 2: PORTAL (CASE B) 

In this section, we present two applications concerning the same portal analysed with 

both methods introduced in Chapter 4. The portal studied here has a lintel with a 

larger span than that analysed in Section 7.1. 

7.2.1 Numerical analysis with the PR method 

The NRNT portal, shown in Fig. 7.6a, is subjected to a piecewise uniformly 

distributed load (yellow strips) and is discretized with rigid blocks using 1440 

triangular elements. The right support is subjected to a given vertical settlement δ. 

The solution 𝑼̂0 of the minimum problem is reached through the interior point 

method in 5.52s with an Intel® Core™ i7-6700HQ (Fig. 7.6b). Also in this case, three 

hinges form and the moving part of the structure becomes isostatic. It should be 

noted that the position of the “central” hinge changes: this is due to the larger span 

of the lintel relative to the pier. 
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Fig. 7.6 – In (a) a NRNT portal, discretized with 1440 triangular elements, is loaded by a 

piecewise uniformly load (yellow strips) and is subjected to a given vertical settlement δ. 

In (b) a representation of the solution 𝑼̂0, obtained through the interior point method, is 

reported in (b): three hinges form and the moving part of the structure becomes isostatic. 

Since the positions of the three hinges formed is known, the corresponding line of 

thrust can be determined (Fig. 7.7). 

    
 

 

 

δ 

 

δ 

 

Fig. 7.7 - The hinges formed and the relative thrust line are represented. 
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7.2.2 Numerical analysis with the C0 method 

The same portal of Fig. 7.6a is here analysed with the C0 method, based on an 

approximation with continuous functions. The portal of NRNT material, shown in Fig. 

7.8a, is discretized using 360 9-nodes square elements (a second order Lagrangian 

quadrangular element) and is loaded by its self –weight represented with a piecewise 

uniformly distributed load (yellow strips). The right base support is subjected to a 

given vertical settlement δ. 

The solution 𝑼̂0 of the minimum problem, obtained with the interior point method 

in 647.73s (with an Intel® Core™ i7-6700HQ) by using 16 tangent planes for each 

node, is shown graphically in Fig. 7.8b.  

     
 

 

 

q 
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(a) (b) 

    
 

 

 

δ 

 

δ 

 

Fig. 7.8 – In (a) a NRNT portal, discretized through 360 square elements, is loaded by a 

piecewise uniformly distributed load and is subjected to a given vertical settlement δ at 

the right base support. In (b) a representation of the solution 𝑼̂0 obtained with the interior 

point method is reported: a perfect concordance with the solution obtained with the PR 

method is highlighted (see Fig. 7.6b). 

To represent the strain field 𝑬, we report in Fig. 7.9 a measure of the deformation, 

namely |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇). From Fig. 7.9 we see that the gradient of deformation is 

concentrated on two vertical strips of elements, whilst the other elements are 

characterized by strains whose norm is close to zero. 
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Fig. 7.9 - The field |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇) is reported. 

The skew-symmetric part of the displacement field, representing the local rotation 

field, is depicted in Fig. 7.10: it should be noticed that the gradient of rotation is 

essentially concentrated along two vertical lines. 

 
 

 

 

Fig. 7.10 - The rotation field over the whole domain. 
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∎  7.3 EXAMPLE 3: WALL WITH OPENINGS (CASE A) 

In this section, as illustration of the PR method for a more complex structure, we 

present two applications concerning the same wall with openings on adopting two 

different discretizations. 

7.3.1 Numerical analysis with the PR method 

The wall with openings, discretized with 304 rigid triangular elements, is subjected 

to uniform loads (yellow strips) and to given vertical settlements as depicted in Fig. 

7.11. 

     
 

 δ 
 

0.5 δ 
 

 
 

Fig. 7.11 - A NRNT structure, discretized through 304 triangular elements, is subjected to 

uniformly distributed loads represented by yellow strips and to given vertical settlements. 

The number of restrictions, both equalities and inequalities, is 3384 whilst the 

number of unknowns is 912. The solution 𝑼̂0 of the minimum problem is reached 

through the interior point method in 0.23s with an Intel® Core™ i7-6700HQ (Fig. 

7.12). 
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Fig. 7.12 – Two representations of the same solution 𝑼̂0, obtained through the interior 

point method, are reported. 

7.3.2 Numerical analysis with the PR method on a denser discretization 

The structure of Section 7.3.1 is here discretized with 4864 triangular rigid elements. 

It is subjected to uniformly distributed loads represented by yellow strips and to 

given vertical settlements as shown in Fig. 7.13.  

     
 

 δ 
0.5 δ 

 

 

Fig. 7.13  - A NRNT structure, discretized with 4864 triangular elements, subjected to 

uniformly distributed loads (yellow strips) and to given vertical settlements. 
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The number of restrictions, both equalities and inequalities, is 57312 whilst the 

number of unknowns is 14592. The solution 𝑼̂0 of the minimum problem is reached 

through the interior point method in 15.83s with an Intel® Core™ i7-6700HQ (Fig. 

7.12).  

    
 

 δ 
0.5 δ 

 

     
 

 δ 
0.5 δ 

 

  

Fig. 7.14 – Two representation of the same solution 𝑼̂0, obtained through the interior 

point method, are reported. 

∎  7.4 EXAMPLE 4: WALL WITH OPENINGS (CASE B) 

In this section, we propose two examples regarding a wall with openings subjected 

to given vertical settlements increasing linearly inward. Both cases are analysed by 

using the PR method. 

7.4.1 Numerical analysis with the PR method 

A wall with openings, discretized with 1216 triangular elements, is subjected to 

piecewise uniformly loads (yellow strips) and to a given linear settlement distribution 

as shown in Fig. 7.15a.  

The number of restrictions, both equalities and inequalities, is 3648 whilst the 

number of unknowns is 14064. The solution 𝑼̂0 of the minimum problem is reached 

through the interior point method in 1.86s with an Intel® Core™ i7-6700HQ (Fig. 

7.15b and Fig. 7.16).  
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 δ 
  

Fig. 7.15 – In (a) the wall with openings, discretized with 1216 rigid triangular elements, 

is subjected to uniformly loads (yellow strips) and to a given vertical settlement 

distribution. In (b) the solution 𝑼̂0 obtained through the interior point method is reported. 

     
 

 δ 
  

Fig. 7.16 - Another representation of the solution 𝑼̂0, obtained through the interior point 

method, is reported. 
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7.4.2 Numerical analysis with the PR method (larger openings) 

The same structure analysed before (Fig. 7.15a) but with larger openings is 

discretized through 17920 triangular elements. It is subjected to uniformly 

distributed loads, represented by yellow stripes, and to given vertical linear 

settlements as shown in Fig. 7.17.  

     
 

 δ 
  

Fig. 7.17 - A wall with openings, discretized through 17920 triangular elements, is 

subjected to uniform loadings represented by yellow stripes and to a given vertical 

settlement distribution. 

The number of restrictions, both equalities and inequalities, is 212832 whilst the 

number of unknowns is 53760. The solution 𝑼̂0 of the minimum problem is reached 

through the interior point method in 230s with an Intel® Core™ i7-6700HQ. A 

representation of the solution 𝑼̂0 is reported in Fig. 7.18. 
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Fig. 7.18 - A representation of the solution 𝑼̂0, obtained in 230s through the interior point 

method, is depicted. 

∎  7.5 CASE STUDIES: DETECTING A CRACK PATTERN 

In this section, we present three case studies in order to illustrate the way in which a 

particular fracture pattern can be identified as the one associated to the minimum of 

the energy in the class of piecewise rigid displacements (PR method, i.e. modelling 

the cracks as concentrated). The results in each case are obtained performing 

different iterations each corresponding to a different settlement scenario, in order to 

find the optimal form of the foundation settlements as that giving the best qualitative 

fit with the real crack pattern, see also (Iannuzzo et al, 2016). 

7.5.1 Case study 1: XVII century building in Bergamo 

As first example concerning the identification of the crack pattern, we propose the 

analysis of the façade of the structure depicted in Fig. 4.1. This masonry construction, 

due to an evident foundation settlement, exhibits a widespread cracking on its main 

façade (see also Fig. 7.19). 
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Fig. 7.19 - Front view and crack pattern of the façade of a XVII century building in 

Bergamo, presenting an extensive cracking due to an evident differential settlement of 

the foundation (redrawn from the site of the Fire workers of Bergamo. Courtesy of Paolo 

Faccio). 

In the simulation, the main façade, loaded by two uniformly distributed loads, 

represented by yellow strips, is discretized with 7192 rigid triangular elements (Fig. 

7.20). The effect of a differential settlement of the right part of the foundation is 

considered and the analysis is restricted to the right part of the structure, on the right 

side of the red vertical line depicted in (Fig. 7.20). We consider as data of the 

problem the foundation settlements defining the known terms of some of the 

restrictions considered as constraints in the LP program. 

  

Fig. 7.20 – The structure shown in Fig. 7.19 is discretized with 7192 rigid triangular 

elements. 

The discretization of the extract structure is constituted by 4048 triangular elements 

and then the number of unknowns is 12144. The total number of restrictions, both 

equalities and inequalities (including internal and external boundary conditions) is 

47508. The piecewise rigid displacement field, with support on the triangular 

elements, produced by the settlement is obtained by minimizing the potential energy 

℘(𝑼̂) with respect to the generalized displacement 𝑼̂, as described in Section 4.3. 

The optimal profile of the given settlements, controlled by three parameters, was 

obtained by executing a parametric analysis for various runs of the program on the 
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grid of possible values of the parameters. The shapes of both vertical and horizontal 

settlements which better reflect the real crack pattern are shown in Fig. 7.21. The 

solution 𝑼̂0 of LP problem is reached through the interior point method in 61.82s 

with an Intel® Core™ i7-6700HQ (Fig. 7.21 and Fig. 7.22). 

  

 

 
δhor 

δver 

 

Fig. 7.21 - A representation of the optimal solution 𝒖0, corresponding to the minimizer 

𝑼̂0 of the LP problem, and of both vertical and horizontal foundation settlements giving 

the best qualitative fit with the real crack pattern (see Fig. 7.19) are depicted. 

  

 

 

 

Fig. 7.22 – Another representation of the minimizer 𝑼̂0 of the LP problem.  
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7.5.2 Case study 2: XVIII century building in Torre Annunziata (Naples) 

In this section, we present the analysis of the façade of a XVIII century historical 

buildings, made of local tuff stone, located in via Nazionale, Torre Annunziata. In Fig. 

7.23 the front of the building with the drawing of the cracks (obtained through a 

photographic image reconstruction), and its second floor plan are shown. 

 
 

(a) 

 

 
 

  (b) 

 
 

Fig. 7.23 - Front view of a XVIII century building in Torre Annunziata (Naples): (a). In (a) 

the crack pattern, traced through digital image reconstruction from the photo, is also 

reported. Plan of the second floor of the building: (b), some parts of the plan are not 

shown. 

With reference to Fig. 7.24a, we observe that the parapet inside the dashed 

rectangle is a non-structural element and then is not considered in the analysis. The 

masonry structure in the dot-dashed rectangle is a semi-detached construction and 

therefore is not considered in the analysis either. In the model we construct (see Fig. 

7.24b), we use 490 identical square elements of side 0.80 m, for which the 
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corresponding number of unknowns is 1470. As external load we consider the self-

weight only, on assuming a masonry density of 1600 kg/m3, applied at the centroids 

of each rigid block. 

  
(a)  (b)  

Fig. 7.24 – The front view of the building (a) and rigid block discretization (b) are shown. 

The zone of crushing is highlighted with two light yellow strips. 

We consider as data of the problem both foundation settlements and given 

eigenstrains concentrated along the two light yellow strips, located above two of the 

ground floor masonry panels. The eigenstrains simulate a widespread crushing of 

such wall panels, caused by the enlargement of the adjacent openings (Fig. 7.24). 

Both settlements and eigenstrains represent the known terms of some of the 

inequalities considered as constraints in the LP program. The total number of 

restrictions, both equalities and inequalities (including internal and external 

boundary conditions) is 5244. 

Since the exact distribution and the relative amplitude of the set of settlements and 

distortions which caused the cracks were not known exactly, we considered a set of 

simple forms of such settlements defined by a few parameters and performed some 

qualitative parametric analyses to identify the relative values of such parameters 

choosing the value that gave the better description of the detected crack pattern. 

The foundation settlement and eigenstrains shape which better reflect the real crack 

pattern are shown in Fig. 7.25. We used the interior point routine implemented in 

the program Mathematica ® to solve the related LP problem. 
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Fig. 7.25 – Two representation of the same optimal solution 𝒖0 corresponding to the 

minimizer 𝑼̂0 of the LP problem are depicted. 

7.5.3 Case study 3: XVII century Church (Naples) 

The third example concerns the analysis of “Chiesa di Santa Maria Incoronatella della 

Pietà dei Turchini”, a XVII century church located in via Monteoliveto in Naples. In 

Fig. 7.26a and Fig. 7.26b, the plan and a lateral view of the structure are reported. 

The discretized model we construct, is constituted by 3183 square blocks of side 

0.52m (see Fig. 7.26c). As external loads, in addition to the self-weight of the 

structure (𝜌=1800 kg/m3), uniformly distributed tractions (applied as shown in Fig. 

7.26c) representing the action of the secondary structures, and whose values are also 

reported in Fig. 7.26c, are also considered. The total unknowns of the problem are 

9549 and the number of restrictions, both equalities and inequalities, is 36256. 

Performing a few different runs for different relative values of the four prescribed 

settlements, we found the particular form of the vertical settlements, shown in Fig. 

7.27, as that giving the best qualitative fit with the real crack pattern. Two 

representations of the result, in terms of rigid body displacements of the blocks, are 

reported in Fig. 7.27. In Fig. 7.28 we report the result of the analysis of the same 

wall of the Church, considering the effect of a tie, represented in Fig. 7.28 by the 

thick red line. 
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Fig. 7.26 - Plan (a) and section A-A’ (b) of the church and the rigid block discretization 

(c). The crack pattern, reconstructed from a photographic survey, is shown in (a) and (b). 

The distributed loads due to the secondary structures are reported in (c) with yellow strips. 
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Fig. 7.27 - Two representations of the same minimizer 𝑼̂0 of the LP problem 

corresponding to the vertical foundation settlements giving the best qualitative fit with 

the real crack pattern (see Fig. 7.26a and Fig. 7.26b) are depicted. 
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Fig. 7.28 - Representation of the solution 𝒖0 corresponding to the analysis of the 

structure subjected to the optimal value of the vertical foundation settlements found in 

the previous analysis and to the effect of a tie (red thick line). 

 



[8] Masonry Structures under Horizontal Actions - Chapter 8 

MASONRY STRUCTURES UNDER 

HORIZONTAL ACTIONS 

Prologue. In this Chapter, some applications concerning the analysis of simple 

masonry structures under horizontal actions are presented. First cases concern 

either portals or double portals analyzed with both numerical methods. The 

numerical strategy adopted to solve the problem is the same used for the 

circular arch (see Section 6.6). Furthermore, we illustrate how the use of the C0 

method based on continuous functions could simplify the problem providing 

an indication of the partition of the structure into rigid blocks. Finally as a case 

study, an arch under horizontal shaking action is considered. We find the static 

collapse multiplier with the PR method, and then, by using the partition 

obtained through the rigid block model, we develop a dynamic analysis based 

on the model of rocking of a rigid block.  

∎  8.1 EXAMPLE 1: PORTAL UNDER HORIZONTAL ACTION 

In this section, we present some applications concerning portals under horizontal 

actions analysed by using the PR method (rigid blocks) and varying the discretization. 

Our numerical strategy to solve the problem of a structure under horizontal action is 

the same adopted for the arches (see Section 6.6). In short, if λ denotes the scale 

factor of the horizontal actions (loads or displacements), we can find an interval 

[λ𝑠 , λ𝑚] to which the collapse multiplier 𝜆𝑐  has to belong. In particular, λ𝑠 represents 

an approximation of the supremum of the multipliers for which the initial 

configuration is still safe (i.e. 𝑼̂0 = 𝟎), whilst λ𝑚 represents an approximation of the 

infimum of the multipliers for which the structure becomes a mechanism (i.e. 𝑼̂0 ≠

𝟎). 
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8.1.1 Numerical analysis with the PR method 

The NRNT portal, discretized with 384 rigid triangular elements, is loaded on the top 

edge by a piecewise uniformly distributed load (represented by yellow strips) as 

shown in Fig. 8.1. The external horizontal action is represented by the horizontal 

distribution of loads (represented by grey strips) proportional to the vertical ones 

through the scale factor 𝜆 as shown in figure Fig. 8.1. 
 

 

 

 

 

 

 

 

 

    
 

q 
 

lq 
 

 

Fig. 8.1 – A NRNT portal, discretized with 384 rigid triangular elements, loaded by a 

piecewise uniformly distributed vertical load (yellow strip) and by a similar horizontal load 

distribution λq (represented with the grey strips). 

The collapse multiplier λ𝑐 belongs to the interval [0.252 , 0.253]. The mechanism 

corresponding to the value λ = 0.253, reached through the interior point method in 

0.31s with an Intel® Core™ i7-6700HQ, is depicted in Fig. 8.2. 

    
 

 

Fig. 8.2 – A representation of the solution 𝑼̂0  for λ = 0.253 and obtained through the 

interior point method: four hinges form and the structure becomes a mechanism. 
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8.1.2 Numerical analysis with the PR method on a denser discretization 

The previous portal of Fig. 8.1, subjected to the same load conditions, is here 

discretized with 1536 rigid triangular elements as depicted in Fig. 8.3.  
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Fig. 8.3 - The portal analysed in Section 8.1.1 is discretized with 1536 triangular elements. 

The number of restrictions, both equalities and inequalities, is 18048 whilst the 

number of unknowns is 4608. The collapse multiplier λ𝑐 belongs to the interval 

[0.249 , 0.250]. The solution 𝑼̂0 corresponding to the value λ = 0.250, reached 

through the interior point method in 3.53s with an Intel® Core™ i7-6700HQ, is 

depicted in Fig. 8.4. From Fig. 8.4, it should be noted that fours hinges form and the 

structure becomes a mechanism. 

    
 

 

 

 

Fig. 8.4 - A representation of the solution 𝑼̂0 corresponding to λ = 0.250 is depicted.  
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8.1.3 Numerical analysis with the C0 method 

The same portal of Fig. 8.1 is here analysed with the C0 method, based on an 

approximation with continuous functions. The portal of NRNT material is discretized 

using 384 9-nodes square elements (a second order Lagrangian quadrangular 

element) and is loaded as shown in Fig. 8.5a. 
 

 

 

 

 

 

 

 

 

     
 

q 
 

0.255q 
 

    
 

 
(a) (b)  

Fig. 8.5 –In (a): the NRNT portal, discretized with 384 9-nodes square elements, is loaded 

by a piecewise uniformly distributed vertical load (yellow strip) and by a similar horizontal 

load distribution 0.255q (represented with the grey strips). In (b): a representation of the 

solution is depicted. 

The solution 𝑼̂0 of the minimum problem, obtained with the interior point method 

in 716.78s (with an Intel® Core™ i7-6700HQ) by using 16 tangent planes for each 

node, is shown graphically in Fig. 8.5b. The streamlines of the displacement field are 

reported in Fig. 8.6. 
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Fig. 8.6 - The stream plot of the displacement field is reported: the centres of rotation 

can be identified. 
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To represent the strain field 𝑬, in Fig. 8.7 we report a measure of the deformation, 

namely |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇). 
 

 

  
 
 
 
 

 

Fig. 8.7 - The field |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇) is reported. 

The skew-symmetric part of the displacement field is depicted in Fig. 8.8a. It should 

be noticed that the gradient of rotation is essentially concentrated along two vertical 

lines. By depicting the positive rotations in red and the negative ones in blue (Fig. 

8.8b), we obtain a neat subdivision of the domain into three blocks. Such blocks 

deform essentially as rigid bodies since the rotation is piece-wise constant and the 

deformation is practically constant (see Fig. 8.7). The partition is the same obtained 

with the PR method (see Fig. 8.2 and Fig. 8.4). 

  
(a) (b)  

Fig. 8.8 – In (a) the rotation field over the whole domain. In (b) by depicting the positive 

rotations in red and the negative ones in blue, a neat partition of the whole domain into 

three rigid blocks can be seen.  
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∎  8.2 EXAMPLE 2: PORTAL UNDER HORIZONTAL ACTION 

In this section, the portal of Section 8.1 is here analysed with both two numerical 

methods but varying the mode of application of the horizontal load. Our numerical 

strategy to solve the problem of a structure under horizontal action is the same 

adopted in Section 6.6 for the arches (see also Section 8.1). 

8.2.1 Numerical analysis with the PR method 

A NRNT portal, discretized with 384 rigid triangular elements, is loaded on the top 

edge by a piecewise uniformly distributed load (represented by yellow strips) as 

shown in Fig. 8.9a. The external horizontal action is here represented by the force 

𝜆𝑄 where 𝑄 is equal to the resultant of the acting vertical loads and 𝜆 is the scale 

factor. 

    
 

 

 

q 
 lQ 

 

    
 

0.32Q 
 

 
 (a) (b) 

 
 

Fig. 8.9 – In (a): the NRNT portal, discretized with 384 rigid triangular elements, is 

subjected to a piecewise uniformly distributed load q and to the horizontal force λQ. In 

(b): a representation of the solution 𝑼̂0 corresponding to λ = 0.32 and obtained through 

the interior point method is depicted: four hinges form and the structure becomes a 

mechanism. 

The collapse multiplier λ𝑐 belongs to the interval [0.31 , 0.32]. The mechanism 

corresponding to the value λ = 0.32, reached through the interior point method in 

0.27s with an Intel® Core™ i7-6700HQ, is depicted in Fig. 8.9b. 
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8.2.2 Numerical analysis with the PR method on a denser discretization 

The same NRNT portal of Section 8.2.1, subjected to the same load conditions, is 

here discretized with 1536 rigid triangular elements as depicted in Fig. 8.10. 

    
 

 

 

q 
 lQ 

 

 

Fig. 8.10 – The NRNT portal, discretized with 1536 rigid triangular elements, is loaded by 

the piecewise uniform load q and by the horizontal force λQ. 

The collapse multiplier λ𝑐 belongs to the interval [0.30 , 0.31]. The mechanism 

corresponding to the value λ = 0.31, reached through the interior point method in 

2.35s with an Intel® Core™ i7-6700HQ, is depicted in Fig. 8.11. 

    
 

0.31Q 
 

  

Fig. 8.11 – A representation of the solution 𝑼̂0 corresponding to λ = 0.31 and obtained 

through the interior point method is depicted: four hinges form and the structure 

becomes a mechanism. 
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8.2.3 Numerical analysis with the C0 method 

The same NRNT portal of Fig. 8.9, subjected to the same load conditions, is here 

analysed with the C0 method, based on an approximation with continuous functions. 

The portal, shown in Fig. 8.12a, is discretized using 384 9-nodes square elements (a 

second order Lagrangian quadrangular element). 
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 lQ 

 

     
 

 
(a) (b) 

 

Fig. 8.12 –In (a) the NRNT portal, discretized with 384 9-nodes square elements, is loaded 

by a piecewise uniformly distributed vertical load (yellow strip) and by a similar horizontal 

load distribution 0.32q (represented with the grey strips). In (b) a representation of the 

solution is depicted. 

The solution 𝑼̂0 of the minimum problem, obtained with the interior point method 

in 716.78s (with an Intel® Core™ i7-6700HQ) by using 16 tangent planes for each 

node, is shown graphically in Fig. 8.12b. The streamlines of the displacement field 

are reported in Fig. 8.13. 
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Fig. 8.13 - The stream plot of the displacement field is reported: the centres of rotation 

can be identified. 
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To represent the strain field 𝑬, in Fig. 8.14 we report a measure of the deformation, 

namely |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇). 
 

 

   
 
 
 
 

 

Fig. 8.14 - The field |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇) is reported. 

The skew-symmetric part of the displacement field is depicted in Fig. 8.15a. It should 

be noted that the gradient of rotation is essentially concentrated along two lines. By 

depicting the positive rotations in red and the negative ones in blue (Fig. 8.15b), we 

obtain a neat subdivision of the domain into three blocks. Such blocks deform 

essentially as rigid bodies since the rotation is piece-wise constant and the 

deformation is practically constant (see Fig. 8.14). The partition is the same obtained 

with the PR method (Fig. 8.9b and Fig. 8.11). 

  
(a) (b)  

Fig. 8.15 – In (a) the rotation field over the whole domain. In (b) by depicting the positive 

rotations in red and the negative ones in blue, a neat partition of the whole domain into 

three rigid blocks can be seen.  
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∎  8.3 EXAMPLE 3: DOUBLE PORTAL UNDER HORIZONTAL ACTIONS 

In this section, we present three solutions concerning a double portal analysed by 

using both two numerical methods described in Chapter 4, namely the PR method, 

based on rigid blocks (modelling the cracks as concentrated), and the C0 method, 

based on continuous functions (modelling the cracks as smeared). In the first two 

cases the external actions are represented through two concentrated forces 

depending on a scale factor 𝜆, whilst in the third one the structure is subjected to a 

horizontal linear displacement. 

8.3.1 Numerical analysis with the PR method 

A NRNT double portal, discretized with 12288 triangular elements, is loaded by two 

piecewise uniformly distributed loads (represented by yellow strips). The external 

horizontal action is represented by the two forces (0.5𝜆𝑄, 𝜆𝑄) where 𝑄 is in norm 

equal to the resultant of the acting loads at the same level and 𝜆 is the scale factor 

(Fig. 8.16a). 
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 (a) (b)  

Fig. 8.16 – In (a) the NRNT double portal is discretized with 12288 triangular elements. In 

(b) a representation of the solution 𝑼̂0 corresponding to λ = 0.26. 
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The number of restrictions, both equalities and inequalities, is 146048 whilst the 

number of unknowns is 36864. The collapse multiplier λ𝑐 belongs to the interval 

[0.25 , 0.26]. The mechanism corresponding to the value λ = 0.26, reached through 

the interior point method in 49.98s with an Intel® Core™ i7-6700HQ, is depicted in 

Fig. 8.16a and in Fig. 8.17. 

      

0.13Q 
 

0.26Q 
 

 

Fig. 8.17 - Another representation of the solution 𝑼̂0 corresponding to λ = 0.26. 
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8.3.2 Numerical analysis with the C0 method (horizontal forces) 

The NRNT double portal of Section 8.3.1 is here analysed with the C0 method, 

considering the same load condition. The structure is discretized using 384 9-nodes 

square elements (a second order Lagrangian quadrangular element) as shown in Fig. 

8.18a. 
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 (a) (b)  

Fig. 8.18 – In (a): the NRNT double portal, discretized with 384 9-nodes square elements. 

In (b): a representation of the solution 𝑼̂0 corresponding to λ = 0.26. 

The solution 𝑼̂0 of the minimum problem, obtained with the interior point method 

in 287.43s (with an Intel® Core™ i7-6700HQ) by using 16 tangent planes for each 

node, is shown graphically in Fig. 8.18b.  

To represent the strain field 𝑬, in Fig. 8.19a we report a measure of the deformation, 

namely |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇). The streamlines of the displacement field are reported in Fig. 

8.19b.  

The skew-symmetric part of the displacement field is depicted in Fig. 8.20a. It should 

be noticed that the gradient of rotation is essentially concentrated along lines. By 

depicting the positive rotations in red and the negative ones in blue (Fig. 8.20b), we 

obtain a neat subdivision of the domain into five blocks. Such blocks deform 

essentially as rigid bodies since the rotation is piece-wise constant and the 

deformation is practically constant (see Fig. 8.19a). The partition is similar to that 

obtained with the PR method (see Fig. 8.17). 
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Fig. 8.19 - The field |𝑬|2 = 𝑡𝑟(𝑬𝑬𝑇) is reported. 

     
 (a) (b)  

Fig. 8.20 – In (a) the rotation field over the whole domain. In (b) by depicting the positive 

rotations in red and the negative ones in blue, a partition of the whole domain into five 

rigid blocks can be seen.  
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8.3.3 Numerical analysis with the C0 method (horizontal displacements) 

The NRNT double portal of Section 8.3.1, here analysed by using the C0 method, is 

loaded by a piecewise uniformly distributed loads (represented by yellow strips as 

shown in Fig. 8.21a) and by horizontal actions modelled with linear displacement 

imposed to the left side of the structure. The double portal is discretized using 768 

9-nodes square elements (a second order Lagrangian quadrangular element). 
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 δ 
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 (a) (b)  

Fig. 8.21 – In (a): the NRNT double portal, discretized with 768 9-nodes square elements, 

is loaded by a piecewise uniformly distributed loads (yellow strips) and is subjected at left 

side to a linear distribution of displacements. In (b): a representation of the solution is 

depicted. 

The solution 𝑼̂0 of the minimum problem is reached through the minimization of the 

energy into the finite element space defined previously (see Section 4.4). The 

solution obtained with the interior point method in 600s (with an Intel® Core™ i7-

6700HQ) is shown graphically in Fig. 8.21b. The horizontal component of the 

displacement corresponding to the solution  𝑼̂0 is reported in Fig. 8.22: the gradient 

of the displacement field is concentrated essentially along lines.  
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Fig. 8.22 – Graph of the horizontal component of the displacement field corresponding 

to the solution 𝑼̂0. 

 

 
 

 

    
 

(a) (b) 

 

Fig. 8.23 – Rotation field over the whole domain: (a). Stream plot of the displacement 

field: (b). 
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The skew-symmetric part of the displacement field (representing the local rotation) 

is depicted in Fig. 8.23a. It should be noticed that the gradient of rotation is 

essentially concentrated along lines (Fig. 8.23a). A stream plot of the displacement 

field over the whole domain is reported in Fig. 8.23b; from Fig. 8.23b the centres of 

rotation can be clearly identified. 

By depicting the positive rotations in red and the negative ones in blue (Fig. 8.24a), 

we obtain a neat subdivision of the domain into five blocks Fig. 8.24b. Such blocks 

deform essentially as rigid bodies since the rotation and the deformation are 

piecewise constant. Notice that the strain, though we are using continuous functions, 

is practically all concentrated on lines.  

 
  

(a) (b)  

Fig. 8.24 - By depicting the positive rotations in red and the negative ones in blue (a), a 

neat partition of the whole domain into five rigid blocks can be seen (b). 
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∎  8.4 ARCH UNDER HORIZONTAL LOAD: A CASE STUDY 

In this section, we analyse a real barrel vault, built and tested at the DIST laboratory 

(Department of Structures for Engineering and Architecture, Università degli Studi di 

Napoli Federico II): we refer to the work of Ramaglia et al (2016) for more details on 

the realization and testing of this artefact. 

For the numerical strategy used to solve the problem of the arch under horizontal 

action we refer to Section 6.6. We approach the analysis by using the PR method in 

order to evaluate a static collapse multiplier and to obtain a partition of the domain 

into rigid blocks. Starting from this rigid block mechanism, and considering that a 

masonry structure under variable actions shows a typical SDOF unilateral dynamic 

behaviour, such mechanisms can be used to perform a dynamic analysis with the 

same approach used for the dynamic analysis model of rocking of a rigid block (see 

Appendix F and (Ochsendorf, 2006)). 

8.4.1 Arch, case study: static analysis 

The numerical analysis presented her is based on the PR method. The analytic 

solution is given in the appendix (see Section E.2). The structural geometry of the 

arch is shown in Fig. 8.25. The arch presents an internal radius 𝑟 = 1.54𝑚, a thickness 

𝑠 = 0.12𝑚 and a springing angle 𝛽 equal to 17.17°.  

  

Fig. 8.25 - Structural geometry of the tested arch. 
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Fig. 8.26 - The circular arch with 𝛽 = 17.17° is discretized with 62 rigid elements. 

The arch is discretized with 62 rigid quadrangular elements as shown in Fig. 8.26. A 

representation of the solution 𝑼̂0 of the minimum problem, reached through the 

simplex method, is reported in Fig. 8.27. The solution is close to the analytical one 

(Tab. 8.1). The mechanism, the relative hinges and the associated line of thrust are 

depicted in Fig. 8.28. 

𝑠 =0.12m 𝜆𝑐 𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

Numerical solution [0.1594 , 0.1595] 151.08 99.40 47.71 17.17 

Analytical solution 0.1593 149.90 99.05 48.20 17.17 

 

Tab. 8.1 - The numerical solution reached with the simplex method and the analytical one 

(extracted from Tab. E.5) are reported. 

 

 

     
 

 

 

 

Fig. 8.27 - Solution 𝑼̂0 corresponding to 𝜆 = 0.1595, obtained through the simplex 

method. 
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Fig. 8.28 - The mechanism corresponding to 𝜆 = 0.1595, the hinges formed and the 

associated thrust line. 

8.4.2 Arch, case study: dynamic analysis 

The previous analysis gives a close approximation of the static collapse multiplier, 

anyhow, once the arch reaches this limit condition, represented by the above SDOF 

mechanism, it starts moving dynamically. If the external action be constant the 

collapse will certainly occur. If the external action is variable action (e.g. seismic 

action), a dynamic analysis has to be performed. Indeed, during the motion, the arch 

oscillates between the two qualitative configurations reported in Fig. 8.29. 

 
 

 

a 

  

a 

 

Fig. 8.29 - The two pattern configurations among which the arch oscillates under a 

variable action. 
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The arch shows a typical unilateral dynamic behaviour, and it can be treated with the 

model of rocking of a rigid block (see Appendix F). By using the mechanisms shown 

in Fig. 8.29 in both directions and by evaluating all the dynamic properties of the 

rigid blocks in which the arch decomposes, the dynamic analysis can be performed. 

The equation of motion is derived from the Lagrangian of the whole system and 

reads:  

0.639Sign(𝜗(𝑡)) − 0.3207𝑥𝑔̈(𝑡) + 0.393𝜗̈(𝑡) = 0 

where 𝜗 identifies the Lagrangian parameter of the rotation of the blocks (labelled 

with the letter “a” in Fig. 8.29) and 𝑥𝑔̈(𝑡) is the ground motion.  The integration of 

the previous ODE is performed numerically. In Fig. 8.30 an analysis considering a 

restitution coefficient 𝑟 = 0.9 and a sinusoidal impulse with a duration 𝑇 = 15𝑠 

expressed by: 

𝑥𝑔̈(𝑡) = 𝛼𝑔𝑆𝑖𝑛(𝜔𝑡) 

where 𝛼 = 0.25 and 𝜔 = 2𝜋𝑓, with 𝑓 = 2𝐻𝑧 is presented. 
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Fig. 8.30 - The rotation (a), the angular velocity (b) and the related phase plane (c) are 

reported. 
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[9] Conclusions - Chapter 9 

CONCLUSIONS 

Prologue. The results of this dissertation are discussed in three parts: 1) a 

general description on the general framework of the theory; 2) the sense and 

the motivation behind the two numerical procedures which are proposed; 3) a 

discussion on the applications and results concerning 2d structures subjected 

either to prescribed settlements or variable loads. 

∎  9.1 RIGID BLOCK MODEL METHODOLOGY 

This dissertation presents a new rigid block model for the analysis of masonry 

elements and structures. The basic idea behind this work is that real masonry 

structures exhibit such rigid block mechanisms when subject to severe settlements 

or when shaken by serious earthquakes. To model this behaviours the Normal Rigid 

No-Tension (NRNT) model is adopted, that is the material is rigid in compression, 

but extensional deformations, at zero energy price, are allowed. The NRNT model 

represents a natural extension of the Heyman’s theory to continuum models. 

The boundary value problem (bvp) dealt with by using a displacement approach, is 

formulated as a minimum energy search. Such energy criterion allows to select, 

among all kinematically admissible mechanisms, the mechanism solving the bvp. 

Two ways to discretize the displacement space are adopted, and for each of them a 

numerical solution strategy is introduced, namely: the PR method and C0 method. 

With the PR method (i.e. rigid blocks), the energy is minimized within the set of 

piecewise rigid (PR) displacements under Heyman’s restrictions: the latent strain is 

concentrated along lines and only concentrated cracks are allowed. With the C0 
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method the minimum of the energy is searched among continuous (C0) displacement 

fields (according to a classical finite element approximation). The problem is reduced 

to a standard Linear Programming by introducing a special set of linearized 

constraint conditions, in order to enforce the semi-positiveness of the latent strain 

tensor: the fractures appears as smeared. The main result of the C0 method is that, 

even if continuous functions are considered, the solution will often return an 

approximate partition of the whole structure into rigid blocks, confirming the validity 

of the PR method.  

After the two methods are introduced, some trivial problems are proposed to explore 

the numerical performances of the two approaches and the “pro et contra” of these 

two strategies. Chapter 6 is completely dedicated to the study of the arch as 

benchmark case, whilst in the final Chapters some applications to common structures 

are proposed. The method for determining the effects of settlements, for identifying 

a settlement distribution producing a given crack pattern and for assessing the static 

multiplier due of horizontal actions, are illustrated. The main conclusion is that if an 

optimal partition of the structural domain is correctly guessed the results obtained 

with the PR methods are satisfactory, otherwise the C0 method can be used to 

identify the optimal partition. The results we present, show that a masonry structure 

either forms an isostatic substructure in order to accommodate the effect of the 

given settlements, or reduces to a Single Degree of Freedom mechanism, if driven 

into to a limit state under the effect of variable forces (e.g. due to seismic actions). 

This last observation leads to the possibility of applying to the formed SDOF 

mechanism the model of rigid block rocking in order to analyse its dynamical 

behaviour. 

∎  9.2 RIGID BLOCK MODEL: APPLICATIONS 

Both PR and C0 methods allow the user to analyse 2d masonry structures using: 

- different discretizations of the domain with a generic choice of the element type; 

- a generic distribution (e.g. vertical or horizontal) of external forces, implemented 

as concentrated and applied at generic points of the domain; 

- a generic distribution of prescribed settlements along the boundary of the 

structural domain, implemented either with bilateral or unilateral constraints; 

- the possibility to consider in the PR method eigenstrains (e.g. to simulate 

crushing), modelled as relative, non-homogeneous unilateral constraints; 

 

In our analysis, with reference to the C0 method, we tested various finite element 

types, but the best choice, balancing accuracy and simplicity, turned out to be a 

second order Lagrangian quadrangular element (Fig. 4.6). 



 Chap. 9 - Conclusions 209 

 

The benchmarks and the applications analysed prove the valid numerical 

performances of the two approaches and show the “pro et contra” of these two 

strategies. The main result of the C0 method is that, even if continuous functions are 

considered, the solution will often return an approximate partition of the whole 

structure into rigid blocks, confirming the validity of the PR method. 

Remark 1|9. In this respect, we have to point out that the appearance of piece-

wise rigid mechanisms (producing concentrated strains) rather than 

continuous mechanisms (entailing diffuse strains), is often due, in real 

structures, to mechanical characteristics, such as cohesion, toughness and 

finite friction, which are not accounted for by the NRNT model.  

For bvp's concerning NRNT materials, there are essentially two legitimate ways 

to encourage rigid block mechanisms over diffuse deformations. The first one 

consists in trasplacing the loads, along their lines of action, from their actual 

points of application to the boundary, essentially exploiting small tensile 

stresses. The second one is to add, all over the loaded boundary, a scant 

uniform pressure, of the order of a small fraction of the atmospheric pressure. 

This last trick is sufficient to add to the bvp the so-called "safe load condition", 

necessary, with the known theorems, to show the existence of a displacement 

solution for the parent problem concerning NENT materials, (see (Giaquinta 

and Giusti, 1985), (Anzellotti ,1985)). 

The C0 method being more time consuming, is more appropriate in the analysis of 

simple structure or as a preliminary analysis to be implemented in combination with 

the PR method. Indeed, as discussed in Section 5.3 (p. 97) and noted explicitly with 

Remark 2|5 and Remark 4|5, the sluggishness of the rigid block approximation in 

reproducing “slanted” cracks (that is cracks not developing along the boundary of 

the rigid elements), is one of the main critical issues inherent to the PR 

approximation. Then, when the stereotomy of the structure does not give sufficient 

restrictions on the discretization, this constitutes a reason to use at the same time 

the C0 approximation can be used in combination with the PR approximation, as a 

preliminary analysis for suggesting the optimal rigid block partition.  

If an “optimal” discretization of the domain is suggested by the stereotomy of the 

real structural geometry (e.g. the voussoirs in the arch), the results, obtained by using 

the PR method, are good and the time required for the analysis is of the order of a 

few seconds. Instead, when the structure has a complex stereotomy and no 

information about an opportune discretization into rigid blocks is available, the C0 

method can be used to select an optimal partition into rigid blocks to be fed into the 

PR method. 
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By fixing an optimal partition, the coupled use of both methods allows the user, for 

a generic 2d structure in: 

- to assess the effects of given settlements; 

- to explore the equilibrium under given loads; 

- to define a geometrical safety factor for the structure; 

- to explore the effect of horizontal actions and consequently to find the collapse 

mechanism and the interval to which the horizontal static multiplier has to belong; 

- to identify the distribution of the settlements producing a given crack pattern. 

The use of the rigid block model for the analysis of a structure under horizontal 

actions return the collapse mechanism and the interval to which the static horizontal 

collapse multiplier has to belong. Starting from this rigid block mechanism, and 

considering that a masonry structure under variable actions shows a typical SDOF 

unilateral dynamic behaviour, such mechanisms can be used to perform a dynamic 

analysis with the same approach used for the dynamic analysis model of rocking of 

a rigid block (see Appendix F). In fact, by using the mechanisms found in both 

directions and by evaluating all the dynamic properties of the rigid blocks in which 

the structure decomposes, the dynamic analysis can be performed integrating 

directly the equation of the motion derived from the Lagrangian of the whole system. 
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[A] Preliminaries - Appendix A 

PRELIMINARIES 

Prologue. In this section, we give the essential definitions and the basic tools (both of 

tensors algebra and convex analysis) used in this dissertation with particular regard to the 

strain and stress by adopting conventions of (Gurtin, 1972). 

∎  A.1 PRELIMINARIES FROM TENSOR ALGEBRA 

Let 𝑉 be the two-dimensional vector space associated to the 2d Euclidean space ℰ2. 

In this text, we adopt the Einstein summation convention: when an index variable 

appears twice in a single term and is not otherwise defined, it implies summation of 

that term over all the values of the index.  

With 𝐿𝑖𝑛 one denotes the set of all second order tensor on 𝑉, seen as linear 

transformations from 𝑉 to 𝑉. The scalar product of two elements 𝑨,𝑩 ∈ 𝐿𝑖𝑛 is defined 

by 

 𝑨 ⋅ 𝑩 = 𝑡𝑟(𝑨𝑩𝑇) . (A.1) 

𝑆𝑦𝑚 indicates the subspace of 𝐿𝑖𝑛 of all symmetric linear transformation whilst Skew 

of all antisymmetric ones.  

It is well-known that the eigenvalues of any symmetric tensor are real and the relative 

eigenvectors can be chosen such that they are orthogonal to each other. Thus, with 

regards to a generic symmetric tensor 𝑨 ∈ 𝑆𝑦𝑚, it is possible to fix an orthonormal 

base of eigenvectors (𝒆1, 𝒆2) which results also an orthonormal base of the vector 
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space V. Then, with regards to this base, a symmetric tensor 𝑨 ∈ 𝑆𝑦𝑚 admits a 

spectral decomposition defined as follows: 

 𝑨 = 𝛼𝑖𝒆
𝑖⨂𝒆𝑖    ∀ 𝑨 ∈ 𝑆𝑦𝑚 , (A.2) 

where 𝛼𝑖 , with 𝑖 ∈ {1,2}, is the eigenvalues related to the eigenvector 𝒆𝑖 . This spectral 

decomposition exists and is unique.   

Definition 1|A. Two symmetric tensors 𝑨,𝑩 ∈ 𝑆𝑦𝑚 are coaxial if and only if 

they admit a spectral decomposition with the same orthonormal basis of 

eigenvectors. 

Definition 2|A. Two symmetric tensors 𝑨,𝑩 ∈ 𝑆𝑦𝑚 commute if and only if: 

 𝑨𝑩 = 𝑩𝑨. (A.3) 

The following result allows to connect the previous two definitions. 

Theorem 1|A. Two symmetric tensors 𝑨,𝑩 ∈ 𝑆𝑦𝑚 commute if and only if they 

are coaxial. 

In this dissertation, we often treat with two particular subspaces of 𝐿𝑖𝑛: 𝑆𝑦𝑚+ and  

𝑆𝑦𝑚−; therefore it would be useful point out the minimal characterization of these 

subspaces need to the readers. We denote with 𝑆𝑦𝑚+ [𝑆𝑦𝑚−] the subspace of 𝑆𝑦𝑚 

of all semidefinite positive [negative] symmetric tensors.  It is well known that a 

semidefinite positive [negative] symmetric tensor has as spectral decomposition with 

all non-negative [non-positive] eigenvalues, namely: 

 𝑨 = 𝛼𝑖𝒆
𝑖⨂𝒆𝑖 ∈ 𝑆𝑦𝑚+ ⇔ 𝛼𝑖 ≥ 0  ∀ 𝑖 ∈ {1,2} , (A.4) 

 𝑩 = 𝛽𝑖𝒆
𝑖⨂𝒆𝑖 ∈ 𝑆𝑦𝑚− ⇔ 𝛽𝑖 ≤ 0  ∀ 𝑖 ∈ {1,2} . (A.5) 

Theorem 2|A. Let 𝑨  be a semidefinite positive [negative] symmetric tensor, 

i.e. 𝑨 ∈ 𝑆𝑦𝑚+ [𝑨 ∈ 𝑆𝑦𝑚−], if there exists a vector 𝒖 ∈ 𝑉 such that  𝒖 ⋅ 𝑨𝒖 = 0, 

then 𝒖 is an eigenvector of 𝑨 associating with an eigenvalue equals to 0, 

namely: 

 𝒖 ⋅ 𝑨𝒖 = 0 ⇒  𝑨𝒖 = 𝟎 . (A.6) 

Proof. Suppose 𝑨 ∈ 𝑆𝑦𝑚+ [𝑨 ∈ 𝑆𝑦𝑚−] and assuming for 𝑨 the following spectral decomposition: 

 𝑨 = 𝛼𝑖𝒆
𝑖⨂𝒆𝑖  with  𝛼𝑖 ≥ 0 [𝛼𝑖 ≤ 0] , (A.7) 

it easy to verify that results: 
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 𝑨𝒖 = 𝛼𝑖𝒇
𝑖, (A.8) 

 𝒖 ⋅ 𝑨𝒖 = 𝛼𝑖(𝑢
𝑖)2, (A.9) 

where 𝒇𝑖 = 𝑢𝑖𝒆𝑖 and 𝑢𝑖 = (𝒆𝑖 ⋅ 𝒖). Recalling that 𝛼𝑖 is non-negative [non-positive], if 𝒖 ⋅ 𝑨𝒖 = 0 results that 

each term in the summation (A.9) has to be zero, that is 𝛼𝑖(𝑢
𝑖)2 = 0  ∀ 𝑖 ∈ {1,2} or rather at least one of 

the two following relations have to hold: 

 𝛼𝑖 = 0    or     𝑢𝑖 = (𝒆𝑖 ⋅ 𝒖) = 0 . (A.10) 

Then from (A.8) results that 𝑨𝒖 = 𝟎: 𝒖 is an eigenvector of 𝑨 associating with an eigenvalue equals to 0.∎ 

Since in our treatment we often handle two symmetric tensors, one belongs to 𝑆𝑦𝑚+ 

and the other to 𝑆𝑦𝑚−, the following characterization are relevant. 

Theorem 3|A. Let 𝑩  be symmetric tensor, it results: 

 𝑨 ⋅ 𝑩 ≥ 0  ∀𝑨 ∈ 𝑆𝑦𝑚+  [ ∀𝑨 ∈ 𝑆𝑦𝑚−]  ⇒  𝑩 ∈ 𝑆𝑦𝑚+  [𝑩 ∈ 𝑆𝑦𝑚−] . (A.11) 

Theorem 4|A. Let 𝑨 ∈ 𝑆𝑦𝑚+, if 𝑩 ∈ 𝑆𝑦𝑚+ [𝑩 ∈ 𝑆𝑦𝑚−] then 

 𝑨 ⋅ 𝑩 ≥ 0  [𝑨 ⋅ 𝑩 ≤ 0] .  (A.12) 

Theorem 5|A. Let 𝑨 ∈ 𝑆𝑦𝑚+ and 𝑩 ∈ 𝑆𝑦𝑚−, it results: 

 𝑨 ⋅ 𝑩 = 0 ⇒  𝑨𝑩 = 𝑩𝑨 = 0 . (A.13) 

From Theorem 1|A and 5|A, if these three relations hold: 

 𝑨 ∈ 𝑆𝑦𝑚+  ,  𝑩 ∈ 𝑆𝑦𝑚−  ,  𝑨 ⋅ 𝑩 = 0  , (A.14) 

then 𝑨 and 𝑩 are coaxial. 

∎  A.2 PRELIMINARIES FROM CONVEX ANALYSIS 

One briefly introduces some concepts about convex analysis, in particular three 

geometrical definitions regarding the convex cone, the dual cone and the polar cone. 

Let 𝑉ℝ be the two-dimensional vector real space associated to the 2d Euclidean space 

ℰ2 and let 𝐾 be a non-empty subset of 𝑉ℝ. In this section, we made the particular 

request that V is a vector space over the real field ℝ because, as it can see below, we 

need to consider into the following definitions the concept of non-negative (or 

positive) scalar.  
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Definition 3|A. 𝐾 is a cone (or linear cone) if and only if: 

 ∀𝒙 ∈ 𝐾 ⇒ 𝛾𝒙 ∈ 𝐾       ∀𝛾 ∈ ℝ0
+. (A.154) 

Definition 4|A. 𝐾 is a convex cone if it is closed under linear combinations 

with non-negative coefficients: 

 𝐾 𝑐𝑜𝑛𝑣𝑒𝑥 𝑐𝑜𝑛𝑒 ⟺ ∀𝒙, 𝒚 ∈ 𝐾 ⇒ 𝛼𝒙 + 𝛽𝒚 ∈ 𝐾    ∀𝛼, 𝛽 ∈ ℝ0
+ . (A.16) 

It is noticed that assuming 𝒚 = 𝒙 and 𝛼 = 𝛽 = 𝛾/2, a convex cone is a special case of 

linear cone. In some books, one defines a convex cone 𝐾 using strictly positive scalars 

and so, the origin does not belong to the cone: this is the case of the convex “blunt” 

cone 𝐾, otherwise the cone is called “pointed”. In our treatment, we consider only 

pointed cone. It is noticed that, since the scaling parameters α and β are non-limited, 

the cones are infinite in extent and not bounded.  

It follows from the above properties that a convex cone is as a linear cone that is 

closed under convex combinations. More succinctly, a set 𝐾 is a convex cone if and 

only if  𝛼𝐾 = 𝐾 and  𝐾 + 𝐾 = 𝐾 , for any positive scalar 𝛼.  

Examples. The empty set, the space 𝑉ℝ, and any linear subspace of 𝑉ℝ are 

convex cones. A convex combination of a finite set of vectors in ℝ𝑛 is a convex 

cone. The intersection of two convex cones in the same vector space is again 

a convex cone, but their union may fail to be one. The set of semidefinite 

matrices, both 𝑆𝑦𝑚+ and 𝑆𝑦𝑚−, are convex cone. ∎ 

Below one supposes the vector space 𝑉ℝ is equipped either by the inner product 

〈 ∙ , ∙ 〉 and either by the relative induced norm | ∙ |. One introduces the notions of 

projection of a point on a convex cone and the normal cone of a set.  

Definition 5|A. Let 𝐾 ⊆ 𝑉ℝ be a convex cone of a vector space 𝑉ℝ equipped 

by the norm |⋅| induced by inner product 〈⋅,⋅〉. A point 𝒚 ∈ 𝐾 is the orthogonal 

projection of a point 𝒙 ∈ 𝑉ℝ if 

 |𝒚 − 𝒙| = 𝑚𝑖𝑛{|𝒛 − 𝒙|, ∀𝒛 ∈ 𝐾} . (A.17) 

Furthermore, it is possible to demonstrate that if 𝐾 is also closed, the projection exists 

and is unique. Starting from this definition, if  𝐾 is a closed convex cone, the following 

statement holds: 

Theorem 6|A. Let 𝐾 be a closed convex cone, 𝒚 ∈ 𝐾 is the orthogonal 

projection of a point 𝒙 ∈ 𝑉ℝ onto 𝐾 if and only if the following two conditions 

hold: 
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 〈𝒘, 𝒙 − 𝒚〉 ≤ 𝟎    ∀𝒘 ∈ 𝐾, (A.18) 

 〈𝒚, 𝒙 − 𝒚〉 = 𝟎 . (A.19) 

It is useful to give another geometrical characterization of projection of a point, that 

is a geometric one based on the concept of “normal cone” of a set 𝑆 ⊆ 𝑉ℝ  in a fixed 

point 𝒚 ∈ 𝑉ℝ. 

Definition 6|A. Let 𝑆 be a non-empty subset of 𝑉ℝ, and let 𝒚 ∈ 𝑉ℝ , the normal 

cone to 𝑆 in 𝒚 is  

 𝑁𝑜𝑟𝑚(𝑆, 𝒚) = {𝒙 ∈ 𝑉ℝ | 〈𝒛 − 𝒚, 𝒙〉 ≤ 0 ∀𝒛 ∈ 𝑆} . (A.20) 

When 𝑆 = 𝐾 is a closed convex cone, it is possible introduce the following 

characterization. 

Definition 7|A. Let 𝐾 ⊆ 𝑉ℝ be a closed convex cone, for any 𝒚 ∈ 𝐾, the normal 

cone in 𝒚 to 𝐾 is: 

 𝑁𝑜𝑟𝑚(𝐾, 𝒚) = {𝒙 ∈ 𝑉ℝ | 〈𝒛, 𝒙〉 ≤ 0 ∀𝒛 ∈ 𝐾 𝑤𝑖𝑡ℎ  〈𝒚, 𝒙〉 = 0} . (A.21) 

Starting from the last definition, one demonstrates that the following statement 

holds: 

Theorem 7|A. The point 𝒚 ∈ 𝐾 is the orthogonal projection (with respect the 

inner product) of a point 𝒙 ∈ 𝑉ℝ onto a closed convex cone 𝐾 if and only if:  

 (𝒙 − 𝒚) ∈ 𝑁𝑜𝑟𝑚(𝐾, 𝒚) . (A.22) 

Below we introduce the definition and the main geometrical characterizations of the 

dual cone of a generic set 𝐾 ⊆ 𝑉ℝ. Let 𝑉ℝ
∗ be the dual space of 𝑉ℝ, that is the set of 

the linear and continuous functionals on 𝑉ℝ. 

Definition 8|A. The (algebraic) dual cone of 𝐾 ⊆ 𝑉ℝ is the subspace of 𝑉ℝ
∗  of 

all the linear and continuous functionals that are non-negative on 𝐾, namely: 

 𝐾∗ = {𝒗 ∈ 𝑉ℝ
∗ |    𝒗(𝒘) ≥ 0    ∀ 𝒘 ∈ 𝑆} . (A.23) 

If the space is equipped by the inner product 〈 ∙ , ∙ 〉, from the previous definition it 

descends: 

Definition 9|A. Let 𝐾 ⊆ 𝑉ℝ be a non-empty set, the dual cone of 𝐾 is the set: 

 𝐾∗ = {𝒗 ∈ 𝑉ℝ | 〈𝒘, 𝒗〉 ≥ 0    ∀ 𝒘 ∈ 𝑆} . (A.24) 
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Since in finite dimensions every dimensional linear functional is continuous and every 

continuous linear functional in an inner product space induces a linear isomorphism 

from 𝑉ℝ
∗ to 𝑉ℝ (see Riesz representation theorem), the previous two definitions of the 

dual cone are essentially the same. If 𝐾 is equal to its dual cone 𝐾∗, then 𝐾 is called 

self-dual. 

  

Fig. A.1 - A set 𝐾 and the its dual cone 𝐾∗. 

Let 𝐾 ⊆ 𝑉ℝ be a non-empty set (not necessary a convex cone), the set: 

 𝐾𝑂 = {𝒗 ∈ 𝑉ℝ | 〈𝒘, 𝒗〉 ≤ 0    ∀ 𝒘 ∈ 𝑆} . (A.25) 

Is the polar cone of 𝐾 and it coincides with the negative of the dual cone 𝐾∗, i.e. 

𝐾𝑂 = −𝐾∗, as shown in Fig. A.2. 

  

Fig. A.2 - Two sets and their relative polar cones. 

 



[B] Elastic-Plastic Constitutive Law - Appendix B 

ELASTIC-PLASTIC 

CONSTITUTIVE LAW 

Prologue. In this section, we introduce the basic concepts of Plasticy, following 

closely the approach set out both in the course notes of Prof. Luciano Nunziante 

(2005) and in the book (2011). 

∎  B.1 ANELASTIC BODY AND INTERNAL VARIABLES 

A Cauchy-elastic material is one in which the stress at each point is determined 

only by the current state of deformation. On contrary, a body is anelastic when its 

deformation is function of the past history and other internal variables (materials 

with memory ). The theory that deals with these materials, in the linear case, is called 

linear viscoelasticity. A way of representing the parameters on which depends the 

behaviour of an anelastic body, is to introduce internal variables collected in the 

vector 𝝃 = [𝜉1, 𝜉2, … , 𝜉𝑛]
𝑇 . Therefore, the strain 𝑬 = [𝜀𝑖𝑗] can be expressed as follows: 

 𝑬 = 𝑬(𝑻, 𝝃, 𝑇) , (B.1) 

where 𝑻 = [𝜎𝑖𝑗] is the Cauchy stress tensor and T is the temperature. The presence 

of these additional variables requires additional constitutive equations. For anelastic 

bodies, with infinitesimal deformation, the strain can be additively decomposed into 

an elastic and an anelastic parts as follows: 

 𝑬 = 𝑬𝑒 + 𝑬𝑎  , (B.2) 

where the elastic part is determined by the current stress state, namely: 

https://en.wikipedia.org/wiki/Stress_%28mechanics%29
https://en.wikipedia.org/wiki/Deformation_%28engineering%29
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 𝑬𝑒 = ℂ−1𝑻 , (B.3) 

whilst the anelastic components depend on the internal variables. The body is said 

to be in equilibrium if its state does not change spontaneously when the external 

actions remain constant.  Since in this context the focus is on the plastic behaviour 

of materials and structures, the plastic strain 𝑬𝑝 = 𝑬𝑎 , representing the permanent 

deformation of the material, takes the role of an internal variable, and from here on 

we express the deformation as follows: 

 𝑬 = 𝑬𝑒 + 𝑬𝑝  . (B.4) 

∎  B.2 PLASTIC FLOW 

The plastic behaviour of the material is non-conservative, in the sense that, during 

an increasing load process, part of the external energy is dissipated in other forms of 

energy, related to the development of irreversible deformations (or fractures) that 

arise within the material. In the following, we express the strains 𝑬 and the stress 𝑻 

as column vectors in ℝ9, namely: 

 𝜺 = [𝜀1, 𝜀2, … , 𝜀9]
𝑇 = [𝜀11, 𝜀12, . . , 𝜀33]

𝑇 , (B.5) 

 

 𝝈 = [𝜎1, 𝜎2, … , 𝜎9]
𝑇 = [𝜎11, 𝜎12, . . , 𝜎33]

𝑇  . (B.6) 

If the load process is time dependent, (B.4) can be rewritten in the following 

incremental form: 

 𝜺̇ = 𝜺̇𝑒 + 𝜺̇𝑝 . (B.7) 

The experimental results show that in many structural materials the anelastic strains 

arise when both a certain stress limit level 𝝈 and a certain level of the stress increment 

𝑑𝝈 are reached. In particular, the plastic function 𝑓0 defines a yield domain, 

describing all the limit stress states 𝝈, that is: 

 𝑓0(𝝈) = 0 ,  (B.8) 

in the stress space in ℝ9, or, for isotropic materials (by restricting to the principal 

stresses) in stress space ℝ3 (Fig. B.1). 
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Fig. B.1 – Drawing from Nunziante (2005): a schematic representation of the yield 

domain. 

It is usually assumed that the function 𝑓0 is almost everywhere (a.e.) differentiable. 

From here on, we restrict to consider “perfect plasticity”, in which plastic 

deformations arise if the two following conditions are met: 

 𝑓0(𝝈) = 0 , (B.9) 

 

 𝑑𝑓0(𝝈) = (
𝑑𝑓0

𝑑𝜎𝑖
)
𝝈
= ∇𝑓0 ∙ 𝑑𝝈 = 0 , (B.10) 

where (B.9) expresses that the stress vector 𝝈 belongs to the yield domain, whilst 

(B.10) requires that the stress increase d𝝈 belongs to the tangent plane to the limit 

domain at 𝝈, and consequently that is orthogonal to the normal 𝒏 defined through 

the gradient vector of 𝑓0, namely: 

(
𝑑𝑓0
𝑑𝜎𝑖

)
𝝈

  . (B.11) 

An internal point (𝑓0(𝝈) < 0) corresponds to an elastic state, whilst the stress states 

external to the plastic domain are not admissible for elastic perfectly plastic materials. 

The plastic strain increase 𝑑𝑬𝑝 or 𝑑𝜺𝑝 can be expressed in the following form: 

 𝑑𝑬𝑝 = 𝑑𝜆 𝜫   , 𝑑𝜺𝑝 = 𝑑𝜆 𝝅 , (B.12) 

where 𝜫 = [𝜋𝑖𝑗] is a second order symmetric tensor and 𝝅 is its representation in ℝ9 

space. The scalars 𝜋𝑖𝑗 determine the shape of the plastic strain increment, whilst 𝑑𝜆 

the norm of the plastic strain increment. This assumption is in accordance to 

experimental results for which, in a perfectly plastic material, the plastic strains arise 

when a limit stress state is attained (B.9) along specific planes of plastic flow 

depending on the material and on the level stress. Moreover, the plastic strain 

increase does not depend neither on the direction nor on the magnitude of the stress 
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increment 𝑑𝝈 (B.10). Then, the incremental strain of the material can be characterized 

by the three following relations: 

 𝑑𝜆 ≥ 0 ,   𝑓0(𝝈) = 0 ,   𝑑𝑓0(𝝈) = 0 ,  (B.13) 

 𝑑𝜆 = 0 ,   𝑓0(𝝈) = 0 ,   𝑑𝑓0(𝝈) < 0 , (B.14) 

 𝑑𝜆 = 0 ,   𝑓0(𝝈) < 0 , (B.15) 

respectively plastic state, elastic return and elastic state. 

Remark 1|B. Some metallic materials (e.g. steel) have a structure made of 

polycrystalline aggregates where each crystal is an assembly of atoms, with 

their own regular structure. These crystal aggregates, though in elastic 

conditions present an isotropic macroscopic behaviour, show plastic strains 

(or plastic slips) on special crystal planes in response to shear stresses therein. 

Such planes are those where the strength is minimal and define the 

mechanism of slip. 

Based on these experimental evidences (Remark 1|B), the direction of the strain 

increment is ruled by a function 𝑃(𝝈) called plastic potential. This potential is the 

generator of the scalars 𝜋𝑖 (or equivalently 𝜋𝑖𝑗) through the following relation: 

𝜋𝑖 =
𝜕𝑃(𝝈)

𝜕𝜎𝑖
  . (B.16) 

Generally, for many materials, it is assumed that the plastic potential function 𝑃(𝝈) 

coincides with the yield function 𝑓0(𝝈), namely: 

 𝑃(𝝈) =   𝑓0(𝝈) , (B.17) 

and the Associated Plastic Potential hypothesis (B.17) defines standard (or 

associated) materials. Hence, the constitutive law, in the case of plastic condition, can 

be rewritten as follows: 

𝑑𝜺𝑝 = 𝑑𝜆
𝜕𝑓0
𝜕𝝈
 , (B.18) 

and it is also known as Normality Law. Condition (B.18) states that the direction of 

𝑑𝜺𝑝 is the same of the normal 𝒏 to the boundary of the yield domain 𝑓0 = 0 at the 

stress point 𝝈 (see Fig. B.2a). 
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 (a) (b) 

 

Fig. B.2 - Drawings from Nunziante (2005). By overlapping the vector space referred to 

𝑑𝜺𝑝 with that referred to 𝝈 (with coincident bases) we can represent in the same plane the 

vectors 𝝈, 𝑑𝝈, 𝑑𝜺𝑝. In (a) the Normality Law is symbolically represented. In (b): if we 

consider two different transformations Γ1, Γ2 with the same ends points 𝝈1, 𝝈2, in general 

different values of plastic strain increase ∆𝜺𝑝 can be reached: 𝑑𝜺𝑝 is not an exact 

differential. 

It should be noted that 𝑑𝜺𝑝 is not an exact differential (see Fig. B.2b). When the 

increments are time-dependent, the condition (B.18) can be rewritten as follows: 

𝜀𝑖̇
𝑝
= 𝜆̇ (

𝜕𝑓0(𝝈)

𝜕𝜎𝑖
)
𝝈

 , (B.19) 

with: 

 𝜆̇ ≥ 0   𝑖𝑓   𝑓0(𝝈) = 0 ,   𝑓0̇(𝝈) = 0 , (B.20) 

 𝜆̇ = 0   𝑖𝑓   𝑓0(𝝈) = 0 ,   𝑓0̇(𝝈) < 0  , (B.21) 

 𝜆̇ = 0   𝑖𝑓   𝑓0(𝝈) < 0  . (B.22) 

If the plasticization function 𝑓0 is assigned through 𝑚 functions (i.e. 𝑓01(𝝈), … , 𝑓0𝑚(𝝈)), 

the strength domain is defined by 𝑚 inequalities, namely: 

 𝑓01(𝝈)  ≤ 0,… , 𝑓0𝑚(𝝈) ≤ 0 , (B.23) 

and the yield condition becomes: 

 𝑠𝑢𝑝𝑓0𝑖(𝝈) = 0, 𝑖 ∈ {1, … ,𝑚} . (B.24) 

Each function 𝑓0𝑖(𝝈) = 0 represents a surface, within which the function 𝑓0𝑖 is 

differentiable, while in the edge points the function 𝑓0𝑖 is not differentiable (Fig. B.3). 
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Fig. B.3 – Drawing from Nunziante (2005): yield plastic domain defined by 𝑚 functions. 

Conditions (B.19-22) can be generalized as follows: 

𝜀𝑖̇
𝑝
=∑𝜆̇𝑘  

𝜕𝑓0𝑘
𝜕𝜎𝑖

𝑚

𝑘=1

 , (B.25) 

with: 

 𝜆̇𝑘 ≥ 0  𝑤ℎ𝑒𝑟𝑒  𝑓0𝑘(𝝈) = 0   ,   𝑓0̇𝑘(𝝈) = 0 , (B.26) 

 𝜆̇𝑘 = 0  𝑤ℎ𝑒𝑟𝑒  𝑓0𝑘(𝝈) = 0   ,   𝑓0̇𝑘(𝝈) < 0 , (B.27) 

 𝜆̇𝑘 = 0  𝑤ℎ𝑒𝑟𝑒  𝑓0𝑘(𝝈) < 0 , (B.28) 

where 𝜆̇𝑘 refers to the  𝑘-th plane of the plastic domain and 𝜕𝑓0𝑡/𝜕𝜎𝑖 defines the 

gradient vector of the active planes 𝑓0𝑡 in the stress space. Condition (B.25) expresses 

the vector of plastic strain increase as a non-negative linear combination (𝜆̇𝑡 ≥ 0) of 

the gradient vectors of the active planes: for this reason 𝜺̇𝑝 belongs to the cone of 

the outward normal vectors to the yield surfaces corresponding to the active 

stresses (Fig. B.3). 

∎  B.3 STABLE MATERIAL (DRUCKER POSTULATE) 

With reference to the 𝜎 − 𝜀 plot (Fig. B.4) if we consider the state A, defined by 

(𝜎1, 𝜀1), and apply the positive stress increment 𝜎̇1𝑑𝑡, a positive strain increment 𝜀1̇𝑑𝑡 

arises and the specific power increment is positive, namely: 

 𝜎̇1𝜀1̇ > 0 . (B.29) 
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The material in the state A is defined stable. Instead, in the state B, defined by (𝜎2, 𝜀2), 

a positive strain increment 𝜀2̇𝑑𝑡 is associated to a negative stress increment 𝜎̇2𝑑𝑡 and 

consequently 𝜎̇2𝜀2̇ is negative: the material in B is unstable. 

  

Fig. B.4 - Drawing from Nunziante (2005): typical one-dimensional stress test showing a 

ductile behaviour. In A the material is stable (𝜎̇1𝜀1̇ > 0), whilst in B (𝜎̇1𝜀1̇ < 0) is unstable. 

From these observations, the Drucker’s stability postulate descends: if a material is 

stable, the following inequality must be satisfied: 

∮ 𝝈̇ ∙ 𝜺̇ 𝑑𝑡 ≥ 0 , (B.30) 

where the integral is done over a closed stress cycle (loading-unloading path in the 

stress space). From (B.30) descends that in a cycle of plastic deformation the second 

degree plastic work is always non negative: 

𝝈̇ ∙ 𝜺̇𝑝 ≥ 0 , (B.31) 

hence, it should be noted that the Drucker stability postulate is in line with the 

normality (𝝈̇ ∙ 𝜺̇𝑝 = 0 ) and with hardening materials (𝝈̇ ∙ 𝜺̇𝑝 > 0). Furthermore, for an 

elastic plastic material with an associate plastic potential, with respect to a limit stress 

state 𝝈 and to the corresponding 𝜺̇𝑝 (see Fig. B.5a), the following inequalities holds: 

 (𝝈 − 𝝈𝑎) ∙ 𝜺̇𝑝 ≥ 0 , (B.32) 

for all admissible stress state 𝝈𝑎 (an admissible stress state is defined by 𝑓(𝝈𝑎) ≤ 0). 

Starting from the Drucker’s stability postulate it is possible to demonstrate that the 

plastic domain has to be convex: in Fig. B.5b a geometric counterexample, 

showing how a non-convex domain contradicts condition (B.32) is reported. 

https://en.wikipedia.org/wiki/Plasticity_%28physics%29
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 (a) (b)  

Fig. B.5 – Drawings from Nunziante (2005): a convex limit domain (a) and a non convex 

domain (b) are depicted. 

∎  B.4 THEOREMS OF LIMIT ANALYSIS 

We refer to a normal material: an elastic-plastic material with an associate plastic 

potential according to the normality law and the Drucker’s stability postulate. The 

body, occupying the domain 𝑉 ⊆ ℝ3 and subjected to the volume load 𝒃, is loaded 

by given tractions on the complementary part 𝜕𝑉𝑁 = 𝜕𝑉 − 𝜕𝑉𝐷 of the boundary, 

where 𝜕V𝐷 is the constrained part. 

The body is in a plastic collapse state if the load system (𝒃, 𝒔 ̅) cannot be further 

amplified: the strains and the associated displacements can grow indefinitely, 

defining the collapse mechanism. A stress field 𝝈𝑎 is statically admissible if it 

satisfies the equilibrium equations (B.33) and the boundary equations (B.34): 

 𝑑𝑖𝑣𝝈𝑎 + 𝒃 = 𝟎  , 𝒙 ∈ 𝑉 , (B.33) 

 𝝈𝑎 ∙ 𝒏 = 𝒔 ̅   , 𝒙 ∈ 𝜕𝑉𝑁  , (B.34) 

as well as the compatibility condition: 

 𝑓(𝝈𝑎  ) ≤ 0 , (B.35) 

being 𝒏 the outward normal at the boundary 𝜕𝑉 of the domain 𝑉. A load system 

(𝒃, 𝒔 ̅) in equilibrium with an admissible stress field 𝝈𝑎 is said an admissible load and 

the set (𝒃, 𝒔 ̅, 𝝈𝑎) is defined equilibrated. The collapse load system (𝒃, 𝒔 ̅) and the 

stress 𝝈 at collapse represent the admissible load-stress system (𝒃, 𝒔 ̅, 𝝈) that occurs 

under the collapse of the structure. 
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A stress field 𝝈𝑠 is a safe stress field if it satisfies (B.33), (B.34) and the compatibility 

condition: 

 𝑓(𝝈𝑠 ) < 0 . (B.36) 

A load system (𝒃𝑠, 𝒔 ̅𝑠) in equilibrium with a safe stress field is said a safe load 

system. A set (𝒖̇0, 𝜺̇0), where the infinitesimal strain rate field is expressed as follows: 

𝜀0̇𝑖𝑗 =
1

2
 (
𝜕𝑢̇0𝑖
𝜕𝑥𝑗

+
𝜕𝑢̇0𝑗

𝜕𝑥𝑖
)      𝒙 ∈ 𝜕𝑉 , (B.37) 

is said an admissible kinematism, if the displacement rate field 𝒖̇0 satisfies the 

following relation on the constrained boundary: 

 𝒖̇𝟎 = 𝒖̇𝟎  , 𝒙 ∈ 𝜕𝑉𝐷 . (B.38) 

B.4.1 Safe Theorem of Plastic Collapse 

Safe Theorem - Part I. If a load program is assigned, the existence of a 

statically safe stress field 𝝈𝑠, for each instant of the load program, is a sufficient 

condition so that the plastic collapse will not occur. ∎ 

Safe Theorem - Part II. The structure cannot bear an external load system if 

does not exist an admissible stress distribution 𝝈𝑎 . Hence, the existence of a 

statically admissible stress field 𝝈𝑎 is a necessary condition so that the plastic 

collapse will not occur. ∎ 

It should be noted that in the collapse state results: 

 𝝈̇ = 𝟎  , 𝜺̇𝑒 = 𝟎 , 𝜺̇ = 𝜺̇𝑝 . (B.39) 

B.4.2 Kinematic Theorem of Plastic Collapse 

Let (𝒖̇0, 𝜺̇0) be an admissible mechanism, (𝒃, 𝒔 ̅, 𝝈) the collapse load-stress set, (𝒖̇, 𝜺̇) 

the actual collapse mechanism (𝒖̇, 𝜺̇), and 𝝈0 a statically admissible stress state 

satisfying the normality law with respect to the 𝜺̇0𝑝, namely: 

 𝝈 ∙ 𝜺̇0𝑝 ≤ 𝝈0 ∙ 𝜺̇0𝑝 . (B.40) 

By denoting with 𝐷̇ the power dissipation (or internal power): 
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𝐷̇ = ∫ 𝝈0 ∙ 𝜺̇0𝑝 𝑑𝑉
𝑉

 , (B.41) 

and with 𝑊̇ the external power (or load power): 

𝑊̇ = ∫ 𝒔 ̅ ∙ 𝒖̇0 𝑑𝑆
𝜕𝑉

−∫ 𝒃 ∙ 𝒖̇0  𝑑𝑉
𝑉

 , (B.42) 

it is possible to demonstrate that the functional (𝐷̇ − 𝑊̇) is always non negative, 

namely. The kinematic theorem of plastic collapse states that the functional (𝐷̇ − 𝑊̇) 

exhibits its minimum value in correspondence of the actual collapse mechanism 

resulting: 

 𝐷̇ = 𝑊̇ . (B.43) 

By using the functionals 𝐷̇ and 𝑊̇ the kinematic theorem can be expressed through 

the following statements. 

Kinematic Theorem - Part I. The existence of a kinematical admissible 

mechanism, for which the following condition occurs:  

 𝐷̇ < 𝑊̇ , (B.44) 

represents a sufficient condition so that the plastic collapse will not occur. ∎ 

Kinematic Theorem - Part II. When the following condition, with reference 

to each kinematically admissible mechanism, occurs: 

 𝑊̇ ≤ 𝐷̇ , (B.45) 

this represents a necessary condition so that the structure is able to sustain 

the loads, and the plastic collapse will not occur. ∎ 

Kinematic Theorem - Part III. When the following condition, with reference 

to each kinematically admissible mechanism, occurs: 

 𝑊̇ < 𝐷̇ ,  (B.46) 

this represents a sufficient condition so that the structure is able to sustain the 

loads. ∎ 

 



[C] The Catenary - Appendix C 

THE CATENARY 

∎  C.1 THE CATENARY 

The catenary is the geometrical curve describing the configuration of a chain simply 

supported at its two end points and subjected only to its weight. Since a chain cannot 

support compression (then, cannot opposite any resistance to flexion), it exhibits 

only tensile force everywhere tangent to the curve. The catenary, then, represents a 

geometrical configuration through which the chain supports its weight only with 

tangent tensile stresses. One considers a chain of length 𝐿 suspended (see Fig. C.1) 

at the two end points 𝑷1 and 𝑷2 and let 𝜸(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) be, in an orthonormal 

reference system (𝑂, 𝑥, 𝑦), the parametric curve which describe the deformed 

equilibrium configuration of the chain.  

P1

P 2

x

y

O

s

F(0)

H

T(s)

H

F(L)

  

Fig. C.1 – The deformed configuration of a chain simple supported at its two end points. 
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Let 𝑠 ∈ [0, 𝐿] be the curvilinear abscissa, 𝜇 = 𝜇(𝑠) the mass per unit length, and 𝒈 =

(0,−𝑔) the acceleration of gravity. Furthermore, one supposes that the elastic 

deformation can be neglected and the chain is homogenous (i.e. 𝜇 is constant and 

independent of the particular deformed shape.). 

Since the chain is at rest, also its part between 𝑷1 and the section 𝑺 is in equilibrium: 

the resultant of the acting forces must be zero, namely: 

𝟎 = 𝑭(0) + ∫𝒈 𝜇(𝑠)𝑑𝑠

𝑠

0

+ 𝑻(𝑠) . (C.1) 

where 𝑭(0) indicates the force acting in 𝑷1 and 𝑻(𝑠) is the internal force at 𝑠. Since 𝒈, 

𝜇(𝑠) and 𝑭(0) are constant, deriving the previous vectorial equation with respect to 

𝑠, one obtains: 

𝒈 𝜇 +
𝑑𝑻(𝑠)

𝑑𝑠
= 𝟎 , (C.2) 

this is a differential equation whose two components along the x-axis and y-axis are: 

(𝒈 𝜇 +
𝑑𝑻(𝑠)

𝑑𝑠
) ∙ 𝒊 = 0  ⇒   

𝑑𝑻(𝑠)

𝑑𝑠
∙ 𝒊 = 0  , (C.3) 

(𝒈 𝜇 +
𝑑𝑻(𝑠)

𝑑𝑠
) ∙ 𝒋 = 0 ⇒  −𝑔 𝜇 +

𝑑𝑻(𝑠)

𝑑𝑠
∙ 𝒋 = 0 . (C.4) 

Since 𝑻(𝑠) is tangent to the curve 𝜸, it can be write as: 

𝑻(𝑠) = 𝑇(𝑠)  
𝑑𝜸(𝑠)

𝑑𝑠
= 𝑇(𝑠) 𝒕(𝑠) , (C.5) 

and (C.3) and (C.4) can be written as: 

𝑑

𝑑𝑠
 (𝑇(𝑠)

𝑑𝑥

𝑑𝑠
)  = 0 , (C.6) 

𝑔 𝜇 + 
𝑑

𝑑𝑠
 (𝑇(𝑠)

𝑑𝑦

𝑑𝑠
)  = 0 , (C.7) 

where 
𝑑𝑥(𝑠)

𝑑𝑠
 and 

𝑑𝑦(𝑠)

𝑑𝑠
  denote the projections of the tangent vector 𝒕(𝑠) on the two 

coordinate axes. From (C.6), we can derive that the horizontal component of 𝑻(𝑠) is 

constant with respect to 𝑠: 
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𝑇(𝑠)
𝑑𝑥

𝑑𝑠
= 𝑐𝑜𝑛𝑠𝑡 , (C.8) 

From (C.1), by assuming 𝑭(0) ∙ 𝒊 = 𝐻, (C.6) and (C.7) can be rewritten as: 

𝑇(𝑠)
𝑑𝑥

𝑑𝑠
=  𝐻 , (C.9) 

−𝑔 𝜇 + 
𝑑

𝑑𝑠
 (𝐻

𝑑𝑦

𝑑𝑥
)  = 0 , (C.10) 

and recalling that 

𝑑𝑠 = √1 + (
𝑑𝑦

𝑑𝑥
)
2

𝑑𝑥 , (C.11) 

(C.9) and (C.10) can be combined as: 

𝐻
𝑑2𝑦

𝑑𝑥2
 = 𝑔 𝜇√1 + (

𝑑𝑦

𝑑𝑥
)
2

 . (C.12) 

This is the ordinary differential equation governing the problem, whose integral is 

expressed by: 

𝑦(𝑥)  =
𝐻

𝑔 𝜇
𝑐𝑜𝑠ℎ (

𝑔 𝜇

𝐻
𝑥 + 𝑐1) + 𝑐2 , (C.13) 

where 𝐻 is the horizontal component of the internal traction and 𝑐1 and 𝑐2 are the 

two constants of integration depending on the position of the two end-points of the 

chain. The length of the chain is fixed and can be expressed as: 

𝐿 = ∫ 𝑑𝑠

𝑷2

𝑷1

= ∫ √1 + (
𝑑𝑦

𝑑𝑥
)
2

𝑑𝑥

𝑷2

𝑷1

 . (C.14) 

By equation (C.14) the horizontal component H can be determined.  

Remark 1|C. The problem of the catenary can be formulated as a problem of 

calculus of variations, i.e. as an isoperimetric problem since the length of the 

chain has to be constant. The chain of length 𝐿, simply supported at the two 

end points 𝑷1 and 𝑷2, has mass per unit length 𝜇 = 𝜇(𝑠). In an equilibrated 

configuration, the total mechanical energy, being the kinetic energy equals to 
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zero, coincides with the potential energy and achieves there a minimum. By 

using (C.11), the potential energy can be written as: 

𝐸(𝑦) = ∫ 𝜇𝑔 𝑦(𝑠)𝑑𝑠

𝑷2

𝑷1

= ∫ 𝜇𝑔 𝑦(𝑥)√1 + (
𝑑𝑦

𝑑𝑥
)
2

𝑑𝑥

𝑷2

𝑷1

 , (C.15) 

and the length of the chain as: 

𝐿 = ∫ 𝑑𝑠

𝑷2

𝑷1

= ∫ √1 + (
𝑑𝑦

𝑑𝑥
)
2

𝑑𝑥

𝑷2

𝑷1

 . (C.16) 

Definitely, the catenary can be regarded as a curve 𝜸(𝑠) = (𝑥, 𝑦(𝑥)) where 

𝑦(𝑥) ∈ C1[𝑎, 𝑏] minimizes the functional 𝐸(𝑦) under the condition (C.16). ∎ 

∎  C.2 THE CATENARY AND THE ARCH: THE LINE OF THRUST 

It is well-known the parallelism between the catenary and the line of thrust (see 

Section 6.2). Since the acting loads (including the self-weight) are fixed and do not 

depend on the final configuration, the differential equation which governs the shape 

of the thrust line derived from (C.12) and is: 

𝑑2𝑦

𝑑𝑥2
 = −

𝑞(𝑥)

𝐻
 , (C.17) 

where 𝑞(𝑥) represents the value of the external load including the self-weight. If we 

consider only the self-weight, it should be noted that 𝑞(𝑥) can assume different 

profiles depending on how the load is transferred to the line of thrust. In Fig. C1, 

with regard to a round arch, two qualitative distributions of the self-weigh are 

reported: in Fig. C1a the load is transmitted vertically whilst in Fig. C1b radially. 

Anyhow, even if these two distribution are different, the results using them are close 

to each other. Indeed, in Fig. C2 we report the representations (for a round arch with 

internal radius equals to 1.00m and a thickness equals to 0.25m) deriving from these 

two partition of the domain  
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(a) (b)  

Fig. C.1 - Two qualitative distributions of the self-weigh are reported: one (a) is related to 

vertical cuts and the other (b) to radial ones. 

The value of the resultant (Fig. C2a) in these two cases are very close. Also the value 

of the loads are similar, in particular are practically the same on the central part of 

the arch, and they differ only near the springings (Fig. C2b). Anyhow, as it possible 

to see from many figures reported in the Chapter. 6, the hinges form often in the 

central part of the arch, and in these sense the choose of a partition rather than the 

other one conducts to small errors. 
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(a) (b)  

Fig. C.2 - The resultant (a) of the self-weight (valued starting from the left-hand side) and 

the self -weight distribution (b) deriving from the two different partition of the domain 

for a round arch (internal radius r=1.00m and a thickness s=0.25m) are reported  

Finally, for this reason it is noticed that also the use of a constant distribution of the 

self-weight is currently practice (Fig. C3, thick red line) and consequently the line of 

thrust can be interpreted as a parabola (𝑞(𝑥) constant).  
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(a) (b)  

Fig. C.3 - Considering the self-weight constant implies that the thrust is a parabola since  

𝑞(𝑥) is constant: the error made is usually small. 

 

 

 

 



[D] Couplet’s Problem - Appendix D 

COUPLET’S PROBLEM 

∎  D.1 COUPLET’S PROBLEM 

Suppose we consider an arch with a fixed internal radius r and imagine a decreasing 

process of the thickness s, what is the minimum thickness for which the arch is yet 

safe under only its own weight?  

This is a well-known problem, known as the minimum thickness problem or, since 

Couplet was the first who posed this question, it is also known as the Couplet’s (see 

Section 6.2). 

What happens when the minimum thickness is reached? From Fig. D.1, when the 

thickness reaches its minimum value, the line of thrust touches the arch geometry in 

5 five points (Fig. D.1a) and the arch becomes a mechanism (Fig. D.1b). 

  
(a) (b)  

Fig. D.1 – Drawing from (Heyman, 1995): the hinges formed (b) and the associated thrust 

line (a). 

This condition represents a limit equilibrium state: the line of thrust passes through 

the hinges of the corresponding mechanism. If only the self-weight is considered, 
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the solution depends only by a geometrical factor, e.g. 𝑟, and usually is given using 

the relative number 𝑠/𝑟. 

The mechanism associated with the solution of the Couplet’s problem (𝛽 = 0) is 

shown in Fig. D.2. It involves four rigid bodies, and since the kinematism is 

symmetric, the only variables are the angle 𝜃2 (defining the position of hinges 𝐶12 

and 𝐶34, see Fig. D.2) and the thickness 𝑠. Couplet evaluated the solution fixing a 

priori the position of the intrados hinge 𝐶12 (i.e. 𝜃2 = 45°). He found a relation 

between the thickness 𝑠 and the mean radius Rm, i.e. 𝑠/𝑅𝑚 =  0.101. 

  

Fig. D.2 - The mechanism corresponding to the solution of Couplet’s problem for a round 

arch (𝛽 = 0) involves four rigid bodies hinged in five points.   

Almost two centuries later, Heyman (1969)solved the problem for a round arch 

considering a partition of the domain made by vertical cuts, and successively the 

solution was recalculated by Ochsendorf (2006) with a different partition of the 

domain (sector of annulus, see also Remark 1|6 and Section 6.5). The minimum 

thickness, for a round arch with regard the internal radius r, is: 

𝑠

𝑟
= 0.114     →     Ochsendorf (2006)  [𝑟𝑎𝑑𝑖𝑎𝑙 𝑐𝑢𝑡𝑠] , 

𝑠

𝑟
= 0.112     →     Heyman (1969)  [𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑐𝑢𝑡𝑠] . 

The exact intrados position of hinge 𝐶12 is at 31° rather than at 45° (Couplet, 1730), 

anyhow the analysis is not sensitive to the position of this hinge, since varying the 

hinge angle, the correct value of 𝑠/𝑅𝑚 differs little. 
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∎  D.2 MINIMUM THICKNESS: ANALYTICAL SOLUTION 

In this section, we develop an analytical procedure in order to solve the problem of 

the minimum thickness with reference to a generic circular arch (see Fig. D.3), whose 

geometry is defined by the internal radius r, the thickness s and the springing angle 

𝛽 (i.e. the total angle of embrace is 𝜋 − 2𝛽). 

  

Fig. D.3 - The circular arch with a springing angle 𝛽 is shown. For 𝛽 = 0, it turns a rounded 

arch. 

The circular arch is partitioned through radial cuts. Fixing a generic mechanism (see 

Fig. D.4), we evaluate the analytical expression of the virtual work made by the 

external forces (i.e. self-weight). 

 
 

Fig. D.4 - The generic mechanism, for a depressed arch. The hinges formed divide the 

arch into four rigid blocks identified by the angles 𝜗𝑖 with 𝑖 ∈ {1, … ,5}. 

Then, we find the values of the variables for which the virtual work is zero, and finally, 

between them we select both the value of the minimum thickness and the positions 

of the hinges. 
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Remark 1|D. We use the polar transformation to characterize the geometric proprieties of the 

four rigid sectors of annulus. In particular, the polar transformation is a diffeomorphism from ℝ2 

to ℝ2, defined as: 

 𝝋 ∶  (𝜌, 𝜃) ∈ [0,2𝜋[  ×  ]0,+∞[    →    (𝑥0 + 𝜌 𝑐𝑜𝑠(𝜃), 𝑦0 + 𝜌 𝑠𝑖𝑛(𝜃)) , (D.1) 

where (𝑥0, 𝑦0) = 𝒑0 is the pole of the transformation (in our case (0,0) = 𝒑0). Using this function, 

we can express all the geometrical measures of the arch as functions of the polar coordinates of 

the hinges.  

  

Fig. D.5 - The depressed arch is partitioned through radial cuts, and then the 

polar transformation is used to calculate the geometric proprieties of a generic 

sector of annulus Χ𝑖. 

With reference to the Fig. D.5, let Χ𝑖 the domain occupied by the rigid block 𝑖 and coinciding with 

the sector of annulus between 𝜃𝑖 and 𝜃𝑖+1: it corresponds to the domain Ω𝑖 of the polar plane 

individuated by the set: 

 Ω𝑖 = [𝜃𝑖 , 𝜃𝑖+1]  ×  [𝑟, 𝑟 + 𝑠] . (D.2) 

Since, in our case, the pole is 𝒑0 = (0,0) and recalling that the Jacobian of 𝝋 is constant and results 

𝐽(𝝋) = 𝜌 , it is possible to evaluate the area 𝑨(𝑖) and the coordinates of the centroid 𝑮(𝑖) =

(𝑥𝐺(𝑖), 𝑦𝐺(𝑖)) of the rigid block 𝑖 as: 

𝐴(𝑖) ∶= ∬𝑑𝑥𝑑𝑦

Χ𝑖

=∬𝜌 𝑑𝜌𝑑𝜃

Ω𝑖

 , (D.3) 

𝑮(𝑖) ∶=
∬ (𝑥, 𝑦)𝑑𝑥𝑑𝑦
Χ𝑖

∬ 𝑑𝑥𝑑𝑦
Χ𝑖

=
∬ 𝜌(𝜌 cos(𝜃), 𝜌 sin(𝜃)) 𝑑𝜌𝑑𝜃
Ω𝑖

∬ 𝜌 𝑑𝜌𝑑𝜃
Ω𝑖

 , (D.4) 

and by using (D.1), it results: 

𝐴(𝑖) ∶=
1

2
𝑠 (2𝑟 + 𝑠)(𝜃𝑖+1 − 𝜃𝑖) , (D.5) 

𝑮(𝑖) ∶=
2 (3𝑟2+3𝑟𝑠+𝑠2)

3(2𝑟+𝑠)(𝜃𝑖−𝜃𝑖+1)
∙ (sin(𝜃𝑖) − sin(𝜃𝑖+1) , cos(𝜃𝑖+1) − cos(𝜃𝑖)) .  (D.6) 
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Since the problem is symmetric, it results 𝜗4 = 𝜋 − 𝜗2 and: 

 𝜗1 = 𝛽  , 𝜗3 =
𝜋

2
 , 𝜗5 = 𝜋 − 𝛽 . (D.7) 

Since the unknowns of the problem are (𝜃2, 𝑠, 𝛽, 𝑟), by solving analytically the 

kinematical problem and by using expressions (D.5) and (D.6), the virtual work of the 

external forces can be expressed as:  

 𝐿(𝜃2, 𝑠, 𝛽, 𝑟) = −
𝐴𝑟+𝐵𝑟

𝐶𝑟
 , (D.8) 

where: 

- 𝐴𝑟 = 3𝑠(𝑟 + 𝑠)(2𝑟 + 𝑠)(𝜋 − 2𝛽)cos(𝛽)(𝑟 + 𝑠 − 𝑟sin(𝜃2)) ; 

- 𝐵𝑟 = 𝑠(sin(𝛽) − 1)(3𝑟(𝑟 + 𝑠)(2𝑟 + 𝑠)(𝜋 − 2𝜃2)cos(𝜃2) + 4𝑠(3𝑟
2 + 3𝑟𝑠 + 𝑠2)sin(𝜃2))   

- 𝐶𝑟 = 6(𝑟 + 𝑠 − 𝑟sin(𝜃2)) . 

For 𝑟 = 1, the virtual work can be particularized in: 

 𝐿(𝜃2, 𝑠, 𝛽) = −
𝐴+𝐵

𝐶
 , (D.9) 

with 

- - 𝐴 = 3𝑠(1 + 𝑠)(2 + 𝑠)(𝜋 − 2𝛽)cos(𝛽)(1 + 𝑠 − sin(𝜃2)) ; 

- 𝐵 = 𝑠(sin(𝛽) − 1)(3(1 + 𝑠)(2 + 𝑠)(𝜋 − 2𝜃2)cos(𝜃2) + 4𝑠(3 + 𝑠(3 + 𝑠))sin(𝜃2)) ; 

- 𝐶 = 6(1 + 𝑠 − sin(𝜃2)) . 

The minimum thickness 𝑠𝑚𝑖𝑛 of a depressed arch with a given springing angle 𝛽̅ is: 

 𝑠𝑚𝑖𝑛 = max{𝑠 ∈ ℝ | 𝐿(𝜃2, 𝑠(𝜃2), 𝛽̅) = 0} . (D.10) 

In Fig. D.6 and in Tab. D.1 the minimum thickness (expressed through the ratio 

𝑠𝑚𝑖𝑛/𝑟 ), the angle 𝜃2 and the angle 𝜃2 − 𝛽 as funciotns of 𝛽 are reported. 
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Fig. D.6 - The minimum thickness through the ratio 𝑠𝑚𝑖𝑛/𝑟 , the angle 𝜃2 and the angle 

𝜃2 − 𝛽 as functions of  𝛽  are reported. 

The minimum thickness decreases with 𝛽, and it reaches very small values for 𝛽 

greater than 60°:increasing the springing angle the imaginary line joining the 

centroids of each voussoir becomes closer to the thrust line. 
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𝛽 [ ° ] 𝑠𝑚𝑖𝑛/𝑟 𝜃2 [ ° ] 𝜃2 − 𝛽 [ ° ] 

0.00 0.1135818 35.52 35.52 

5.00 0.0903698 37.71 32.71 

10.00 0.0710907 40.04 30.04 

15.00 0.0551706 42.50 27.50 

20.00 0.0421305 45.07 25.07 

25.00 0.0315624 47.75 22.75 

30.00 0.0231130 50.54 20.54 

35.00 0.0164709 53.43 18.43 

40.00 0.0113582 56.41 16.41 

45.00 0.0075243 59.49 14.49 

50.00 0.0047419 62.64 12.64 

55.00 0.0028047 65.88 10.88 

60.00 0.0015265 69.19 9.19 

65.00 0.0007416 72.56 7.56 

70.00 0.0003057 75.98 5.98 

75.00 0.0000972 79.45 4.45 

80.00 0.0000193 82.94 2.94 

85.00 0.0000012 86.47 1.47 
 

Tab. D.1 - The minimum thickness 𝑠𝑚𝑖𝑛/𝑟 , the angle 𝜃2 and the angle 𝜃2 − 𝛽 as functions 

of 𝛽 are reported 

Remark 2|D. It is possible to define a safe factor due to the self-weight as the 

ratio between the thickness of the real arch and the relative 𝑠𝑚𝑖𝑛 , e.g. 

considering an arch with 𝛽 = 60° and a thickens 𝑠 = 0.10𝑚, the minimal 

thickness to have a collapse under the self-weight results 𝑠𝑚𝑖𝑛 = 0,0015m (see 

Tab. D.1) and so the safe factor is 65.5.  

Remark 3|D. This result holds even in the case of other external loads having 

a distribution similar to that of the self-weight. 

Remark 4|D. Let us imagine that under a certain distribution of loads the arch 

is stable but close to its limit state. If these external loads increase 

proportionally the internal equilibrated thrust line does not change and the 

collapse will not occur, even if the load multiplier is very high (the collapse will 

be governed by the compressive stresses and the arch could collapse only for 

crushing). However, if there will be some little changes into the distribution of 

external forces the arch could collapse instantly. 
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∎  D.3 MINIMUM THICKNESS: ANALYTICAL SOLUTION FOR A ROUND ARCH 

In this section, we particularize the previous analytical procedure with reference to a 

round arch (𝛽 = 0) with internal radius r and thickness s (Fig. D.7). The strategy to 

search the minimum thickness will be explained more accurately. 

  

Fig. D.7 - A circular arch with radial cuts. 

When s reaches its minimum value, the arch becomes a mechanism: four symmetric 

rigid bodies hinged in five symmetric points (Fig. D.8).  

  

Fig. D.8 - The mechanism associated with the solution of the Couplet’s problem for a 

round arch. 

The four rigid bodies are identified by the angles 𝜗𝑖 with 𝑖 ∈ {1, … ,5} (see Fig. D.8). 

Since the mechanism is symmetric the hinges 𝐶1 and 𝐶2 are located at the base of 

the arch on the extrados, whilst the hinge 𝐶23 on the extrados of the key. We fix the 

position of these hinges as: 

 𝜗1 = 0  , 𝜗3 =
𝜋

2
 , 𝜗5 = 𝜋  . (D.11) 
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The remaining two hinges (𝐶12, 𝐶34) appear on the intrados and are identified by the 

angle 𝜗2. With reference to the mechanism shown in Fig. D.8, the infinitesimal 

displacements (𝑈𝐺(𝑖), 𝑉𝐺(𝑖), 𝛷𝐺) of the centroid of each annulus (block) can be 

obtained as function of the rotation of, e.g., the block 4, namely: 

 𝛷𝐺(4) = −𝜙, (D.11) 

and the mechanism is described by the following parameters: 

−  𝛷𝐺(1) = 𝜙 

−  𝑈𝐺(1) =  −𝑦𝐺(1) 𝜙 

−  𝑉𝐺(1) =  −(𝑟 + 𝑠 − 𝑥𝐺(1)) 𝜙 

−  𝛷𝐺(2) =  −
𝑟 𝑠𝑖𝑛(𝜃2)

𝑟 + 𝑠 − 𝑟 𝑠𝑖𝑛(𝜃2)
𝜙 

−  𝑈𝐺(2) = −
𝑟 𝑠𝑖𝑛(𝜃2) (𝑟 + 𝑠 − 𝑦𝐺(2))

𝑟 + 𝑠 − 𝑟 𝑠𝑖𝑛(𝜃2)
𝜙 

−  𝑉𝐺(2) =  
(−(𝑟 + 𝑠)2 + 𝑟(𝑟 + 𝑠)(𝑐𝑜𝑠(𝜃2) + 𝑠𝑖𝑛(𝜃2)) − 𝑟 𝑠𝑖𝑛(𝜃2)𝑥𝐺(2))

𝑟 + 𝑠 − 𝑟 𝑠𝑖𝑛(𝜃2)
𝜙 

−  𝛷𝐺(3) =  
𝑟 𝑠𝑖𝑛(𝜃2)

𝑟 + 𝑠 − 𝑟 𝑠𝑖𝑛(𝜃2)
𝜙 

−  𝑈𝐺(3) =  
𝑟 𝑠𝑖𝑛(𝜃2)(𝑟 + 𝑠 − 𝑦𝐺(3))

𝑟 + 𝑠 − 𝑟 𝑠𝑖𝑛(𝜃2)
𝜙 

−  𝑉𝐺(3) =
−(𝑟 + 𝑠)2 + 𝑟(𝑟 + 𝑠) 𝑐𝑜𝑠(𝜃2) + 𝑟 𝑠𝑖𝑛(𝜃2) (𝑟 + 𝑠 + 𝑥𝐺(3))

𝑟 + 𝑠 − 𝑟 𝑠𝑖𝑛(𝜃2)
𝜙 

−  𝛷𝐺(4) = −𝜙 

−  𝑈𝐺(4) = 𝑦𝐺(4)𝜙 

−  𝑉𝐺(4) =  −(𝑟 + 𝑠 + 𝑥𝐺(4))𝜙 

where (𝑥𝐺(𝑖), 𝑦𝐺(𝑖)) represents the unknown position of the centre of gravity of the 

block 𝑖. The virtual work of the external forces is symbolically expressed as follows: 

𝐿(𝜃2, 𝑠) = ∑ 𝐴(𝑖) ∙ 𝑉𝐺(𝑖)
4

𝑖=1
 , (D.12) 

and expressing the unknown area of each block through equation (D.5) and the 

unknown position of each gravity centre (𝑥𝐺(𝑖), 𝑦𝐺(𝑖)) through (D.6), (D.12) becomes: 

 𝐿(𝜃2, 𝑠) =
−3𝑠(1+𝑠)(2+𝑠)(𝜋(1+𝑠−𝑐𝑜𝑠(𝜃2))+2𝜃2𝑐𝑜𝑠(𝜃2))+𝑠(3𝜋(2+3𝑠+𝑠

2)+4𝑠(3+𝑠(3+𝑠)))𝑠𝑖𝑛(𝜃2)

6(1+𝑠−𝑠𝑖𝑛(𝜃2))
 . (D.13) 

In Fig. D.9 the function 𝐿(𝜃2, 𝑠) for (𝜃2, 𝑠) ∈ [0,2𝜋] × [0,0.30] is reported. 
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Fig. D.9 - A 3d plot of the virtual work 𝐿(𝜃2, 𝑠) is reported. The thick black line represents 

the line on which 𝐿(𝜃2, 𝑠) = 0. The dashed red line is the projection on the surface of the 

points (𝜃2, 𝑠) such that 
𝜕𝐿(𝜃2,𝑠)

𝜕𝜃2
= 0 whilst the dotted one of the points where 

𝜕𝐿(𝜃2,𝑠)

𝜕𝜃2
= 0. 

It should be noted that the geometric location of the points such that 𝐿(𝜃2, 𝑠) = 0, 

namely the set: 

 𝛾 = {(𝜃2, 𝑠) ∈ ℝ
2  |  𝐿(𝜃2, 𝑠) = 0} , (D.13) 

constitutes a curve (Fig. D.10). The minimum thickness of the arch corresponds to 

the maximum value of  𝑠 reached in the following set: 

 𝑠𝑚𝑖𝑛 = max{𝑠 ∈ ℝ | 𝐿(𝜃2, 𝑠(𝜃2) = 0)} . (D.14) 

The solution for a round arch is: 

 𝑠𝑚𝑖𝑛 = 0.113582m  ,  𝜃2 = 0.61987rad  , (D.15) 

which corresponds exactly to that obtained by Ochsendorf (2006). 
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Fig. D.10 - The decreasing imaginary process of the thickness is represented by the 

downward movement of the blue dashed line. When this line touches the curve 𝛾, the 

arch is in critical situation, in which the thrust line becomes tangent to the geometry in 

five points and the arch becomes a mechanism. In this sense the minimal thickness 𝑠𝑚𝑖𝑛 

is represented by the maximum value of 𝑠 in the set  𝐿(𝜃2, 𝑠(𝜃2)) = 0. 

Remark 5|D. Let 𝑠𝑚𝑖𝑛 be the minimum thickness (that is the maximum of s in 

𝛾) and 𝜃̃2 the associated angle, since results 

𝜕𝐿(𝜃2, 𝑠)

𝜕𝑠
|
(𝑠̃,𝜃̃2)

≠ 0 , 

applying the Dini’s theorem, it is possible express locally 𝑠 as a function of 𝜃2, 

namely 𝑠 = 𝑠(𝜃2) (depicted in Fig. D.10). While examining Fig. D.10, the 

numerical solution for the minimum thickness is stable varying 𝜃2. 
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[E] Arch under Horizontal Actions - Appendix E 

ARCH UNDER 

HORIZONTAL ACTIONS 

Prologue. In this section, we present an analytical evaluation of the horizontal 

collapse multiplier for a circular arch with a generic springing angle. In the last 

part of the section, we specialize this analysis with reference to the arch tested 

at the DIST laboratory (Department of Structures for Engineering and 

Architecture, University of Naples Federico II). 

∎  E.1 ANALYTICAL SOLUTION 

In this section, we propose the analytical study of a circular arch subjected to 

horizontal forces (i.e. a seismic action). The circular arch is loaded by horizontal 

actions, as those produced by a seismic action. The only load considered is the self-

weight and the horizontal incremental action is represented by forces, proportional 

to the mass through the scale parameter 𝜆, and acting in centres of gravity of each 

voussoirs. (Fig. E.1). 

 

 

Fig. E.1 - The arch is subjected to vertical and horizontal loads applied to the centroids 

of each voussoir. 
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When 𝜆 reaches a certain value, say 𝜆𝑐 , four hinges form and the arch becomes a 

mechanism (Fig. E.2) with the moving part of the arch composed by three rigid 

blocks hinged in four points: a four-bar chain exhibiting a displacement with one 

degree of freedom. Considering finite displacement, it could be viewed as a well-

known mechanism used in mechanical engineering: a four-bar linkage.  

 
 

Fig. E.2 - When the scale parameter 𝜆 reaches a certain value, the arch becomes a 

mechanism constituted by three rigid blocks (each of them is a sector of annulus) hinged 

in four points. 

The goal of this analysis is the search of the exact position both of the four hinges 

and of load multiplier 𝜆𝑐 . The position of the hinges, identified by the angles 𝜃𝑖 for 

𝑖 ∈ {1, … ,4}, and the value 𝜆 are then assumed as unknowns of the problem. Let we 

fix a generic mechanism as that shown in the Fig. E.3. 

  

Fig. E.3 - Vertical and horizontal displacements of a generic failure mechanism for a round 

arch under horizontal forces. The unknowns of the problem are the position of the hinges 

(i.e. the angle 𝜃𝑖 for 𝑖 ∈ {1, … ,4}) and the collapse load multiplier 𝜆𝑐. 
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The solution strategy is similar to that used for the minimum thickness problem (see 

Appendix D) but, in this case, the search of the solutions is numerically more 

complex. Indeed, since the problem is not symmetric and no one a priori information 

about hinge positions is available, the virtual work of the external forces, as function 

of the unknowns, is symbolically represented by the following function: 

𝐿(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜆) =∑ 𝐴(𝑖)𝑔(1, 𝜆) ∙ (𝑈𝐺(𝑖), 𝑉𝐺(𝑖))
3

𝑖=1
 , (E.1) 

where 𝐴(𝑖) is the area measure of the block 𝑖 and (𝑈𝐺(𝑖), 𝑉𝐺(𝑖)) represents the the 

position of its centroid.  

By using (D.5) and (D.6) (see Appendix D), it is possible to express analytically the 

function (E.1). Such expression is very complex and is not reported. We develop a 

numerical code in order to search the value of the collapse multiplier 𝜆𝑐 in the set of 

all (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜆) such that 𝐿(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜆) = 0, that is: 

 𝜆𝑐 = max{𝜆 ∈ ℝ | 𝐿(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜆) = 0} . (E.2) 

With reference to a circular arch with internal radius 𝑟 = 1.00𝑚 and a given springing 

angle 𝛽, below we report the numerical solutions as functions of the thickness s, 

showing: 

- the horizontal collapse multiplier 𝜆𝑐 ; 

- the position of hinges identified through the values 𝜃1, 𝜃2, 𝜃3, 𝜃4; 

- ∆𝜃12 = 𝜃2 − 𝜃1 , ∆𝜃23 = 𝜃3 − 𝜃2 and ∆𝜃43 = 𝜃4 − 𝜃3; 

- the ratio ∆𝜃12/∆𝜃23 and ∆𝜃12/∆𝜃23 . 

The parameter ∆𝜃𝑖𝑗 identify the amplitude of the sectors of annulus, whilst ∆𝜃𝑖𝑗/∆𝜃𝑘𝑙 

the ratio between the angles identifying two sectors of annulus.  

In particular we consider the following values of springing angle: 𝛽 = 0° (Fig. E.1)  

𝛽 = 15° (Fig. E.2), 𝛽 = 30° (Fig. E.3), 𝛽 = 45° (Fig. E.4) and 𝛽 = 17.17° (Fig. E.11). 

Remark 1|E. It should be noted that the position of the hinge 𝐶12 is the 

intersection between the extrados and the straight line passing through the 

centre of the arch and having the slope equals to 𝑎𝑟𝑐𝑡𝑎𝑛(𝜆) (Fig. E.3). Indeed, 

when there is a horizontal action, the axis of the line of thrust rotates through 

𝑎𝑟𝑐𝑡𝑎𝑛(𝜆). 

Remark 2|E. By observing the diagrams relative to the collapse multiplier 𝜆𝑐 , 

it should be noted that 𝜆𝑐 is equal to zero when the thickness s corresponds 

to 𝑠𝑚𝑖𝑛 of the Couplet’s problem. 
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Fig. E.4 - Round arch (𝛽 = 0°) with internal radius 𝑟 = 1.00𝑚: the horizontal collapse 

multiplier 𝜆𝑐, the hinge positions (identified by 𝜃1, 𝜃2, 𝜃3, 𝜃4) and the geometrical 

characterization of the sectors of annulus (by using  ∆𝜃𝑖𝑗 and the ratio ∆𝜃𝑖𝑗/∆𝜃𝑘𝑙) are 

reported. 
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𝑠 [m] 𝜆𝑐 𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

0.12 0.022 146.24 91.24 36.23 0.00 

0.13 0.053 148.81 93.06 37.30 0.00 

0.14 0.083 151.21 94.76 38.32 0.00 

0.15 0.112 153.45 96.37 39.30 0.00 

0.16 0.139 155.55 97.89 40.24 0.00 

0.17 0.164 157.53 99.34 41.15 0.00 

0.18 0.189 159.39 100.71 42.02 0.00 

0.19 0.213 161.15 102.01 42.87 0.00 

0.20 0.236 162.83 103.26 43.69 0.00 

0.21 0.258 164.41 104.45 44.49 0.00 

0.22 0.279 165.92 105.59 45.26 0.00 

0.23 0.300 167.36 106.69 46.02 0.00 

0.24 0.320 168.73 107.74 46.75 0.00 

0.25 0.340 170.04 108.75 47.47 0.00 

0.26 0.359 171.29 109.73 48.17 0.00 

0.27 0.377 172.49 110.67 48.86 0.00 

0.28 0.396 173.63 111.58 49.53 0.00 

0.29 0.413 174.73 112.46 50.19 0.00 

0.30 0.431 175.79 113.31 50.83 0.00 

0.31 0.448 176.80 114.13 51.46 0.00 

0.32 0.465 177.77 114.93 52.09 0.00 

0.33 0.481 178.70 115.70 52.70 0.00 

0.34 0.497 179.60 116.45 53.30 0.00 

0.35 0.513 180.00 117.18 53.89 0.00 

0.36 0.529 180.00 117.88 54.47 0.00 

0.37 0.545 180.00 118.55 55.04 0.00 

0.38 0.560 180.00 119.21 55.60 0.00 

0.39 0.575 180.00 119.84 56.16 0.00 

0.40 0.590 180.00 120.46 56.71 0.00 

0.41 0.605 180.00 121.05 57.25 0.00 

0.42 0.620 180.00 121.63 57.78 0.00 

0.43 0.634 180.00 122.19 58.31 0.00 

0.44 0.649 180.00 122.74 58.83 0.00 

0.45 0.663 180.00 123.27 59.35 0.00 

0.46 0.677 180.00 123.78 59.86 0.00 

0.47 0.691 180.00 124.29 60.37 0.00 

0.48 0.705 180.00 124.78 60.87 0.00 

0.49 0.718 180.00 125.25 61.37 0.00 

0.50 0.732 180.00 125.72 61.86 0.00 

Tab. E.1 - The horizontal collapse multiplier 𝜆𝑐 and the hinges position (identified by 

𝜃1, 𝜃2, 𝜃3, 𝜃4) expressed as functions of the thickness 𝑠 are reported with reference to a 

round arch (i.e. 𝛽 = 0°) with internal radius 𝑟 = 1.00𝑚. 
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Fig. E.5 - Circular arch with 𝛽 = 15° and internal radius 𝑟 = 1.00𝑚: the horizontal collapse 

multiplier 𝜆𝑐, the hinge positions (identified by 𝜃1, 𝜃2, 𝜃3, 𝜃4) and the geometrical 

characterization of the sectors of annulus (by using  ∆𝜃𝑖𝑗 and the ratio ∆𝜃𝑖𝑗/∆𝜃𝑘𝑙) are 

reported. 
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. 

𝑠 [m] 𝜆𝑐  𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

0.06 0.028 139.93 91.62 43.31 15.00 

0.07 0.082 144.49 94.69 44.88 15.00 

0.08 0.130 148.53 97.43 46.33 15.00 

0.09 0.175 152.16 99.91 47.67 15.00 

0.10 0.216 155.45 102.19 48.92 15.00 

0.11 0.255 158.46 104.29 50.11 15.00 

0.12 0.291 161.24 106.24 51.23 15.00 

0.13 0.326 163.81 108.06 52.30 15.00 

0.14 0.359 165.00 109.76 53.32 15.00 

0.15 0.392 165.00 111.32 54.29 15.00 

0.16 0.424 165.00 112.77 55.22 15.00 

0.17 0.455 165.00 114.10 56.11 15.00 

0.18 0.486 165.00 115.34 56.97 15.00 

0.19 0.517 165.00 116.50 57.80 15.00 

0.20 0.547 165.00 117.59 58.60 15.00 

0.21 0.577 165.00 118.61 59.38 15.00 

0.22 0.606 165.00 119.58 60.14 15.00 

0.23 0.635 165.00 120.50 60.87 15.00 

0.24 0.664 165.00 121.37 61.59 15.00 

0.25 0.693 165.00 122.20 62.29 15.00 

0.26 0.721 165.00 123.00 62.98 15.00 

0.27 0.749 165.00 123.76 63.65 15.00 

0.28 0.777 165.00 124.49 64.31 15.00 

0.29 0.805 165.00 125.20 64.95 15.00 

0.30 0.832 165.00 125.88 65.59 15.00 

0.31 0.859 165.00 126.54 66.21 15.00 

0.32 0.886 165.00 127.17 66.83 15.00 

0.33 0.913 165.00 127.79 67.44 15.00 

0.34 0.940 165.00 128.39 68.04 15.00 

0.35 0.967 165.00 128.98 68.63 15.00 

0.36 0.993 165.00 129.54 69.21 15.00 

0.37 1.019 165.00 130.10 69.79 15.00 

0.38 1.045 165.00 130.64 70.36 15.00 

0.39 1.071 165.00 131.16 70.93 15.00 

0.40 1.097 165.00 131.68 71.49 15.00 

0.41 1.123 165.00 132.18 72.05 15.00 

0.42 1.148 165.00 132.68 72.60 15.00 

0.43 1.174 165.00 133.16 73.15 15.00 

0.44 1.199 165.00 133.64 73.69 15.00 

Tab. E.2 - The horizontal collapse multiplier 𝜆𝑐 and the hinges position (identified by 

𝜃1, 𝜃2, 𝜃3, 𝜃4) expressed as functions of the thickness 𝑠 are reported with reference to a 

circular arch with 𝛽 = 15° and internal radius 𝑟 = 1.00𝑚. 
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Fig. E.6 - Circular arch with 𝛽 = 30° and internal radius 𝑟 = 1.00𝑚: the horizontal collapse 

multiplier 𝜆𝑐, the hinge positions (identified by 𝜃1, 𝜃2, 𝜃3, 𝜃4) and the geometrical 

characterization of the sectors of annulus (by using  ∆𝜃𝑖𝑗 and the ratio ∆𝜃𝑖𝑗/∆𝜃𝑘𝑙) are 

reported. 
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𝑠 [m] 𝜆𝑐 𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

0.025 0.021 131.37 91.22 51.07 30.00 

0.030 0.073 135.94 94.16 52.37 30.00 

0.035 0.118 139.95 96.75 53.55 30.00 

0.040 0.160 143.52 99.07 54.63 30.00 

0.045 0.198 146.74 101.19 55.64 30.00 

0.050 0.233 149.69 103.14 56.58 30.00 

0.055 0.267 150.00 104.91 57.46 30.00 

0.060 0.300 150.00 106.49 58.29 30.00 

0.065 0.333 150.00 107.90 59.07 30.00 

0.070 0.365 150.00 109.19 59.81 30.00 

0.075 0.396 150.00 110.35 60.51 30.00 

0.080 0.427 150.00 111.42 61.17 30.00 

0.085 0.458 150.00 112.41 61.81 30.00 

0.090 0.488 150.00 113.32 62.43 30.00 

0.095 0.519 150.00 114.17 63.02 30.00 

0.100 0.549 150.00 114.97 63.59 30.00 

0.105 0.578 150.00 115.72 64.14 30.00 

0.110 0.608 150.00 116.43 64.68 30.00 

0.115 0.638 150.00 117.10 65.20 30.00 

0.120 0.667 150.00 117.75 65.71 30.00 

0.125 0.697 150.00 118.36 66.21 30.00 

0.130 0.726 150.00 118.95 66.69 30.00 

0.135 0.755 150.00 119.51 67.17 30.00 

0.140 0.784 150.00 120.06 67.63 30.00 

0.145 0.814 150.00 120.58 68.09 30.00 

0.150 0.843 150.00 121.09 68.54 30.00 

0.155 0.872 150.00 121.59 68.98 30.00 

0.160 0.901 150.00 122.07 69.42 30.00 

0.165 0.930 150.00 122.54 69.85 30.00 

0.170 0.959 150.00 122.99 70.27 30.00 

Tab. E.3 - The horizontal collapse multiplier 𝜆𝑐 and the hinges position (identified by 

𝜃1, 𝜃2, 𝜃3, 𝜃4) expressed as functions of the thickness 𝑠 are reported with reference to a 

circular arch with 𝛽 = 30° and internal radius 𝑟 = 1.00𝑚. 
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Fig. E.7 - Circular arch with 𝛽 = 45° and internal radius 𝑟 = 1.00𝑚: the horizontal collapse 

multiplier 𝜆𝑐, the hinge positions (identified by 𝜃1, 𝜃2, 𝜃3, 𝜃4) and the geometrical 

characterization of the sectors of annulus (by using  ∆𝜃𝑖𝑗 and the ratio ∆𝜃𝑖𝑗/∆𝜃𝑘𝑙) are 

reported. 
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𝑠 [m] 𝜆𝑐 𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

0.008 0.012 121.67 90.71 59.75 45.00 

0.010 0.059 126.01 93.40 60.78 45.00 

0.012 0.100 129.73 95.71 61.69 45.00 

0.014 0.136 133.00 97.75 62.51 45.00 

0.016 0.169 135.00 99.59 63.26 45.00 

0.018 0.201 135.00 101.17 63.94 45.00 

0.020 0.231 135.00 102.53 64.56 45.00 

0.022 0.261 135.00 103.71 65.13 45.00 

0.024 0.290 135.00 104.74 65.66 45.00 

0.026 0.320 135.00 105.65 66.16 45.00 

0.028 0.348 135.00 106.47 66.62 45.00 

0.030 0.377 135.00 107.20 67.06 45.00 

0.032 0.405 135.00 107.87 67.48 45.00 

0.034 0.433 135.00 108.48 67.88 45.00 

0.036 0.461 135.00 109.05 68.26 45.00 

0.038 0.489 135.00 109.57 68.62 45.00 

0.040 0.517 135.00 110.06 68.97 45.00 

0.042 0.544 135.00 110.52 69.31 45.00 

0.044 0.572 135.00 110.95 69.64 45.00 

0.046 0.599 135.00 111.36 69.96 45.00 

0.048 0.627 135.00 111.76 70.27 45.00 

0.050 0.655 135.00 112.13 70.57 45.00 

0.052 0.682 135.00 112.49 70.87 45.00 

0.054 0.710 135.00 112.84 71.16 45.00 

0.056 0.737 135.00 113.17 71.44 45.00 

0.058 0.765 135.00 113.49 71.72 45.00 

0.060 0.792 135.00 113.81 71.99 45.00 

0.062 0.820 135.00 114.11 72.26 45.00 

0.064 0.848 135.00 114.41 72.52 45.00 

0.066 0.875 135.00 114.70 72.78 45.00 

0.068 0.903 135.00 114.98 73.04 45.00 

0.070 0.931 135.00 115.25 73.29 45.00 

0.072 0.959 135.00 115.52 73.54 45.00 

0.074 0.987 135.00 115.79 73.79 45.00 

0.076 1.015 135.00 116.05 74.03 45.00 

0.078 1.043 135.00 116.31 74.27 45.00 

0.080 1.071 135.00 116.56 74.51 45.00 

0.082 1.099 135.00 116.81 74.75 45.00 

0.084 1.127 135.00 117.05 74.98 45.00 

0.086 1.156 135.00 117.29 75.21 45.00 

Tab. E.4 - The horizontal collapse multiplier 𝜆𝑐 and the hinges position (identified by 

𝜃1, 𝜃2, 𝜃3, 𝜃4) expressed as functions of the thickness 𝑠 are reported with reference to a 

circular arch with 𝛽 = 45° and internal radius 𝑟 = 1.00𝑚. 
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∎  E.2 ANALYTICAL SOLUTION FOR A CASE STUDY 

In this section, we analyse a barrel vault tested at the DIST laboratory (Department 

of Structures for Engineering and Architecture, University of Naples Federico II) and 

we refer to the work of Ramaglia et al (2016). The geometry of the barrel vault is 

reported in Fig. E.8. 

 
 

Fig. E.8 - Drawing from (Ramaglia et al, 2016): the geometry of the barrel vault is shown. 

The structural geometry of the circular arch, reported in Fig. E.9, is characterized by 

a springing angle 𝛽 = 17.17°, an internal radius 𝑟 = 1.54𝑚 and a thickness 𝑠 = 0.12𝑚.  

  

Fig. E.9 - The structural geometry of the tested arch is shown. 

We develop the analysis shown in Section E.1 with reference to the structural 

geometry shown in Fig. E.9. The generic mechanism considered is reported in Fig. 

E.10 and the unknowns of the problem are the positions of the hinges and the 

horizontal multiplier, namely: (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜆). By expressing the work of external 

forces through these unknowns and by maximizing the value of 𝜆 in the set of all 

(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜆) such that the virtual work is equal to zero 𝐿(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜆) = 0, we 

find the horizontal collapse multiplier 𝜆𝑐 . 
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Fig. E.10 - Vertical and horizontal displacements of the generic failure mechanism related 

to the circular arch shown in Fig. E.9. 

The analytical results in this case (s=0.12m) are extracted from the subsequent 

Tab.E.5 (highlighted with the red rectangle) and reported below. 

𝑠 =0.12m 𝜆𝑐 𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

Analytical solution 0.1593 149.90 99.05 48.20 17.17 
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Fig. E.11 - Circular arch with 𝛽 = 17.17° and internal radius 𝑟 = 1.54𝑚: the horizontal 

collapse multiplier 𝜆𝑐, the hinge positions (identified by 𝜃1, 𝜃2, 𝜃3, 𝜃4) and the geometrical 

characterization of the sectors of annulus (by using  ∆𝜃𝑖𝑗 and the ratio ∆𝜃𝑖𝑗/∆𝜃𝑘𝑙) are 

reported. 
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𝑠 [m] 𝜆𝑐 𝜃4 [°] 𝜃3 [°] 𝜃2 [°] 𝜃1 [°] 

0.08 0.014 137.58 90.78 43.98 17.17 

0.09 0.054 141.05 93.09 45.13 17.17 

0.10 0.091 144.23 95.22 46.21 17.17 

0.11 0.126 147.17 97.20 47.23 17.17 

0.12 0.159 149.90 99.05 48.20 17.17 

0.13 0.191 152.45 100.79 49.13 17.17 

0.14 0.221 154.84 102.44 50.03 17.17 

0.15 0.249 157.10 104.00 50.89 17.17 

0.16 0.277 159.24 105.48 51.72 17.17 

0.17 0.304 161.26 106.90 52.53 17.17 

0.18 0.330 162.81 108.25 53.31 17.17 

0.19 0.355 162.83 109.53 54.07 17.17 

0.20 0.381 162.83 110.74 54.80 17.17 

0.21 0.406 162.83 111.87 55.52 17.17 

0.22 0.431 162.83 112.94 56.21 17.17 

0.23 0.456 162.83 113.96 56.88 17.17 

0.24 0.481 162.83 114.92 57.54 17.17 

0.25 0.505 162.83 115.84 58.19 17.17 

0.26 0.530 162.83 116.72 58.82 17.17 

0.27 0.555 162.83 117.56 59.44 17.17 

0.28 0.579 162.83 118.36 60.05 17.17 

0.29 0.603 162.83 119.14 60.65 17.17 

0.30 0.628 162.83 119.88 61.24 17.17 

0.31 0.652 162.83 120.60 61.82 17.17 

0.32 0.677 162.83 121.30 62.39 17.17 

0.33 0.701 162.83 121.97 62.95 17.17 

0.34 0.725 162.83 122.63 63.51 17.17 

0.35 0.750 162.83 123.26 64.07 17.17 

0.36 0.774 162.83 123.88 64.61 17.17 

0.37 0.799 162.83 124.48 65.16 17.17 

0.38 0.823 162.83 125.07 65.69 17.17 

0.39 0.848 162.83 125.64 66.23 17.17 

0.40 0.873 162.83 126.21 66.76 17.17 

0.41 0.897 162.83 126.76 67.28 17.17 

0.42 0.922 162.83 127.30 67.81 17.17 

0.43 0.947 162.83 127.83 68.33 17.17 

0.44 0.972 162.83 128.35 68.85 17.17 

0.45 0.997 162.83 128.86 69.36 17.17 

0.46 1.022 162.83 129.36 69.88 17.17 

Tab. E.5 - The horizontal collapse multiplier 𝜆𝑐 and the hinges position (identified by 

𝜃1, 𝜃2, 𝜃3, 𝜃4) expressed as functions of the thickness 𝑠 are reported with reference to a 

circular arch with springing angle 𝛽 = 17.17° and internal radius 𝑟 = 1.54𝑚. 
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[F] Rocking of a Rigid Block - Appendix F 

ROCKING OF A 

RIGID BLOCK 

Prologue. In this appendix, we present a basic introduction of rocking of a rigid 

block. Some applications, developed by using a numerical code implemented 

in Mathematica Wolfram, are shown in order to illustrate some typical well-

known behaviours. 

∎  F.1 INTRODUCTION 

Structural engineering generally deals with structures subjected to dynamic loads 

under the hypothesis of deformable behaviour. However, in some cases the 

simplified model of a rigid block supported unilaterally on a rigid plane can be useful 

to catch out the dynamical behaviour of some objects: e.g. isolated columns, statues, 

tanks of oil storage, water towers, nuclear reactors, mechanical and electrical hospital 

and laboratory equipments, that can lose their functionality because of earthquake 

motions. A block subjected to the base excitation can exhibit five types of motion: 

free flight, rest, slide, slide-rocking, rocking. Here we focus only on rocking motion. 

The rocking motion of a block is a typical example of unilateral SDOF dynamics, 

identified, then, by a single Lagrangian coordinate (e.g. the rotation about a base 

corner). When the rocking motion starts, the block rotates around a base corner. If 

the block doesn’t overturn, an instantaneous impact with the base will occur at a 

given moment. It is generally assumed that after the impact with the foundation, the 

block will continue in its state of rocking around the opposite vertex, as experimental 

data show (Monaco et al, 2014). The dynamic analysis of the rocking motion is very 

complex and involves highly nonlinear differential equations, taking into account 
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transitions of motion from one vertex to another (change of differential equation) 

and non-linearity associated with the impact, see (Sinopoli, 1987) and (Augusti and 

Sinopoli, 1992). 

The first investigation on the dynamics of a slender rigid body, simply supported on 

a rigid ground with friction, is due to (Housner, 1963) at the beginning of sixties (i.e. 

during the Chilean earthquakes in 1960). In the piecewise model by Housner, the 

block can only rotate around the base corners, and the friction coefficient is large 

enough to prevent any sliding. With his study, Housner showed the existence of a 

scale effect necessary to explain why the larger of two geometrically similar blocks 

can support forcing actions for which the smaller block could overturn.  

Later, experimental results on concrete blocks under various strong motion 

accelerograms, recorded during the San Fernando earthquake, showed in fact the 

chaotic nature of the problem (Aslam et al, 1978). The development of the study on 

rocking had a strong input in the '80s when the seismic safety of nuclear reactors 

became a theme of particular importance even in countries with low seismic activity. 

In 1984, Spanos and Koh (1984) defined some basic concepts about the periodic 

motions: symmetry/non-symmetry, order of an orbit, stability of symmetric orbits 

were examined. In the following years Hogan, on adopting these classifications in 

terms of response, extended the analysis to orbits of any order and verified the 

existence of motions with non-periodic and chaotic response (Hogan, 1989). 

Furthermore, since the sensitivity to initial conditions and geometrical dimensions 

creates uncertainty in the prediction of the asymptotic dynamics, Hogan bypassed 

the problem considering the transient phase having a duration comparable with a 

severe earthquake. 

Successively Yim et al (1991) decided that the problem should be examined from a 

probabilistic point of view. Using a limited number of simulated ground motions the 

authors numerically solved the equation of the problem and produced fragility 

curves giving the probability of the body overturn. In (1999), Shao and Tung, 

following the same approach of (Yim et al, 1991), used two types of base motions: 

50 artificial earthquakes simulated in a way identical to that of Yim and 75 real 

earthquakes. Shao reached the same conclusion as Yim et al. but showed that real 

earthquakes give less probability of overturning that simulated earthquakes do. 

Under realistic conditions, the rocking response of a rigid block is affected by 

additional factors such as the vertical component of the ground acceleration and the 

additional energy loss due to plastic deformations at the pivot points. In general, 

while rocking response under deterministic excitation has received considerable 

attention (Gesualdo et al, 2016b), the corresponding studies on stochastic behaviour 

are sparse. 
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Recent works (Prieto and Lourenço, 2005) have tried to unify the piecewise 

formulation by Housner, with the same hypothesis of large friction coefficient. The 

traditional piecewise equations are replaced by a single ordinary differential 

equation, and damping effects are no longer introduced by means of a coefficient of 

restitution, but are understood as the presence of impulsive forces. The results are in 

agreement with the classical formalism, and can be set in direct analogy with either 

a two-body central problem in the complex plane, or an inverted pendulum through 

simple variable transformations. Unfortunately these elegant formulations are 

unsuitable when rocking motion is to be avoided and sliding motion is welcome. 

Recent attempts to derive equivalence between the single rocking block and various 

rocking mechanisms, in order to give indication for real structures (e.g. see Section 

8.4.1) has been made by DeJong and Dimitrakopoulos (2014). 

∎  F.2 MOTION 

The model to be analysed is shown in the following Fig. F.2. It is assumed that the 

block, rigid, has a constant density and the distance from both base corners is 𝑅. The 

friction coefficient between the block and the foundation is considered large enough 

to prevent slide and slide-rock. It is assumed that the impact is perfectly plastic and 

that there is no rebound. 

The contact surface is assumed rigid and flat, so that the rocking motion is 

characterized by only one Lagrangian parameter.  

  

R 

 

Fig. F.2 – Configuration of a rigid block in rocking. 

Since the rotation about the corner 𝑂 is assumed be positive whilst that about 𝑂′ 

negative, a generic configuration is identified biunivocally by the angle 𝜃 or by the 

ratio 𝑥 between the angle 𝜃 and the angle 𝛼 defining the slenderness of the block. It 

should be noted that if 𝑥 = 1 the block is in a configuration of unstable equilibrium 

and (for free oscillations) the condition 𝑥 > 1 (with 𝑥̇ > 0) ensures the overturning. 
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Instead, in forced oscillations, it is possible to find a confined motion with |𝑥| > 1. 

Clearly the geometric boundary condition is 𝛼𝑥 = ∓𝜋 2⁄ .  

Shenton (1996) has shown that five starting motions response type (free flight, rest, 

slide, slide-rocking, rocking) are possible when an oscillation occurs, and in (Shenton, 

1996) a diagram for individuation of initial response is given. Furthermore, taking 

into account only slide-rock and rocking motion, the transition between them, during 

the motion, is given in (Augusti and Sinopoli, 1992) considering the role of in 

determining this phenomena. The transition condition is: 

𝜇𝑠 =
3(𝐵 𝐻⁄ )

4 + (𝐵 𝐻⁄ )2
 . (F.1) 

In conditions of free oscillations the region of pure rocking is that above the curve 

reported in Fig. F.2, while the region of slide-rocking is the one below (pointed area): 

  

Fig. F.2 – Transition regions in the case of free oscillations. 

∎  F.3 IMPACT PROBLEM 

As above said, the dynamic evolution of a rigid block is strongly influenced by impact, 

friction coefficient and ratio form of the block. When an impact occurs the pivot point 

changes instantly. The basic hypothesis generally assumed is that the impact is 

perfectly plastic or that there are not variations in the configuration of the block, but 

only in velocity. The problem of the impact is an impulsive-motion type, assuming 

that the cause of the sudden change of velocity is due to a force of "high intensity" 

agent in an “infinitesimal interval” so that the correspondent impulse is defined. But 

these considerations are not sufficient for the resolution of the problem: an 

additional hypothesis based on the definition of the impulsive force position is 
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needed. The problem can be overcome by using a restitution coefficient 𝑟. It could 

be defined as "energy" ratio and represented for symmetric block as follows: 

𝑟𝑖 =

1

2
𝐽0𝜃̇

2(𝑡𝑖
+)

1

2
𝐽0𝜃̇

2(𝑡𝑖
−)
= (

𝜃̇(𝑡𝑖
+)

𝜃̇(𝑡𝑖
−)
)

2

 , (F.2) 

where 𝑡𝑖  represents the time of the 𝑖 − 𝑡ℎ impact and superscripts "-" and "+" 

identify the time before and after the impact. Anyhow, the introduction of a 

coefficient of restitution is often given simply through the ratio between the angular 

velocities before and after the impact, namely: 

𝑟𝑖 =
𝜃̇(𝑡𝑖

+)

𝜃̇(𝑡𝑖
−)
  . (F.3) 

If we assume constant the restitution coefficient 𝑟 during the motion, in free 

oscillation the mechanical energy 𝐸𝑡𝑜𝑡
𝑁  after 𝑁 impacts can be expressed as follows: 

 𝐸𝑡𝑜𝑡
𝑁 = 𝐸𝑡𝑜𝑡

0 𝑟2𝑁  , (F.4) 

where 𝐸𝑡𝑜𝑡
0  is the mechanical energy at the instant 𝑡 = 0. Alternatively, there is the 

approach proposed by Housner and consisting in the theoretical evaluation of the 

coefficient of restitution through the conservation of angular momentum. In fact, by 

relating the angular velocity of a symmetric body after the impact through relation 

(F.3), the conservation of angular momentum about 𝑂′ just before the impact and 

right after the impact is: 

 𝐽0 − 2mrb sin 𝛼 𝜃̇(𝑡𝑖
−) = 𝐽0𝜃̇(𝑡𝑖

+) . (F.5) 

The value of 𝑟 for a rectangular symmetric block can be expressed as: 

 𝑟 = 1 −
1

2
sin2 𝛼 , (F.6) 

and 𝑟 is independent of both the energy level of the pre-impact and the type of 

material, being a function only of the slenderness parameter 𝛼. The analogy between 

the dynamic behaviour of the pendulum and the rocking block (as inverted 

pendulum) is represented in Fig F.3 by plotting on the phase plane (𝑥, 𝑥̇) the 

normalized mechanical energy 𝐸𝑡𝑜𝑡(𝑥, 𝑥̇). In Fig F.3b the motion path, in free 

oscillation and for 𝑟 < 1, is reported. It should be noted that whenever an impact 

occurs, a jump discontinuity on the angular velocity 𝑥̇ happens and the total 

mechanical energy reduces and the path belongs to a lower energetic level set. 
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 (a) (b) 

 

Fig. F.3 – In (a) the normalized mechanical energy 𝐸𝑡𝑜𝑡(𝑥, 𝑥̇) plotted on the phase plane 

(𝑥, 𝑥̇) is depicted. In (b) the path in free oscillations for 𝑟 < 1 is shown. 
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∎  F.4 EQUATIONS OF MOTION 

With reference to Fig. F.1, it is possible to derive the equations of motion of the 

block in rocking by using the d’Alembert relations or derived directly from 

Lagrangian of the whole system. 

 
 (a) (b)  

Fig. F.4 – Qualitative configurations for positive rotation (a) and negative ones (b). 

In the numerical code developed, it is possible to assign any form of the external 

excitation, but the examples below proposed regard an external action expressed as 

follows: 

 𝑥̈𝑔(𝜏) = 𝛽𝛼𝑔 cos(Ω𝜏 + 𝜙) , (F.7) 

where: 

- 𝑥̈𝑔 is the external horizontal forcing acceleration; 

- 𝛽 is the relative amplitude of the loading pulse ; 

- 𝑔 is the gravity acceleration; 

- Ω is the frequency of the external actions; 

- 𝜏 is the time variable; 

- 𝜙 is the phase angle. 

On defining the rocking frequency parameter 𝑝 as the pendulum frequency of the 

block hanging about its corner, it is possible to express the differential equations 

governing the motion as a function of both two dimensionless parameters, namely 

the dimensionless time parameter 𝑡 = 𝑝𝜏 and the dimensionless frequency 𝜔 = Ω 𝑝⁄ . 

It should be noted that the rocking frequency parameter for a symmetric rectangular 

block is 𝑝 = √3𝑔/4𝑅. Definitively, the system of equations governing the motion of 

a generic rigid block is constituted by three relations: two nonlinear differential 

equations and an equation relating the angular velocities before and after the 

impact. The differential-algebraic equations (DAEs) can be expressed as follows: 
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 {

𝛼𝑥̈ + sin(𝛼(1 − 𝑥)) = −𝛼𝛽 cos(𝛼(1 − 𝑥)) cos(𝜔𝑡) 𝑓𝑜𝑟 𝑥 > 0

𝛼𝑥̈ − sin(𝛼(1 + 𝑥)) = −𝛼𝛽 cos(𝛼(1 + 𝑥)) cos(𝜔𝑡) 𝑓𝑜𝑟 𝑥 < 0

𝑥̇(𝑡𝑖
+) = 𝑟𝑥̇(𝑡𝑖

+)

 ,  (F.8) 

while for slender blocks the dependence on the angle 𝛼 of the system (F.8) is lacking: 

 {

𝑥̈ − 𝑥 + 1 = −𝛽cos(𝜔𝑡) 𝑓𝑜𝑟 𝑥 > 0

𝑥̈ − 𝑥 − 1 = −𝛽cos(𝜔𝑡) 𝑓𝑜𝑟 𝑥 < 0

𝑥̇(𝑡𝑖
+) = 𝑟𝑥̇(𝑡𝑖

+)

 . (F.9) 

It should be noted that the solution of the system, even in the simplified case of 

slender blocks, is complex as always in the case of nonlinear ordinary differential 

equations. In particular, in the ideal case with 𝑟 = 1, the DAEs (F.8) can be condensed 

only in the following differential equation: 

 𝛼𝑥̈ + sgn(𝑥) sin(𝛼(1 − sgn(𝑥)𝑥)) = −𝛼𝛽 cos(𝛼(1 − sgn(𝑥)𝑥)) cos(𝜔𝑡) , (F.10) 

and equivalently the system (F.9) in: 

 𝑥̈ − 𝑥 + sgn(𝑥) = −𝛽cos(𝜔𝑡) , (F.11) 

where 

 sgn(𝑥): 𝑥 ∈ ℝ → {
+1 𝑥 > 0
−1 𝑥 < 0

 . (F.12) 
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∎  F.5 EXAMPLES 

In this section, we present some numerical results concerning first the case of free 

oscillations and later the case of forced ones in order to show some typical rocking 

behaviours. 

F.5.1 Free oscillations 

In this section, some typical time histories regarding free motion are proposed. In 

Fig. F.5 three simple solutions for 𝑟 = 1 obtained through the integration of 

differential equation (F.10) on assuming different initial conditions are depicted. 

 
 (a) (b) (c)  

Fig. F.5 – Typical time histories for free motion with 𝑟 = 1 (B=1.6, H=1) and considering 

different initial conditions: in (a): (𝑥(0), 𝑥̇(0)) = (0.99,0.00), in (b): (𝑥(0), 𝑥̇(0)) =

(0.70,0.00) and in (c):dd (𝑥(0), 𝑥̇(0)) = (0.30,0.00). 

In Fig. F.6 a typical time history for a rigid block (H=3.0m, B=1.0m) in free oscillations 

with a restitution coefficient r=0.925 obtained by the numerical integration of (F.8) is 

depicted. 

 
 (a) (b) (c) 

 

Fig. F.6 – Typical time histories for free motion with 𝑟 = 0.925 and with initial conditions 

(𝑥(0), 𝑥̇(0)) = (0.99,0.00). 
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F.5.2 Forced oscillations 

In this section, some typical response motions of a rigid block under sinusoidal 

excitations are presented. The variation of amplitude and frequency give several 

answers. The response diagrams are evaluated considering the nonlinear differential 

equations (F.8). In Fig. F.7 the time histories of a typical unconfined motion are 

presented. 

 
 (a) (b) (c)  

Fig. F.7 – Typical unconfined response (or overturning response): 𝑟 = 0.925, 𝜔 = 3.14, 𝛽 =

1.75 and 𝛼 = 0.5. In (a): rotation, in (b): angular velocity, in (c) the related phase plane. 

In Figs. F.8-13 the results of the analyses, according to the definition of “orbit” given 

in (Spanos and Koh, 1984), are shown in order to test our numerical code and to 

illustrate some typical behaviour reported also in Hogan. The parameters of the 

external action are reported in every caption. In particular Fig. F.12 illustrates a quasi 

periodic response whilst in Fig. F.13 a typical chaotic response is reported: limited, 

casual and unpredictable, although with a certain order in the shape of motion, even 

if the excitation is periodical. 

 
 (a) (b) 

 

Fig. F.8 – Typical harmonic response with orbit of order (1,1): 𝑟 = 0.925, 𝜔 = 6.28, 𝛽 =

2.00 and 𝛼 = 0.5. In (a): rotation, in (b): angular velocity, in (c) the related phase plane 
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 (a) (b) 

 

Fig. F.9 – Sub-harmonic response with orbit of order (1,3): 𝑟 = 0.925, 𝜔 = 15.71, 𝛽 = 6.50 

and 𝛼 = 0.5. In (a): rotation, in (b): angular velocity, in (c) the related phase plane. 

 

 
 (a) (b)  

Fig. F.10 – Sub-harmonic response with orbit of order (1,5): 𝑟 = 0.925, 𝜔 = 12.57, 𝛽 =

5.50 and 𝛼 = 0.5. In (a): rotation, in (b): angular velocity, in (c) the related phase plane. 

 

 
 (a) (b) 

 

Fig. F.11 – Sub-harmonic response with orbit of order (3,9): 𝑟 = 0.925, 𝜔 = 6.55, 𝛽 = 4.00 

and 𝛼 = 0.5. In (a): rotation, in (b): angular velocity, in (c) the related phase plane. 
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 (a) (b)  

Fig. F.12 – Quasi periodic response: 𝑟 = 1.00, 𝜔 = 15.71, 𝛽 = 4.00 and 𝛼 = 0.46. In (a): 

rotation, in (b): angular velocity, in (c) the related phase plane. 

 

 
 (a) (b) 

 

Fig. F.13 – Chaotic response: 𝑟 = 1.00, 𝜔 = 15.71, 𝛽 = 2.00 and 𝛼 = 0.46. In (a): rotation, 

in (b): angular velocity, in (c) the related phase plane. 
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