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ABSTRACT  

 
Estrogen-induced transcription is characterized by localized histone 

demethylation and DNA oxidation, followed by the recruitment of repair 

and DNA and histone methyl-transferase enzymes at target sites. The 

functional link between these different proteins recruited at estrogen 

chromatin sites is unclear and it is unknown which steps catalyzed by these 

proteins are essential for productive estrogen-mediated transcription. 

Here we report that specific genomic regions that synchronously recruit 

estrogen receptor complexed with the demethylase LSD1 and DNA repair 

protein such as OGG1 (a component of base excision repair) or 

topoisomerase IIβ. These enzymes are recruited at the estrogen regulatory 

regions in a precise temporal order and are essential for the assembly of the 

transcription initiation complex induced by estrogens. We find that DNA 

methyltransferase 3a (DNMT3a) couples BER and NER repair enzymes at 

promoter sites and stimulates estrogen-induced transcription initiation. The 

orderly recruitment of DNA and histone methyltransferases and repair 

enzymes greatly reduces the mutational burden induced by DNA oxidation 

associated with transcription. 
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1. BACKGROUND 

 
1.1 Overview of transcription 
Genomic DNA is the macromolecule that holds genetic information. It codes for 

several functional macromolecules, among which messenger RNA (mRNA) stands 

out for its role as a substrate in protein synthesis.  

Transcription, as the first stage of gene expression, is the process of copying the 

DNA sequence of a gene to produce an RNA molecule with all the information 

necessary to obtain a protein. DNA is a double-stranded molecule, but only the 

antisense or “minus” strand of the DNA is used as template for transcription, while 

the non-transcribed or “plus” strand sequence is identical to the RNA transcript (the 

sequence only differs for the presence of Uracil instead of Thymine).  

RNA polymerases (RNA pol), large multi-subunit enzymes that attach to the 

antisense DNA strand and catalyze the production of complementary RNA, are the 

main enzymes involved in transcription. Eukaryotes have three distinct nuclear 

enzymes, Pol I, II, and III that synthesize different classes of RNA. The Pol II 

transcription machinery is the most complex, with almost 60 polypeptides, but also 

the most used by cells, considering that it transcribes nearly all protein-coding genes 

and also miRNA genes.  

 

1.1.1 A typical RNA Pol II transcription cycle 

During initiation, the first step of transcription, RNA Pol II must recognize a 

promoter sequence onto DNA, separate the duplex to expose the template strand, 

and initiate RNA synthesis using nucleotide triphosphates. The core promoter is the 

location at which the RNA pol II machinery initiates transcription. To recognize the 

core promoter, RNA pol II requires additional factors, commonly named “general” 

or “basal” transcription factors, which include TFIIA (Transcription Factor for RNA 

polymerase II A), TFIIB, TFIID, TFIIE, TFIIF, and TFIIH (Juven-Gershon et al., 

2010). 

Pol II is positioned at the core promoter by a combination of TFIID, TFIIA, and 

TFIIB to form the preinitiation complex (PIC). Many polymerase II promoters have 

a consensus sequence TATAA (TATA box) located 25 to 30 nucleotides upstream 

of the transcription start site. This sequence is recognized by transcription factor 
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TFIID, which consists of the TATA-binding protein (TBP) and TBP-associated 

factors (TAFs). TFIIB connects TBP and Pol II, associating with TFIIF to form, 

finally, a complex with TFIIE and TFIIH (Horn et al., 2016). TFIIH then melts 11–

15 bp of DNA, using energy provided from ATP hydrolysis. Hence, the single-

strand template stands in the Pol II cleft and the open complex (OC) is assembled to 

initiate RNA synthesis (Grünberg et al., 2013; Li et al., 2007). Once short abortive 

RNA molecules are produced, after the synthesis of about 30 bases of RNA, Pol II 

releases its contacts with the core promoter and the rest of the transcription 

machinery to reach the stage of transcription elongation. In this instance, all the TFs 

are released from PIC except for TFIIF. Moreover, the Carboxyl-Terminal Domain 

(CTD) of the Pol II largest subunit is phosphorylated, fulfilling a critical role for 

elongation. Then, elongating Pol II can recruit all factors needed to obtain 

productive RNA chain synthesis, RNA processing, RNA export, and chromatin 

modification (Hahn, 2004). Meanwhile, all the unemployed factors that are not 

useful anymore for the elongation stage, are recycled to start a new initiation of 

transcription in the so-called Scaffold Complex. This complex assumes an 

advantageous role because it promotes the Reinitiation of transcription, bypassing 

the slow recruitment step of all general factors (Figure 1). 

 

 
Figure 1. Structure and mechanism of the RNA Polymerase II transcription machinery 

General TFs and RNA Pol II are recruited on the promoter region to assemble the Pre Initiation Complex (PIC); 

once the transcription bubble is open and some abortive synthesis cycles are performed, the process can 
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progress in the elongation stage. The active recycling of the general TFs allows them to maintain productive 

transcription cycles (Adapted from Hahn S, 2004).    
 

Transcription termination occurs when the polymerase and the nascent RNA are 

released from the DNA template: this event is due to co-operation between 

components of the cleavage and polyadenylation factor (CPF) and cleavage factor 

(CF) complexes, which recognize specific sequences in the 3ʹ untranslated region 

(UTR) of the transcript (Porrua O et al., 2015). 

 

1.2 Epigenetics 

 
1.2.1 Chromatin organization 

Chromosomal DNA achieves a high degree of compaction into the microscopic 

space of the eukaryotic nucleus, thanks to its packaging into chromatin fibers. 

Chromatin is made of a basic repeating unit, called the nucleosome, that consists of 

146 bp of DNA wrapped around an octamer of histones (Virani S et al., 2012). Two 

copies of each histones H2A, H2B, H3 and H4, combined in a H3-H4 tetramer and 

two H2A-H2B dimers, form an octamer. Histones are small basic proteins, highly 

conserved throughout evolution, constituted of a globular domain flanked by a 

carboxyl-terminal domain and an amino-terminal tail rich in lysine residues that 

protrudes out of the nucleosome. The H3 and H4 N-terminal tails confer a higher-

order to the nucleosome structure through their bond with DNA or the acidic stretch 

on neighboring nucleosomes (Li Z et al., 2016). Chromatin is compartmentalized in 

distinct domains: the term heterochromatin is attributed to a transcriptionally silent 

structure with thickly packed nucleosomes; euchromatin, instead, is more lightly 

packaged and can harbor the transcriptional machinery (Figure 2) (Bártová E et al., 

2008).  
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Figure 2. Overview of chromosomal DNA organization 

a) Heterochromatin: regions with low or no transcriptional activity that are densely packed; b) Euchromatin: 

regions with high transcriptional activity that are loosely packed; c) naked DNA, which can be methylated at 

cytosine level. In a) and b) panels, the markings represent different modifications on histones: red – methyl 

groups, purple – acetyl groups, green – phosphoryl groups (Adapted from Zaidi SK et al., 2010). 
 

Specific modifications, which take place at the amino-terminal histone tails, are 

responsible for the segregation of the genome into distinct domains and they 

influence the transcription availability of genes. 

 

1.2.2 Epigenetic modifications 

Covalent modifications of DNA and histone proteins determine variations in the 

degree of chromatin condensation. Several types of post-translational modification 

can affect the protruding histone tails: methylation, acetylation, phosphorylation, 

ADP-ribosylation and ubiquitination. All of them can affect interactions between 

DNA and histones, altering gene transcription (by regulating the binding of 

transcription factors to DNA sequences), DNA replication, DNA repair, 

chromosome organization and disease processes (Hamilton JP, 2011). These 

modifications create the so-called histone code, an epigenetic marking system read 

by specific proteins, which subsequently change the structure of chromatin, 

governing gene expression. Indeed, expression of genes in mammals is controlled 

by genetic as well as epigenetic mechanisms: the term epigenetics specifies the 

study of heritable changes in the phenotype that are not encoded in the genome of a 
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cell (Jin B et al., 2011). Epigenetic alterations encompass histone and other 

chromatin protein modifications and DNA methylation. 

 

• Histone methylation and de-methylation 

Among the major posttranslational histone modifications, are the 

methylation of certain lysine (K) and arginine residues of histones H3 and 

H4, managed by histone methyltransferases (HMTs). Lysines can be 

modified by mono-, di- and tri-methylation, whereas arginines can be mono- 

and di-methylated (Yi X et al., 2015). S-Adenosyl methionine (SAM/Ado-

Met) provides the methyl groups to HMTs. Lysine HMTs are extremely 

specific: their modifications take place on one single lysine on a single 

histone but the resulting effect can be either activation or repression of 

transcription. Generally, condensed heterochromatin is characterized by 

repressive marks, like di- and tri-methylation of lysine 9 on histone H3 

(H3K9me2/me3) or tri-methylation of lysine 27 on histone H3 (H3K27me3). 

Histone H3 di- and tri-methylation of lysine 4 (H3K4me2/me3) and tri-

methylation of lysine 36 (H3K36me3) are instead associated with 

transcription activation (Kouzarides T, 2007). Conversely to other 

modifications (like lysine acetylation, which abrogate the positive charge of 

the amino acid and eliminate the electrostatic bond between DNA and 

histones), methylation affects the binding of chromatin-associated proteins. 

Moreover, different readers can be recruited when the methylation is 

reversed: methyl groups can be removed from histone lysine residues by 

enzymes called histone lysine demethylases. These are the jumonji C (JmjC)-

domain-containing, iron-dependent dioxygenases and the amine oxidases, 

such as the lysine-specific histone demethylase 1 (LSD1) also known as 

KDM1 (Morera L et al., 2016). Post-translational histone modifications can 

clearly influence each other by either enhancing or inhibiting transcription, 

therefore an hypothesis arose that they compose the so-called combinatorial 

code, regulating and determining some phenotypic traits by the recruitment 

of different chromatin-modifying proteins (Figure 3) (Cieślik M et al., 2014). 
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Figure 3. The histone code 

DNA is wrapped around an octamer of histones H2A, H2B, H3 and H4, combined in two H2A-H2B 

dimers and a H3-H4 tetramer. The protruding amino-terminal histone tails can be differently modified: 

relevant is the methylation of histones, which can result in repression or activation of transcription, 

depending on the proteins involved in “writing” and “reading” the modification (Adapted from Morera 

L et al., 2016). 
 

• DNA methylation 

DNA methylation consists in the covalent attachment of a methyl group at 

the 5’-carbon position of the cytosine (C) residues. In mammals, DNA is 

methylated primarily on the C of CpG dinucleotides in the DNA chain. 

Methylation of C which are not present in CpG dinucleotides, is present only 

in the body of actively transcribed genes of stem cells. Even if 60–80% of 

the CG residues appear methylated throughout the entire genome, it is 

noteworthy that in CpG islands and active regulatory regions only 10% of 

the CGs are methylated. Active promoters must be protected from 

methylation, while other genomic regions, like repetitive DNA sequences 

randomly dispersed or clustered near centromeres, must be repressed by 

methylation to maintain genome integrity (Du J et al., 2015). DNA 

methylation is considered a key player in epigenetic silencing of 

transcription due to the stable feature of its repressive mark and the ability to 

crosstalk with chromatin modification status (Jin B et al., 2011). Three DNA 

methyltransferases (DNMTs) are the enzymes responsible of the methyl-
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group transfer from SAM to cytosine: DNMT1 accounts for the maintenance 

methylation, copying pre-existing methylation patterns to a newly 

synthesized strand after recognition of hemi-methylated sites; DNMT3a and 

DNMT3b are the de novo methyltransferases effective on unmethylated 

DNA (Castillo-Aguilera O et al., 2017). Though DNMT3b has 

approximately 30 isoforms and DNMT3a has two different isoforms, they 

share common features (Figure 4): a variable region at the N terminus, 

followed by a PWWP (Pro-Trp-Trp-Pro) motif most likely involved in 

nonspecific DNA binding, a Cys-rich 3-Zn-binding domain and a well-

conserved C-terminal domain bearing the catalytic activity (Cheng X et al., 

2008). 

 

 
 
                Figure 4. DNA Methylation and DNMTs domains 

(a) Methylation of DNA at ring carbon C5 of cytosine. (b) De novo versus maintenance methylation. 

The pale-blue sections are substrate sequences (usually CpG), and the turquoise circles represent 

methyl groups on the cytosines. After replication or repair, the duplex is only hemi-methylated. (c) 

DNMTs family members: schematic representation of DNMT1 and DNMT3a/b/L. Roman numerals 

indicate conserved motifs of DNA MTases: DNMT3L lacks the conserved residues required for DNA 

methyltransferase activity in the C-terminal domain (Adapted from Xiaodong Cheng, Robert M. 

Blumenthal. 2008 Structure). 
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As a stable repressive mark, DNA methylation is considered a key player in 

epigenetic silencing of genes with high CpG dinucleotide frequency near 

their promoters (Bird AP et al., 1999); its function is also recognized in 

imprinting (Li E et al., 1993), in development and differentiation (Li E et al., 

1992) and in X chromosome inactivation (Jaenisch R et al., 1998). Aberrant 

methylation has been detected in cancer cells (Cho YH et al., 2010); 

moreover, the association of DNA methylation with DNA damage and repair 

was demonstrated (Cuozzo C et al., 2007), as was the decreased methylation 

rate of repaired DNA regions caused by transcription (Morano A et al., 

2014). 

DNA methylation can be reverted trough passive or active demethylation: 

the passive mechanism takes place during replication and involves DNMT1, 

which does not methylate the newly synthesized DNA strands. Oxidation of 

5-methyl cytosine (5mC) by enzymes from the ten-eleven- translocation 

(TET) family, instead, is the main active mechanism of DNA demethylation: 

these hydroxylases convert 5mC successively into 5-hydroxymethyl-2′-

deoxycytidine (hmC), 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-

caC), using ATP energy to restore the unmethylated C (Tahiliani M et al., 

2009). 

 

1.3 Regulation of transcription by estrogens 

 
1.3.1 Estrogen receptors and their ligands 

Estrogen receptors (ERs) are nuclear hormone receptors ligand-dependent. ERα and 

ERβ are two alternative isoforms, expressed in mammals as products of separate 

genes located on different chromosomes. Classical transcription factors do not need 

activation with a specific ligand to exert their function; conversely, to recognize 

specific sequences within the promoters of target genes, ERs need to bind estrogens 

(Farooq A, 2015). Estrogens are steroid hormones derived from cholesterol, able to 

diffuse through the membrane and bind to their receptors in the nucleus thanks to 

their lipophilic character. Together with its receptors, 17β-estradiol (E2) mediates a 

plethora of cellular functions from sexual development and reproduction to 
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regulation of metabolic processes. ERα and ERβ are members of a family of ligand-

modulated transcription factors and they share a similar structure (Figure 5): 

• the N-terminal A/B domain (AF1), able to transactivate transcription in a 

hormone-independent manner; 

• the DNA binding domain (DBD), highly homologous in ERα and ERβ, that 

recognizes specific DNA sequences named Estrogen Response Elements (ERE); 

• the hinge domain, important for the translocation of ER into the nucleus; 

• the ligand binding domain (LBD), located at the C-terminus, which contains a 

ligand recognition pocket and also a second transactivation domain (AF2) (Nilsson 

S et al., 2001). 

 

 
Figure 5. ERα and ERβ domain structures  

As explained in the text, ERα and ERβ have a similar structure; however, the DNA binding domain is the 

most conserved and shares 97% homology between the two receptors. 
 

When the receptor binds the hormone, it undergoes a conformational change 

resulting in dimerization. Then, the dimer enters the nucleus and, thanks to the 

presence of two C4-type zinc fingers in the DBD, it binds to the palindromic 

sequences known as ERE, modulating transcription of multiple responsive genes 

(Figure 6) (Deroo BJ et al., 2006).  
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 Figure 6. Estrogen-induced transcription 

Schematic representation of E2-induced transcription: extracellular estrogen enters the cell and binds to ER 

monomers, causing dimerization and transport into the nucleus as a receptor-ligand complex. Once 

recognized the ERE, transcription is activated: the RNA Pol II in its PIC form (here not shown) can start 

RNA polymerization from the Transcription Start Site (TSS) (Image re-edited from http://www.ifom-ieo-

campus.it/research/petersen-mahrt.php). 

 

The whole-genome mapping of ERα binding sites showed that only 5% of the 

receptors are enriched within 50 kb around the transcription start sites (TSS). The 

majority of DNA binding sites are located in intronic or distal regions, suggesting 

transcriptional mechanisms that involve physically distant regions via chromatin 

looping (Lin CY et al., 2007). Moreover, it was shown that ERs collaborate with 

other transcription factors recruited at ERE sequences (Carrol JS et al., 2006). 

 

1.3.2 Estrogen-induced genes 

• TFF1 gene 

Trefoil factor 1 (TFF1), generically named pS2 gene, is encoded by the 

TFF1 gene. It is located in a cluster on chromosome 21, together with two 

other members of the trefoil gene family. For several years, little information 

was known about the function of the trefoil proteins, apart from their 

increased expression in chronic inflammatory intestinal diseases (Wong WM 

et al., 1999). pS2 was first detected in breast cancer cell lines, although it is 

mainly expressed in gastrointestinal mucosa and is considered a gastric 

tumor suppressor. The pS2 gene product protects mucosa from insults, 

influences healing of the epithelium and stabilizes the mucus layer (Aihara E 

et al., 2016). Like the other members of the trefoil family, pS2 protein bears 
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a conserved 40-amino acid domain called trefoil motif, which contains three 

conserved disulfides. An ERE site in the 5’-flanking region of the gene enables 

the transcriptional regulation of pS2 by estrogen (Figure 7).  

 

 
Figure 7. Structure of TFF1 gene (pS2) 

pS2 gene contains three exons and an ERE in the 5’-flanking region of the promoter (legend: in 

green are represented the non-coding regions and introns; in red is shown the promoter region; in 

light pink are represented the exons; in dark pink can be identified the EREs; in blue are depicted 

PolyA regions) 

 

• BCL2 gene 

B-cell lymphoma 2 (BCL2) gene, localized in humans on chromosome 18, 

encodes an oncogenic and anti-apoptotic protein expressed in the outer 

mitochondrial membrane. BCl-2 protein modulates membrane permeability, 

thereby affecting mitochondria-dependent apoptosis. Two EREs, only 81 bp 

apart and located within the BCL2 coding region, at the end of the second 

exon (Figure 8), are responsible for the gene responsiveness to estrogen 

(Perillo B et al., 2000). 

 

 
Figure 8. Structure of BCL2 gene 

BCL2 gene is composed by three exons and a ERE is present in the second exon (legend: as in 

figure 7). 

 

• CAV1 gene 

The gene that encodes Caveolin-1 protein is CAV1, located on chromosome 

7, near the CAV2 gene. Both genes code for proteins that act as a hetero-

oligomeric complex to constitute the plasma-membrane structure known as 

caveolae. E2 induces the expression of caveolin-1 mRNA (Park JH et al., 

2009), through the recognition of an ERE located in the first intron (Figure 

9). 
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Figure 8. Structure of CAV1 gene 

CAV1 gene is formed by three exons and three EREs spanning from the first to the second intron; 

the ERE recognized by ERs is located in the first intron (legend: as in figure 7). 

 

 

1.4 DNA oxidation, repair and transcription: what is the 

connection? 
1.4.1 DNA oxidative damage and repair 

DNA is vulnerable to several kinds of damage, among which can be listed the 

oxidative damage caused by reactive oxygen species (ROS). As a consequence of 

normal metabolic processes and also interaction with radiations or toxic cancer-

promoting substances. Either purines or pyrimidines can be oxidized, but the most 

commonly damaged base is the guanine, transformed in 8-oxo-2'-deoxyguanine (8-

oxo-G). The ability of 8-oxo-G to base pair with deoxyadenosine instead of 

deoxycytidine explains why, if not properly repaired, this lesion can lead to 

G·CT·A transversions, which can result in harmful point mutations. Generally, 

DNA modifications generated by environmental agents or endogenous sources of 

oxidative stress are recognized and removed by enzymes of the base excision repair 

(BER) pathway, while specific oxidative lesions, as cyclo-purines, are detected and 

repaired by nucleotide excision repair (NER) proteins.  

 

• Base excision repair 

The BER pathway comprises numerous proteins that act in concert to 

eliminate non-bulky DNA lesions. An exception is the recently discovered 

NEIL3, able to unhook DNA inter-strand crosslinks during replication 

(Semlow DR et al., 2016). Generally, a single damaged base is recognized 

and excised by a DNA glycosylase, which forms an apurinic or apyrimidinic 

(AP) site. Subsequently, an AP endonuclease recognize the apurinic site in 

the DNA strand and cleaves at the 5´-side of the abasic site. At this stage, the 

newly formed single-strand break in the DNA can be resolved by either 
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short-patch or long-patch BER, with a DNA polymerase and a DNA ligase 

involved in the completion of the BER process (Figure 9) (Dyrkheeva NS at 

al., 2016). 
 

 

Figure 9. Short-patch and Long-patch BER 

General scheme of the base excision repair (see the text for full details. Adapted from Dyrkheeva NS 

at al., 2016) 
 

Oxidized bases are processed by different DNA glycosylases: 8-Oxoguanine 

DNA glycosylase I (OGG1) excises 8-oxo-G, thymine-DNA-glycosylase 

(TDG) removes modified cytosines, uracil-DNA-glycosylase (UNG) avoids 

C→T point mutations, eliminating the uracil arisen from cytosine 

deamination, and N-methylpurine-DNA glycosylase (MPG) excises 

modified purines. The 8-oxo-G base is a relevant example to understand the 

harmful feature of endogenously generated DNA modifications. For 

example, OGG1 is continuously active to maintain the levels of 8-oxo-G 

below 1 per million base pairs in physiological conditions (ESCODD, 2003); 
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OGG1-/- mice show modestly increased levels of 8-oxo-G in various organs 

and increased spontaneous mutation rates responsible for malignant 

transformation (Klungland A et al., 1999). Moreover, as mitochondria are 

the sites of oxidative phosphorylation, BER is essential also to preserve 

mitochondrial DNA, continuously exposed to endogenous oxidative damage 

(Caston RA and Demple B, 2016). 

As depicted in Figure 9, in the short patch BER, the AP endonuclease 1 

(APE1) recognizes the abasic site left by the glycosylase and creates a nick 

in the phosphodiester backbone of the DNA. Then, the DNA polymerase β 

(Polβ) uses its associated AP lyase activity to remove the deoxyribose-5-

phosphate residue and its DNA polymerase activity to insert the correct 

nucleotide. For this purpose, Polβ is first recruited by Ape1, which remains 

bound to the cleaved AP site (Bennet et al., 1997), and is further helped to 

bind with DNA Ligase III by the scaffold protein X-ray repair cross-

complementing group 1 (XRCC1) (Lindahl T and Wood RD, 1999). 

The long-patch BER intervenes in the repair of nucleotide strands (starting 

from a minimum length of 2 nucleotides). The proliferation-cell-nuclear 

antigen (PCNA) acts as a scaffold protein for the repair enzymes, while the 

DNA polymerases Pol δ and Pol ε produce an oligonucleotide flap, further 

removed by flap endonuclease-1 (FEN1) (Klungland A and Lindahl T, 1997)  

The repair is then completed by DNA ligase I, which ligates the 

oligonucleotide and seals the break (Sung JS and Demple B, 2006). 

 

• Nucleotide excision repair 

The NER pathway repairs damages long at least 2 nucleotides and 

responsible of a structural distortion of the DNA helix: these type of single 

strand breaks are mostly caused by exogenous insults, such as UV radiation 

and bulky DNA adducts (Balajee AS and Bohr VA, 2000). Mammals 

express 9 principal proteins involved in NER pathway. Deficiencies in some 

of these proteins lead to specific diseases and the specific protein names are 

associated with the disease. XPA, XPB, XPC, XPD, XPE, XPF, and XPG all 

derive from Xeroderma Pigmentosum and CSA and CSB are linked to 

Cockayne syndrome. Additional proteins such as RPA, RAD23A, ERCC1, 

and RAD23B also participate in nucleotide excision repair. 
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Figure10: A model of the nucleotide excision repair pathway, which includes global genomic 

repair and transcription-coupled repair (a) that both share a common point from the unwinding of the 

DNA (b) to the resolution of the damage and the repair of DNA (Adapted from Fousteri et al., 2013). 

 

Eukaryotic NER is characterized by the presence of sub-pathways: global 

genomic NER (GG-NER) and transcription coupled NER (TC-NER) (Figure 

10). Two different sets of proteins are involved in recognizing DNA damage 

for each sub-pathway. After damage recognition, the two pathways converge 

to the steps of dual incision, repair, and ligation. GG-NER is a process 

independent of transcription that repairs damage throughout the genome in 

both transcribed and un-transcribed genes. Some of the proteins involved in 

this pathway are the DNA-damage binding (DDB) and XPC-Rad23B 

complexes that constantly scrutinize the genome and recognize helix 

distortions: the XPC-Rad23B complex recognizes distortions, while DDB1 

and DDB2 (XPE) are able to sense damages caused by UV light. 

TC-NER is required, instead, when RNA pol is blocked at a lesion onto 

DNA: in this case, the detection of a helix distortion by the XPC-RAD23B 
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and DDB complexes is not necessary, because the stalled RNA pol serves as 

a damage signal. CSA and CSB proteins bind this type of DNA damaged 

structure instead of XPC-Rad23B. After the identification of the damaged 

site, several repair proteins are recruited to excise and fill in the damaged 

DNA surrounding the lesion. NER proteins repair the non-transcribed 

strands of transcriptionally active genes faster than non-transcribed strands 

and transcriptionally silent DNA. 

 

1.4.2 DNA oxidation in the transcriptional activation of hormone receptors 

DNA oxidation can result from transcription. This conclusion emerges from 

findings in different systems, in which the common denominator is the site-directed 

formation of oxidized bases in promoter regions. Perillo et al., in 2008 showed that 

the Lysine Specific Demethylase 1 (LSD1 or KDM1a) generates 8-oxo-G after 

estrogen treatment of MCF7 cells (ERα positive, thus estrogen-responsive cells).  

LSD1 is a flavin adenine dinucleotide (FAD)-containing enzyme, involved in the 

demethylation of mono- and dimethyl-lysine residues of histones. During its 

enzymatic activity, LSD1 generates H2O2 as a stoichiometric derivative product, 

causing the oxidation of guanines in the DNA (Culhane JC and Cole PA, 2007; 

Forneris F et al., 2005). It was shown that H3K9me2 demethylation by LSD1 

triggers E2-induced transcription thanks to the recruitment of OGG1 to the 8-oxo-G 

formed in the promoter region of estrogen-responsive genes: the oxidized bases are 

then excised by OGG1 and Ape1 processes the resulting apurinic site leaving a 

transient nick in the DNA backbone. Finally, the action of Topoisomerase IIβ (Topo 

IIβ) and a DNA ligase reseals DNA. This process causes in the chromatin dynamic 

topological changes required for a productive transcription activation (Figure 11). 
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Figure 11. Model for regulation of E2-induced transcription by histone demethylation and 

oxidation of DNA. 

LSD1 is constitutively associated with EREs and promoters of ER target genes. When the ER is 

activated by the ligand, it binds to both the enhancer and promoter, and drives LSD1-dependent 

demethylation of H3K9me2, production of H2O2 and oxidation of guanine (here depicted in details). 

This damage is recognized and repaired by OGG1 and Topo IIβ, which in turn triggers chromatin 

bending to promote gene transcription (Adapted from Nottke A et al., 2009 and  Perillo et al., 2008). 

 

An analogous mechanism of LSD1-dependent recruitment and activation of OGG1 

has been shown in a Myc-induced transcription system, where the triggering 

modification is the transient demethylation of H3K4me2 (Amente et al., 2010). 

Moreover, H3K4me2 and H3K9 me2/me3 demethylation occurs in retinoic acid-

induced transcription (Zuchegna et al., 2014). These epigenetic modifications have 

been found crucial also in an androgen receptor-mediated transcriptional system, 

where the demethylation of H3K4me2 followed by DNA oxidation and recruitment 

of involved proteins, activates the transcription of androgen target genes (Yang S et 

al., 2015). It is noteworthy that blocking DNA oxidation with antioxidants such as 

N-acetylcysteine lowers the induction of target genes in all these systems. 
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2.  AIM OF THE STUDY 

 

 
Estrogen-induced transcription of many genes occurs following demethylation of 

H3K9me2, performed by the demethylase LSD1. H2O2 released by LSD1 causes local 

oxidation of DNA, measured as 8-oxo-G formation. BER enzymes recognize and 

resolve oxidized guanines with the intervention of Topo IIβ and a DNA ligase that 

reseals DNA and allows chromatin bending and productive transcription (Perillo et al., 

2008; Amente et al., 2010). The production and repair of 8-oxo-G is necessary to induce 

the transcription of estrogen target genes, and blocking DNA oxidation leads to 

impaired mRNA production (Perillo et al., 2008). It was already known that OGG1 is 

recruited to regulatory regions of estrogen-induced genes and recently, it has been 

reported that also GG-NER enzymes are found at inducible promoters after hormonal 

stimuli, participating in oxidative damage repair (Zuchegna et al., 2014). Moreover, it 

has been reported that CpG methylation cycles are induced within the promoter of 

estrogen target genes, together with the recruitment of DNMTs enzymes (Metivier et 

al., 2003). 

The aim of this study is to analyze the action of estrogens on the coordinate recruitment 

of DNA repair enzymes (BER – NER) and a DNA methyltransferase enzyme 

(DNMT3a) during the assembly of the transcription initiation complex 
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3. MATERIALS AND METHODS 
 

3.1 Cell cultures and treatments 
Human breast cancer MCF-7 cells were grown at 37°C in 5% CO2 in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with phenol red, 

L-glutamine (2 mM), insulin (10 μg/ml), hydrocortisone (3.75 ng/ml), and 10% 

fetal bovine serum (FBS, South America origin, Brazil, Invitrogen, Rockville, 

MD, USA). To evaluate the effect of Estrogen treatment, cells were grown in 

phenol red-free DMEM containing 10% dextran – charcoal-stripped FBS for 72 

hours, before being challenged with 50 nM Estrogen for different times 

according to the experimental set up. 

 

3.2 Transfections and silencing 
All transfections were carried out using a Neon® Transfection System. Specific 

plasmids or siRNAs were introduced into each 3x10^6 dissociated cells in 100 

ml volume according to the manufacturer’s instructions. Pulse width was 

determined according to applied voltages: 1100V, 30 ms, 2 pulses. 

Electroporated cells were then seeded into 100-mm culture dishes containing 

5ml of culture media. After 48 h, cells were treated with E2 (E8875 Sigma-

Aldrich) at the times and concentrations indicated in the text. 

The plasmids and siRNA used were the following: DNMT3a1-282C catalytic 

subunit expressing plasmid from TopoGEN (2881 – Lot#091112UCF); OGG1 

wt and K341R plasmids (AddGene); DNMT3a siRNA (Santa Cruz sc-270087). 

 

3.3 RNA extraction and qRT-PCR 

Total RNA was extracted using Trizol (Invitrogen). Samples were quantified 

with NanoDrop 2000c (Thermo Fisher Scientific, Life technologies). cDNA 

was synthesized in a 20 μl reaction volume containing 1 μg of total RNA using 

a high-capacity reverse transcriptase kit (SensFAST cDNA Synthesis Kit, 

Bioline - BIO-65053) according to manufacturer’s instructions. The mRNA 

expression level (50 ng for each cDNA) of the analyzed genes was measured by 

a StepOnePlus Real Time PCR System (Applied Biosystem) on DNA template 

(RT-PCR) using the SYBR Green-detection system (Biorad) according to 
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manufacturer's instructions. The complete list of oligonucleotides used is 

reported in Table 1. 

 

3.4 Chromatin Immuno-Precipitation (ChIP) and Re-ChIP 

Cells were transfected and/or treated as indicated in the legends of the figures. 

The cells (~2.5 x 106 for each antibody) were fixed for 10 min at room 

temperature by adding 37% formaldehyde (Sigma F8775) to a final 

concentration of 1%, the reaction was quenched by the addition of glycine to a 

final concentration of 125 mM. Fixed cells were harvested and the pellet was 

resuspended in 1 ml of Lysis Buffer (10 mM Tris- HCl pH 8.0, 10 mM NaCl, 

0.2 % NP40) containing 1X protease inhibitor cocktail (Roche Applied 

Science). The lysates were sonicated in order to have DNA fragments from 300 

to 600 bp. Sonicated samples were centrifuged and supernatants diluted 2 fold 

in the ChIP Buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM 

Tris- HCl pH 8.0). An aliquot (1/10) of sheared chromatin was further treated 

with proteinase K (4U every 1 x 106 nuclei), extracted with 1 volume of 

phenol/chloroform/isoamyl alcohol (25:24:1) and precipitated in LiCl 0,4 M/ 

ethanol 75% to determine DNA concentration and shearing efficiency (input 

DNA). The ChIP reaction was set up according to the manufacturer’s 

instructions. Briefly, the sheared chromatin was precleared for 2 h with 1 μg of 

non-immune IgG (Santa Cruz Biotechnology, Santa Cruz, CA, USA) and 20 μl 

of Protein A/G PLUS-Agarose (Santa Cruz Biotechnology) saturated with 

salmon sperm DNA (1 mg/ml). Precleared chromatin was divided into aliquots 

and incubated at 4 °C for 16 h with 1 μg of the specific antibody (for the codes, 

see below) and non-immune IgG respectively. The immuno-complexes were 

recovered by incubation for 3 h at 4 °C with 20 μl of protein-A/G PLUS 

agarose, beads were washed with wash buffers according to the manufacturer’s 

instructions and immunoprecipitated DNA was recovered through 

phenol/chloroform/isoamyl alcohol extraction and ethanol precipitation and 

redissolved in TE buffer (10 mM Tris-HCl, 1mM EDTA, pH 8,0). Samples 

were subjected to qPCR using the primers indicated in the legend of the 

specific figures; primers sequences are reported in Table 1. Real Time-qPCRs 

were performed using iTaq Universal SYBR Green Supermix (Biorad) with 
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cycle conditions as follows: 95 °C 10 min; 40x (95 °C 10 sec, 54 °C 30 sec, 72 

°C 30 sec); 72 °C 10 min. Re-ChIP is a procedure in which formaldehyde-

crosslinked, protein–DNA complexes are subjected to two sequential 

immunoprecipitations with antibodies of different specificity. This procedure is 

used to address whether two proteins can simultaneously co-occupy a stretch of 

DNA in vivo (Geisberg JV et al., 2004). Part of the immunoprecipitated 

samples was used to perform a second immunoprecipitation adding the specific 

antibodies; the procedure was followed identically as explained above for 

conventional ChIP experiments.  

 

3.5 Human promoter microarray 
Affymetrix array, human promoter 1.0 R array. The Human Promoter 1.0R 

Array is a single array comprising over 4.6 million probes tiled through 25,500 

human promoter regions. Sequences used in the Array were selected from 

NCBI human genome assembly (Build 34). Probes are tiled at an average 

resolution of 35 base pair (bp), as measured from the central position of 

adjacent 25-mer oligos, leaving a gap of approx-imately 10 bp between probes. 

These arrays interrogate regions proxi-mal to transcription start sites and 

contain probes covering 59 percent of CpG islands annotated by UCSC in 

NCBI human genome assembly (Build 34). Each promoter region spans 

approximately from 7.5 kb up-stream through 2.45 kb downstream of 

5’transcription start sites. For over 1,300 cancer-associated genes, coverage of 

promoter regions was expanded to include additional genomic content. This 

more extensive coverage spans from 10 kb upstream through 2.45 kb 

downstream of tran-scriptional start sites. Concerning the data analysis, 

Affymetrix has developed two software tools to analyse tiling array data. 

Affymetrix Tiling Analysis Software (TAS) provides the analysis for the 

GeneChip Tiling Arrays. TAS analyses feature intensity data stored in GCOS 

output .cell files and produces: 

• Signal and p-values for each genomic position interrogated; 

• Computation of genomic intervals based on computed signal and p-

values; 

• Visualizations for assessing the quality of the array data; 
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• Computation of summary statistics. 

The results from TAS are imported into Affymetrix’ Integrated Genome 

Browser to explore genomes and corresponding annotations from multiple data 

sources 

3.6 Immunofluorescence assay 
MCF-7 cells, grown on glass slides, were hormone-starved for 3 days and 

treated with E2 for the indicated times. Cells on coverslips were washed once 

with PBS, fixed for 20 min with paraformaldehyde (3%, w/v in PBS), 

permeabilized for 20 minutes with Triton X-100 (0.2%, v/v in PBS) and 

incubated for 1 h with PBS containing FCS (1%, v/v). For XPC and DNMT3a 

detection, coverslips were stained by incubation with anti-XPC or anti-

DNMT3a antibodies diluted 1:250 in PBS for 1 h followed by three washings 

with PBS. Coverslips were then incubated in fluorescein isothiocyanate anti-

rabbit (Jackson ImmunoResearch Laboratories, Inc, UK) diluted 1:200 in PBS. 

The coverslips were inverted 

and mounted in Moviol (Calbiochem, CA) on glass slides. All images were 

captured with Zeiss confocal microscope 510. 

 

3.7 AzadC trapping procedure 
MCF-7 cells were hormone starved for 3 days and 30 min before E2 treatment 

had a pulse of 50 μM of 5-aza-2′-deoxycytidine. After PBS wash, cells were 

collected and genome extraction was performed using the MB buffer as 

indicated in the published protocol (Kiianitsa K and Maizels N, 2013). The 

genome was then sonicated and immunoprecipitated according with the ChIP 

assay procedure from Upstate Biotechnology. Antibodies used in these 

experiments were specific for DNMT3a or non-immune IgG. 

Immunoprecipitated DNA was analyzed by Real Time - PCR using sets of 

primers against PS2 ERE and PolyA regions. Normal serum and input DNA 

values were used to subtract/normalize the values from ChIP samples. All 

values represent the average of at least three independent experiments. A Slot-

blot apparatus (Bio-Dot Biorad) was used to load on a nitrocellulose membrane 

the specified quantities of DNA and after blocking with 3% non-fat milk, the 

membrane was incubated with anti-DNMT3a antibody. 
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3.8 co-Immunoprecipitation assay and Western Blot 
MCF7 cells, treated wit estrogens at the indicated times as described in the text, 

were lysed with Lysis Buffer containing 1% Triton, 300 mM NaCl, 50 mM 

Tris-HCl pH 7,5, 1mM EDTA pH 8, 2,5mM Na pyrophosphate (1%), 1mM 

NaVO4, 1mM NaF, 1x protease inhibitor (Roche) and 1mM PMSF. Lysates, 

clarified by centrifugation at 12000xg for 30’ at 4°C, were co-

immunoprecipitated with antibody against DNMT3a or normal IgG (as 

control), 1μg of antibody each mg 

of total proteins, accordingly to the specific experimental needs. The lysate was 

treated with Micrococcal Nuclease (NEB) according to the manufacturer’s 

instructions, in order to eliminate DNA-protein bindings and preserve only 

specifically physic bindings among proteins analyzed. Micrococcal nuclease 

works properly at 37°C, so in order to allow its function, even if at 4°C (protein 

lysates must be kept at low temperature), the enzyme was added and left in the 

samples until the end of the Co-IP. In each step, from lysis to immune-

precipitated protein elution, an aliquot of Lysate was collected and analyzed on 

ethidium bromide-stained agarose gel to verify the gradual disappearance of 

DNA. The protein samples were separated by SDS-PAGE and subjected to 

western blot. The nitrocellulose membranes were immunoblotted with 

antibodies against DNMT3a, OGG1, XPC and Histone-H3 (or with anti-FLAG, 

anti-MCM7 or anti-DNMT3a for transfection/silencing the control), at the 

dilution of 1:1000 in TTBS (0,1% tween in TBS) over night at 4°C in gentle 

shacking. Image analysis for all gels was performed with ImageJ software using 

the "Gel Plot" plug-in. 

 

3.9 Antibodies 
ERalpha ab32063 (Abcam); LSD1 sc-271720 (Santa Cruz Biotechnology); 

TopoIIβ sc-13059 (Santa Cruz Biotechnology); DNMT3a ab2850 (Abcam); 

OGG1 sc-376935 (Santa Cruz Biotechnology); XPC sc-30156 (Santa Cruz 

Biotechnology); Ref-1 (Ape1) sc-9904 (Santa Cruz Biotechnology); Total H3 

ab1791 (Abcam); Normal rabbit IgG sc-2027 (Santa Cruz Biotechnology); 

Normal mouse IgG sc-2025 (Santa Cruz Biotechnology). 
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3.10 Statistical analysis 
All data are presented as mean ± standard deviation in at least three experiment 

in triplicate (n≥9). Statistical significance between groups was determined 

using Student’s t test (matched pairs test or unmatched test were used as 

indicated in figure legends). 
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Table 1 
 

 

 PRIMERS FOR mRNA LOCUS 

mRNA Fw 5’-CCAGACAGAGACGTGTACAGT-3’ pS2 / TFF1 

mRNA Rev 5’-ATTCACACTCCTCTTCTGGA-3’ pS2 / TFF1 

mRNA Fw 5’-GTGGTGGAGGAGCTCTTCAG-3’ BCL2 

mRNA Rev 5’-CAAACTGAGCAGAGTCTTCAG-3’ BCL2 

mRNA Fw 5’-GCAGACGAGCTGAGCGAGAAGC-3’ CAV1 

mRNA Rev 5’-GAATAGACACGGCTGATGCACTG-3’ CAV1 

18S Fw 5’-GCGCTACACTGACTGGCTC-3’ h18S 

18S Rev 5’-CATCCAATCGGTAGTAGCGAC-3’ h18S 

 PRIMERS FOR ChIP LOCUS 

ChIP ERE Fw 5’-CTAGACGGAATGGGCTTCAT-3’ pS2 / TFF1 

ChIP ERE Rev 5’-TCTGAGAGGCCCTCCCGCCAG-3’ pS2 / TFF1 

ChIP PolyA Fw 5’-CTACTCACTGCGGATGCCCCAG-3’ pS2 / TFF1 

ChIP PolyA Rev 5’-GCTTCTGTATCCCTCCTCTGCTG-3’ pS2 / TFF1 

ChIP II Intron Fw 5’-CCTTTTTATACGATGGGTTCTGA-3’ pS2 / TFF1 

ChIP II Intron Rev 5’-CGGCCGTGACTCTGTGTAA-3’ pS2 / TFF1 

ChIP ERE Fw 5’-CATTATAAGCTGTCGCAGAG-3’ BCL2 

ChIP ERE Rev 5’-GAGGGTCAGGTGGACCACAG-3’ BCL2 

ChIP PolyA Fw 5’-AGTAAATGTGCCCAGCCTCT-3’ BCL2 

ChIP PolyA Rev 5’-TAGGGATGGTTCTCTGTTGC-3’ BCL2 

ChIP ERE Fw 5’-GGATCTTAGATAAAGCTGGAAGG-3’ CAV1 

ChIP ERE Rev 5’-GATCTCGCAGAGGACACCACAC-3’ CAV1 

ChIP PolyA Fw 5’-GATGTGATTGCAGAACCA-3’ CAV1 

ChIP PolyA Rev 5’-CAACAGCTTCAAAGAGTG-3’ CAV1 

 PRIMERS FOR re-ChIP LOCUS 
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ChIP ERE Fw 5’-CTAGACGGAATGGGCTTCAT-3’ pS2 / 
TFF1 

ChIP ERE Rw 
(nucleosome) 

5’-GCTTGGCCGTGACAACAGT-3’ pS2 / 
TFF1 

ChIP PolyA Fw 5’-CTACTCACTGCGGATGCCCCAG-3’ pS2 / 
TFF1 

ChIP PolyA Rev 
(nucleosome) 

5’-GTTTCATCTCCTACGCCAAT-3’ pS2 / 
TFF1 

ChIP II Intron Fw 5’-CCTTTTTATACGATGGGTTCTGA-3’ pS2 / 
TFF1 

ChIP II Intron Fw 5’-CCTTGTGAGCCTTAATCCT-3’ pS2 / 
TFF1 

ChIP ERE Fw 
(nucleosome) 

5’-ATCCAGCCGCATCCCGGGAC-3’ BCL2 

ChIP ERE Rev 
 

5’-CATTATAAGCTGTCGCAGAG-3’ BCL2 

ChIP PolyA Fw 
(nucleosome) 

5’-ATGTTAGAAGCAATGAATGTA-3’ BCL2 

ChIP PolyA Rev 
 

5’-TAGGGATGGTTCTCTGTTGC-3’ BCL2 

ChIP ERE Fw 5’-GGATCTTAGATAAAGCTGGAAGG-3’ CAV1 

ChIP ERE Rev 
(nucleosome) 

5’-TCGCTCTCGCCCTGAGCGCTT-3’ CAV1 

ChIP PolyA Fw 5’-GATGTGATTGCAGAACCA-3’ CAV1 

ChIP PolyA Rev 
(nucleosome) 

5’-GATGAGTGCCATCGGGAT-3’ CAV1 
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4. RESULTS 
4.1 Estrogens synchronize the recruitment of the receptor ERα to 

discrete regions over the genome with enzymes that cause and 

resolve DNA oxidation 
To find out the precise DNA regions that recruit ERα and enzymes involved in 

histone modification and the oxidation and repair of DNA (respectively, LSD1, 

OGG1 and TopoIIβ), we immunoprecipitated chromatin with antibodies 

specific for ERα, LSD1, OGG1 and TopoIIβ after stimulation of MCF7 cells 

with estrogens (50 nM E2 for 45 min). The resulting DNA-fragments from the 

independent immune-precipitations were utilized as probes to screen arrays of 

human promoters (Affymetrix, GeneChip Human Promoter 1.0R Array). These 

arrays are able to convey information about protein/DNA interactions in over 

25,500 human promoters: with these powerful tools it is possible to analyze 

promoter regions from approximately 7.5 kb upstream through 2.45 kb 

downstream of 5' TSS. In particular, they interrogate genomic regions proximal 

to TSS and contain probes covering 59 percent of CpG islands annotated by 

UCSC Genome Browser (https://genome.ucsc.edu/index.html) in the NCBI 

human genome assembly (Build 34). The analysis uncovered several 

combinations of positive genomic sites for the diverse proteins analyzed 

(depending on the antibodies used for immune-precipitation), so we further 

analyzed regions concurrently bound by ERα, LSD1, OGG1 and Topo IIβ after 

estrogen challenging.  

Here we show the map of three individual chromosomes (chr) that drew our 

attention because their sequences contain three prototypical estrogen-induced 

genes (TFF1 on chr21, CAV1 on chr7 and BCL2 on chr18). 

 

• Chromosome 21 

We first evaluated the distribution of ERα, LSD1, OGG1 and TopoIIβ along 

chromosome 21, where TFF1 gene is located (pS2) (Figure 12a). 
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Figure 12. Screening human promoter array for ERa, OGG1, LSD1 and TOPOIIb sites induced 

by estrogen on chromosome 21. 

a) Heatmap of ERa, LSD1, OGG1 and TOPOIIb binding relative to chromosome 21 at 45 min of E2 

treatment. In yellow are the binding sites, while in blue the unbound regions. We consider only sites 

that fall within the 95 percentile. b) ERa, LSD1, OGG1 and TOPOIIb binding relative to TFF1 gene 

(located at the telomeric domain of chromosome 21). The black blocks represent ERa binding sites, 
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green blocks represent LSD1 sites, red blocks represent OGG1 binding sites and blue blocks represent 

TOPOIIb binding sites. The orientation is 3’UTR-5’UTR. The black arrows indicate the direction of 

the gene and predicted transcripts as reported in Genome Browser. c) Percentage of ERa interaction 

with other factors (LSD1, OGG1 and TOPOIIb) in complex with 2, 3 or 4 elements at 0 and 45 min of 

E2. The percent is calculated as the ratio of common number of bound sites to ERa-complex with 

respect to the total number of ERa binding sites (alone or in complex). d) Percentage of ERa 

distribution alone or in complex with LSD1, OGG1 and TOPOIIb along chromosome 21 at 0 and 45 

min. We consider only sites that fall within the 95 percentile. 

 

The yellow lines represent the occupancy of the regions and alignment of 

several lines indicates multiple recruitment of the enzymes.  Comparing the 

blue (-E2) and the yellow (+E2), it appears that estrogen treatment induces 

redistribution of the receptor already bound to the chromatin to other sites 

with LSD1 and /or OGG1 and /or TOPOIIβ. These data imply that estrogens 

substantially synchronize the binding of these complexes to chromatin. To 

confirm this hypothesis, we analyzed the enrichment of ERα, LSD1, OGG1 

and TOPOIIβ on a specific estrogen gene target: TFF1 gene. Figure 12b 

shows that estrogen induced two peaks of receptor recruitment, situated first 

at -500bp and second at +200bp from TSS. These peaks align with LSD1 

and OGG1 recruitment, whereas we observe a reduction of TOPOIIβ signal. 

 

• Chromosome 18 

We performed the same analysis of the distribution of ERα, LSD1, OGG1 

and TOPOIIβ along chromosome 18, where the BCL2 gene is located 

(Figure 13). Figure 13a shows the distribution along chromosome 18 of 

ERα, LSD1, OGG1 and TOPOIIβ. The yellow lines represent the occupancy 

of the region. Figure 13c and 13d show an increase of the percentage of 

bound receptor, but not the changes in its distribution. 

To confirm this hypothesis, we analyzed the enrichment of ERα, LSD1, 

OGG1 and TOPOIIβ on the specific estrogen gene target present on 

chromosome 18, that is the BCL2 gene. 

Figure 13b shows that estrogen induced five peaks of receptor recruitment, 

situated first at -2500bp, -1500bp, -1300, -500 and +700bp from TSS. LSD1 

recruitment is aligned with signal at -2500 and at +700bp. These peaks align 

with LSD1-OGG1 and TOPOIIβ and OGG1 recruitment. 
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Figure 13. Screening human promoter array for ERa, OGG1, LSD1 and TOPOIIb sites induced 

by estrogen on chromosome 18. 

a) Heatmap of ERa, LSD1, OGG1 and TOPOIIb binding relative to chromosome 18 at 45 min of E2 

treatment. In yellow are the binding sites, while in blue the unbound regions. We consider only sites 

that fall within the 95 percentile. b) ERa, LSD1, OGG1 and TOPOIIb binding relative to BCL2 gene. 

The black blocks represent ERa binding sites, green blocks represent LSD1 sites, red blocks represent 

OGG1 binding sites and blue blocks represent TOPOIIb binding sites. The orientation is 3’UTR-

5’UTR. The black arrows indicate the direction of the gene and predicted transcripts as reported in 
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Genome Browser. c) Percentage of ERa interaction with other factors (LSD1, OGG1 and TOPOIIb) in 

complex with 2, 3 or 4 elements at 0 and 45 min of E2. The percent is calculated as the ratio of 

common number of bonds sites to ERa-complex respect to the total number of ERa binding sites 

(alone or in complex). d) Percentage of ERa distribution alone or in complex with LSD1, OGG1 and 

TOPOIIb along chromosome 18 at 0 and 45 min. We consider only sites that fall within the 95 

percentile. 

 

• Chromosome 7 

As for chromosome 21 and 18, we evaluated the distribution of ERα, LSD1, 

OGG1 and TOPOIIβ along chromosome 7. Figure 14a shows the distribution 

of ERα, LSD1, OGG1 and TopoIIβ. The yellow lines represent the 

occupancy of the region. Also here, alignment of many lines indicates 

multiple recruitment of the enzymes at the ERE sites. We found that estrogen 

stimulation did not increase the interactions and did not change the receptor 

distribution, confirming that estrogen substantially synchronizes the binding 

of these complexes to chromatin (Figure 14c and 14d). 

To confirm this hypothesis, we analyzed the enrichment of ERα, LSD1, 

OGG1 and TOPOIIβ on specific estrogen gene target: CAV1 gene. Figure 

9b shows that estrogen induced many peaks of receptor recruitment, situated 

at -500bp, on the TSS and in the second intron. These peaks align with 

LSD1, whereas OGG1 recruitment is present only at -500bp from TSS. 

TopoIIβ is also aligned with ERα/LSD1/OGG1 signal. 
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Figure 14. Screening human promoter array for ERa, OGG1, LSD1 and TOPOIIb sites induced 

by estrogen on chromosome 7. 

a) Heatmap of ERa, LSD1, OGG1 and TOPOIIb binding relative to chromosome 18 at 45 min of E2 

treatment. In yellow are the binding sites, while in blue the unbound regions. We consider only sites 

that fall within the 95 percentile. b) ERa, LSD1, OGG1 and TOPOIIb binding relative to CAV1 gene. 

The black blocks represent ERa binding sites, green blocks represent LSD1 sites, red blocks represent 

OGG1 binding sites and blue blocks represent TOPOIIb binding sites. The orientation is 3’UTR-

5’UTR. The black arrows indicate the direction of the gene and predicted transcripts as reported in 
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Genome Browser. c) Percentage of ERa interaction with other factors (LSD1, OGG1 and TOPOIIb) in 

complex with 2, 3 or 4 elements at 0 and 45 min of E2. The percent is calculated as the ratio of 

common number of bonds sites to ERa-complex respect to the total number of ERa binding sites 

(alone or in complex). d) Percentage of ERa distribution alone or in complex with LSD1, OGG1 and 

TOPOIIb along chromosome 18 at 0 and 45 min. We consider only sites that fall within the 95 

percentile. 

 

The data obtained from this analysis shed light on the role of E2 in recruiting 

and re-distributing, at discrete chromatin sites, the proteins ERα, LSD1, OGG1 

and Topo IIβ, alone or grouped with each other. It is noteworthy that the 

accumulation of these complexes, and in particular of the ERα-OGG1, occurs 

massively throughout the genome but notably in the EREs and near TSS of 

prototypical E2-regulated genes. This finding implies that during transcription 

induction estrogen influences the recruitment of repair enzymes. 

 

4.2  Estrogens induce the recruitment of epigenetic modifiers at 

responsive regions of E2-induced genes 
 

Oxidative agents and ROS released during the assembly of the transcription 

initiation complex can damage the DNA, as shown for LSD1-mediated release 

of H2O2 in actively transcribed regions of Myc- or E2- induced genes (Amente 

S et al., 2010; Perillo B et al., 2008). The accumulation of oxidized G in the 

nucleus has been correlated with estrogen induction of transcription (Figure 

15). 

 

 
Figure 15. Estrogens induce nuclear 8-oxo-Gs foci formation in MCF7 cells as the treatment 

with H2O2. (Adapted from Perillo et al., 2008). 

 

The BER pathway is firstly involved in the recognition and resolution of 8-oxo-

G, but also the NER pathway have been implicated in the repair of oxidized Gs 

(Melis JPM et al., 2013) and it has been demonstrated that NER enzymes can 
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be recruited to regulatory sites upon hormonal stimuli (Zuchegna et al., 2014). 

Moreover, the de novo methyltransferase DNMT3a has been found at the ERE 

sites of several E2-induced genes, which undergo cycles of methylation 

(Métivier R et al., 2008). ChIP analysis with antibodies to OGG1 (BER) or 

XPC (NER) shows that these 2 proteins are recruited at the ERE and polyA 

sites of estrogen target genes (BCL2-CAV1-pS2) (Figure 16). Also DNMT3a 

(Figure 17) undergo an ordered and timely recruitment at distant regulatory 

sites of E2-induced genes. 

 

 
Figure 16. Estrogen induces recruitment of OGG1 and XPC at the ERE and PolyA sites of target 

genes. MCF7 cells were serum starved and exposed to 50 nM E2 at the indicated times (0, 15, 30, 45 and 

60 min). qChIP was carried out using specific antibodies recognizing OGG1 and XPC. Is shown the 

occupancy at ERE and PolyA of pS2, BCl2 and Cav1 genes. The statistical analysis derived from at least 

3 experiments in triplicate (n ≥9; Mean ± SD). *p <0.01 (matched pairs t test) compared to E2-

unstimulated sample (Adapted from Pezone A, De Rosa M et al., submitted). 
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Figure 17. Estrogen induces recruitment of DNMT3a at the ERE and PolyA sites of target genes. 

MCF7 cells were serum starved and exposed to 50 nM E2 at the indicated times (0, 15, 30, 45 and 60 

min). qChIP was carried out using the specific antibody recognizing DNMT3a. Here is shown the 

occupancy at ERE and PolyA sites of pS2, BCl2 and Cav1 genes. The statistical analysis derived from at 

least 3 experiments in triplicate (n ≥9; Mean±SD). *p <0.01 (matched pairs t test) compared to E2-

unstimulated sample (Adapted from Pezone A, De Rosa M et al., submitted). 

 

OGG1 is recruited to the ERE and polyA sites with 2 main peaks at 15 – 30 

min and 45 – 60 min of E2; XPC accumulates selectively at the ERE at 30 

minutes of E2 and at PolyA site at 45 min of E2. DNMT3a instead, is recruited 

to the ERE and PolyA with a period of 30 - 60 min upon E2 induction. These 

data suggested that the recognition and repair of DNA oxidation occur at distant 

sites at 5’ and 3’ end of the gene. Moreover, ERE and PolyA regions undergo 

the same periodic oscillation for the protein observed, suggesting that these 

distant regions interact upon estrogenic stimulus. 

We also wondered whether an E2 challenge was able to highlight a 

macroscopic difference in the nuclear enrichment of some proteins previously 

analyzed by ChIP analysis; therefore, we tested by immunofluorescence the 

nuclear staining of XPC and DNMT3a upon estrogen treatment (Figure 18). 
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Figure 18. Estrogen induces XPC and DNMT3a foci formation in MCF7 cells. MCF7 cells in 

basal conditions or treated with 50nM E2 for 30 min were subjected to immunostaining with 

polyclonal anti-XPC (a) and monoclonal anti-DNMT3a (b) antibodies. Images were collected and 

analyzed by confocal microscopy. Scale bar, 10 µm. Legend: blue arrows indicate nucleoli; red arrows 

indicate discrete foci of XPC (a) and DNMT3a (b) significantly detectable after E2 treatment. 

 

We noticed a discrete increase in the nuclear signal for both XPC and DNMT3a 

after E2 treatment and an enrichment of discrete foci for both proteins. These 

data confirmed the recruitment of these proteins in specific segments of the 

nucleus, and this event is tightly controlled by estrogens. Immunofluorescence 

staining shows a general enrichment in the nucleus but does not specify if the 

binding of the protein(s) takes place on chromatin or on naked DNA. Our data 

suggest that DNMT3a underwent the same regulation of repair enzymes and 

was recruited at chromatin by E2 induction. Since DNMT3a is a DNA 

methyltransferase and interacts directly with DNA, we tested with a novel 

method the direct binding of DNMT3a with DNA. We exploited the ability of 

5-aza-2'-deoxycytidine (5-AzadC) to trap covalently DNMT enzymes to study 

DNA-bound DNMT3a by ChIP assay in the absence of formaldehyde. 5-AzadC 

is a chemical analogue of the cytosine present in DNA. 5-Aza-2′-
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deoxycytidine-triphosphate is a substrate for the DNA replication machinery 

and can be incorporated into DNA. When DNMTs recognize 5-AzadC:G base 

pairs as substrate, they initiate the methylation reaction by a nucleophilic 

attack, which results in a stable covalent bond between the carbon-6 atom of the 

cytosine ring and the enzyme, permanently blocking its DNA methyltransferase 

activity (Stresemann C and Lyko F, 2008). Under these conditions, we can 

detect the direct contact of the enzyme (bound to 5-AzadC in the DNA) by 

performing an immunoprecipitation of the enzyme without crosslinking with 

formaldehyde (Figure 19).  

 

 
Figure 19. Aza-trapping for the detection of DNMT3a directly linked with DNA. MCF7 cells in basal 

conditions or stimulated with 50nM E2, were treated with DMSO as a control or pre-treated for 30 min 

with 5-azadC, and then the DNA extracted was immune-precipitated for DNMT3a. (a) The 
immunoprecipitated DNA was used as template to amplify ERE and PolyA sites of pS2 gene. (b) Dot-blot 

assay performed loading the listed concentrations of DNA and revealing for Western Blot assay, 

incubating with the monoclonal anti-DNMT3a antibody. The statistical analysis derived from at least 3 

experiments in triplicate (n ≥9; Mean ± SD). * = p <0.05 (matched pairs t test) compared to E2-

unstimulated sample. 

 

It is important to stress that this procedure reveals the direct contact of 

DNMT3a to the DNA. Figure 19 shows that DNMT3a binding to the pS2 ERE 

site is induced by E2 treatment at 30 minutes and later at PolyA site. 

Conversely, ChIP analysis (Figure 17) shows that DNMT3a is already present 

in the absence of E2, suggesting that the enzyme interacts with histones or other 

chromatin proteins independently on its binding to the DNA. 
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4.3 Estrogen stimulates the association of DNMT3a with BER or 

NER enzymes at target sites 
The promoter array data revealed that estrogen stimulates the interaction of the 

ERα with repair enzymes at discrete chromatin sites of responsive genes. Since 

we identified cyclical recruitment of the single proteins after E2 challenging, 

we wondered whether DNMT3a interacts in an E2-dependent fashion with BER 

and NER enzymes. To obtain a more precise analysis of the various protein-

protein complexes recruited to the ERE and PolyA sites, we prepared single 

nucleosomes by micrococcal nuclease digestion of chromatin and sucrose 

gradient purification and performed sequential ChIP assays (re-ChIP) to reveal 

DNMT3a and OGG1 or XPC (Figure 20).  
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 Figure 20. Re-ChIP assays performed on mononuclesomes to detect DNMT3a and its 

interactions with OGG1 and XPC. (a) ChIP and re-ChIP on ERE and PolyA regions of pS2 gene. 

(b): ChIP and re-ChIP on ERE and PolyA regions of BCl2 gene. (b): ChIP and re-ChIP on ERE and 

PolyA regions of Cav1 gene. 
 

DNMT3a was firstly isolated thanks to its association with “bivalent 

nucleosomes” that contain both the repressive (H3-K9me3) and the activating 

(H3-K9ac) marks (Harikumar A and Meshorer E, 2015). Then, DNMT3a 
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nucleosomes were subjected to re-ChIP assays with anti OGG1 and XPC 

antibodies. Our data show that DNMT3a interacts with chromatin with a peak 

at 30 minutes, while OGG1 and XPC associated with DNMT3a peak at 15 and 

45 minutes throughout the E2-induced cycle, both at ERE and PolyA regions of 

the analyzed genes. It is important to stress that the re-ChIP data do not show 

the recruitment of the single OGG1 or XPC at the chromatin sites, but the 

amount of the two proteins complexed with DNMT3a. Taking into account this 

information, it is remarkable that the highest signals for XPC and OGG1 are 

detected when DNMT3a alone is poorly loaded on chromatin. This suggests 

that most of DNMT3a molecules are associated with XPC and OGG1, which 

are recruited to the chromatin through DNMT3a.  

 

4.4 DNMT3a interacts with BER and NER enzymes 

Since we found that BER-NER enzymes and DNMT3a were coordinately 

recruited during E2-mediated transcription, we searched for a possible physical 

interaction between DNMT3a and repair enzymes, wondering whether this 

binding was influenced by estrogen induction.  

A co-immunoprecipitation assay showed that the endogenous DNMT3a 

interacts strongly with OGG1 (BER) and is bound also to XPC (NER) and 

APE1 (BER): notably, the binding appears stronger after estrogen treatment 

(Figure 21).  
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Figure 21. DNMT3a interaction with BER and NER enzymes. MCF7 cells were serum starved and 

exposed to 50 nM E2 at the indicated times (0 and 30 min). A. Co-IP analysis shows DNMT3a 

binding to OGG1, XPC and APE1. In the upper panel is shown the gradual disappearance of genomic 

DNA in protein samples, obtained through a treatment with micrococcal nuclease, in order to 

eliminate DNA and test only real interactions not influenced by DNA. 

 

To better define which domain of the methyltransferase was mainly involved in 

the interactions and whether the binding with other proteins was compatible 

with DNMT3a catalytic function, we overexpressed in MCF7 cells a peptide 

containing the catalytic portion of the protein (282C). We first evaluated the 

effect of the peptide overexpression on the E2-dependent transcription (Figure 

22). 
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Figure 22. DNMT3a catalytic portion (282C) overexpression does not influence E2-induced 

transcription of pS2 gene. MCF7 cells were serum starved and exposed to 50 nM E2 at the indicated 

times (0 and 60 min). (a) Effects of DNMT3a peptides overexpression on pS2 induction of transcription. 

(b) Map of DNMT3a domains and Western blot analysis to control overexpression of 282C (the red arrow 

indicates the catalytic fragment). 
 

The transfection of the catalytic peptide did not alter pS2 gene expression. 

Then, we performed a pull down assay after transfection of the catalytic peptide 

DNMT3a1 (282C) in MCF7 cells (Figure 23). 

 

 

 
Figure 23. The catalytic domain of DNMT3a strongly interacts with Ape1 and XPC. The DNMT3a1 

282C-GST was purified and a pull down assay was performed using MCF7 protein lysate treated at 

indicated time with E2 (0 and 30 min). 
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We found that DNMT3a catalytic domain binds APE1 and XPC, while the 

endogenous protein DNMT3a interacts with OGG1. These data suggest that the 

interaction with OGG1-APE1 and XPC may regulate the activity and the 

substrate specificity of the enzyme. 

 

4.5 BER and NER enzymes activity is required for estrogen-

induced transcription 

 

To analyze the action of BER and NER on E2-induced transcription we altered 

or depleted these proteins in MCF7 cells exposed to E2 and measured 

transcription. First we overexpressed a dominant negative version of OGG1 

(OGG1 DN) and we measured the impact on E2-mediated transcription and the 

influence on the other recruitment of the proteins (Figure 24 and 25). 

 

 
 

Figure 24. OGG1 DN overexpression cause the loss of E2 transcription induction. Total RNA was 

prepared from MCF7 cells hormone-starved or stimulated with 50nM E2 for 0 or 30 min and analyzed by 

qPCR with specific primers to pS2 mRNA normalized to 18S mRNA levels. (a) mRNA expression analysis 

of pS2 gene in cell transfected with OGG1 wild type (WT) or with dominant negative form K341R (DN). 

(b) Western Blot analysis as a control of OGG1 wt and DN protein expression (NT= non trasfected 

sample). 
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Figure 25. OGG1 DN overexpression cause the loss of cyclic recruitment of interacting proteins and 

high levels in basal conditions. ChIP assays performed in MCF7 cells overexpressing Flag-tagged WT or 

DN form of OGG1. The chromatin was immune-precipitated with antibodies against DNMT3a, XPC and 

FLAG (as control of OGG1) and the DNA fragments obtained were amplified with primers for the specific 

regions ERE and PolyA of the E2-induced genes of interest. 

 

When the dominant negative form of OGG1 was overexpressed, the recruitment 

of XPC was reduced, while the recruitment of DNMT3a was increased at the 

basal level in the absence of E2. Moreover, depletion of DNMT3a and XPC with 

a siRNA inhibited E2-induced transcription (Figure 26). 
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Figure 26. The depletion of DNMT3a and XPC impairs E2-induced transcription. Total RNA was 

prepared from MCF7 cells hormone-starved or stimulated with 50nM E2 for 0 or 30 min and analyzed by 

qPCR with specific primers to pS2 mRNA normalized to 18S mRNA levels. (a) mRNA expression analysis 

of pS2 gene in cell transfected with siDNMT3a or siXPC or with a scramble vector. (b) Western Blot 

analysis as a control of DNMT3a and XPC silencing. The statistical analysis derived from at least 3 

experiments in triplicate (n ≥9; Mean±SD). * = p <0.005 (matched pairs t test) compared to E2-

unstimulated sample; ** = p <0.005 (matched pairs t test) compared to sample expressing scramble vector. 
 

These data suggest that the ordered recruitment of DNMT3a and BER-NER 

enzymes is essential for productive E2-induced transcription. 
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5. DISCUSSION 

 
Transcriptional initiation in eukaryotes is a complex process that requires 

multiple enzymatic activities, and recent evidence suggests that there is a high 

frequency of DNA damage during transcriptional activation, though no clear 

mechanistic link between gene activation and components of the DNA repair 

machinery has been established (Beato M et al., 2015). Transcription induced 

by estrogens is associated with chromatin modification dependent on histone 

methylation-demethylation cycles. It has been shown that LSD1 demethylates 

H3K9me2 at regulatory regions of estrogen target genes causing localized DNA 

oxidation and recruitment of repair enzymes. The repair of oxidative lesions 

triggers chromatin and DNA conformational changes that dissipate 

transcriptional supercoiling and enhance estrogen-induced transcription (Perillo 

et al. 2008).  The formation of loops connecting the 5’ gene ends, 3’ ends and 

enhancers has been shown necessary to obtain productive transcription cycles 

in many other genes induced by nuclear receptors (Li W et al., 2013; Le May N 

et al., 2012). In the specific case of estrogenic induction, it is still unclear how 

estrogens coordinate the repair of oxidative lesions linked to the initiation of 

transcription.  

5.1 DNA repair enzyme assembly at estrogen responsive sites 

Our data show that, upon estrogen induction, ERα enucleates a major fraction 

of complexes with LSD1 and certain repair enzymes (OGG1 and Topo IIβ) in 

inter-genic and intronic regions. E2 stimulation induces an accumulation of the 

receptor at ERE regions, which are located at the 5’ end (as in the case of TFF1 

and CAV1 genes) or inside the gene (BCL2), and a massive re-distribution at 

discrete chromatin sites of ERα-OGG1-TopoIIβ complexes. Notably, the repair 

protein complexes are re-distributed in EREs and closely to TSS of prototypical 

E2-induced genes. Focusing our attention on pS2, Cav1 and BCl2 (located 

respectively on chromosome 21, 18 and 7), we firstly analyzed the recruitment 

of BER and NER enzymes at distant sites regulated by the active receptor (ERE  

and PolyA regions). Our findings indicate a hierarchical recruitment of these 

proteins, thus suggesting different roles of BER and NER enzymes in E2-

induced transcription.  
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5.2 DNMT3a cooperates with repair enzymes 

DNA methylation is thought to coordinately regulate the chromatin status via 

the interaction of DNMTs with other components of the machinery (Jin B et al., 

2011). The induction of CpG methylation cycles within the promoter of 

estrogen target genes, together with the recruitment of DNMT enzymes, has 

been demonstrated (Metivier et al., 2003). Therefore, with particular interest for 

DNMT3a, we used several different ways to uncover the precise recruitment 

timing and the contacts established by this protein with chromatin or DNA. We 

found that, upon E2 stimulus, DNMT3a contacts the DNA and the chromatin 

with a temporal pattern overlapping the BER-NER cycles. Moreover, our data 

show that the recruitment of BER and NER enzymes on distant regulatory 

regions of the E2-induced genes accounts for the interaction with DNMT3a. 

Surprisingly, searching for physical interactions between DNMT3a and BER-

NER enzymes we discovered that estrogen induces the binding of the DNA 

methyltransferase with OGG1, APE1 and XPC. These enzymes interact with 

the catalytic segment of DNMT3a and likely inhibit the methyltransferase 

activity. These data suggest that DNMT3a activity and substrate specificity 

may be regulated by BER and NER enzymes. 

5.3 DNA oxidation and repair: cause or effect of transcription?  

Our data suggest that DNA oxidation and histone/DNA methylation-

demethylation cycles (Métivier R et al., 2008) are linked: histone demethylation 

may be the first trigger of DNA oxidation, which is followed by site –specific 

repair. The oxidation of G and C and the subsequent repair of the lesions 

induces transient site-specific nicks, which reduce transcription-generated 

supercoiling (Kouzine F et al., 2013). Relaxed DNA allows the formation of 

DNA loops juxtaposing the distant regulatory sites of the gene that should be 

transcribed (Zuchegna et al., 2014). We detected a significant inhibition of E2-

induced transcription after depletion of the BER-NER proteins or DNMT3a. 

Over-expression of a mutant OGG1, unable to dissociate from the DNA, 

perturbs the recruitment of DNMT3a and XPC and inhibits E2-induced 

transcription.  

In conclusion, we suggest that the loss of DNMT3a blocks the OGG1-NER 

switch at the ERE sites and this seriously compromises the repair of 8-oxo-Gs. 
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DNMT3a and BER-NER enzymes act in a well-tuned manner in order to repair 

oxidative lesions and permit cycles of productive transcription. 

5.4 Dysregulated transcription induction is associated with increased 

mutational rate in estrogen-dependent cancers  

Uncontrolled and continuous estrogen exposure mainly accounts for the risk of 

breast cancer (Yager JD and Davidson NE, 2006) and the expression of 

estrogen receptor is a prognostic factor for its clinical outcome. For the 

majority of ER-positive breast cancers, the modulation of estrogen signaling 

with selective ER antagonists (SERM, such as tamoxifen) is still the most used 

treatment (Jordan VC et al., 2007). Despite the selectivity of these therapies, 

long-term treatment with SERMs is linked with resistance acquisition 

(Sengupta S et al., 2008).  

 It is well known that estrogen-induced transcriptional stress induce DNA 

damage and mutations. Elevated genomic instability in breast cancer cells, due 

to R-Loop formation, has been correlated with estrogen challenging (Stork CT 

et al., 2016). Considering the impact of estrogen exposure on point mutations, it 

is noteworthy that the 8-oxo-Gs resulting from LSD1 activity during estrogen-

induced initiation of transcription can base-pair with A, instead of C, an error 

that, if not resolved, can induce transversion point mutations (C→A) during 

replication. Therefore, understanding thoroughly the transcriptional 

mechanisms controlled by estrogen and the role of the repair and methylating 

enzymes involved, could open a window of opportunity to detect novel cancer 

targets and therapeutic modulators. 
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6. CONCLUSION 

 
Our hypothesis is that estrogens coordinate and synchronize 

estrogen receptor and repair enzyme complexes to interact at target 

regulatory regions. These regions enucleate the transcription 

initiation complex and define the termination sites. DNMT3a, 

initially positioned on the chromatin thanks to its contacts with 

histones H3K9/H3K4, after E2 stimulation is recruited at 8-oxo-G 

sites, where interacts successively with OGG1 and Ape1. These 

enzymes seem essential for the formation of chromatin loops and 

greatly reduce the possible mutations due to oxidation of Gs and Cs. 

The oxidation and repair may proceed in a strand specific fashion as 

suggested by the evidence that, when 8-oxo-G is present in a CpG 

doublet, DNMT3a activity on the adjacent C is inhibited (Maltseva 

DV et al., 2009)  

 Our data open a new window on transcription, oxidation, DNA 

repair and methylation: DNMT3a and BER-NER enzymes act in a 

tuned manner in order to repair oxidative lesions induced by the 

transcription machinery itself. The resulting CpG methylation 

induced by E2 marks the sites that are repaired by BER or NER 

enzymes. Understanding this mechanism may provide a new 

opportunity to target proteins involved in aberrant transcription in 

cancer cells. High transcription rate may induce by itself a 

conspicuous mutational burden, not only in the estrogen-induced 

network but in all hormone-regulated systems. 
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