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Riassunto  

 

Durante il mio dottorato di ricerca ho condotto studi di genomica e trascrittomica in un organismo non 

modello Ceratitis capitata. Ceratitis capitata (Diptera, Tephritidae), anche detta “medfly”, è un dittero 

fitofago diffuso ormai in tutti i continenti e altamente dannoso per la coltivazione di molte specie vegetali 

che forniscono frutta per alimentazione umana. La sua vastissima diffusione, unita al fatto che si tratta di una 

specie polifaga, nonché le difficoltà riscontrate nel suo controllo ed eradicazione locale, hanno fatto di C. 

capitata una delle specie più dannose all'agricoltura a livello globale e quindi ad una significativa parte delle 

economie nazionali e di quelle internazionali. La riproduzione e la determinazione del sesso sono aspetti 

cruciali per capire la biologia degli insetti e bersagli ottimali per limitare la loro crescita e diffusione. Nel 

laboratorio in cui ho svolto la mia tesi di dottorato, da oltre vent’anni si è cercato di capire la cascata dei geni 

della determinazione del sesso e di caratterizzarli a livello molecolare in Ceratitis capitata. Uno studio 

evolutivo del pathway genetico che controlla la determinazione del sesso di Ceratitis, usando il sistema 

modello Drosophila, ha permesso di isolare quattro omologhi dei principali geni che determinano la scelta 

del sesso in D. melanogaster: Sex-lethal (Sxl), transformer (tra), transformer-2 (tra-2) e doublesex (dsx). 

Anni di studi hanno portato a dimostrare che i segnali primari della determinazione del sesso noti in 

Drosophila sono differenti in C. capitata e che il gene Sex-lethal non è coinvolto nel determinare la 

femminilità in Ceratitis. Il Male Determining Factor (Fattore M) localizzato sull'Y di Medfly ha un ruolo 

chiave nella determinazione del sesso, ma non è stato ancora isolato. Il progetto generale del mio Dottorato 

consiste in due linee di ricerca parallele e sinergiche: 1) approcci trascrittomici (Illumina) e genomici 

(PacBio) alla identificazione di nuovi geni di Medfly legati al cromosoma Y potenzialmente coinvolti nella 

determinazione del sesso maschile e di geni del cromosoma X; 2) sviluppo di una potente tecnica di gene 

editing, la CRISPR/Cas9, per studiare queste nuove funzioni geniche. 

In questa tesi di dottorato mi sono focalizzata su due aspetti della ricerca genetica in Ceratitis capitata che 

hanno ramificazioni anche in campo applicativo: 

❖ Il problema dell’identificazione di geni embrionali ad espressione maschio-specifica, tra i quali ci si 

aspetta di identificare il segnale primario mascolinizzante della determinazione del sesso, cioè il 

fattore M legato al cromosoma Y. A tal fine, abbiamo pensato di mettere a punto una tecnica poco 

utilizzata ma molto interessante: il “metabolic labelling” di trascritti di nuova sintesi in embrioni XX 

ed XY, per poterli purificare distinguendoli dai trascritti materni.  

❖ La caratterizzazione del cluster di geni per le ceratotossine sul cromosoma X, molto eterocromatico. 

Il cromosoma X di Ceratitis è ritenuto essere povero di geni da precedenti studi genetici e 

citogenetici e ne è stata data conferma dall’analisi del suo genoma (Papanicolaou et al., 2016). 

❖ Il problema della difficoltà di condurre studi genetici funzionali (inclusi i geni della determinazione 

del sesso) in un insetto non modello come la Ceratitis. La RNAi sia transiente che mediata da 

transgeni funziona bene in Ceratitis, ma è applicabile in genere su geni ad espressione embrionale 

(in transiente), e presenta difficoltà quando applicata con transgenesi perché la produzione di ceppi 



transgenici è molto più laboriosa che in Drosophila, anche per il suo ampio genoma, che risulta ricco 

di zone eterocromatiche, le quali reprimono l’espressione del transgene. Abbiamo pensato di 

utilizzare la CRISPR/Cas9 per avere a disposizione un innovativo metodo di “genome editing” che 

permetta di indurre mutazioni ereditabili in specifici geni. Ho inoltre stabilizzato in laboratorio 

l’espressione batterica e la purificazione di Cas9 con his-tag. Infine, ho bersagliato con successo due 

geni in Ceratitis e ho contribuito allo sviluppo della CRISPR/Cas9 anche nell’altro dittero Musca 

domestica. 

 

Summary 

 

During my PhD, I have carried out studies of genomic and transcriptomic in the non-model system Ceratitis 

capitata. C. capitata (Diptera, Tephritidae), also called “medfly”, is an insect pest that spread over almost 

every continent and represents a great danger to the cultivation of fruits for human alimentation. Its vast 

diffusion, together with its ability to parasitize many fruit hosts and the difficulties humans encountered 

when trying to control and eradicate it from local areas, made C. capitata one of the most dangerous species 

to agriculture on a global scale, and therefore, to a significant portion of national and international 

economies. The reproduction and the sex determination are two crucial aspects to understand the biology of 

insects and represent optimal targets to limit their growth and diffusion.  

In the laboratory where I’ve conducted my PhD thesis, the identification and molecular characterization of 

the genes involved in the sex determination of Ceratitis capitata has been one of the main topics of research 

for more than 20 years. An evolutionary study of the sex determination pathway in C. capitata using the 

model system Drosophila melanogaster allowed to isolate four orthologues of the main genes involved in the 

sex determination pathway in D. melanogaster: Sex-lethal (Sxl), transformer (tra), transformer-2 (tra-2) and 

doublesex (dsx). Years of research have brought to demonstrate that the primary signals of sex determination 

known in D. melanogaster are different in C. capitata and that the Sex-lethal gene is not involved in the 

female sex determination in C. capitata. The male determining factor (M factor) localized on the Y 

chromosome in “medfly” has a key role in male sex determination, but still awaits to be molecularly isolated 

yet. The project of my PhD consists into two parallel and synergic research lines:  

1) transcriptomic (Illumina®) and genomic (PacBio®) approaches to the identification of novel Y-linked 

genes potentially involved in male sex determination, and X-linked genes in “medfly”; 

2) the development and perfecting of a powerful technique of gene editing, the CRISPR/Cas9, to study 

these novel gene functions.  

In this PhD thesis, I focused on three aspects of genetic research in Ceratitis capitata, which also have 

ramifications in the applicative field: 

❖ I focused on the identification of embryonic genes with male-specific expression, amongst which it 

is expected to be found the primary masculinization signal of sex determination, namely the Y-

linked M factor. For this purpose, I employed a novel and, I believe, promising technique: the 



metabolic labelling of newly transcribed RNA in XX and XY embryos to purify and distinguish 

them from maternal transcripts. I have identified some hundreds of Ceratitis genes which seem to 

have zygotic expression during 5-6 hours of embryogenesis.  

❖ I defined the genomic characterization of a gene cluster: ceratotoxins, on the X chromosome. 

Interestingly, in the medfly genome project, it has been shown from genetic and cytogenetic analyses 

that the X chromosome is highly heterochromatic and has only few genes (Papanicolaou et al., 

2016). 

❖ I approached the problem of conducting functional genetic studies, including on genes involved in 

the sex determination pathway, in a non-model system such as C. capitata. Transient as well as 

transgene-mediated RNA interference works in C. capitata, but it’s generally applicable on genes 

with embryonic (transient) expression, and has some difficulties also when applied by transgenesis, 

because the production of transgenic flies in C. capitata is more laborious than in D. melanogaster, 

also for its larger genome, which is rich of heterochromatic regions, often repressing the expression 

of the integrated transgenes. I therefore applied CRISPR/Cas9 an innovative technique of gene 

editing that can allow to induce heritable mutations in specific genes and also, I established in the lab 

a Cas9-his tagged bacterial expression and purification method. I successfully targeted 2 Ceratitis 

genes and I contributed to CRISPR development also in the other dipteran Musca domestica, 
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1 Introduction 

1.1 Premise: Why study Insect pests? 

Insects are among the largest animal taxonomic group on Earth. Insects, as the majority of 

invertebrates, have a life strategy based on reproduction. They manage to completely colonize an 

ecosystem in a relatively short time. Insects have a critical role in both ecology and human society. 

In some cases, their interactions with humans can be harmful, and knowledge of the life cycle of 

insects that are vectors of disease and agricultural pests opens to new possibilities for developing 

eco-friendly alternatives to pesticide control strategies. Reproduction and sex determination are 

crucial aspects to understand the biology of insects and optimal targets for limiting their growth and 

dissemination at the same time. I decided to focus my PhD project on a major agricultural pest, 

Ceratitis capitata (Wiedemann, 1824), also called Mediterranean fruit fly (“medfly”), a widespread 

Diptera pest present in all continents and highly detrimental to crops of many species (Saccone et 

al., 2011). In particular, I have tried to fulfil some major gaps in the understanding of the genetics of 

sex determination in Ceratitis and in the reverse genetics techniques available to study in vivo gene 

functions. 

 

1.2 Insect of interest: the agricultural pest Ceratitis capitata. 

Ceratitis capitata is a highly invasive species to a wide range of cultivated and wild fruit, and has a 

huge economic impact. It has managed to adapt itself to vastly different conditions, and therefore 

occupy many ecological niches (to see distribution http://www.cabi.org/isc/datasheet/12367 Fig.1). 

The harmfulness of this species lies in the behaviour of females during reproduction. After the 

mating, they perforate the skin of many fruits with their extensible ovipositor. They prefer fruit with 

soft pulp, high sugar content and low acidity, to lay their eggs.  

The eggs are slender, curved and shiny white (approximately 1.0 x 0.2 mm), and develop into larvae 

within 2-4 days in optimal conditions of temperature and humidity (Fig.2A). Larval development is 

divided into three stages and lasts for 4-6 days. The first stage larvae are less than half a millimetre 

long (Fig.2B); the last stage larvae (the third) are 7-9 mm long, and are also called "jumping" larvae 

(Fig.2C). The ability to jump allows the larvae to get out of the host fruit and pupate into the soil 

(Fig.2D). The pupae stage lasts for 6-11 days, and after that, the adults emerge (Fig.2E). C. capitata 

completes its life cycle in 21-30 days and the adults of C. capitata live for about 30 days.  

The adult is 4-6 mm long and its body is coloured of shades ranging between grey and yellow. The 

head is yellow with red and iridescent eyes. The thorax is black with white spots features, while the 

abdomen is of a yellow-brown colour with dark streaks in the third and fifth abdominal segments. 

The wings show a characteristic colour in some areas, with one longitudinal and two transverse 

http://www.cabi.org/isc/datasheet/12367


bands of brown colour. Sexual maturity develops about two days after the eclosion, and mating of 

mature individuals follows a circadian cycle. The adults of C. capitata show an evident sexual 

dimorphism (Fig.3). Males and females are different at both morphological and physiological 

levels. The ovipositor is a peculiar characteristic of adult females, which are also bigger in size than 

the males. The males, instead, can be distinguished for the presence of a pair of supra-front-orbital 

bristles.  

 

 1.3 Ceratitis capitata life cycle 

Ceratitis capitata is a holometabolous insect, with four life stages: embryo, larva, pupa and adult. 

The life cycle is the period of time from the oviposition to the adult stage, and in Ceratitis capitata, 

it lasts from 21 to 30 days in optimal temperature and climate conditions. The female lays from 1 to 

10 eggs at a time in a 1 mm deep cavity, and can lay up to 22 eggs per day and 800 eggs in its entire 

life cycle. Females do not lay when the temperature is lower than 16 °C and the development at 

embryonic, larval, and pupal stages stops when temperature is lower than 10 °C.  

The eggs hatch in 1.5-3 days in optimal temperature conditions. The length of the embryonic stage 

increases considerably with the lowering of the temperature. After the hatching, there are three 

larval stages, which can last up to 6-10 days when temperature ranges from 25-26.1 °C. Once 

matured at the 3rd instar larval stage, most of the larvae leave the fruit at dawn or just after dawn, 

and pupate into the ground, forming a brownish capsule in which metamorphosis will occur. The 

pupal stage lasts from 6-13 days when the mean temperature is between 24.4-26.1 °C. Most of the 

adults emerge from pupae in early morning, when temperature starts rising. They can fly for short 

distances, but can be transported by wind for kilometers of distance. Copulation can occur at any 

time of the day. The adults are not sexually mature at the moment of emersion from pupae; the 

males start showing sexual activity after 4 days from the emersion, whilst the females are ready to 

mate after 6-8 days from the emersion. The adults die in 4 days if they can’t find any food. Usually, 

up to 50% of the flies dies in the first two months after the emersion. However, some adults may 

survive up until 6 months in conditions of optimal availability of food and water, and at cool 

temperatures. 

 

1.5 Sex determination in Drosophila melanogaster and Ceratitis capitata  

Sexual dimorphism in insects is a developmental output of two distinct processes: sex determination 

and sexual differentiation. Sex determination is controlled by genes that establish either the male or 

female sex during embryonic stages. These key genes, which represent the primary signals or 

respond to them, regulate a cascade of other genes composing the so-called sex determination 



pathway, that acts through the expression of the sex-specific cytodifferentiation genes promoting 

the formation of male or female morphological structures and the development of sex-specific 

behaviours.  

The sex determination pathway in Ceratitis capitata has been elucidated after evolutive and 

comparative studies conducted on Drosophila melanogaster, a model system for this kind of 

studies. In D. melanogaster, the master gene in the sex determination pathway is Sex lethal (Sxl), 

which codes for a splicing regulator protein. Transcription of Sxl is regulated in a sex-specific 

manner, dependent on the X:A ratio. Females, which have a double copy of the X chromosome, are 

homozygotes for four X-linked genes, called X-linked signalling elements (XSEs), whilst males are 

hemizygote for such genes. Sxl has two promoters: an early promoter, activated in females, and a 

late promoter, activated in males (Salz et al., 1989). This allows for the production of an inactive 

form in males and an active form in females of the SXL protein, respectively. At the blastodermal 

stage, the primary signal is no longer needed and the activity of SXL is maintained by 

autoregulation (Cline, 1984). The male transcript includes a male-specific exon, which contains an 

internal stop codon, resulting in the production of a truncated, non-functional SXL protein. The 

female transcript undergoes an event of alternative splicing, which splices out the male-specific 

exon, resulting in a functional SXL protein (Bell et al., 1988; Bopp et al., 1991) (Fig.4). In females, 

the functional SXL protein regulates the splicing of the downstream transformer gene (tra), 

allowing the production of a functional TRA protein. The tra pre-mRNA has two 3’ splice sites: a 

female-specific splice site, and a non-sex-specific splice site. About 50% of the tra pre-mRNA 

undergoes a female-specific splicing event in the females. The female-specific splicing of the pre-

mRNA splices out an exon containing a stop codon, thus allowing the production of a functional, 

full length TRA protein. In males, only the non-sex-specific splicing event occurs, producing a 

truncated, non-functional TRA protein (Boggs et al., 1987; Belote et al., 1989; Válcarcel et al., 

1993) (Fig.5).  

The TRA protein, expressed only in XX Drosophila embryos, continues the sex-determination 

pathway in a female-specific way. In a complex with the TRA-2 protein, coded by the autosomal 

gene transformer-2, TRA determines the activation of the downstream genes in the pathway: 

doublesex and fruitless, which are expressed in two different isoforms in the two sexes due to 

alternative splicing events. TRA and TRA-2 recruit general splicing factors, such as the splicing 

regulator proteins (SR), onto regulative elements, named dsx repeat elements (DsxRE). The DsxRE 

are TRA/TRA-2 binding elements repeated 6 times in the dsx pre-mRNA; they are highly 

conserved, 13 nt sequences located downstream of a dsx female-specific 3’ splice site (Tian and 

Maniatis, 1993). In the absence of TRA, the splicing produces a male-specific DSX isoform 



(DSXM) (Burtis and Baker, 1989), which represses the expression of the genes that direct sexual 

development in a female-specific way, both in morphology and behaviour. At the same time, 

DSXM activates the expression of the male-specific downstream genes, which direct the sexual 

development in a male-specific way. Vice versa, the female-specific DSX isoform (DSXF) 

represses the expression of the genes that induce male-specific sexual determination and activates 

the expression of the genes that induce female-specific sexual determination. Fruitless (fru) is 

another gene that contains a TRA/TRA-2 binding element, which is regulated by the TRA/TRA-2 

complex in a sex-specific way during splicing. The male isoform of fruitless is responsible in 

conjunction with DSXM for the sexual development of the central nervous system (Rideout et al., 

2007) (Fig.6).   

A series of studies showed that sex determination in medfly is different from sex determination in 

Drosophila. The identification of fertile XXX females and fertile XXY males in a wild population 

of medfly showed that the presence of the Y chromosome is determining for male sex determination 

(Saccone et al., 2002). The analysis of the progeny generated from an autosome-Y reciprocal 

translocation T(Y;2) has allowed the prediction of the existence of one or more than one male 

determining factors on the long arm of the Y chromosome (Robinson, Franz and Fisher, 1999). 

Using a series of deletions on the Y chromosome, the male determining factor has been located in a 

region of the long arm, near the centromere, representing about 15% of the entire Y chromosome. 

Moreover, this study showed that the remaining 85% of the Y chromosome does not contain genes 

involved in sex determination, testis development and male fertility (Willhoeft and Franz, 1996). 

The Y chromosome of medfly also contains a repetitive element, which was identified by 

techniques of molecular subtraction (Anleitner and Haymer, 1992). The positional information 

obtained by deletion analysis of the Y chromosome could be a useful and necessary preliminary 

step to clone the male determining factor(s) by microdissection (Willhoeft & Franz, 1996). 

A comparative molecular study has been carried out to identify genes involved in sex determination 

in Ceratitis using Drosophila genes as probes for cDNA and genomic libraries of medfly. This 

approach has brought to the isolation of orthologues of Sxl and dsx in medfly (Furia et al., 1992; 

Saccone et al., 1996; Saccone et al., 1998). In contrast with Drosophila, the orthologue of Sxl 

(CcSxl) expresses the same mRNA and the same protein isoforms in both XX and XY individuals, 

independently from the primary sex determination signal (Saccone, 1997; Saccone et al., 1998). 

Moreover, experiments involving two inducible transgenes showed that the product of CcSxl does 

not have significant effects on sex determination when expressed in Drosophila (Saccone et al., 

1998) (Fig.7).  

The dsx gene in medfly, Ccdsx, produces sex-specific transcripts through alternative splicing, 



similarly to Drosophila, suggesting its functional conservation as regulator in sex determination 

(Saccone et al., 1996). Indeed, the ectopic expression of the male-specific isoform of CcDsx 

(CcDsxM) in Drosophila transgenic strands has induced a partial masculinization of XX flies, 

supporting the idea that dsx controls the sex determination in medfly, similarly to Drosophila 

(Saccone et al., 2008). Moreover, the sex-specific splicing regulation of the Ccdsx pre-mRNA 

seems to be homologous to that of dsx in Drosophila.  

The orthologue of dsx in medfly shows two conserved characteristics: 

1. the 3’-UTR of the female-specific exon in medfly has conserved short sequences made up 

by five fragments of 13 nucleotides each, corresponding to the TRA/TRA-2 repeated 

elements (dsxRE; also known as Tra/Tra-2 binding sites), identified in Drosophila. The 

evolutionary conservation of these elements in medfly inside the female-specific non-coding 

3’ region suggests the existence of a positive selection for the specific binding of trans-agent 

factors homologous to TRA and TRA-2 (Saccone, 1997; Saccone et al., 2002); 

2. as in Drosophila, the female-specific exon in medfly is preceded by a 3’ splice site, which 

has the characteristics of a suboptimal splice site (Saccone et al., 1996). The conservation of 

these cis-agent regulatory elements suggests that the regulation of the sex-specific splicing 

of the dsx gene in medfly is homologous to that in Drosophila and that, as in Drosophila, the 

male-specific splicing is the default splicing and the female-specific dsx splicing needs 

TRA/TRA-2 bound to the cis regulatory elements to enhance it.  

Considering these data, a model for sex determination in medfly can be proposed, in which only a 

part of the sex determination pathway of Drosophila is evolutionarily conserved. Possibly, CcSxl 

can play only, if any, auxiliary roles in sex determination in medfly, as TRA-2 does in Drosophila, 

which, although expressed constitutively in a non-sex-specific way, works in conjunction with the 

female-specific isoform of TRA. On the other hand, Ccdsx shows evolutionary conservation not 

only in its nucleotide and amino acid sequences, but also in its sex-specific regulation, indicating its 

involvement in the control of sex differentiation. The female-specific splicing control of the Ccdsx 

pre-mRNA is exerted by homologous TRA/TRA-2 protein in medfly (CcTRA/CcTRA-2), which 

bind to dsxRE, a conserved splicing enhancer region. The discovery of dsxRE elements inside and 

in proximity of male-specific exons of Cctra has showed that the CcTra gene, in contrast to tra in 

Drosophila, is capable of auto-regulation (Pane et al., 2002). 

It’s known that in Ceratitis, the male-specific splicing of tra starts to occur at about 6-7 hours after 

oviposition in XY embryos. Its pre-mRNA comprises 5 exons (while only 3 exons in Drosophila), 

three of which (the first, the fourth and the fifth) are included in the mature transcript in both sexes, 

whilst the other two are only included in the male-specific transcript. In Ceratitis, its regulation is 



based on the alternative splicing by exon skipping (of male exons in females) and on a differential 

and combined use of alternative regulative sites, 5’ donor and 3’ acceptor splice sites, which are 

present in the initial part of the gene. In XY medfly embryos a male-specific splicing produces two 

main transcripts in which two exons containing stop codons are retained, thus generating truncated 

proteins. Instead, in XX individuals, the alternative splicing excludes the second and the third 

exons, which are male-specific, from the mature transcript, allowing the production of a full-length 

protein, which is 429 amino acid long and called CcTRAF (Pane et al., 2002). The sex 

determination model in medfly, based on the key function of Cctra, supports that the female-

specific CcTRA protein, in conjunction with CcTRA-2 (expressed constitutively in both sexes), acts 

as a splicing factor binding the Cctra-dsxRE, determining the inhibition of the male-specific 

splicing of Cctra and the regulation of the downstream genes beginning with Ccdsx (Pane et al., 

2002). CcTRA acts on the pre-mRNA of Ccdsx, activating the female-specific splicing and 

generating two sex-specific protein isoforms (DSXF and DSXM), structurally and functionally 

conserved in comparison with Drosophila melanogaster (Saccone et al., 2010). Ultimately, it is 

possible to propose that in embryonic stages sex determination in Ceratitis is directed at the male 

sex through the action of the male determining factor, which promotes or simply allows the 

inclusion of the male-specific exons, probably by blocking the action of the CcTRA maternal 

protein (and possibly of CcTRA-2). Female sex determination relies on the action of a splicing 

complex which promotes an exon-skipping and is maintained by an epigenetic auto-regulative 

mechanism sustained by CcTRA activity. This mechanism can be suppressed by removing, even 

temporarily, mRNA coding CcTRA or CcTRA-2 protein with transient embryonic RNAi (Pane et 

al., 2002; Salvemini et al., 2009). A transient interference in the expression of these two genes in 

XX embryos determines the complete sexual transformation (at both the germinal and somatic 

levels), obtaining pseudo-male fertile XX adult flies. The positive outcome of the utilization of 

RNA interference against the tra gene in Ceratitis capitata obtained by microinjection of double-

stranded RNA molecules in embryos at the very first developmental stages has given the clear 

confirmation of the role of Cctra as key gene in sex determination and has also sustained the model 

based on positive feedback (Pane et al., 2002). Indeed, an RNAi-induced temporary absence (for 

about 24 hours) of the tra transcripts both in XY male embryos and XX female embryos, causes an 

irreversible change in the splicing of Cctra, which becomes male-specific in the latter. This shift, 

that happens only in XX individuals, brings to the development of XX male adult flies, which have 

also happened to be fertile (Pane et al., 2002). The male determining factor could inhibit the activity 

of CcTRA and/or CcTRA-2 in males both at the level of transcription, or at the post-transcriptional 

level, determining the male-specific splicing of Ccdsx indirectly. In this case, we would expect the 



sex-specific regulation of Cctra to be exerted by the male determining factor, and not by CcSxl, as a 

unique property of medfly. Alternatively, the male determining factor could also bind the Ccdsx pre-

mRNA and directly influence its splicing, competing with TRA/TRA-2 for the binding with the 

splicing enhancer dsxRE. Ultimately, other genes could be interposed between the male determining 

factor and Ccra/CcTra-2, or even in parallel, increasing the complexity of the sex determination 

pathway in medfly. The isolation in medfly of the Y-linked male determining factor could help 

elucidate the validity of this model and localize the points of molecular divergence between the sex 

determination pathways in Drosophila and medfly. 

As a novel method of sexing, alternatively to the female-specific lethality of the TSL strain, a 

method based on the transformation of females into males at the embryonic stage has been obtained 

with the utilization of RNAi targeted against the Cctra gene and a transgene stably inserted into the 

medfly genome (Saccone et al., 2007). In this strain, a transgene allows the production of dsRNA 

molecules specific for the Cctra gene during oogenesis (enhancer effect in proximity of the site of 

integration of the transforming vector; Petrella, 2014), so that in female transgenic embryos the 

repression of the transformer gene occurs, thus provoking a male-specific Cctra splicing in XX 

embryos, which is irreversible until adulthood, and inducing masculinization of XX individuals. 

Interestingly, one transgene copy of the construct producing Cctra-specific dsRNA in the mothers 

crossed with non-transgenic fathers is sufficient for masculinization of all embryos, including also 

the non-transgenic ones.  

It’s interesting to note that the XX male obtained with RNAi in this genetic sexing strain of 

Ceratitis are able to compete with wild males and their progeny is fertile when they are crossed 

with XX females (Petrella, 2014). The progeny of the cross between XX males and females is 

exclusively made up of XX embryos, which will develop into adult females. The fertility of XX 

males has been previously utilized to produce a progeny of only XX female embryos in order to 

carry out: 1) studies of molecular subtraction of male-specific transcripts using RNA from XX 

embryos alone and RNA from mixed XX/XY embryos (Salvemini et al., 2014); 2) transcriptome 

analysis on XX and XX/XY embryos (Salvemini, Nagarju, Arunkumar, Robinson, and Saccone, 

2010-2017, unp. Res.).  

 

1.5 Sex determination in other insects  

Sex determination in insects is classified into three main categories depending on the different 

primary sex determining signals: 1) zygotic, 2) maternal, or 3) environmental signals (Sánchez, 

2008). In Drosophila melanogaster, the primary signal is based upon the quantity of the product of 

four X-linked genes: the X-linked signalling elements (XSEs) (Erickson & Quintero, 2007). In 



some species (apparently most of them), in which the female is the homomorphic sex (XX) and the 

male is the heteromorphic sex (XY), the primary signal is a male-determining factor, coded by a 

gene located on the Y chromosome. These species include the tephridites (Ceratitis, Bactrocera and 

Anastrepha). However, in Musca domestica a candidate M-factor has recently been located on an 

autosome. In species where the homomorphic sex is the male (ZZ) and the heteromorphic sex is the 

female (ZW), the primary signal for sex determination varies. In some Lepidoptera species 

(butterflies and moths), the primary signal depends on a Z-counting mechanism, similarly to the X-

counting mechanism of Drosophila. In the silkworm, the primary signal is a Fem factor located on 

the W chromosome (Traut et al., 2007). In Apis, instead, the sex determination relies on a different 

mechanism: the females are diploid and the males are haploid. Finally, in some insect species sex 

determination depends on environmental factors, such as the temperature during the embryonic 

development. This mechanism has been found in some Sciara species (Ruiz et al., 2005). It’s 

interesting to note that in the last few years, primary signals of sex determination have been 

identified in other species of insects: in Drosophila, the XSE (X-linked signaling elements, 

transcriptional factors which are present in XX embryos and able to activate the early transcription 

of Sxl from an alternative promoter, thus allowing its female-specific splicing); in Apis mellifera, 

CSD (Complementary Sex Determination, a gene with many alleles, which codes for a serine and 

arginine rich protein, similar to CcTRA protein (but not DmTRA protein); in Bombyx mori, the fem 

gene codes for a W-linked piRNA, which acts on the Masculinizer (Masc) gene, to promote 

femaleness in ZW individuals. In Aedes aegypti, the nix gene (Nix codes for a potential splicing 

factor related to tra-2, and the absence of Nix shifts the alternative splicing of dsx and fru towards 

female-specific isoforms); in Anopheles gambiae, the Y-linked Yob gene codes for a novel short 

protein with no conserved domains; Yob is expressed exclusively in male embryos within 2 hours 

from oviposition, and its transcription is maintained for the rest of the life. If Yob is injected in early 

embryos before two hours, only XY male mosquitos will be born, because the presence of Yob is 

lethal for female embryos, most likely for dosage compensation unbalance.  

  



 

Fig.1 Distribution map of the Mediterranean fruit fly Ceratitis capitata (Wied.) (Designed by 

FAO/IAEA, December 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Eggs of Ceratitis capitata (A); larvae of the first stage (B); "jumping" larvae (C); the pupal 

stage (D); adult female (E); adult male (F).  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Sexual Dimorphism of Ceratitis capitata 

  



Fig.4 Gene Sex lethal (Sxl). The image shows the two sex-specific splicing events that occur in the 

Sxl gene, following the activation of the early promoter in the female and the late promoter in the 

male. Adapted from Sex-determining mechanisms in insects (Sánchez, 2008). 

 

 

 

 

Fig.5 Gene Transformer (Tra). The image shows the female-specific splicing, which allows the 

production of a full length TRA protein, and the non-sex-specific splicing, which produces a 

truncated protein. The non-sex-specific splicing is the only splicing event that occurs in males 

(Sánchez, 2008). 

 

  



 

 

 

 

 

 

 

Fig.6 On the left: the gene doublesex. On the right: the gene fruitless. The image shows the female-

specific splicing and male-specific splicing, respectively (Sánchez, 2008). 

 

 

 

Fig.7 Sex determination mechanism in Ceratitis capitata. 



1.6 A premise to my Aims 

In the laboratory where I’ve conducted my PhD thesis, the genes of the regulative pathway of sex 

determination in insects have been studied for more than twenty years; they’ve been characterized 

at a molecular level in Ceratitis capitata (Medfly), an insect pest dangerous to agriculture. Years of 

studies have brought to demonstrate that the primary signals of sex determination known in 

Drosophila are different in C. capitata and that the Sex lethal gene is not involved in the female sex 

determination in Ceratitis. The male determining factor (M factor) located on the Y chromosome in 

Medfly has a key role in sex determination, but it hasn’t been isolated yet. The vast majority of the 

analysis carried out in this direction, over the last twenty years, hasn’t brought to definitive results. 

Only the functional investigations carried out in three fly strains, bearing translocations of parts of 

the Y chromosome on an autosome, have shown that a region of the long arm of the Y chromosome 

in Ceratitis is essential for the determination of the male sex (Zapater & Robinson, 1986), and have 

subsequently defined a region, representing the 15% of the entire chromosome, in which is located 

the M factor in Medfly (Willhoeft & Franz, 1996). Both sex chromosomes of Ceratitis (X and Y) 

are highly heterochromatic and seem or are expected to contain only few genes. Novel DNA 

sequencing technologies such as “PacBio”, which lead to obtain single long reads of 10-20 Kb, are 

opening novel opportunities to assemble and analyze such difficult genomic regions.  

To better understand medfly sex chromosome and sex determination, I have studied few known X-

linked and I have isolated novel Y-linked genes by genomics/transcriptomics approaches. I have 

structurally characterized a cluster of X-linked paralogous genes, the ceratotoxins (ctx) as my 

contribution to the study of the medfly genome, which has been recently published (Papanicolaou et 

al., 2016). I have also developed a cost-effective CRISPR/Cas9 protocol, based on the 

expression/purification of His-tagged Cas9 protein, in vitro transcription of small guide RNAs 

(sgRNAs), and microinjections of pre-loaded Cas9 ribonucleoproteins with sgRNAs into insect 

embryos, including Musca domestica and Ceratitis capitata. One study has been submitted (Heinze 

et al., 2017) and the second one is going to be submitted within the next few weeks (Meccariello et 

al., 2017).  

 

In my PhD project, I’ve used the transgenic Ceratitis sexing strain (see introduction; in vivo RNAi 

against Cctransformer to masculinize XX individuals) to produce a progeny of only XX female 

embryos in order to obtain female embryo transcriptomes and compare them with XX and XY 

mixed embryos. In particular, I’ve focused on an earlier period of Ceratitis development (0-6 hours 

from oviposition) with the respect of previously produced transcriptomes in our lab (4-8 h; 8-10h; 

23-25h; Salvemini, Arunkumar, Robinson, Petrella, Saccone, unp. Res.); furthermore, I’ve prepared 



total RNA from embryos instead of polyadenylated RNA, and I’ve tried to enrich the samples with 

transcripts produced in the zygote and developing embryo, at the expense of maternal transcripts. 

The reason why to enrich genes with zygotic transcription is that Y-linked genes can be expressed 

in embryos only at a zygotic level (obviously with no maternal contribution), whereas X-linked and 

autosomal genes can contribute maternally in the developing egg. For example, in Drosophila over 

50% of the genes (about 7,000 of 15,000) contributes with maternal transcripts, whereas newly 

formed zygotic transcripts are produced of some hundreds within the first hours AEL (after egg 

laying). Therefore, it’s not easy to discriminate zygotic transcripts from maternal ones, if not with 

molecular techniques that enrich the former.  

It would be desirable to isolate the M factor, not only to understand the molecular identity of a 

primary Y-linked signal of male sex determination and deepen our understanding of its evolution, 

but also to develop a transgenic strain in which is possible to masculinize females expressing the M 

factor conditionally (eg. with a heat-shock promoter). The isolation of the M factor has been 

attempted in medfly using molecular subtraction analysis applied to RNA samples extracted from 

XX only, and XX/XY mixed embryos, respectively (Salvemini et al., 2014). From the comparison, 

a few number of putative Y-linked genes, which are transcribed early in XY embryos, have been 

identified, although their function is still in course of definition (Tu, J, Brantley, Salvemini and 

Saccone, unpub. Res.). Transcriptome profiling using RNAseq and differential expression analysis 

have been carried out and are still in course on XX and XX/XY embryos, to conduct other 

experiments of molecular subtraction, this time in silico (Salvemini et al., 2014). 

 

My aims 

The project of my PhD consists in the genetic study of sex determination in Ceratitis at embryonic 

stages, using innovative transcriptomic techniques (such as Illumina sequencing), genomic 

techniques (PacBio sequencing), as well as gene editing techniques (CRISPR/Cas9). I’ve developed 

my project within a web of international collaborations which includes for the most part the work 

the Zurich University (Prof. Daniel Bopp and Prof. C. Mosimann for CRISPR/Cas9 in medfly and 

Musca domestica; Prof. Mark Robinson for PacBio genome sequencing and Illumina sequencing), 

and also the FAO/IAEA Pest Control laboratory (Dr. Kostas Bourtzis; Seiberdorf, Austria) and the 

CDFD (Centre for DNA Fingerprinting and Diagnostics; Dr. Arunkumar) in Hyberabad (India).  

My thesis project is focused on two main aspects of genetic research in Ceratitis capitata, which 

also have ramifications in the applicative field: 

 



1) the problem of identification of embryonic genes with male-specific expression, among 

which it is expected to find the Y-linked M factor. For this purpose, we started to set up in 

the lab a relatively novel but complex technique: the metabolic labelling of newly 

transcribed RNAs in XX and XY embryos to distinguish them from maternal transcripts. 

2) the problem of conducting functional genetic studies (including genes involved in the sex 

determination) in a non-model insect system such as Ceratitis. Transient embryonic RNAi 

worked efficiently in Ceratitis but only for few genes with embryonic expression and 

involved in autoregulatory mechanisms. Transgenesis is possible in the medfly but the 

production of transgenic strains is much more elaborated than in Drosophila, also because of 

the larger genome, which is enriched in heterochromatic regions and hence because there is 

the need to screen large number of transgenic lines to find expected expression.  The 

insertions of transgenes in the medfly genome often present problems with transgene 

expression. I proposed to establish CRISPR/Cas9 as an innovative method of gene editing 

that allowed us to induce gene-specific and heritable mutations.   

 

 

 

  



2 Technique: “metabolic labelling” 

2.1 New molecular approach to isolate zygotic newly transcribed RNA 

The development of whole-transcriptome by next-generation sequencing is revolutionizing our 

understanding of the complexity of developmental gene expression during early embryogenesis of 

insects (Jiménez-Guri et al., 2013). Such complexity could be partially reduced by distinguishing 

newly zygotic transcripts from maternally deposited mRNAs (Paris et al., 2015). This could help to 

identify key master genes for sex determination such as the Y-linked M factor of medfly. 

It’s been known for more than 30 years that nucleotides containing thiolic groups, such as 4-

thiouridine (4sU), can be introduced in salvage pathways in eukaryotic cells, allowing the 

metabolic labeling of newly transcribed RNA (Melvin et al. 1978). These can be used to separate 

newly transcribed RNA from total RNA using mercury affinity chromatography (Melvin et al. 

1978; Woodford et al. 1988) or thiol-specific biotinylation followed by purification with 

streptavidin-coated magnetic beads (Cleary et al. 2005) as eukaryotic mRNA do not normally 

contain thiolic groups. 

Cleary et al. 2005 used thio-substituted compound 2,4-dithiouracil (DTU) which is a substrate 

for Toxoplasma gondii salvage enzyme uracil phosphoribosyl transferase (UPRT) in assays using 

cell lysates: indeed in Toxoplasma gondii cells expressing uracil-phosphoribosyltransferase 

(UPRT), newly transcribed RNA can be metabolically labeled using 4-thiouracil (4tU).  This 

4TU/UPRT-based biosynthetic labeling was defined as “TU-tagging” by the authors. 

 

Although some methods to purify tissue-specific RNA are already available (Roy et al., 2002; 

Tanke et al., 1993; Doyle et al. 2008; Heiman et al., 2008), each of them has its own restrictions and 

researchers are often confronted with these limitations when purifying RNA from cell types of 

interest. UPRT can be used to label biosynthetically newly transcribed RNA in vivo (Cleary et al., 

2005). In natural conditions, UPRT couples the ribose 5-phosphate to the N1 nitrogen of uracil to 

form uridine monophosphate (UMP), which is subsequently incorporated in RNA. When given a 

uracil analog such as 4tU as substrate, UPRT incorporates it in the RNA, and this has little effects 

on cell physiology (Cleary et al., 2005). RNA resulting from the labeling with thiol nucleotides can 

be labeled and purified using commercially available reagents. For its ability to isolate newly 

synthetized RNAs from stable cell RNAs, this method has been used to measure the rate of 

synthesis and decay of RNA (Cleary et al., 2005; Dolken et al., 2008). Restricting the spatial 

expression of UPRT in select tissues, 4tU is modified and subsequently incorporated into newly 

synthetized RNA only in cells that express UPRT. This way, RNA from cells expressing UPRT can 



be recovered purifying labelled RNA from a total RNA extraction of the whole organism. This 

method could be used to isolate RNA from cell types that are difficult to separate by dissection or 

dissociation, such as neurons o glial cells in the central nervous system (Miller et al., 2009). 

Mammals lack this enzyme activity and thus only their protozoan parasite incorporates chemically 

modified uracil into its nascent RNAs. Very interestingly, transgene expression of UPRT under the 

control of a tissue-specific promoter could allow purification of RNA from specific cells or tissues 

in transgenic animals, either vertebrates or invertebrates, fed with the DTU. An important 

characteristic of TU labelling is that the percentage of labelled RNA over total RNA depends on 

labelling time. Short labelling times can be used to detect changes in genetic expression over time 

in specific cell types. The control of spatial expression of UPRT in vertebrates can be obtained 

utilizing transgenes, through retroviral activity, electroporation, or mRNA injection. The tissue-

specific expression of UPRT combined with 4tU administration can be utilized to purify tissue-

specific RNA from complex intact tissues in Drosophila melanogaster.  

 

To evaluate the capacity to label RNA biosynthetically in Drosophila, 4tU has been supplied and its 

incorporation into RNA has been monitored by total RNA extraction, binding of the thiol nucleotide 

to biotin, and streptavidin to detect labelled RNA. Wild-type or UAS-UPRT adults and larvae fed 

upon 4tU showed very low levels of labelled RNA. In contrast, larvae and adults fed upon 4tU and 

containing both transgenes Gal4 and UAS-UPRT expressed UPRT in select cell types and showed 

high levels of labelled RNA. Similarly, embryos immerged in a medium containing 4tU showed 

high levels of labelling only when the transgenes UAS-UPRT and Gal4 were both present (Miller et 

al., 2009). In conclusion, the combination of UPRT and 4tU can be utilized to label RNA 

biosynthetically in embryos, larvae and adults of Drosophila. Once the newly transcribed RNAs are 

separated from non-labeled pre-existing mRNA, it is possible to conduct comparative analysis with 

microarray or sequencing of newly transcribed RNA, pre-existing RNA or total RNA.  

Metabolic labelling with 4tU (4-thiouracile) has been utilized to observe the alterations of 

synthesis and decay of RNA following physiologic and pathologic events, such as cellular response 

to treatment with type I and type II interferons (Platanias, 2005). The mRNA levels of specific 

genes in a precise instant are the result of a balance regulated by de novo transcription and transcript 

decay (Guhaniyogi and Brewer 2001; Fan et al. 2002; Jing et al. 2005). Microarray analysis on total 

RNA can provide a measuring of the abundance of mRNA, but cannot determine whether the 

changes over time are caused by alterations in synthesis or decay. A series of attempts have been 

conducted to elude this problem. Decay rates have been determined by blocking transcription (eg. 

using actinomycin D), assuming that decay rates remain unchanged (Frevel et al., 2003; Yang et al., 



2003; Bernstein et al., 2004; Raghavan and Bohjanen, 2004). However, this method is invasive for 

cells and cannot be combined with essays for the measuring of de novo transcription. The low 

temporal resolution is another limitation of genic expression profiling using total RNA. This is 

particularly true for mammalian cells, due to the long half-life of their mRNA (Yang et al. 2003).  

 

As a very relevant alternative, metabolic labeling with 4-thiouridine (4sU) doesn’t need the 

expression of UPRT and hence it can be used for example directly into developing non transgenic 

embryos. The incorporation of 4sU into newly transcribed RNA has been studied cultivating 

different cytotypes in presence of concentrations of 4sU ranging from 100 mM to 5 mM for an 

hour. Following total RNA extraction and thiol-specific biotinylation, the RNA labeled with 4sU 

has been specifically detected and quantified through dot blot assay. The labeling of newly 

transcribed RNA with 4sU can be applied to a vast diversity of cell types and organisms, including 

human, mice and plants, as well as Drosophila. It can be both used for in vitro and in vivo studies, 

as it is well tolerated by mice following intravenous injection (Kenzelmann et al. 2007). Metabolic 

labeling of newly transcribed RNA with 4sU has little to no side effects on genetic expression, 

RNA decay, protein stability and viability of cells (Melvin et al. 1978; Woodford et al. 1988; Ussuf 

et al. 1995; Kenzelmann et al. 2007). The transcriptional profile of three biologic replicas of murine 

cells treated with 200 mM 4sU for an hour has been compared with that of untreated cells and no 

significant transcriptional level alteration attributable to treatment with 4sU has been detected 

(Dolken et al., 2008). The efficiency of isolation can be confirmed combining the 4sU labeling with 

the cytidine-3H labelling of newly transcribed RNA for 15, 30 and 60 minutes. Following thiol-

specific biotinylation, up to 90% of RNA labelled with cytidine-3H has been co-purified with the 

newly transcribed RNA. (Dolken et al., 2008).  

 

Another application of newly transcribed RNA labelling with 4sU (4-thiouridine) was aimed at the 

isolation of the zygotic genes of Danio rerio (zebrafish) and the subsequent characterization of the 

zygotic transcripts (Heyn et al., 2014). The maternal to zygotic transition of the control over 

development is fundamental for the cell cycle of every multicellular organism. Zygotic genomes are 

transcriptionally inactive up until zygotic genomic activation (ZGA), which starts after a fixed 

number of cell divisions (Baroux et al., 2008; Tadros and Lipshitz, 2009). The early expressed 

genes most probably support the rapid cell divisions that precede morphogenesis, and take place 

into the mechanisms of sex determination. In zebrafish, transcription of early genes begins at the 64 

cell stage (Giraldez et al., 2006; Lindeman et al., 2011; Mathavan et al., 2005; O'Boyle et al., 2007). 

Through 4-thiouridine metabolic labelling of newly transcribed RNA in zebrafish embryos, it has 



been possible to isolate the early zygotic transcripts. The results showed little to no contamination 

from maternal RNA and an efficient recovery of newly transcribed RNA, verified on previously 

known zygotic genes (Heyn et al., 2014). Embryos injected with 4-thiouridine triphosphate (4-

sUTP) at the single cell stage have been cultivated until 128, 256 and 512 cell stages prior to the 

extraction, biotinylation and purification of labelled RNA, which has been subsequently sequenced. 

These experiments showed that the pool of genes expressed solely in the zygote does not contain 

genes essential to life (Heyn et al., 2014). Moreover, no orthologues of Drosophila have been 

detected among zygotic genes in zebrafish, indicating that early arthropod and vertebrate zygotic 

genes are completely different and can serve to species-specific functions, in contrast with maternal 

genes, which are highly conserved and serve to essential functions (Heyn et al., 2014). 

For my PhD project, I adapted the technique from Dolken et al. (2008), which was based on the 

injection of 4-thiouridine (4sU) in murine cells and also from Heyn et al., (2014). This allowed me 

to avoid the need of the UPRT enzyme, for the labelling of newly transcribed RNA.  

  



2.2  Results 

Ceratitis male sex determination of medfly occurs at 5-6 hours from oviposition in XY developing 

embryos, by a Y-linked M factor still to be identified (Gabrieli et al., 2010). While in Drosophila 

cellularization occurs at 2-3 hours, in Ceratitis it occurs after 9 hours. So, male sex determination 

occurs during mitotic divisions of nuclei and prior their migration to the periphery of the egg.  

The Y chromosome of Ceratitis is highly heterochromatic and full of repetitive elements. Little is 

known about Y-linked genes and their early transcription in Ceratitis as, in general, in many other 

invertebrate and vertebrate species. However novel DNA sequencing technologies such as PacBio 

are offering novel opportunities to obtain useful sequence information from heterochromatic 

chromosomes full of repetitive sequences.  

One of the aims of my PhD was the isolation of Y-linked genes of Ceratitis expressed during the 

first hours of embryogenesis. These Y-derived transcripts are expected to have 2 characteristics: 1) 

expressed only in the zygotes, as no maternal contribution is possible from Y-linked genes, and 2) 

obviously expressed as RNA in XY but not in XX embryos. In order to isolate them, I focused on 

the study of a novel molecular approach, called metabolic labelling, aimed to isolate and identify 

newly transcribed zygotic transcripts (after the fecundation and during the first stages of 

development) at the embryonic stages of Ceratitis and discriminate those present only in XY 

embryos. I expected to find within the male-specific zygotic transcripts, one or few potentially 

candidates corresponding to the M masculinizing factor. I focused on the 5-6 hours embryonic 

developmental window.  

I have conducted bibliographical research on studies concerning metabolic labeling of newly 

synthetized RNA through the incorporation of a thiol nucleotide. Particularly, I have found two very 

interesting studies, in which the authors have used 4-thiouridine (4sU) in murine cells (Dolken et 

al., 2008) and ‘zebrafish’ embryos (Heyn et al., 2014). Following injections of 4sU, the newly 

transcribed RNAs have incorporated this modified nucleotide and they can be isolated from the 

maternal RNAs, by affinity chromatography. We then adapted this technique, applying it for the 

first time in embryos of a non-Drosophilidae species, such as Ceratitis.  

As preliminary step, I injected 150 embryos (Benakeion strain; XX/XY mixed embryos from a 

normal cross between XY and XX flies) with 10 mM 4sU and 150 embryos with injection buffer as 

control (see table 1). I collected for 1 h the embryos and I let them develop for 5 hours, to cover a 

developmental window of 5-6 hours. 

These data from the 2 experiments showed similar survival rate of larvae from injected embryos in 

both parallel experiments (48% and 51%, respectively). Also the 2 survival rates of adults were 



similar (23% and 28%, respectively). I then concluded that 4sU is not particularly toxic for Ceratitis 

capitata.  

I carried out another test to evaluate if the micromanipulations and the injection of the chemical 4sU 

into the embryos could alter transcriptional metabolism, for example slowing down the 

developmental rate, and related processes such as including the sex-specific splicing of Cctra. For 

example, it has been previously observed that metabolic labeling of RNA by 100 mM 4sU triggers a 

nucleolar stress response in cell lines (Burger et al., 2013).  

 

In particular, the embryos manipulation and injection consisted of 1) manual dechorionation, 2) 

sticking with double-sided tape on slides, 3) addition of mineral oil to avoid dehydration, 4) 

microinjection with 4sU after some hours (at least 6) from oviposition, 5) washes with heptane to 

detach from the double-sided tape, thus from the slide, 6) washes with PBS 1X, 7) total RNA 

extraction.  

For this reason, we verified if there was an eventual delay in the male-specific splicing of Cctra in 

pools of XX female only embryos and XX/XY mixed embryos as well as we verified if a known Y-

linked transcribed pseudogene is also expressed in treated embryos. The special XX female only 

unisexual progeny was obtained by crossing XX males (which are fertile in medfly) with XX 

females, taking advantage of the Ceratitis transgenic line provoking masculinization of XX 

individuals by a maternal RNAi against Cctra.  The fertile XX males have been obtained by a 

transgenic line in which maternally driven in vivo RNAi against the Cctra gene leads to depletion of 

maternal Cctra mRNAs in eggs from transgenic mothers and hence Cctra default male-specific 

splicing in XX embryos which develop as fertile males (see introduction).  

The XX female embryos and XX/XY mixed embryos were treated in the following way leading to 

10 different samples (5 for XX and 5 for XX/XY): 

 

1) UE = Untreated Embryos: Pool of 50 embryos harvested after an hour and left in H2O for 5 

hours (H); 

2) EG = Embryos + Glue; Pool of 50 embryos harvested after an hour and left on a slide with 

glue (G), in mineral oil, from which have been then eluted with heptane after 5 hours, and 

washed with PBS 1X (ND); 

3) EGD = Embryos + Glue + dechorionation; Pool of 50 embryos harvested after an hour, 

dechorionated (D), and left on a slide with glue, in mineral oil, eluted from the slide with 

heptane after 5 hours, and washed with PBS 1X (D); 



4) EGDM = Embryos + Glue + dechorionation + microinjection of buffer; Pool of 50 embryos 

harvested after an hour, dechorionated (D), and left on a slide with glue, in mineral oil, 

microinjected (M) with injection buffer, eluted from the slide with heptane after 5 hours, and 

washed with PBS 1X; 

5) EGDM-4sU = Embryos + GLUE + dechorionation + microinjection of 4SU; Pool of 50 

embryos harvested after an hour, dechorionated (D), and left on a slide with glue, in mineral 

oil, microinjected (M) with 4sU, eluted from the slide with heptane after 5 hours, and 

washed with PBS 1X. 

 

Total RNA has been extracted from each of the 10 samples, with Trizol® and an RT-PCR has been 

conducted. I have found that sex-specific splicing pattern of the Cctra gene, was not affected by the 

treatments and male-specific splicing of Cctra as expected, started to appear in XX/XY embryos, 

but not in XX only embryos. 

After carrying out these preliminary tests, I injected a 10 mM 4sU solution in embryos derived from 

the following 2 crosses, to produce respectively XX female only embryos and XX/XY mixed 

embryos. 

 

Cross 1      Cross 2 

♂XX + ♀XX       ♂XY + ♀XX 

 

2,783 XX (future XX females), and 2,617 XX/XY embryos have been injected over the course of 4-

5 days. In total, the embryos were grouped in 9 samples, 5 samples for XX and 4 samples for 

XX/XY (table 2). The embryos were injected one hour after deposition (in a room at 18 °C) and 

have been left to develop for 5 hours, (in total 6 hours from deposition), have been detached from 

the slide and homogenized in Trizol® to conduct the following total RNA extraction. The 9 RNA 

samples (each sample: 70-130 micrograms of total RNA) were analyzed by gel electrophoresis 

(Fig.8) and by measuring quantity with Nanodrop® (table 3). 

The 9 samples have been processed in parallel as following: the RNA has been subjected to thiol-

specific biotinylation, with following purification using streptavidin coated magnetic beads (Cleary 

et al. 2005). Since eukaryotic RNA do not contain thiol groups, only newly synthetized zygotic 

RNA that incorporated 4sU are subject to biotinylation.  

Our main concern was that the various invasive procedures (dechorionation, injections, removal of 

embryos with chemicals) could delay the development of the treated embryos. Male-specific 

splicing of Cctra was detected in all tested XX/XY samples, but absent in XX samples (Fig. 10); 



similarly, I detected transcripts of the Y-linked CcLap pseudogene only in XX/XY but not in XX 

samples (Fig. 11), indicating that Y-linked transcriptional units are active in the treated embryos.   

The 9 total RNA samples were incubated with a thio-reactive biotinylation reagent and streptavidin-

magnetic beads were used to isolate 4sU-labeled RNAs by affinity chromatography. Each RNA 

labelled sample consisted of 0.300-0.200 micrograms extracted from a starting 70-130 micrograms 

total RNA.  

From the eight samples I finally obtained by pooling, 4 samples, named as zygo: XX-only zygo 

embryos samples in 2 replicas (A and B); XY/XX mixed zygo embryos in 2 replicas (C and D). The 

XX sample n. 5 has been used only as a control experiment to evaluate the presence of nuclease 

activity during the procedure (for a schematic representation, see Fig.12). 

The 4 zygo RNA samples has been sequenced using Illumina-HiSeq® technology at the C-CAMP 

institute (in collaboration with Dr. Arun Kumar K. P, head of Laboratory of Molecular Genetics 

Centre for DNA Fingerprinting & Diagnostics, Nampally, Hyderabad, India). 66 million paired-end 

100 nucleotides-long reads of XY/XX sample and 60 million reads of XX-only sample were 

produced. The data obtained from the sequencing have been processed in silico (in collaboration 

with Dr. Marco Salvemini) to produce 3 in silico assembled zygo transcriptomes: XX-only and 

XX/XY corresponding zygo transcriptomes and a third zygo assembly using all reads from XX and 

XX/XY. The assembly of reads for each sample was done, using Trinity® software (Haas et al., 

2013; Petrella et al., 2015), and resulted in 243,943 transcripts and 239,914 transcripts from XY/XX 

and XX-only samples, respectively. The unique zygo transcriptome resulted into 326,178 

transcripts. The large number of transcripts suggested that the purification of only zygotically 

expressed genes was ineffective, as we expected a much lower transcript number and much less 

complexity. Indeed, we expected to assemble few hundreds of genes based on the observation of 

Heyn et al., in zebrafish (2014). However, we asked if an enrichment of zygotically expressed genes 

was present in the zygo samples. A comparative differential expression analysis was performed by 

Salvemini using my zygo samples as well as other mRNAseq unpublished data from XX and 

XX/XY embryos at different time points (4-8 hours; 8-10 hours; 22-24 hours). The 5-6 hours zygo 

samples were clearly enriched for hundreds of transcripts, which are currently under additional bio-

informatic analysis. Within the first 10 most expressed zygo transcripts we have found for example 

the Ceratitis orthologue of the Drosophila zyvgotic gene slam which is expressed in all somatic 

cells of the blastoderm embryo, but is excluded from germline cells (Acharya et al., 2014). 

In Drosophila, slam transcript is first detected at embryonic cycle 13 and remains detectable 

through the slow phase of cellularization and fades away during the fast phase of cellularization. 

 



A new RNA sequencing using Illumina-HiSeq® on unfertilized eggs to conduct an in silico 

subtraction from the zygotic transcriptome is currently also in progress to further enrich the zygo 

samples with transcripts exclusively produced during first hours of Ceratits embryogenesis.  

Furthermore, we expect that the Y-linked M factor transcript should be absent also in the 

unfertilized eggs.  

A differential expression analysis of my zygo samples comparing XY/XX versus XX by was 

performed in collaboration with Mark Robinson (UNIZH) and 200 putative male-specific 

transcripts were identified using EdgeR analysis (Robinson et al., 2010).  

I took advantage of transcriptomics and genomics medfly database containing other published and 

unpublished data which is accessible in our lab (Salvemini, unpub. res) and I performed an 

extensive BLASTn analysis to filter and select the best male-specific candidates from the 200 ones. 

A first idea to filter them, was to select those transcripts present in the “zygo” and other XX/XY 

embryonic transcriptomes but completely absent in XX ones; a second idea was to use novel 

PacBio genome sequencing data on XY individuals, performed in collaboration with Prof. Mark 

Robinson on a special medfly strain, FAM18, which bears a shorter Y chromosome, which is still 

able to determine maleness (Saccone, Robinson, Salvemini, pub. Res). I used the putative male-

specific transcripts by BLASTn to search for the presence of putative Y-linked genes in PacBio 

genomic reads and in a first Canu Assembly (Robinson, M. and Schmeing, S.; unpub. Res.), both 

available in our lab restricted database. I have also searched by FlyBLASTx protein homology in 

Drosophila database. 

However, I performed a “one by one” BLAST analysis of the first 100 transcripts to find those 

present also in other embryonic transcriptomes at later stages of development (8-10 hours; 0-48 

hours) and possibly also in adult flies transcriptomes. I have confirmed by BLAST that only 6 of 

them are exclusively present in XX/XY transcriptomes and hence absent in XX-only 

transcriptomes. In particular, 2 transcripts (CczygoY1 CcYzygo2) showed by BLASTx in Flybase 

some scattered and weak similarity to H2B histone and to zero population growth proteins, 

respectively. Interestingly, these transcripts seem to correspond to truncated Y-linked paralogous 

sequences derived by partial duplication and mobilization from Ceratitis orthologues, localized on 

autosomes. However, it is presently unclear whether they can play any function, and functional 

studies are required and are underway to investigate the problem.  

I have also used CczygoY1 CczygoY2 sequences in BLASTn to search the published medfly genome 

(Baylor college Genome project) and I have found no corresponding scores. This is expected for 

genomic sequences derived from highly repetitive regions such as the Y chromosome, which are 

very difficult to be assembled in silico from short Illumina reads. The novel PacBio DNA 



sequencing technology helps to overcome this problem, because it can lead to long single DNA 

molecules reads up to 20 Kb and then use such long reads for a more accurate assembly especially 

for highly repetitive regions. A special strain of medfly, called Fam18 (bearing a shorter Y 

chromosome), has been used to extract genomic DNA and perform both PacBio (only from males) 

and Illumina sequencing (from males and females) (Mark Robinson, Saccone, G., and Salvemini, 

M., UNIZH, unpub. Data). I prepared genomic DNA from the FAM18 strain (2 samples: from 

males and from females), while I was in the Bopp lab in 2015, and the samples were used for 

Illumina sequencing and PacBio. The PacBio sequencing technology has a limitation of 10-15% 

DNA sequencing error rate; however, the introduced errors are usually insertions or deletions o 

single nucleotides which can be corrected in various ways. Our collaborator Mark Robinson 

(UNIZH) has used Illumina reads from males and from females to perform a correction of the 

PacBio reads. Hence, I have used a local database to search by BLASTn the database including the 

“corrected” PacBio reads, using CczygoY1 and CcYzygo2 sequences and I have found various 

corresponding sequences, confirming their presence in the FAM18 strain. Hence the 2 genes are 

present on the deleted Y chromosome, which contains also a functional M factor.  

I am presently developing a Cas9 and an embryonic RNAi approaches to target the 2 Y-linked 

genes and evaluate by RT-PCR on injected XX/XY embryos a change in the Cctra sex-specific 

splicing pattern. We expect to observed in case of a reduction of the male determining M activity 

caused by RNAi in XY, a concomitant reduction of the male-specific spliced products in favour to 

the female-specific ones. 

  



4sU 

10 mM 

Buffer Embryos Larvae/embryos Pupae/larvae Adults/pupae Adults/embryos 

0 + 150 51% 

(76/150) 

59% 

(45/76) 

95% 

43/46 

28% 

(43/150) 

+ 0 150 48% 

(72/150) 

50% 

(36/72) 

97% 

(35/36) 

23% 

(35/150) 

 

Table 1: Survival rates of the embryos injected with 4sU 10 mM and embryos injected with buffer 

only. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Embryos injected with 4sU. 

 

 

 

 

 

 

 

 

 

Fig. 9 total RNA extraction from the 9 samples. Samples 1-5 are XX only embryos; samples 6-9 are 

XY/XX embryos; M is the Lambda DNA/EcoRI plus HindIII Marker (Thermo Fisher Scientific®). 

  

Samples 
Microinjected 

embryos XX/XY 

6 602 

7 712 

8 624 

9 679 

Total 2,617 

Samples 
Microinjected 

embryos XX 

1 487 

2 442 

3 574 

4 565 

5 715 

Total 2,783 



Samples ng/μL 260/280 260/230 Total RNA in VF 

1 3863 2.26 1.70 96 μg in 25 μL 

2 4729.7 2.23 1.90 118 μg in 25 μL 

3 6323.1 2.24 1.90 128 μg in 25 μL 

4 3557.2 2.22 1.62 89 μg in 25 μL 

5 3523.8 2.29 1.90 88 μg in 25 μL 

6 2281.6 2.20 1.76 57 μg in 25 μL 

7 4385.8 1.90 1.19 109 μg in 25 μL 

8 3457.7 2.25 2.18 86 μg in 25 μL 

9 4261.9 2.21 2.02 106 μg in 25 μL 

 

Table 3: Spectrophotometrical analysis of the 9 RNA samples conducted with Nanodrop® 2000 

(Thermo Scientific). 

 

 

Fig. 10: Gel electrophoresis analysis of the RT-PCR of the Transformer gene. A: adult flies; B: XX 

only embryos; C: XY/XX embryos. 
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Fig. 11: RT-PCR of CcLap Y-linked pseudogene. 
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Fig. 12: Schematic of the treatments carried out on the 9 embryos samples. XX only samples 1-2 

and 3-4 were grouped into the biological replicates A and B, respectively. XY/XX samples 6-7 and 

8-9 were grouped into the biological replicates C and D, respectively. Sample 5 was used as control. 
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2.3  Method 

Rearing of the C. capitata strain 

The C. capitata Benakeion strain are reared in standard laboratory conditions at 25°C and 12:12 h 

light-dark regimen. Adult flies are fed yeast/sucrose powder (1:2). Eggs are collected in water 

dishes and transferred to larval food (30 g soft tissue paper, 30 g sugar, 30 g yeast extract, 10 ml 

cholesterol stock, 2 ml HCl stock, 8.5 ml benzoic stock, water 400 ml). Pupae are collected and 

stored in Petri dishes until eclosion. 

 

Microinjection of 4sU into Ceratitis capitata embryos 

Embryos were collected 1 hour after egg laying (AEL), hand dechorionated and injected with 10 

mM TriLink® 4-Thio-UTP. In parallel, I also injected a pool of embryos with injection buffer 1X 

(5 mM KCl, 0,1 mM PO4) as control. The microinjected embryos were left to develop at room 

temperature for 5 hours before being detached from the slide with 750 µL Heptane PESTANAL® 

(Fluka). After the detachment, the embryos were washed five times with PBS 1X before being 

homogenized in Trizol® (Invitrogen).  

 

RNA and genomic DNA extraction 

Total RNA from embryos and single adult of the C. capitata was extracted using Trizol reagent 

(Invitrogen) following the modified protocol described by Chomczynski and Mackey (1995). 

Genomic DNA extraction from adult of C. capitata (male and female) was performed with 

“Holmes-Bonner” buffer according to Maniatis et al. (1982). 

 

Reverse Transcription PCR 

RT-PCR was performed using the EuroScript M-MLV Reverse Transcriptase (Euroclone, Pero, IT). 

Starting from a maximum concentration of 4 ug of RNA from each sample, add 1 μl of oligo (dT), 

incubate the sample at 65°C for 5 min. then the sample is mixed with 5X Reaction Buffer, dNTP 

mix, RNase inhibitor, MMLV reverse transcriptase in the total volume of 20 μl. The mixture was 

incubated in a thermal cycle at 42 °C for 1h and 70 °C for 10 min.  

A PCR was conducted the primers Sod+/Sod- as positive control. The following PCR cycles were 

performed: 5 min at 94 °C, 35 cycles with 30 secs at 94 °C, 30 secs at 60 °C, 45 secs at 72 °C, 10 

min at 72°C. RT-PCR products were analysed by 1% agarose gel electrophoresis. CcSOD-

TGCTCCGAGAACGTTCACG; CcSOD- TCATCGGTCAATTCGTGCAC. 

The RT-PCR expression analysis on Cclap-ps transcripts was performed with the Y2 primer pairs 

(Y2+: 5'-AAGGACTTGTGATTGGATTG-3'; Y2-: 5'-ATGCCGTCGTCCAACATC-3'). The RT-



PCR analysis of the Cctra clone was performed with the following primers: Cctra 180+ (located in 

Cctra exon 1), 5’- ATAGAGCGCAGTGTCAATCC- and 3’; Cctra 920-  (located in Cctra exon 2) 

5’ -TCCTGTTCTTCCGATCTGTG- 3’. 

 

Biotinylation and purification of 4sU-labeled RNA 

I adapted the biotinylation and purification of 4sU-labeled RNA techniques from Dölken et al., 

2008.  For the biotinylation of 4sU-labeled RNA EZ-Link Biotin-HPDP (Pierce®) was dissolved in 

dimethylformamide (DMF) at a concentration of 1 mg/mL and stored at 4°C. Biotinylation was 

carried out in 10 mM Tris (pH 7.4), 1 mM EDTA, and 0.2 mg/mL Biotin-HPDP at a final RNA 

concentration of 100 ng/µL for 1.5 h at room temperature. A quantity of total RNA ranging from 70 

µg to 130 µg was used for the biotinylation reaction. Unbound Biotin-HPDP was removed by 

chloroform/isoamylalcohol (24:1) extraction using Phase-lock-gel (Heavy®) tubes (Eppendorf®). 

A 1/10 volume of 5 M NaCl and an equal volume of isopropanol were added and RNA was 

precipitated at 20,000 g for 20 min. The pellet was washed with an equal volume of 75% ethanol 

and precipitated again at 20,000 g for 10 min. The pellet was resuspended in 20 µL RNase-free 

water. After denaturation of RNA samples at 65° C for 10 min followed by rapid cooling on ice for 

5 min, biotinylated RNA was captured using µMACS streptavidin beads and columns (Miltenyi®). 

Up to 20 µg of biotinylated RNA were incubated with 20 µL of µMACS streptavidin beads with 

rotation for 15 min at room temperature. The beads were transferred and magnetically fixed to the 

columns. Columns were washed three times with 1 mL 65° C washing buffer (100 mM Tris-HCl, 

pH 7.4, 10 mM EDTA, 1 M NaCl, 0.1% Tween20) followed by five washes with room temperature 

washing buffer. Labelled RNA was eluted by the addition of 100 µL of freshly prepared 100 mM 

dithiothreitol (DTT) followed by a second elution round 5 min later. RNA was recovered from the 

washing fractions and eluates using the RNeasy MinElute Spin columns (Qiagen®) following its 

protocol.  
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ABSTRACT  34 

 35 

The Mediterranean fruitfly Ceratitis capitata (medfly) is an invasive agricultural pest of 36 

high economical impact and has become an emerging model for developing new genetic 37 

control strategies as alternative to insecticides. Here, we report the successful adaptation of 38 

CRISPR-Cas9-based gene disruption in the medfly by injecting in vitro pre-assembled Cas9 39 

ribonucleoparticles (RNP) loaded with gene-specific sgRNAs into early embryos. When 40 

targeting the eye pigmentation white eye (we), a high rate of somatic mosaicismwas 41 

observed in surviving G0 adults. Germline transmission of mutated we alleles was found 42 

in the progeny of more than 70% of G0 flies. Large deletions were recovered in the we 43 

gene when two sites were simultaneously targeted by duplex sgRNAs. CRISPR-Cas9 44 

targeting of the Ceratitis ortholog of the Drosophila segmentation paired gene (Ccprd) gene 45 

caused segmental malformations in late embryos and irregular movements in first instar 46 

larvae. The observed mutant phenotypes are consistent with presence of non-homologous 47 

end joining (NHEJ) lesions in the targeted genes. This simple, fast and highly effective 48 

method for gene-specific mutagenesis together with the availability of genome sequences 49 

and transcriptomes, will significantly facilitate future studies of gene functions and gene 50 

regulation in Ceratitis as well as advance the design and development of new effective 51 

strategies for pest control management.   52 

 53 

 54 

 55 

 56 

 57 

58 



Introduction 59 

 60 

 The Mediterranean fruitfly Ceratitis capitata (medfly) is an economically relevant 61 

agricultural pest infesting more than 260 crop species, including fruits, vegetables, and 62 

nuts1, Wild populations can be contained by the Sterile Insect Technique (SIT), an 63 

eradication strategy based on the repeated release of large numbers of laboratory-grown 64 

sterile males into infested areas2,3. Ceratitis capitata was the first non-Drosophilidae insect 65 

species in which transposon-mediated germline transformation was established4,5. Also 66 

embryonic RNA interference was successfully applied to study in vivo functions of 67 

Ceratitis genes controlling female sex determination during6,7. Various Ceratitis transgenic 68 

strains have been developed, aiming to improve SIT and other pest control strategies8-16. 69 

Nonetheless, a more comprehensive study of gene functions in Ceratitis will be needed to 70 

further improve existing control strategies. To generate long-lasting and hereditable 71 

changes in gene function, the CRISPR-Cas9 system with its modular and simple 72 

components provides a promising tool for insects17,18.  Furthermore, transgene-based 73 

CRISPR-Cas9 can be used to produce homozygous loss-of-function mutations as well as a 74 

novel gene drive system for insect population control19,20.  75 

 Various teams reported the successful use of the Cas9 system to mediate genome 76 

modifications in Drosophila melanogaster based on injecting different combinations of its 77 

components into embryos such as DNA plasmids expressing Cas9 protein plus single-guide 78 

RNA (sgRNA)19, in vitro-transcribed Cas9 mRNA plus sgRNA21,22, and sgRNA into 79 

transgenic flies which express Cas9 in the germ line23,24. Lee et al., 201425 injected purified 80 

Cas9 protein preloaded with 2 RNAs, trRNA (transactivating RNA) and gene-specific 81 

crRNA (CRISPR RNA), into Drosophila embryos and observed a high rate of Cas9-82 

induced genetic lesions. As Basu et al., 201526 reported that the use of a single sgRNA 83 

molecule, including both trRNA and crRNA, is more effective than the trRNA/ crRNA 84 

dual system, we opted for this technical improvement27. 85 



 Altogether, we decided on the strategy of injecting Cas9 ribonucleoprotein (RNP) 86 

complexes into insect embryos for the following reasons: 1) preloaded Cas9 complexes 87 

should act immediately without delay following injection; 2) it has higher efficiencies 88 

compared to other approaches; 3) potentially less off-target events28,29; and, 4) Cas9 protein 89 

is more stable than Cas9 mRNA.  90 

 Here, we show that injecting in vitro generated Cas9-sgRNA RNPs into Ceratitis 91 

capitata embryos is very effective at inducing mono- and bi-allelic lesions of the targeted 92 

genes in both somatic and germline cells.  93 

 94 

RESULTS 95 

 96 

Cas9-induced somatic disruption of the we gene  97 

To test the feasibility of Cas9-mediated gene disruption in Ceratitis, we targeted the white 98 

eye (we) gene, a locus required for eye pigmentation4,5,30 .  The Ceratitis we gene is the 99 

ortholog of the X-linked white (w) gene in Drosophila5 and is located on the Ceratitis fifth 100 

chromosome31,32. The we gene is an ideal target to test Cas9-mediated disruption for the 101 

following reasons: 1) lack of eye pigmentation is an easily scored phenotype; 2) a we-102 

mutant Ceratitis strain is available to test new loss-of-function alleles for complementation, 103 

and 3) we function is cell-autonomous and hence somatic mutant cells can be readily 104 

detected in the adult eye.  105 

CHOPCHOP was used to identify potential Cas9 target sequences in we33 and to design 106 

three sgRNAs, we-g1, we-g2, and we-g3 (Fig. 1A). Injections with unloaded recombinant 107 

Cas9 protein caused an almost twofold lower survival rate (15-19%) compared to buffer 108 

alone injections (30%), suggesting a measurable level of toxicity of Cas9 protein in 109 

Ceratitis embryos (Tab. 1).  110 

We next loaded recombinant Cas9 protein with individual sgRNAs in vitro and injected the 111 

RNP complexes into early syncytial embryos of the wildtype Benakeion strain. We aimed 112 

at targeting syncytial nuclei to maximize the efficiency of inducing NHEJ lesions. A 113 



biallelic hit at this early stage is expected to produce large clones of mutant tissue in 114 

injected individuals19,28. In this first round we injected the Cas9/we-g1 in a buffer 115 

containing 300 KCl mM to improve solubilization of Cas928,34 . Of 240 injected embryos, 116 

64 larvae hatched and 6 survived to adulthood (Tab. 2). Three displayed a mosaic pattern 117 

of white unpigmented ommatidia surrounded by wild-type pigmented ommatidia (Fig. 1B, 118 

C and D). One of the two eyes of one individual was completely white, suggesting that a 119 

biallelic gene disruption event occurred at a very early stage in the primordial lineage (Fig. 120 

1C). Two additional rounds of embryos injections were performed with we-g2 and we-121 

g2/we-g3 RNPs, respectively (Tab. 2). In these experiments the KCl concentration in the 122 

buffer was reduced to 150 mM25 and a lower percentage of adults displayed eye 123 

pigmentation mosaicism (4% for we-g2 and 23% for we-g1/we-g2; Table 2). 124 

The presence of mutations was confirmed by sequencing of PCR products spanning the 125 

cleavage sites. Genomic we PCR products were obtained from pools of injected larvae or 126 

single adult flies (see Supp data). Indels - mostly deletions- of variable length, were 127 

detected, consistent with previous studies18.  128 

Sequencing of amplified genomic DNA showed heterogeneity in nucleotide calls around 129 

the cleavage site close to the protospacer-adjacent motif (PAM) site, consistent with a range 130 

of different NJEH-induced alterations. Sequencing of cloned PCR products showed NHEJ 131 

deletions, ranging from 2-21 bp, relative to the PAM site of we-g1 and we-g2. However, 132 

duplex Cas9 targeting did not produce any deletions between the two targeted sites (Fig. 133 

1E, we-g2: 4-6). On the other hand, when injecting we-g2 and we-g3 RNPs in early 134 

embryos, we were able to recover deletions spanning the 2 targeted sites ranging from 355 135 

bp to 673 bp (Fig. 1F).  136 

 137 

 138 

 139 

 140 

 141 



Cas9-induced germ line disruption of the we gene  142 

 143 

To test for germline transmission of Cas9-induced we alleles, 9 injected G0 red eyed flies 144 

(3 we-g1/RNP flies and 6 we-g2 RNP flies; Tab. 3) were individually crossed with we 145 

mutant partners (carrying a frameshift mutation in the 6th exon30). Seven injected flies sired 146 

G1 progeny, six of which gave rise to mutant white eye flies (Fig. 2A), with a highly 147 

variable transmission rate (1.5% - 100% (Tab. 3). Non-complementation of the CRISPR-148 

Cas9-induced mutations confirms that they are allelic to the original we mutation (Fig. 2A). 149 

Of the three we-g1 injected individuals, two males sired small batches of progeny in which 150 

100% (we-g1#2; 6 flies) and 45% (we-g1#3; 10 out of 22), respectively, displayed the 151 

mutant phenotype (Tab. 3). Of the six we-g2 injected individuals, 4 males produced various 152 

proportions of G1 white-eyed mutant progeny. Remarkably, the we-g1#2 and we-g2#4 lines 153 

gave rise to 100% and 99% G1 white-eyed offspring, respectively (Tab. 3). Thus, our 154 

results demonstrate that Cas9 activity is highly effective in the germ line, producing mostly 155 

mutant primordial germ cells. 156 

We have randomly chose 4 mutant we-g1 targeted (two from we-g1#2 cross and two from 157 

we-g1#3 cross) and 2 mutant we-g2  targeted G1 flies (one from we-g2#3 line and one from 158 

we-g2#4 line)(Tab. 3). The 4 mutant G1 flies bore both one common allele from the we 159 

strain and 3 novel Cas9-induced we alleles inherited from the injected fathers.  An identical 160 

we deletion of 14 bp (we-g1/1 allele) was found in 2 white eye flies from the line we-g1#2, 161 

suggesting that both flies inherited the same mutation from their common male founder 162 

(Fig. 2B). Mutant G1 flies of the we-g1#3 line bore two different alleles (4 bp and 10 bp 163 

deletions; we-g1/2 and we-g1/3, respectively). All three CRISPR-induced alleles are small 164 

deletions, causing frame-shifts in the exon 2 we coding region, and did not complement the 165 

original we mutation.  166 

Two we-g2 targeted G1 mutant flies bore two novel alleles, one with a 4 bp deletion and 167 

one with an unusually long 84 bp deletion (Fig. 2B).  168 



To study genes for which no mutant alleles are available, it would be useful to screen for 169 

mutant phenotypes by inter se crossings of G0 individuals in which the germ line has been 170 

targeted by CRISPR-Cas9.  To test this possibility, we injected we-g3 or we-g2+g3 RNPs 171 

All of the surviving G0 flies, 20 and 38 respectively, did not show somatic mosaicism in 172 

the eyes (Tab. 4). When crossed inter se (Tab. 5), we recovered two mutant individuals 173 

out of 26 G1 flies (8%) from the we-g3 cross and three out of 184 flies (2%) from the we-174 

g2+g3 cross, demonstrating the feasibility of the crossing strategy.  175 

Sequencing of the targeted regions in 2 flies of the we-g3 cross identified, as expected, 4 176 

novel we alleles. 2 out ot 3 tested flies of the we-g2+we-g3 cross bore all an identical 9 177 

deletion we allele at we-g3, most likely derived from the same G0 injected parent (Fig. 2C). 178 

One of these 3 flies carried a large deletion of 650 bp provoked by duplex targeting with 179 

we-g2+we-g3.   180 

This experiment showed that a cross of 20 and 38 adult G0 flies from injected 181 

CRISPR/Cas9 embryos can lead to 2-8% of mutant G1 flies bearing heteroallelic loss of 182 

function combinations within two medfly generations (less than 2 months). 183 

 184 

Cas9-induced somatic disruption of the Ceratitis paired gene  185 

 186 

The Drosophila paired gene (prd) is zygotically expressed and required for proper 187 

segmentation of the developing embryo35. Drosophila embryos homozygous for loss-of-188 

function alleles lack every other segment and die before hatching (pair-rule phenotype). As 189 

early segmentation events are well conserved amongst higher dipterans36, it can be assumed 190 

that an ortholog of prd is also present in Ceratitis. If we can induce mutant somatic clones 191 

of this ortholog by Cas9-sgRNA injections, we should observe segmental defects in 192 

Ceratitis embryos. BLAST searches identified a candidate prd gene in Ceratitis with 66% 193 

amino acid identity over the N-terminal half of the protein containing the PRD domain and 194 

the PRD homeobox and 37% identity over the C-terminal half (Ccprd XP_004524654.1; 195 

Bopp et al., 1986). CHOPCHOP was used to select two target sequences in this candidate 196 



prd gene, Ccprd (Ccprd-g1 and Ccprd-g2), in a region encoding the conserved PRD 197 

domain (green box; Fig. 3A). Two injections series with sgRNA-Ccprd1 and one with 198 

sgRNA-Ccprd2 resulted in a survival rates of hatching embryos of 35%, 24%, and 26%, 199 

respectively (Tab. 1 and 6).  Approximately 1-5% of the injected embryos showed either 200 

delayed development (late hatching rate) or arrested at late stages of embryogenesis. This 201 

was not observed when injecting Cas9 alone. Some lethality was observed at larval stages, 202 

with few individuals showing impaired locomotor activity and abnormal cuticular 203 

morphology. 5 to 11% of injected individuals developed to adulthood (Tab. 6) with a delay 204 

of 1-2 days compared to flies injected with buffer alone or with white targeting RNPs.  205 

 Almost all of the embryos that failed to hatch appeared to have disorganized cuticular 206 

structures. Some were up to 50% shorter in size compared to control embryos and displayed 207 

a reduced number of segments (Fig. 3 B). This phenotype is reminiscent of the pair rule 208 

phenotype described for Drosophila35,37. Interestingly, we observed a late phenotype in 209 

larvae that were able to hatch. They showed irregular movements in different segmental 210 

compartiments suggesting aberrations affecting muscular contractions (Supp. data 211 

videos). Similar lethality and abnormalities were observed in embryos and larvae following 212 

Ccprd-2 sgRNA RNP injections. These embryos are most likely mosaics with variable 213 

proportion of normal cells (Ccprd+/Ccprd+ or Ccprd+/Ccprd-) and mutant cells (Ccprd-214 

/Ccprd-) Because of the mosaic nature of Cas9-induced mutagenesis events in a single 215 

individual and that Ccprd acts cell-autonomously, we did not expect a complete pair rule 216 

phenotype. The morphological and structural deviations in those regions are consistent with 217 

the occurrence of large mutant clones caused by biallelic somatic clones arising from gene 218 

targeting. Sequencing of the targeted regions from surviving larvae injected with Ccprd1 219 

led to the identification of lesions in the locus (Fig. 3D). Surprisingly, efforts to identify 220 

gene targeting events caused by Ccprd-g2 failed. All 60 different plasmid clones from the 221 

corresponding region showed only wild type sequence. We conclude that Ccprd1 targeting 222 

was effective in inducing indels which correlate with embryos/larval malformations most 223 

likely due to impaired segmentation. 224 



DISCUSSION 225 

Over the last two decades novel genetic strategies in pest insect management have been 226 

developed to improve their effectiveness in the field. Genetic technologies used thus far in 227 

the medfly have been based on the random integration of transposable elements into the 228 

genome4, site-specific modification of the randomly integrated transgene12 and embryonic 229 

or transgene-mediated RNA interference (RNAi)6,15. The disadvantage is that such 230 

genetically modified medfly must be continuously tested with respect to fitness and 231 

competitiveness as well as to stability and expression of the transgene38. The CRISPR-Cas9 232 

technology offers the possibility to avoid random integration of exogenous DNA but 233 

instead provides a more robust and controlled approach to introduce new genetic features, 234 

which can be either addition of exogenous DNA or nucleotides changes in specific genes. 235 

Here we explored the use of Cas9-sgRNA RNP complexes, avoiding plasmid-based or 236 

DNA-mediated delivery of Cas9.  This DNA-free (plasmid or integrated transgene) method 237 

may allow to circumvent existing regulatory restrictions which are in effect in most nations 238 

concerning the use of GM organisms in the field. This “green” editing technology may 239 

facilitate global acceptance not only for plants or fungi, but also for insect pest control39. 240 

The use of preloaded Cas9-sgRNA complexes is becoming a successful approach for 241 

targeted disruption of genes in a growing number of species, including Drosophila 242 

melanogaster25, Aedes aegypti27 and, recently the zebrafish Danio rerio28,40.  To our 243 

knowledge, this is the first report showing that the same approach can be used to effectively 244 

mutate genes in a major agricultural pest insect such as Ceratitis capitata, with up to 100% 245 

mutagenesis rate in the germ line. As observed by Lee et al. (2014)25, Cas9-sgRNA 246 

complexes act immediately but are rapidly degraded, often within few hours after 247 

administration; similarly Kim et al. (2014)17 reported that Cas9 protein is degraded within 248 

24 h after being applied to cultured human cell lines. As the short-lived activity of Cas9 249 

prevents the induction of late mutational events, this may help to reduce off-target effects 250 

and mosaicism of mutant and wild type tissues in the injected individuals.  251 

We report here that Cas9-mediated NJEH events generates lesions in the Ceratitis we and 252 



Ccprd genes. Targeting the we gene caused red-white eye mosaicism in up to 50% of 253 

injected invididuals, indicating a very high rate of somatic bi-allelic hits. Transmission of 254 

we mutated alleles to G1 progeny was found to be highly effective being close to 100%. 255 

Lee et al., (2014)25 observed a 5-time lower germline transmission rate (20%) when 256 

targeting Drosophila genes using RNPs. One possible explanation is that the higher 257 

concentration of KCl (300 mM) used in our study increases Cas9 stability or solubility28. 258 

Injecting RNP complexes in Aedes aegypti, Basu et al., (2015)26 found a germline 259 

transmission rate of induced mutations up to 90%. Yet this rate was determined with high-260 

resolution melt analysis (HRMA) rather than phenotypic analysis of G1 adults, as we used 261 

in our study. Gilles et al., (2015)41 observed up to 100% of mutant progeny, by co-injecting 262 

Cas9 mRNA and sgRNA-producing DNA plasmid into the coleopteran Tribolium embryos. 263 

However, the author targeted a single copy dominant marker transgene, rather than 2 alleles 264 

of an endogenous gene.  265 

Several studies have reported that the simultaneous use of 2 Cas9-sgRNAs is an effective 266 

means to generate deletions of sequences between two targeted sites27,42. While we-g1 and 267 

we-g2 RNPs were individually effective in gene editing, the absence of a 96bp long deletion 268 

spanning the two targeted sites suggests that steric hindrance between two adjacent Cas9-269 

sgRNA complexes could have caused the cut of only one of the two. In contrast, the use of 270 

we-g2 and we-g3 RNPs, simultaneously targeting two sites more distant of each other 271 

(489bp) was effective in both somatic (G0) and germ-line cells (G1). On the other side, the 272 

use of the single we-g2 RNP provoked a 84bp long deletion in germ line cells (Fig. 2). 273 

Hence it is feasible that a multiplex CRISPR-Cas9 system can be adapted to specifically 274 

remove exons also in the medfly. This feature could be used to test the function of protein 275 

domains encoded by single exons. We can envision many more uses for generating precise 276 

deletions such as the analysis of in vivo putative gene cis-regulatory elements, or to 277 

investigate potentially redundant functions of duplicated genes, or to remove long non-278 

coding RNAs or miRNAs.   279 



With 2 sgRNA/RNPs, we targeted the Ceratitis zygotic gene Ccprd potentially involved in 280 

embryos segmentation. We observed mutant phenotypic effects (embryos and larval 281 

malformations, impaired larval motility, delayed development) and mutated sequences at 282 

one of the 2 targeted sites. The lack of DNA sequence changes for the Cc-prd-g2 and the 283 

observed phenotypic effects seems to be inconsistent, but this could be due to different 284 

reasons: 1) the lower efficiency of this second sgRNA and the lower representation in the 285 

somatic larval clones of the mutated sequence with the respect of the wild type one;  2) Cc-286 

prd RNPs could interfere also with early prd transcription delaying and/or lowering its 287 

zygotic gene expression; and, 3) off target effects impairing related gene(s) encoding PRD 288 

box domain. Additional investigations will be required to understand these potential 289 

problems. 290 

 CRISPR-Cas9 will be helpful in investigating natural traits of this major agricultural pest, 291 

for example invasiveness and host adaptation, reproduction, olfaction (fruit seeking 292 

behavior), chemoreception, toxin and insecticide metabolism43. The recent availability of a 293 

medfly genome draft combined with the successful implementation of CRISPR genome 294 

editing technology, as reported here, opens the road to transfer basic knowledge to applied 295 

research. Next challenges for the CRISPR-Cas9 technology in Ceratitis will be to exploit 296 

homology-directed recombination for genome editing, either to insert transgenes in specific 297 

regions or to replace DNA sequences with slightly mutated ones. 298 

 299 

Methods 300 

 301 

Rearing of Ceratitis capitata. The C. capitata wildtype strain were reared in standard 302 

laboratory conditions at 25 °C, 70% relative humidity and 12 : 12 h light–dark regimen. 303 

Adult flies were fed with yeast/sucrose powder (1 : 2). Eggs were collected in water dishes, 304 

and transferred to larval food (soft tissue paper 30 g, sugar 30 g, yeast extract 30 g, 305 

cholesterol stock 10 ml, HCl stock 2 ml, Benzoic stock 8,5 ml, water 400 ml). Pupae were 306 

collected and stored in Petri dishes until eclosion.  307 



 308 

Strain of Ceratitis capitata 309 

1. The wild-type eye color strain Benakeion was originally established in the 310 

laboratory by P. A. Mourikis (Benakeion Instirescue of Phytopathology, Athens, 311 

Greece). 312 

2. The strain we/we  Benakeion30 was kindly provided by Prof. Kostas Bourtzis (Pest 313 

Control of FAO/IAEA,Seiberdorf, Austria) 314 

 315 

Cas9 purification. We produced our own supply of Cas9 endonuclease by expressing HIS 316 

tagged protein in bacteria25 and following the purification protocol described in Monti et 317 

al.44 and Dathan et al.45.The pET plasmid that encodes His-tagged Cas9 was transformed 318 

into BL21(DE3). The recombinant protein expression was induced in the presence of 0.5 319 

mM isopropyl-β-D-thiogalactopyranoside (IPTG) for 16 h at 22 °C. A 100 mL pellet was 320 

re-suspended in 10 mL of cold lysis buffer (50 mM Phosfate, 500 mM NaCl, 10 mM 321 

Imidazole, 1 mM DTT, pH 8) supplemented with protease inhibitor mixture (1 mM PMSF 322 

and 1.0 mg/mL of lysozyme) and incubated at room temperature for 30 min. Cells were 323 

disrupted by sonication on ice with 10 s on/10 s off cycles for a total of 10 min on. After 324 

centrifugation at 14,000 rpm for 30 min at 4 °C, the supernatant was purified on an ÅKTA 325 

FPLC chromatography system using a 1 mL HisTrap HP. The column was washed with 326 

lysis buffer and bound protein was eluted using a gradient of 10 mM–500 mM imidazole. 327 

Protein elution was monitored by measuring absorbance at 280 nm and the resulting 328 

fractions were analyzed by SDS-15% PAGE. The eluted fractions were dialyzed against 329 

buffer (20 mM HEPES, 150 mM KCl, 1 mM DTT, 10% glycerol, pH 7.5). Analysis of the 330 

protein by gel-filtration was compared with a calibration obtained with marker proteins run 331 

on the column under the same conditions. Gel-filtration analyses were carried out on a 332 

Superdex 200 GL column. 333 

 334 



sgRNA Design and Synthesis. sgRNA were designed using CHOPCHOP 335 

https://chopchop.rc.fas.harvard.edu/33. CHOPCHOP lists the Target Sequence (including 336 

the PAM), the genomic location of the target, the strand (- or +), the GC content of the 337 

guide and the Off-targets. Following templates for sgRNA production were performed, 338 

with minor modifications, as described by Bassett et al (2013). We selected the target of 339 

interest, for white eye we used three target site sgRNAs_ 340 

g1: 5’ GAGTAAGTGAGATTATCCG 3’;  341 

g2: 5’ GCTGGTGAATCGTGTGAAGG 3’ ;  342 

g3: 5’ CGGGTGAAGGGTTTATCGGG 3’   343 

with respectively, protospacer-adjacent motif (PAM): CGG; GGG; TGG. For paired we 344 

had two target site sgRNA_Prd1: 5’ GGTCGCGTCAATCAATTAGG 3’ with PAM, TGG 345 

and sgRNA_Prd2: 5’ AGAATCCCAGCATATTTTCG 3’ with PAM , TGG. We added to 346 

the tagert sequence to the CRISPR_F sequence as shown below:5'-347 

GAAATTAATACGACTCACTATAGG[20nt of CRISPR target same strand as PAM 348 

sequence]GTTTTAGAGCTAGAAATAGC-3'. We used seme sgReverse 349 

(PAGEpurified):5’AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATGGACT350 

AGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC AAC. The PCR was 351 

performed using Q5® High-Fidelity DNA Polymerase (NEB). The DNA template was 352 

extract over 400 μL phenol:chloroform (1:1), followed by extraction over 400 μL 353 

chloroform. To the final upper layer (~ 200μL), add 20 μL 3M NaOAc (pH 5.2) and 400 354 

μL 100% EtOH and precipitate at -20°C for at least 1 h. Pellet the DNA at 14,000 rpm 15 355 

min 4°C; Wash the pellet in 70% EtOH (3x), allowing for each washing step to spend at 356 

least one hours at -20°C. Air dry and resuspend the pellet in ~40μL ddH2O. In vitro  357 

transcription of sgRNAs we followed the instructions of Megatranscript T7 kit (Ambion) 358 

using 400 ng of target template with reaction run at 37°C over night. After this step at 359 

reaction was added 2 uL of Turbo DNase and incubate for an additional 15 min at 37°C to 360 

remove the DNA template.  361 

 362 

https://chopchop.rc.fas.harvard.edu/


The assembly of complex RNP and the injection mix, The reaction of binding was 363 

prepared with 1.8 µg of Cas9 protein , 1 µg of sgRNA and was added KCl according to the 364 

protocol proposed by Burger et al.28, and incubation for 10 min at 37°C. Embryos were 365 

collected 1 hour AEL (after egg laying), hand-dechorionated and microinjected. 366 

 367 

Genomic DNA extraction and molecular analysis. DNA extraction was performed, with 368 

minor modifications, according to the protocol proposed by Holmes and Bonner [1973]46. 369 

Each larvae and adult were placed in a 1.5 ml Eppendorf tube was crushed by a pestle in 370 

200 μl Holmes Bonner buffer (urea 7 M, Tris-HCl 100 mM pH 8.0, EDTA 10 mM pH 8.0, 371 

NaCl 350 mM, SDS 2%). Subsequently, the DNA was purified with one phenolchloroform 372 

extraction, followed by one chloroform extractions and then an ethanol precipitation. The 373 

precipitated pellet was resuspended in 30 μl or 100 µl water containing RNaseA. Genomic 374 

DNA (from single adult fly or larae or poll of larvaes or G1 mutants) was used as the 375 

template for to amplify the sgRNA target sites. We used as follow for gene white (F, 376 

forward primer; R, reverse primer):  377 

F_g1_g2_g3- 5’GCCCTACGAGCAATCCTCT 3’ ; 378 

 R_g1_g2- 5’TCTGCAATGAGCGTCATATAC 3’; 379 

 R_g2_g3- 5’TTCTGCGATAGCTTTTTCAACA 3’.  380 

For gene Paried we used  381 

F_Prd_1_2- 5’CTTCGACACACAACCGTGTG 3’ and  382 

R_Prd_1_2- 5’AGAATGCTTGTGGGAATGTTCT 3’.  383 

We followed these PCR using DreamTaq (Life Technologies) according to the 384 

manufacturer’s instructions. The PCR products were purified with StraPrep PCR 385 

Purificaton Kit (Agilent Techologies) and and sub-cloned using with StrataClone PCR 386 

cloning Kit ( Agilent Techologies) and the positive clones were sequenced using the 387 

plasmid primers T7 and T3 and analyzed on an ABI 310 Automated Sequencer (Applied 388 

Biosystems). 389 

  390 
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Figure 1 CRISPR-Cas9 targeting of we gene: (A) A scheme of the we gene and the 3 436 

sgRNAs targeting conserved Drosophila WHITE regions in Ceratitis. (B) wild type and 437 

mutant strain with white eye flies. (C) and (D) examples of G0 somatic mosaics. € 438 

Sequences of white eye gene edited alleles in G0 somatic mutant individuals. (F) Sequences 439 

of white eye alleles in G0 somatic mutant individuals, targeted with 2 RNPs. 440 

 441 

Figure 2 we mutants from G1 progeny were analyzed by DNA sequencing. Absence of 442 

complementation of CRISPR-Cas9 mutated we alleles in G1 mutant flies in heterozygotes, 443 

carrying one original allele from the we medfly strain (3 wg-1 and 2 wg-2 induced alleles 444 

in 5 flies; vertical blu bar). Heteroallelic combinations of novel Cas9-mutated we alleles in 445 



5 G1 individuals (11 alleles; vertical green bar). In G1 alleles, the g2 in parenthesis indicate 446 

that a second RNP was coinjected but no corresponding mutations were found in each 447 

individual. In the fifth mutant fly, 3 different mutated alleles (we-g3(g2)/3a, b and c) were 448 

surprisingly found. This could be due to 2 sperm fertilization, following the first division 449 

of the haploid egg. 450 

 451 

Figure 3 CRISP-Cas9 targeting of Ccprd. (A)  A scheme of the Ccprd gene and 2 452 

sgRNAs targeting conserved Drosophila PRD in Ceratitis. (B) Comparison of wt and 453 

injected embryos, showing shorted lenght and a reduction in the segment number. (C) 2 454 

injected larvae: larvae 1 shows incomplete/malforrmed development with the respect of 455 

larvae appeaaring wild type. (D) Sequences of gene edited Ccprd alleles from G0 larvae 456 

injected with RNP containing Cc-prd1 sgRNA. 457 
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Fig. 1: CRISPR/Cas9 targeting of we gene: A) A scheme of the we gene and the

3 sgRNAs targeting conserved Drosophila WHITE regions in Ceratitis. B) wild

type and mutant strain with white eye flies. C and D) examples of G0 somatic

mosaics. E) Sequences of white eye gene edited alleles in G0 somatic mutant

individuals. F) Sequences of white eye alleles in G0 somatic mutant individuals,

targeted with 2 RNPs.



we+           AAGAGTAAGTGAGATTATCCGCGGTGAGTGCAGGCGATGGCGGTGAGAGTG  wt

we-g1/1       AAGAGTAAGTGAGAT--------------GCAGGCGATGGCGGTGAGAGTG -14 

we-g1/2       AAGAGTAAGTGAGA----CCGCGGTGAGTGCAGGCGATGGCGGTGAGAGTG -4

we-g1/3       AAGAGTAAGTGAG----------GTGAGTGCAGGCGATGGCGGTGAGAGTG -10

we+           ACCGCGGATAATCTCAC(64bp)GCTGGTGAATCGTGTGAAGGGGGTTTTC  wt 

we-g2/1       ACCGCGGATAATCTCAC----------(84bp)-----------GGTTTTC -84

we-g2/2       ACCGCGGATAATCTCAC(64bp)GCTGGTGAATCGTGT------GGTTTTC -4

we+           ATACGTTGATTGGCGTGCCGGGTCGGGTGAAGGGTTTATCGGGTGGCGAGC wt

we-g3/1a      ATACGTTGATTGGCGTGCCGGGTCGG----------------GTGGCGAGC -16

we-g3/1b      ATACGTTGATTGGCGTGCCGGGTCGGGTGAAGGGTTTAGCGAGGGTGGCGAGC +2

we-g3/2a      ATACG----------------------------------CTGGTGGCGAGC -34

we-g3/2b      ATACGTTGATTGGCGTGCCGGGTCGGGTGAA---------GGGTGGCGAGC -9

we-g3(g2)/1a  ATACGTTGATTGGCGTGCCGGGTCGGGTGAA---------GGGTGGCGAGC -9

we-g3(g2)/1b ATACGTTGATT-----------------------------GGGTGGCGAGC -29

we-g3(g2)/2a ATACGTTGATTGGCGTGCCGGGTCGGGTGAA---------GGGTGGCGAGC -9

we-g3(g2)/2b ATACG----------------------------------CTGGTGGCGAGC -34

we-g3(g2)/3a ATACGTTGATTGGCGTGCCGGGTCGGGTGAA---------GGGTGGCGAGC -9

we-g3(g2)/3b ATACGTTGATTGGCGTGCCGGGT---------------TCGGGTGGCGAGC -15

we-g3+g2/3c ------------------(650 bp)-------------------GCGAGC -650

we+/we+ we/we
G1

we/wecrispr
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G1

G1

A

B

C



Fig. 2: Absence of complementation of CRISPR/Cas9 mutated we alleles in G1

mutant flies in heterozygotes, carrying one original allele from the we medfly

strain (3 wg-1 and 2 wg-2 induced alleles in 5 flies; vertical blu bar).

Heteroallelic combinations of novel CRISPR/Cas9 mutated we alleles in 5 G1

individuals (11 alleles; vertical green bar). In G1 alleles, the g2 in parenthesis

indicate that a second RNP was coinjected but no corresponding mutations were

found in each individual. In the fifth mutant fly, 3 different mutated alleles (we-

g3(g2)/3a, b and c) were surprisingly found. This could be due to 2 sperm

fertilization, following the first division of the haploid egg.
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Fig. 3: CRISP/Cas9 targeting of Cc-paired. A) A scheme of the Cc-prd gene

and 2 sgRNAs targeting conserved Drosophila PRD in Ceratitis. B) Comparison

of wt and injected embryos, showing shorted lenght and a reduction in the

segment number. C) 2 injected larvae: larvae 1 shows incomplete/malformared

development with the respect of larvae appeaaring wild type. D) Sequences of

gene edited Cc-prd alleles from G0 larvae injected with RNP containing Cc-

prd1 sgRNA.
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ABSTRACT  37 
 38 

 The classic brown body (bwb) mutation in the housefly Musca domestica impairs 39 

normal melanization of the adult cuticle. In Drosophila melanogaster, a reminiscent 40 

pigmentation defect results from mutations in the yellow gene that encodes the dopachrome 41 

conversion enzyme (DCE). Here, we demonstrate that the bwb locus structurally and 42 

functionally represents the yellow ortholog of Musca domestica, MdY. In Musca strains with 43 

bwb phenotype, we identified two mutant MdY alleles that contain reading frame-disrupting 44 

lesions predicted to result in premature truncation of the MdY open reading frame. To 45 

independently confirm that mutations in MdY correspond to the bwb locus, we targeted 46 

wildtype MdY by injecting preassembled sgRNA and Cas9 ribonucleoprotein complexes 47 

against the MdY locus into early syncytial embryos. We successfully recovered new mutant 48 

MdY alleles, and non-complementation of predicted frame-shift MdY alleles and the original 49 

bwb alleles confirmed that our Cas9-induced MdY mutations generated allelic variants of the 50 

same locus. We further found evidence for CRISPR-mediated interchromosomal recombination 51 

between wildtype and mutant bwb alleles. Our work resolves the molecular identity of the bwb 52 

mutation in Musca domestica as lesions in the MdY gene and establishes the conserved 53 

involvement of DCE activity in pigment formation in Musca. Our results further establish the 54 

feasibility and impact of Cas9-mediated genome editing in the Musca model. 55 

  56 



 3 

Introduction 57 

 58 

The so-far unidentified brown body (bwb) locus in the housefly Musca domestica was named 59 

after a recessive loss-of-function phenotype in which the adult cuticle manifests in a brown 60 

color rather than the wildtype black pigmentation (Fig. 1a). The absence of black coloration in 61 

mutant Musca has been proposed to result from impaired synthesis and incorporation of the 62 

black pigment melanin during pupal stages [1]. In insects, melanization of the cuticle is widely 63 

common and contributes to the diverse coloration patterns that are the most visible features of 64 

the outer morphology.  Most insights into the pathway that produces and incorporates melanin 65 

into the insect cuticle comes from studies in Drosophila melanogaster [2] [3] [4].  The melanin 66 

pathway starts with conversion of tyrosine to Dihydroxyphenylalanine (DOPA) by tyrosine 67 

hydroxylase (TH). DOPA in turn is converted to dopamine by dopa carboxylase (DDC). Both 68 

substrates are used as precursors for production of black melanin. In Drosophila, the 69 

dopachrome conversion enzyme (DCE) catalyzes steps downstream of TH and DCC in melanin 70 

production; however, whether DCE is involved in only in DOPA, only in dopamine conversion, 71 

or in both, remains unclear. Loss of function in the yellow gene (y) that encodes Drosophila 72 

DCE causes a lack of melanin incorporation and results in a yellowish overall appearance of 73 

the cuticle. Similar phenotypes have been observed in other insects such as the lepidopteran 74 

Bombyx mori, Papilio xuthus, and the coleopteran Tribolium castaneum [5] [6] [7] [8] [9]. Loss 75 

of activity of the corresponding yellow orthologs in these species drastically lowers the 76 

synthesis of melanin, causing regions of the body that are normally black to display a lighter 77 

coloration. 78 

 In recessive bwb-mutant houseflies, the loss of normal black coloration affects all body 79 

parts. This phenotype closely resembles the phenotype observed in yellow-mutant Drosophila.  80 

As no other gene in the network of melanin genes is known to manifest this phenotype, we 81 

sought to investigate whether the bwb gene in the housefly is the structural and functional 82 

homolog of the yellow (DCE) gene in Drosophila. In addition to the correspondence in 83 

phenotypes, the bwb locus has been mapped to Chromosome III in Musca which corresponds to 84 

Muller element A, the X chromosome in Drosophila that harbors the y locus [10,11].  85 

 Here, we identified the locus mutated in bwb as the Musca domestica ortholog of the 86 

Drosophila gene yellow and refer to the gene as MdY. The MdY gene shows a high degree of 87 

similarity at the level of both protein sequence and gene structure. We find three mutant alleles 88 

of the MdY gene in bwb-mutant flies: the alleles MdYa2 and MdYb feature sequence disruptions 89 

of the coding sequence, while a third allele MdYa1 is a compound allele featuring the coding 90 
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lesion of MdYa2 and an additional 1.5 kb sequence insertion in the 5’ UTR. Using CRISPR-91 

Cas9, we generated a series of de novo loss-of-function alleles of MdY that all fail to 92 

complement original bwb alleles; these experiments mark, to our knowledge, the first report of 93 

the successful application of Cas9-based mutagenesis in Musca domestica. Altogether, we 94 

conclude that the bwb phenotype in Musca is caused by a lack of DCE activity normally 95 

provided by the MdY gene. Our findings clarify the molecular lesions in the classic bwb 96 

mutation and further underline the notion that yellow plays a conserved role in the melanin 97 

production pathway in dipteran species.  98 

 99 

 100 

Results 101 

 102 

1. Characterization of the yellow ortholog in Musca domestica 103 

 104 

   Based on phenotype resemblance and mapping position, we hypothesized that bwb 105 

affects the so-far undescribed DCE ortholog in Musca domestica. To identify sequences 106 

homologous to the Drosophila yellow gene in Musca, we performed BLAST searches against 107 

the recently published genome of the multi-marked aabys strain that shows the bwb phenotype 108 

[12]. We recovered an annotated mRNA sequence (NCBI RefSeq XM_011292650.1) with a 109 

high degree of sequence similarity to Drosophila yellow (Supplementary data Fig. 1). 110 

Annotation of the aabys genome called this gene a pseudogene based on the lack of an intact 111 

open reading frame. Indeed, we detected a frame-shift starting 67 codons downstream of the 112 

first AUG start codon (Fig. 1b) [12]. Hence, the molecular nature of this allele already 113 

suggested that the bwb-mutant aabys strain carries a non-functional yellow variant. The 114 

mutated putative Musca yellow gene, which we named MdY, is located on Scaffold18750 (502 115 

kb) and is composed of two exons separated by a 35.6 kb-spanning intron (Fig. 1b). A Musca 116 

homolog of the acheate (ac) gene is present on the same scaffold separated by 156 kb, 117 

revealing a relatively close linkage of yellow and ac orthologs in Musca. This coupling is 118 

conserved in Drosophila melanogaster and sibling species, and previous work proposed that 119 

evolutionary variation of the y-ac region is reduced due to the selective fixation of one or more 120 

advantageous mutations in this region [13]. We next isolated MdY sequences from a wildtype 121 

strain Siat that displays a normal melanization pattern; the MdY sequence in Siat has an intact 122 

ORF of 522 amino acids, markedly lacking the 4 bp insertion that causes a frame-shift in the 123 

aabys-derived allele (Fig. 1b and d). The predicted MdY protein shares a high level of 124 
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similarity with YELLOW proteins of other dipterans (Supplementary Figure 2a): as expected, 125 

MdY shares the highest level of identity (88%) with the predicted YELLOW protein in 126 

Stomoxys calcitrans, a close relative of the same family Muscidae (Supplementary data Fig. 127 

2b). 128 

  To extend our analysis of mutant bwb alleles, we included the MIII strain that carries the 129 

male determining factor on Chromosome III tightly linked to wildtype alleles of bwb and 130 

pointed wings (pw), while females of this strain are homozygous mutant for bwb and pw (Fig. 131 

1a). Analysis of MdY sequences isolated from MIII females unveiled that again the bwb allele 132 

that contains a 4 bp insertion at amino acid position 67. Unexpectedly, we also reproducibly 133 

detected a second mutant MdY allele in this strain, a nonsense mutation at amino acid position 134 

65 (Fig. 1d). Therefore, the MIII laboratory strain carries two different loss-of-function alleles 135 

of MdY.   136 

When mapping wildtype genomic MdY fragments against the corresponding aabys 137 

genomic sequences that harbor the 4 bp insertion in the coding sequence, we additionally 138 

identified a structural difference in the 5' UTR region upstream of the putative start codon (Fig 139 

1b). Sequence analysis revealed the presence of a 1.5 kb insertion in the aabys-derived allele 140 

that is absent in the wildtype Siat strain (Fig 1b and c). A BLAST search against the Musca 141 

genome shows that this aabys-specific insertion shares 77% of sequence identity to an 142 

incomplete gene complement of the nicotinic acetylcholine receptor subunit-encoding 143 

Mdalpha2 [14]. This 5’ UTR insertion in the mutant MdY allele of the aabys strain 144 

consequently represents a third, compound mutant allele of MdY.  145 

 Altogether, we identified two distinct coding-frame alleles in bwb-mutant Musca 146 

domestica strains, and a third compound lesion that introduced a 1.5kb insertion into the 5’ 147 

UTR of one of the putatively inactive MdY loci. We refer to the original aabys-derived 148 

compound allele as MdYa1, and to the two MIII-derived alleles as MdYa2 and MdYb (Fig. 1d, 149 

Supplementary data Fig. 3). From our analysis of these mutants, we conclude that the bwb 150 

phenotype is associated with nonsense mutations in the MdY gene. These observations support 151 

the notion that the housefly DCE homolog is involved in the melanin production pathway. 152 

 153 

2. CRISPR-Cas9-mediated disruption of MdY confirms causative association with bwb. 154 

 155 

 We next performed targeted disruption of the wildtype MdY locus to confirm its 156 

predicted role in melanization of the housefly cuticle and to corroborate whether the bwb 157 

mutations are indeed loss-of-function alleles of MdY. To this end, we selected two target sites 158 
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in the second exon of MdY for non-homologous end joining (NHEJ)-mediated disruption by the 159 

CRISPR-Cas9 system. Preassembled ribonucleoprotein complexes (RNPs) composed of 160 

purified Cas9 protein loaded with two different sgRNAs (sgY2 and sgY3) were injected into 161 

early syncytial embryos. Both sgY2 and sgY3 target two different sites in coding exon 2 162 

separated by 340 bp, (Fig 2a). As host strain, we used the MIII strain that carries the male 163 

determining factor on the chromosome III linked to wildtype alleles of bwb and pw. Females of 164 

this strain are homozygous mutant for both markers and are brown coloured with pointed-165 

wings, while males are heterozygous and phenotypically wildtype for both markers ([15,16]) 166 

(Fig. 2b). This genetic background facilitates detection of possible somatic effects of MdY 167 

disruption in males that carry only one wildtype allele of bwb (Fig. 1a). The two sgRNAs were 168 

preloaded separately on purified recombinant Cas9 protein (A.M. and G.S. unpublished results) 169 

and a 1:1 mix was micro-injected into 1 h old embryos of the MIII strain[17]. Of 2565 embryos 170 

injected with a 1:1 mix of solubilized Cas9 RNPs containing sgY2, and sgY3, we recovered 188 171 

surviving adult houseflies. While 106 of these adults were males, none of the males displayed 172 

any patches of brown coloration, indicating that our targeting procedure does not introduce 173 

significant somatic mutation mosaicism. We proceeded with crossing these injected G0 males 174 

to bwb-mutant females of the same MIII strain (2 males and 6 females per cross) to screen for 175 

possible germline effects. Screening the F1 generation, we observed 17% of crosses that 176 

produced brown-colored MIII pw+ males that can only arise from paternal transmission of a 177 

mutant bwb allele (Tab. 1, Fig. 2C). This observation reveals that our Cas9 RNP-mediated 178 

mutagenesis protocol introduced bwb mutations by targeting the MdY gene in germ cells of the 179 

syncytial embryo. Of note, the injected males vary greatly in the proportion of potentially MdY-180 

disrupted F1 individuals they sire (Tab. 1), revealing variable germline mosaicism resulting 181 

from Cas9 mutagenesis akin to observations in other model organisms [17]. 182 

 To characterize the putative lesions induced in the MdY gene by sgRNAs sgY2 and 183 

sgY3, we PCR-isolated genomic sequences of exon 2 from brown-bodied MIII pw+ F1 males by 184 

PCR and examined the targeted sites in sub-cloned and Sanger-sequenced fragments using 185 

CrispRVariants [18]. Overall, the position and extent of the induced lesions vary between 186 

individual lines but show a clear preference for lesions at the sgY3 target site (Table 2, 187 

Supplementary Fig. 4). In seven lines (MdY#2, MdY#9, MdY#10, MdY#13, MdY#16, MdY#33, 188 

MdY#36, and MdY#38) we found small indels exclusively in the target site of sgY3 (Table 2). In 189 

contrast, only line MdY#14 carries an allele of MdY with a lesion (2 bp deletion) in the sgY2 190 

site (Table 2, Supplementary Fig. 4).  In line MdY#19, we found evidence that both sites were 191 

targeted (Supplementary Fig. 4). The absence of a deletion spanning the two sites suggests that 192 
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two dsDNA break events in our recovered alleles must have occurred at different times or with 193 

different kinetics, allowing the cellular repair system to independently join the breaks. In 194 

contrast, line MdY#40 carries a large deletion of 1038 bp which removes both target sites and 195 

sequences downstream of sgY2; MdY#40 likely had both sites simultaneously targeted by Cas9 196 

and repaired to result in a larger deletion. Taken together, these data establish functional 197 

CRISPR-Cas9-mediated mutagenesis targeting the MdY locus in Musca domestica using in 198 

vitro-assembled Cas9-sgRNA RNPs. 199 

To test for additional complementation, we crossed brown males of lines MdY#10 200 

which carries a 15 bp deletion in the sgY3 site of MdY and MdY#16 containing a frame-shifting 201 

10 bp deletion at the same site with brown females of the MIII strain carrying the MdYa2 and 202 

MdYb alleles and the aabys strain, homozygous for the MdYa1 allele. In all crosses, all progeny 203 

displayed bwb phenotype. Lack of melanization in these animals is consistent with our 204 

hypothesis that MdY is required for proper pigmentation of the cuticle. Furthermore, non-205 

complementation of the Cas9-induced MdY alleles with all mutant bwb alleles of the aabys and 206 

MIII strains confirms our initial hypothesis that bwb corresponds to the yellow ortholog of 207 

Musca domestica. 208 

 Two lines, MdY#29 and MdY#40, were of particular interest, as we did not detect any 209 

sequence modifications at the two target sites in exon 2 (Table 2). Nonetheless, both these lines 210 

produced both brown MIII pw+ males and also pw females with normal melanization. The 211 

reciprocity of these sex-specific phenotypes suggests Cas9-mediated double-strand breaks in 212 

MdY induced an intragenic recombination event between the bwb+ allele on the MIII 213 

chromosome and the mutant bwb allele on the corresponding homolog. This event may have 214 

created a recombinant MdY allele with abolished activity on the chromosome that contains the 215 

M factor. In line with this hypothesis, we found brown males in line MdY#29 that are 216 

unaffected at the two Cas9 target sites, but homozygous for the MdYb signature (translational 217 

stop at position 65) (Fig. 3a). These sequences are likely the products of a reciprocal 218 

recombination event that may also have resulted in a reconstitution of a wildtype MdY allele on 219 

the non-M chromosome in females. Indeed, we found that melanized females are heterozygous 220 

for the MdYb signature in exon 1. Moreover, in the mutant bwb males, we detected 221 

heterozygosity for allele-specific polymorphisms just downstream of the target site sgY3 that 222 

correspond to the paternal genotype  (Fig. 3a). We interpret these observations as evidence for 223 

Cas9-mediated DNA double-strand breaks at, or upstream of, the sgY3 site that induced an 224 

intragenic recombination event between the wildtype MdY allele and the MdYb allele in trans in 225 

germ cells of Cas9 RNP-injected heterozygous males (Fig. 3b). This data indicates that Cas9-226 
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mediated mutagenesis in Musca domestica can lead to break-point-guided recombination in 227 

injected germ cells. 228 

 229 

 230 

Discussion 231 

 232 

 Our work reveals that the classic bwb phenotype in houseflies is caused by mutations in 233 

the Musca homolog of the DCE gene, which encodes the enzyme that in Drosophila has been 234 

implicated in the process that converts DOPA and/or dopamine into black melanin. Functional 235 

studies in Drosophila have provided evidence that the DCE-encoding gene yellow is involved 236 

in global body pigmentation [19], whereas in the coleopteran Tribolium castaneum the loss of 237 

yellow only affects pigmentation of the hindwing [5]. Also, in the hemimetabolous Oncopeltus 238 

fasciatus, silencing of yellow affects only specific body parts such as abdomen and hindwings 239 

[20]. These observations led to the proposition that yellow belongs to a network of melanin 240 

synthesis genes which by differential deployment can generate a wide range of colors and 241 

spatial patterns [20]. Here, we present genetic evidence that, as in Drosophila, the Musca DCE 242 

homolog MdY is required for melanin production in the whole body. We base our conclusion of 243 

two major lines of evidence: First, complete absence of melanization found in two different 244 

bwb strains (MIII and aabys) correlates with homozygosity for predicted nonsense alleles of 245 

MdY. In these strains, we identified three mutant alleles MdYa1, MdYa2 and MdYb, all of which 246 

result in premature stop codons. We note that MdYa1 and MdYa2 only differ with regard to a 1.5 247 

kb insertion which is present specifically in the 5' UTR of MdYa1. It is thus possible that these 248 

two alleles, both of which carry the same 4 bp insertion downstream of codon 67, have a 249 

common origin and that the 1.5 kb insertion has been acquired or lost later during a secondary 250 

mutational event. Second, we generated a set of new MdY alleles by adapting the CRISPR-Cas9 251 

mutagenesis for disrupting the coding region in MdY exon 2. All of the new alleles have 252 

confined lesions at least in one of the two targeted sites. The majority of these mutations are 253 

deletions that remove parts of the coding sequence and generate frame-shifts. We hence 254 

consider these allelic variants to be enzymatically non-functional, if not null alleles of MdY. 255 

These Cas9-based MdY mutants fail to complement, and thus behave allelic to, the previously 256 

identified MdY variants found in bwb-mutant backgrounds. 257 

 258 

 The CRISPR-/Cas9 protocol using solubilized RNPs used in our study appears to be 259 

highly effective in the Musca germ line given that at least 1 of 6 RNP-injected males 260 
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transmitted an MdY allele with a defined lesion at one of the targeted sites. Nonetheless, none 261 

of these F0 males displayed patches of non-melanized cuticle indicative of somatic mutation 262 

mosaicism. In Drosophila, y mutations behave cell-autonomously and even small mutant 263 

clones can be readily detected in the cuticle: when Cas9 mRNA was injected with sgRNA 264 

targeting y in Drosophila has strong somatic effects (86%) not only in hemizygous males with 265 

one wildtype target, but even in females with two wildtype copies of y [21]. This study pointed 266 

out that the efficiency of inducing somatic clones not only depends on the concentration of 267 

sgRNA injected, but more importantly on the selection of the site in the y gene that was 268 

targeted. It is thus conceivable that the sgRNAs used in our work were able to efficiently 269 

disrupt the gene in the germline cells but not in somatic cells. Germline transmission is a 270 

prerequisite for the investigation of any new mutation generated and, in this regard, our main 271 

objective was to recover fertile adults transmitting mutant MdY alleles. The lack of somatic 272 

effects in G0 adults can be a beneficial feature to avoid sterility that may be inflicted by the 273 

presence of mutant somatic tissue.  274 

 275 

 Recent work proposed that the CRISPR-Cas9 system can be used for genetic mapping 276 

by inducing targeted recombination events in meiotic and mitotic cells [22]. Our finding of an 277 

intragenic recombination event in line MdY#29 suggests that Cas9 induced breaks allows 278 

recombination between homologs in the germ line of housefly males. This observation suggests 279 

a possible Cas9-mediated strategy for male meiotic mapping in future studies. In addition, 280 

homologous recombination (HR)-mediated repair of Cas9 induced double-strand breaks in 281 

Musca offers the opportunity to attempt template-based editing of genomic sequences for 282 

targeted knock-ins in the future.  283 

 284 

 To our knowledge, our study is the first report showing that Cas9 can be effectively 285 

deployed for NHEJ mediated-disruption of genes in Musca domestica, an important addition to 286 

the toolkit of molecular methods that have already been established in Musca for gene function 287 

analysis. Together with transient RNAi-based gene silencing [23,24] and stable germline 288 

transformation [16,25], this new genome editing system provides a means to investigate 289 

evolutionary diversification of developmental pathways such as the polymorphic sex 290 

determination system of the housefly [15,26]. Our successful attempt promises that this genome 291 

editing technology can be used in the housefly to study the function of any candidate gene of 292 

interest.  293 

   294 
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Methods 295 

 296 

Rearing of houseflies 297 

Rearing of larvae and adult flies has been described in [27,28]. Since low density of larvae on 298 

standard medium can cause substantial decrease in survival rates, we reared injected embryos 299 

and the surviving larvae on porcine manure. To dispose of mites and other parasites and to 300 

avoid contamination with eggs or larvae from wild-type populations, manure was stored at -70° 301 

C for at least two weeks prior to use. 302 

 303 

Strains of Musca domestica 304 

 (1) wildtype strain was collected in Siat, Switzerland: females X/X; bwb+/bwb+ and males 305 

X/Y; bwb+/bwb+  306 

(2) multi-marked strain aabys: females X/X; ac/ac; ar/ar; bwb/bwb; ye/ye; snp/snp and males 307 

X/Y ac/ac; ar/ar; bwb/bwb; ye/ye; snp/snp; [12] 308 

(3) autosomal MIII strain: females X/X; pw, bwb, w/ pw, bwb, w and males X/X; pw+, MIII, 309 

bwb+, w / pw, bwb, w [16] 310 

 311 

Genomic DNA extraction 312 

For genomic DNA extraction a single fly was collected in a 1.5 ml tube, frozen in liquid 313 

nitrogen and ground in 1 ml of extraction buffer (0.1 M Tris-HCl, pH 9; 0.1 M EDTA; 1% SDS 314 

and 1% of DMDC added freshly). After 30 min incubation at 70 °C, 140 µl of 8M potassium 315 

acetate was added and sample was gently inverted and incubated for 30 min on ice. After 15 316 

min of centrifugation at 4°C at 13’000 rpm, supernatant was transferred to a new tube, and 550 317 

µl of isopropanol was added. The mixture was centrifuged at RT for 5 min at 14’000 rpm and 318 

the supernatant was removed. The pellet was washed with 500 µl of 70% EtOH (-20 °C) and 319 

centrifuged at RT for 2 min at 14’000 rpm. The DNA pellet was finally dissolved in 30 or 50 µl 320 

of 10 mM Tris and 1 µl of RNaseA (10mg/ml) to remove RNA. Amplifications for sequence 321 

analysis were performed with following primers. For exon 1 we used forward  322 

Y-ORF-F3 (5'-TGCTGTGGACATTGGCAAGA -3') and reverse RE1: (5'-323 

TCTCATTCACATCCACACCGT-3').   324 

For exon2 we used forward FE4 (5'-CAGGTATACCAGCCACATTGA-3') and reverse Y-325 

ORF-R5 (5'-CTAATGATGGGCGGATGTGGA-3'). 326 
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For insertion we used flanking primer forward Y-GAP1-F1 (5'-327 

GGCCGAAGTGAGACAGAGAA-3') and Y-EXON1-R (5'-328 

CTAGTGGCGAAAAACCATTAA-3'). 329 

 330 

sgRNA synthesis and RNP complex assembly  331 

sgRNA were designed using MultiTargeter Website (http://www.multicrispr.net). Possible 332 

OFF-target sites were excluded with the program Cas-OFFinder (http://www.rgenome.net/cas-333 

offinder/) and by directly BLASTing selected sequences against the published housefly genome 334 

sequence [12]. Following templates for sgRNA production were generated:  335 

sgY2: 5’-GAAATTAATACGACTCACTATA GGCTTTGTCGCCCATTCGTT 336 

GTTTTAGAGCTAGAAATAGC-3’  337 

sgY3: 5' -GAAATTAATACGACTCACTATA GGCATAGGGACAGGGGTTGG 338 

GTTTTAGAGCTAGAAATAGC-3’  339 

Common sgReverse (PAGE purified): 5’AAAAGCACCGACTCGGTGCCACTTTTTCAA 340 

GTTGATGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC AAC  341 

For synthesis of sgRNA we followed the instructions of Megatranscript T7 kit (Ambion) using 342 

400 ng of target template with a 5' flanking T7 promoter as starting material. After RNA 343 

synthesis template was removed by incubating with TurboDNase (Mmessage Mmachine T7 344 

Ultra Kit, Ambion) for 15 min at 37 °C.  345 

 Cas9 was expressed as an His-tagged protein and purified from bacteria (A.M. and G.S. 346 

unpublished results). The injection cocktail was prepared by mixing 1.5 µl purified Cas9 347 

protein (9 mg/ml) with 2µl of sgRNA in 1.36 µl of 2M KCl in a total of 10µl. Prior injection 348 

the mix was incubated for 10 min at 37°C [17]. For injection we prepared a 1:1 mix of sgY3-349 

preloaded Cas9 RNPs and sgY2-preloaded Cas9 RNPs. 350 

 351 

Microinjection of sgRNA-Cas9 complexes 352 

Embryos of the MIII host strain were collected 1 hour after egg lay and chorion membrane was 353 

removed by incubating embryos in 3% sodium hypochlorite solution (NaOCl) for 1.5 min. 354 

Dechorionated embryos were then rinsed thoroughly with water and Ringer's solution. 355 

Embryos were aligned on a cover slip with posterior ends pointing to injection site, dehydrated 356 

for 4 min in a silicagel chamber and then covered with 3S /10S (1:4) Voltalef oil (Prolabo). A 357 

glass needle was filled with the preloaded sgRNA-Cas9 mix which was injected into the 358 

posterior end of 0 to 1 hour old embryos. After injection excess Voltalef oil was carefully 359 

removed and cover slip were put on an agar plate overnight at 25°C. Surviving larvae were 360 
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transferred after 24 hours to small beaker filled with porcine manure. G0 male individuals were 361 

collected shortly after eclosing and crossed with untreated virgin females of the MIII strain.    362 

 363 

Genomic analysis of CRISPR-Cas9 mediated lesions in MdY 364 

To examine for the presence of lesions in MdY caused by NHEJ, genomic DNA of bwb mutant 365 

F1 males was extracted following the protocol described above. The region encompassing the 366 

two target sites was amplified with the following primer: 367 

forward primers FE3: TCTGGCAAACCACAACAAGT or F4  368 

CAGGTATACCAGCCACATTGA; reverse primers Y-ORF-R1: 369 

GACGAATGCCAACAACCCAC or Y-ORF-R5  CTAATGATGGGCGGATGTGGA 370 

PCR products were purified with the Wizard® Genomic DNA Purification Kit (Promega), 371 

subcloned in the pGEM®-T Easy Vector (Promega) and sent for Sanger sequencing (GATA 372 

BIOTECH).  CrispRVariants and the generation of panel plots was performed from primary 373 

sequencing data as previously described. [17,18] 374 

 375 
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FIGURE LEGENDS 488 

 489 

Figure 1. bwb phenotype is associated with nonsense mutations in MdY 490 

Phenotypes are displayed from left to right: multimarked aabys fly, bwb mutant female from 491 

MIII strain and bwb wildtype male from MIII strain. Genotypes are indicated; bwb: brown body, 492 

pw: pointed wings (notches along the edge of the wing, see arrow), w: white eyes. (B) 493 

schematic drawing of the MdY locus in the bwb mutant aabys strain and the Siat bwb wildtype 494 

strain. The aabys allele, MdYa1, contains a 1.5 kb insertion in the 5' UTR and an additional 4 bp 495 

insertion in the ORF of exon 1. This frame-shift leads to a premature TAA stop in the 5' end of 496 

exon 2. The Siat MdY allele has an intact ORF (boxed yellow). (C) Genomic amplification with 497 

flanking primers Y-GAP1-F1 and Y-EXON1-R show that the 1.5 kb insertion is present in 498 

males and females of the bwb mutant aabys strain, but not in the bwb wildtype Siat flies (D) 499 

Affected part of the coding region (position 63 to 80) of the nonsense alleles of MdY. 500 

Deviations from the wildtype sequence (Siat) are marked in red and translational stops in bold. 501 

Location of intron is indicated with a triangle. 502 

 503 

 504 

Figure 2. Strategy for CRISPR/Cas9 mediated disruption of MdY 505 

(A) A schematic of the MdY gene showing the positions of the two target sites in exon 2. 506 

Sequences used for the design of the two sgRNAs, sgY3 and sgY2, are indicated. Both 507 

sequences are flanked by a PAM motif (in red) and separated by 343 bp. (B) Crossing scheme 508 

for screening mutational events affecting melanization. Injected G0 males (with a mix of sgY3-509 

CAS9 and sgY2-CAS9) are crossed with bwb females and F1 is examined for occurrence of 510 

bwb males. (C) Left a bwb mutant F1 male from line MdY#16 which is heterozygous for a 511 

CRIPSR induced 10 bp deletion in sgY3 over MdYb. Right an unaffected bwb wildtype F1 male 512 

from the same line with the paternal genotype (MdY+ over MdYb) 513 

 514 

Figure 3. Intragenic recombination in MdY mediated by CRISPR/Cas9  515 

(A) Excerpts of chromatograms of exon 1 and 2 showing allele-specific polymorphisms. 516 

Mutant F1 bwb males are homozygous for the two variants in exon 1 (MdYb genotype) 517 

amplified with primers Y-ORF-F3 and RE1, but heterozygous for the three variants in exon 2 518 

like in the paternal wildtype bwb G0 male amplified with primers FE4 Y-ORF-R5. Arrows 519 

point to the allele-specific polymorphisms examined. (B) This sequence analysis suggests that 520 

an intragenic recombination occurred downstream of the MdYb specific TGA stop codon in 521 
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exon 1 and upstream of polymorphisms examined in exon 2. Locations of the SNPs between 522 

the two target sites (sgY3 ad sgY2) are indicated with short arrows. 523 

 524 

 525 

Table 1. Lines with bwb males in F1 generation  526 

From a total of 43 crosses with 2 injected G0 males each, 14 lines with bwb mutant F1 males 527 

were recovered. MdY#29 and MdY#40 also produced bwb+ wildtype females. The numbers of 528 

F1 flies with different phenotypes are shown for each line. Presence of MIII indicates a male 529 

phenotype. 530 

 531 

Table 2. Overview of MdY lesions detected in bwb males  532 

14 CRISPR lines are listed with lesions detected in the target sites, ∆bwb sg3 and ∆bwb sg2. 533 

The majority of mutations caused by NHEJ occurred in the ∆bwb sg3 region ranging in size 534 

from 1 bp insertion to 174 bp deletions. In line MdY#38 sequence changes in and downstream 535 

of ∆bwb sg3 but we were unable to determine the extent of this putative lesion (nd). In lines 536 

MdY#29 and MdY#40 none of the isolated sub-clones harbored a visible lesion in the region of 537 

the two target sites. Since both lines also produced recombinant pw, bwb+ females, it is likely 538 

that the pw+, bwb males are products from a recombinant event rather than from a NJEH 539 

induced lesion. 540 

 541 

 542 
 543 
Highlights 544 

• The brown body locus of Musca encodes the dopachrome conversion enzyme yellow	  545 

• CRISPR-Cas9 technology is highly efficient in generating new loss-of-function alleles in 546 

Musca	  547 

• CRISPR-Cas9 can be used for interchromosomal recombination in male houseflies	  548 

 549 

 550 
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MIII pw+ bwb+ pw bwb MIII pw+ bwb pw bwb+

MdY#2 198 484 18 0

MdY#4 212 183 1 0

MdY#7 136 150 1 0

MdY#9 152 136 3 0

MdY#10 28 86 151 0

MdY#13 110 124 12 0

MdY#14 139 55 1 0

MdY#16 179 174 21 0

MdY#19 147 115 13 0

MdY#29 142 136 68 10

MdY#33 257 211 7 0

MdY#36 163 138 4 0

MdY#38 194 171 5 0

MdY#40 81 62 2 1

Table	  1	  	  	  	  Heinze	  et	  al.



∆ bwb sg3 ∆ bwb sg2 

MdY#2 1 bp insertion -

MdY#9 174 bp -

MdY#10 15 bp -

MdY#13 11 bp -

MdY#14 - 2 bp

MdY#16 10 bp -

MdY#19 14 bp 11 bp

MdY#29 - -

MdY#33 12 bp -

MdY#36 43 bp -

MdY#38 extent not defined

MdY#40 1038 bp	  

Table	  2	  	  	  	  Heinze	  et	  al.


