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SUMMARY 

Emerging evidence support a role for some D-Aminoacids as neurotrasmitters and 

neuromodulators, since they are found in mammalian tissues and also in the central nervous 

system (CNS) (Hashimoto and Oka, 1997). They play important roles in some physiological 

processes, including dendritic morphology, synaptic plasticity and cognition (Wolosker et al., 

2008; Billard, 2012). Among D-Aminoacids, recent studies suggest that D-Aspartic acid (D-

Asp), a newly discovered agonist for NMDA receptors, play a role in NMDA receptor-

dependent processes such as synaptic plasticity and memory (Errico et al., 2015). The D-Asp 

was described in the multi-lamellar membrane that insulate axons (Fisher et al., 1986) and its 

effects on the hormone biosynthesis and release have been largely explored in the years (Gold 

and Voskuhl 2009; Nuñez et al., 2000; Cerget et al., 2006). 

The exact mechanism of myelination process is still unknown, but emerging studies 

demonstrated the importance of intracellular changes in [Ca
2+

]i levels during myelination and 

remyelination processes (Soliven et al., 2001). Indeed, differentiation of oligodendrocyte 

precursors cells (OPC) and remyelination are associated with NMDARs-dependent [Ca
2+

]i 

changes (Martinez-Lozada et al., 2014). A recent work performed by our research group 

demonstrated that [Ca
2+

]i signaling mediated by the Na
+
/Ca

2+
 exchanger NCX3 plays an 

important role during oligodendrocytes differentiation and myelin formation (Boscia et al., 

2012; Casamassa et al., 2016). 

In the present study, we investigated the effects of D-Asp during the OPC differentiation and 

remyelination by using both in vitro and in vivo techniques. In vitro, we evaluated the effects 

of D-Asp exposure both in human oligodendrocyte MO3.13 cell line and rat primary OPC, 

exposed to different concentrations of D-Aspartic acid (10-100-200 µM). Quantitative RT-

PCR analyses showed that 10-200 μM D-Asp exposure for 3 days, upregulated, in a 

concentration-dependent manner, both the myelin markers CNPase and MBP and NCX3 

transcripts in human oligodendrocytes M03.13 progenitors. The transcripts increase were 

significantly prevented by the NMDA receptor antagonist 10 µM MK-801 and the two NCX3 

blockers, 30nM YM-244769 and 100nM BED. In accordance, microfluorimetric studies 

demonstrated that 100μM D-Asp administration induced an initial calcium peak of 

intracellular Ca
2+

 concentration [Ca
2+

]i followed by an oscillatory [Ca
2+

]i pattern both in 

oligodendrocyte MO3.13 progenitors and rat primary OPC. The NMDA antagonist 10µM  

MK-801 completly suppressed [Ca
2+

]i oscillations but only partially affected the first [Ca
2+

]i 

peak. Similar effects were observed in presence of the two selective blockers for NCX3, 

30nM YM-244769 and 100nM BED. In addition, electrophysiological recordings performed 
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in oligodendrocytes M03.13 progenitors showed that the current elicited by 100 µM D-Asp 

stimulation were dependent by AMPA activation, since the AMPA receptor inhibitor 10μM 

DNQX significantly prevented D-Asp induced inward currents. 

Our in vitro results suggest that D-Asp stimulates oligodendrocyte development through a 

mechanism involving calcium signaling through the glutamate receptors AMPA and NMDA 

and the Na
+
/Ca

2+
exchanger NCX3.  

Next, we investigated the effects of D-Asp administration in an in vivo model of 

demyelination/remyelination, the cuprizone mouse model. D-Asp was given during cuprizone 

feeding (demyelination), or after cuprizone withdrawal (remyelination). In both conditions, D-

Asp treatment improved motor coordination performance in the beam balance and rotarod 

test. When given during demyelination D-Asp prevented MBP loss and reduced 

inflammation, as revealed by Western Blot analysis of MBP, Iba1 and GFAP proteins and 

quantitative coexpression analysis of MBP with the axonal marker NF200. Finally, electron 

microscopy performed on corpus callosum sections showed that D-Asp treatment accelerates 

remyelination in cuprizone mice, as demonstrated by the increased number in myelinated 

axons if compared to untreated cuprizone mice.  

Collectively, our results show that treatment with D-Aspartate, by influencing calcium 

signaling in oligodendrocytes, might produce beneficial effects during demyelination and 

remyelination processes. 
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CHAPTER I 

INTRODUCTION 
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I. INTRODUCTION  

The biology of myelin remained for long times unexplored, since where an increasing interest 

in its physiological role newly aroused (Boullerne, 2016). Myelin is the protective sheath 

formed by oligodendrocyte processes which envelop axons in the nervous system as long 

spiralized wire, necessary to increase velocity of nerve impulse conduction, with a unique 

architecture in lipid and protein composition. 

Myelin disorders include any pathological condition of the nervous system in which myelin is 

injured in terms of composition, shape or relative amount. Myelin disorders can be divided 

into three groups: 1) hypomyelinating diseases; 2) demyelinating diseases; 3) dysmyelinating 

diseases. 

In hypomyelinating diseases, myelin is never made in sufficient amounts as consequence of 

genetic disorders as occurs in leukosdystrophyes or in utero infections (Barkovich and Deon, 

2016). 

Demyelinating diseases are characterized by the loss of the myelin sheath insulating the 

nerves, although an healthy myelin is initially formed. The most common disorders of this 

group include Multiple Sclerosis, some autoimmune or genetic disorders. The etiology of 

demyelination could refer also to an external event such as febrile episodes, head trauma, 

infectious, stroke or exposure to toxic chemical (Love, 2006; Popescu and Lucchinetti, 2012). 

Dysmyelinating diseases are clinical conditions characterized by a defective structure and 

function of the myelin sheath because myelin is incorrectly formed. These groups of disorders 

manifest early in life and are genetically determined. Unlikely to demyelinating diseases, this 

group of disorders does not include visible lesions. These disorders include 

leukosdystrophyes, (including Pelizaeus–Merzbacher disease, Canavan disease, 

phenylketonuria) and also schizophrenia (Kramer et al., 2006; Matalon et al., 2006; Tkachev 

et al., 2007). The myelin alterations cause in return deficiencies in superior functions 

including cognition, sensation and movement, contributing to complex neurological disorders 

outcome. 
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1. MULTIPLE SCLEROSIS 

Discovered in 1849, Multiple sclerosis (MS) is one of the most common chronic 

inflammatory neurodegenerative disease affecting the white matter of central nervous system 

(CNS) and spinal cord characterized by inflammation, demyelination and axonal degeneration 

(Trapp et al., 1998). 

Among Caucasians in the temperate zone, MS is the third most frequent neurological disease 

(Compston and Coles, 2008). As widespread disabling neurological condition of young adults 

between age of 20 to 40, the disease presents a chronic evolution with different progression 

stages in which an abnormal immune system response against self components of the myelin 

affect its own integrity. The exact etiology of the disease remains still unknown despite 

various immunological, viral, genetic and environmental events could trigger or make 

individuals more susceptible to the onset of the disease. (Compston and Coles, 2008). 

Typical histological hallmarks of the neuropathological alterations in MS are the 

demyelination-associated plaques (Lucchinetti et al., 2000). Heterogeneous demyelination 

may be observed all around the brain nerve fibers, including spinal cord and optic nerve. This 

condition affects the brain functions associated to injured fibers resulting in a progressive 

disability of cognitive and sensory-motor skills, with consequent significant costs for society. 

Currently, no definitive MS treatment is yet available.  

The first case in the history of MS is reported by Sir Augustus d'Esté's (1794-1848), 

descendent of the House of Este (North-Eastern Italy) (Landtblom et al., 2010).  In his diaries 

the young Augustus at the age of 28 reported bilateral optic neuritics as consequence of 

rubella infection. The course of his disorder, which could not be diagnosed during his 

lifetime, evolved with the progressive occurrence of a number of other invalidating 

symptoms. Extremities weakness, fatigue, vertigo, tremors and numbness obliged him to the 

wheelchair. The disease secondarily progressed with paraparesis, sphincter incontinence, 

urinary problems and impotence (Reynolds, 2004). 

The first dissertation about MS was written in 1868 by the french neurologist Jean Marie 

Charcot and entitled “La Sclérose en Plaques” (Charcot, 1868; Clanet, 2008). Professor 

Charcot studied 34 cases of MS, whom 9 were young men. Patients also displayed cognitive 

impairment related to worsening in speech, memory and attention (Sherwin et al., 1957). 
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1.1 Epidemiology 

MS is an unpredictable disease difficult to diagnose. According to the last estimates extracted 

from the Atlas of MS 2013, MS affects more than 2.3 million of people worldwide. The 

numbers could be higher in consideration of a diffuse mis-diagnosis. The most important 

epidemiologic parameters that might help to investigate the cause and occurrence of the 

disease are the incidence and the prevalence of cases. The incidence of the disease is the 

number of new cases during one year, which still remains not fully accurately write down. 

The prevalence are the number of cases at one specific time or geographic area (Figure 1). 

Patients are diagnosed between the ages of 20 and 40, despite cases in  young children and in 

the mature age are also reported. MS is at least two to three times more common in women 

than in men, suggesting that hormones may also play a significant role in determining 

susceptibility to MS. 

While MS is present in all regions of the world, MS prevalence is higher in North Americans 

and Caucasians of Northern European ancestry. Thus, MS is more common in areas farthest 

from the equator but this is not a general rule since the prevalence may differ significantly 

among ethnic groups previously migrated and living in the same geographic area regardless of 

distance from the equator (Atlas of MS, 2013). These findings suggest a complex relationship 

between environmental and genetic factors in determining who develops MS. Several studies 

have also provided support for the opinion that MS is caused by early exposure to some 

environmental trigger in genetically susceptible individuals (Compston and Coles, 2008). The 

increase in worldwide prevalence of MS between 2008 and 2013 (from 2.1 to 2.3 millions of 

MS people) (Figure 1) might be partially attributed to the lengthening of life expectancy and 

to the better MS incidence reported (Browne et al., 2014). 



  

 
 

12 
 

 

Figure 1. Prevalence of MS estimated by country. Atlas of MS international Federation (from 

Atlas of MS 2013, Multiple Sclerosis International Federation 2013). 

 

 

1.2 Histological hallmarks  

The term “multiple sclerosis” refers to “multifocal” or “multiple scars” named “sclerae” 

known as lesions or plaques that mainly develop in the white and grey matter of the brain and 

spinal cord (Compston and Coles, 2002). 

The microscopic examination of post-mortem MS brains reveals the presence of easily 

distinguishable plaques in the white matter having a size extension in the range of few 

millimeters to a few centimeters (Sarbu et al., 2016). Plaques are the result of a complex 

myelin damage characterized by inflammation, demyelination, oligodendrocyte loss and 

astrogliosis. Remyelinated shadow plaques may be also observed, but when axons are 

severely injured, remyelination fails (Compston and Coles, 2008; Stadelmann et al., 2011). 
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1.3 Pathological mechanisms  

The exact etiology of MS remains still unknown. Several pathological mechanisms have been 

proposed over time. Either predisposing genetic factors and other environmental triggers, such 

as biological agents (virus and bacteria), heavy metals and poisoning, might induce a self-

sustaining autoimmune disorder that leads to recurrent immune attacks the CNS (Compston 

and Coles, 2008)(Figure 2). 

MS is believed to result from a cellular-mediated autoimmune response caused by 

autoreactive lymphocyte T cells that recognize self-components of myelin. The first 

pathogenic event of MS is the break of the immunological tolerance that allows the activation, 

in the peripheral blood, of specific naïve T cells against myelin antigens. In parallel, antigen-

activated B cells proliferate and differentiate into antibody-secreting plasma cells. Activated T 

lymphocytes express molecules on their surface, such as the integrin α4 β1 (VLA-4) binding 

the VCAM-1 on the brain vascular endothelium, that allow extravasation through the BBB 

and their invasion of the CNS. In the CNS, microglia may act as antigen-presenting cells 

(APC) and they contribute to amplify the inflammatory response. Activation of T and B cells 

and their extravasation within the CNS induces a cascade of events including the release of 

cytokines, chemokines, and antibodies against myelin antigens, thus amplifying the 

inflammatory response with recruitment of other CNS inflammatory cells, including 

microglia and astrocytes. Lymphocytes and macrophages operate in synergy leading to 

myelin injury and, consequently, to neuronal and axonal degeneration (Goverman, 2011) 

(Figure 2). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The auto-immune mediated pathophysiological mechanism in multiple sclerosis. T cells, B cells and 

antigen-presenting cells (APCs), including macrophages, enter the CNS and attacks the myelin forming 

cells, the oligodendrocytes (From Steinman and Zamvil, 2003).  
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1.4 Classification and histological heterogeneity of MS lesions 

Despite the recent advances in Magnetic Resonance Imaging (MRI) studies, it is still difficult 

to define the entity of MS lesions. Classical histological stainings such as Hemotoxilin & 

Eosin, Luxol Fast Blue (LFB), immunohistochemical (IHC) and Human Leukocyte Antigen 

(HLA)-DR antigens analysis of MS biopsies allow the classification of white matter lesions in 

active, chronic active, or chronic inactive, based upon pattern and extent of inflammation (Bo 

et al. 1994; Trapp et al. 1998; van der Valk and De Groot 2000): 

 Active: macrophages infiltrate through the lesion. 

 Chronic active: macrophages infiltrate at the border but not within the center of the lesion. 

 Chronic inactive: minimal macrophage infiltration through the lesion. 

Histopathological studies from Lucchinetti et al. (2000) evidenced more in detail the 

heterogeneous complexity of active lesions which can be further classified in 4 major groups 

or patterns according to observations of the immune-mediated inflammation, localization and 

myelin injury type (Lucchinetti et al., 2000; Lassman et al., 2001) (Figure 3). 

Pattern I and II lesions (15% and 58% of MS biopsies, respectively) display active 

demyelinating lesions with T lymphocyte and macrophage-dominated inflammation and 

diffuse IgG reactivity in tissue and in astrocytes cytoplasm, due to the blood-brain-barrier 

(BBB) damage. In pattern II lesions the Ig reactivity is more pronounced with degenerating 

myelin debris within macrophages and a prominent deposition of IgG and complement at sites 

of active myelin destruction.  Pattern I and II active lesions are typically noticed on small 

veins and venules.  

Pattern III lesions (26% of MS biopsies) also contained an inflammatory infiltrate of T 

lymphocytes, macrophages and activated microglia. Lesions are frequently found on the 

myelin edges around inflamed vessels which borders result ill-defined. Lesions lack of Ig and 

complement deposition. Myelin sheaths are almost deficient in MAG proteins content but not 

in the other proteins such as CNPase, MBP and PLP. Within plaques, oligodendrocytes are 

apoptotic. A pronounced loss in oligodendrocytes is found at the border of the active lesion, 

whereas oligodendrocyte presence is almost excluded in the inactive center. Remyelinated 

shadow plaques are not found. 

Pattern IV lesions are the most rare as they are present in almost 1% of MS biopsies. T 

lymphocytes and macrophages infiltration is well evident while IgG deposition and 

complement activation are not found. Oligodendrocyte death is evident in periplaques region 

where DNA fragmentation occurs. Myelin antigens (MAG, MBP, PLP, CNP, and MOG) are 

similarly distributed through the lesions. Almost total loss of oligodendrocytes in active and 
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inactive lesions was associated with deficient remyelinated shadow plaques (Lucchinetti et 

al., 2000; Popescu et al., 2013).  

 

 

Figure 3. Histopathology of different patterns of demyelination in multiple sclerosis. (a) Active 

lesion (pattern I and II). (b) Active lesion of pattern II. (c, d) Active lesion of pattern III. (e-f) Higher 

magnifications of arrows in panels (c) and (d). (g) Active lesion of pattern IV. (h) Periplaque white 

matter (PPWM) lesion in panel (g). Abbreviations: PL, plaque; PPWM (periplaque white matter). 

Images from Lassman et al., 2001. 
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1.5 Clinical course 

In 1996, the National MS Society Advisory Committee on Clinical Trials in MS first defined 

the clinical courses of MS. The terminology adopted to define the MS clinical course included 

the classification in: relapsing-remitting (RRMS), primary progressive (PPMS), secondary 

progressive (SPMS) and progressive relapsing (PRMS) phenotypes, in accordance to the 

appearance and type of MS lesions. Since then, an increased understanding of MS and its 

pathological mechanisms encouraged to consider a new grouping of the clinical phenotypes. 

In 2013, it has been reported the inclusion of a new phenotype named clinically isolated 

syndrome (CIS), while the progressive relapsing (PRMS) form has been excluded from the 

medical definitions of MS (Figure 4). 

Neurologists currently define the CIS as the first clinical presentation of neurological 

symptoms which results characterized by inflammation and demyelination in the CNS. When 

the CIS produces detectable lesions in MRI scans, the probability of a second attack increases. 

The remaining forms of MS, relapsing-remitting (RRMS), primary progressive (PPMS) and 

secondary progressive (SPMS), are further subdivided into two new subcategories: active and 

non-active. Active MS phenotype is defined by the occurrence of clinical relapse, associated 

with focal areas of demyelination and inflammation, or in presence of new MRI visible 

lesions lasting one year from the previous event. Moreover, patients with progressive MS are 

distinguished into two new groups according the presence or not of signs of disability  

progression over a given time (Lublin et al., 2014)(Figure 4). 

 

 

Figure 4. Clinical course of multiple scleorosis. Images obtained from the National Multiple 

Sclerosis Society web site (www.nationalmssociety.org), data source: Lublin et al., 2014. 

  

http://www.nationalmssociety.org/What-is-MS/Types-of-MS
http://www.nationalmssociety.org/What-is-MS/Types-of-MS
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1.5.1 Clinical symptoms 

MS patients show an individual and unpredictable variability in symptoms. The most frequent 

symptoms are fatigue and difficulty of walking. The disability in performing daily skills make 

this disease highly debilitating and decrease the quality of the life, resulting in high cost for 

the society. About the 80% of patients with MS accuses a state of chronic debilitating fatigue 

that interfere with daily life. 

The walking impairments are due to the onset of various conditions such as numbness of 

limbs, involuntary muscle spasms and weakness, resulting in an imbalanced gait often cause 

of accidental falls injuries. Numbness can also affect the rest of the body and the face. Some 

patients present vision problems (i.e. diplopia) related to unclear vision and pain on ocular 

movement. Patients also experience with neurological disorders such as speech disorders, 

dizziness and vertigo, tremor, cognitive deficits leading to memory and in problem-solving 

skills impairment, lost in attention and altered perception of environment, acute or chronic 

pain. Patients with MS usually have intact intellectual faculties during the onset, but 

progressive and severe subcortical white matter lesions might produce a clinical outcome of 

dementia. Also the emotional sphere appears compromised, since patient can undergo in rapid 

mood changes and depression. 

 

1.5.2 Diagnosis 

The diagnosis of MS is confirmed when physicians exclude other neuropathological disorders 

causing similar neurological symptoms. This process could be rapid for some individuals but 

longer for others. A powerful test that can itself be used for the diagnosis is not yet available. 

Physicians use some criteria to diagnose MS such as: 1) the finding of at least two separated 

damaged areas in the CNS, including brain, spinal cord and optic nerve; 2) evidence that the 

damage occurred during the course of time; 3) the exclusion of other neurological diseases.  

Hence, the diagnosis of MS can be assessed by the examination of the patient’s anamnesis, 

the appearance of neurological symptoms and the presence of lesions or plaques, separated 

“in space and in time”. 

The exact diagnosis of MS requires the presence of clinical findings evaluated through the 

following three major techniques: 

 Magnetic Resonance Imaging (MRI) 

 Lumbar puncture  

 Evoked potential testing 
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Magnetic resonance imaging (MRI) is the most sensitive diagnostic test for MS. MRI uses 

magnetic fields and radio waves to measure the relative water/lipid content in tissues. Two 

specific types of MRI scans that are used called T1-weighted and T2-weighted MRI that 

measure the relaxation time of hydrogen protons when a strong magnetic field is applied. 

Then a software convert data into body sections scans. Since the myelin is highly enriched in 

lipids, in case of its damage, the nervous tissue hold more water, thus resulting in spotted area 

in the scans. 

The appearance of demyelinating lesions in the brain and spinal cord can be monitored over 

space and time by MRI scans. In the 90% of MS patients several abnormalities are found with 

MRI scans. Lesions, depicted as “patchy” or multifocal areas in the white matter, can be 

efficiently observed by using T2-weighted MRI images. Lesions are usually placed in the 

paraventricular area, cerebellum and brain stem, but also in cervical and/or thoracic spinal 

cord. 

The McDonald criteria and their new versions introduced in 2001, 2005 and 2010 (McDonald 

et al., 2001; Polman et al., 2005; Polman et al., 2011) are used in research studies to 

discriminate the MS clinical outcome from other MS-like neurological disorders.  

In fact, several demyelinating and non-demyelinating disease should be taken in account 

before confirm the diagnosis of MS since it is important to distinguish MS lesions from those 

produced by some multiple emboli and disseminated vasculitis as they could also result as 

small infarcts injuring the white matter at MRI scans. 

According to the 2010 McDonald criteria, the disease dissemination in time (DTI) can be 

evaluated by the presence of at least one new T2-weighted or gadolinium enhancing lesion on 

the next follow-up MRI or the simultaneous presence of asymptomatic gadolinium-enhanced 

and non-enhanced lesions at any time (Filippi et al., 2016). 

The chemical compound gadolinium, also known as “contrast”, is injected in patients to 

evaluate the presence of active lesions. In fact, gadolinium normally does not pass through the 

blood-brain barrier. In some pathologies, such as MS, in which the BBB is disrupted, the 

gadolinium enter the brain and spinal cord, allowing the visualization of MS lesions lighting 

them up on MRI scans as brighter spots.  

MRI is commonly considered an easy and not invasive exam to acclaim the appearance and 

evolution of plaques, although in some patients is required more in depth analysis of the 

clinical picture obtained by analysis of cerebrospinal fluid (CSF) and neurophysiological 

tests. 
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Lumbar puncture, also known as spinal tap, is an invasive test used to evaluate the content of 

cells and molecules in the CSF. Most patients affected by MS present abnormal results in this test 

(Stangel et al., 2013). CSF analysis is used to exclude other diseases in the differential 

diagnosis of MS. In the CSF of MS patients are commonly found elevated levels of IgG 

antibodies, as well as specific protein called oligoclonal bands, and sometimes certain 

products of the breakdown of myelin (McDonald et al., 2001; Link and Huang, 2006). The 

presence of all these markers suggest an abnormal response mediated by immune system 

against self-component of the myelin. Only 5-10% of MS patients does not present CSF 

abnormalities. For this reason, more in detail clinical analysis should be considered. A more in 

depth description of CSF content abnormalities in MS is given in the next paragraph 1.6. 

The Evoked potential (EP) test can reveal damaged areas in the brain, spinal cord and in the optic 

nerve that other tests, i.e. the neurological test, may not detect. The EP test measures the 

electrical activity of the brain in response to stimulation of specific sensory nerve pathways. 

Specific types of sensory input are sounds, light or sensations. The decrease in electrical fiber 

conduction relies to the demyelinating event in course. Since the diagnosis of MS requires 

evidence of demyelination in two distinct areas of the CNS, EP test could be useful to 

recognize a second demyelinating event that remains undiagnosed with other tests. To induce 

the evoked potentials, a wire is placed on the scalp in proximity of the brain areas that are 

supposed to be stimulated. Specific sensory inputs are given and recorded by the software.  

 

1.6 Biomarkers  

In the last two decades the interest in finding and validate a predictable biomarker of MS 

increased. The biomarker search currently requires the collection of blood and CFS from MS 

patients. Blood is easy to collect and a few amount is sufficient to evaluate many different 

markers. The only disadvantage of hematic analyses is the huge daily variability of 

biomarkers searched (for a review see Eikelenboom et al., 2011; Teunissen et al., 2015). On 

the other hand, the CSF biochemical examination is well recognized as loyal test reflecting 

the inflammatory condition, being the CSF in tight proximity of CNS. The CSF withdrawal 

prevents the variability due to hepatic and renal excretion and, even with invasive lumbar 

puncture procedure, remains one of the most important clinical analysis for MS diagnosis. 

Current diagnosis of MS relies on the assessment of the presence in CSF of oligoclonal 

band(s) of IgG (OCBs) (Dobson et al., 2013; Petzold et al., 2013). Several studies correlated 

for diagnosis also the importance of detection of IgG directed against neurotropic viruses, 

rubella and varicella zoster defined as MRZ-specific IgGs (Sawcer et al., 2014.), κ free light 
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chains (FLC) secreted by plasmacytes (Senel et al., 2014; Presslauer et al., 2014.) and 

inflammatory and immunological biomarkers such as the B-cell-attracting C–X–C motif 

chemokine 13 (CXCL13), reported to be expressed in actively demyelinating MS lesions, but 

not in chronic inactive lesions of patients with CIS, RRMS, SPMS or PPMS (Kademi et al., 

2014). The chitinase-3-like protein 1 (CHI3L1) levels, which has been reported to have both 

inflammatory and tissue remodelling functions, was found higher in CIS converters than in 

CIS non-converters (Hinsinger et al., 2015). 

Recently, small non-coding microRNAs (miRNAs) have been proposed as potential new 

biomarkers, due to the evidence of the role of miR-20a-5p in T-cell regulation, and the 

upregulated miR-22-5p in the blood and brain lesions in patients with MS (Cox et al., 2010; 

Keller et al., 2014). Neurofilaments light chains (NfL) levels in CIS patients have been 

reported to increase as consequence to axonal damage (Kuhle et al., 2013; Khalil et al., 2013; 

Fialová et al., 2013). 

 

1.7 Therapy  

There is no yet cure treatment available for MS. The clinical treatments for MS are based on 

different medical strategies: 1) a rapid intervention immediately after attacks appearing; 2) the 

attempt to slowdown the progression of the disease; 3) the managing of symptoms (for a 

review see Goldberg et al., 2012). 

Treatment of MS attacks includes corticosteroids and plasmapheresis. Corticoids (i.e. 

prednisone in oral administration and methylprednisolone i.v.) act counteracting the nerve 

inflammation. In alternative, plasmapheresis, is employed in case of severe new symptoms 

and in case of inefficient steroids cure.  

Treatments to slow progression. Nowadays, there are no available therapies to slow the 

progression of PPMS. By contrast, several pharmacological treatments are available for the 

relapsing-remitting MS phenotype. Since many of these treatments have serious side effects, 

their clinical administration requires the awareness on their negative effects and the size and 

severity of the disease. In women, great care is taken in account also in prevision of future 

pregnancy. The current approved drugs for the RRMS are the immunomodulators, 

immunosuppressants and monoclonal antibodies. 

 Immunomodulators, such as the Beta Interferon 1a and 1b (Avonex®, Rebif22®, 

Rebif44®, Betaferon®, Extavia®, Plegridy), regulate or modulate the immune response. 

Injected under skin or intra-muscle, it is the most prescribed drug capable to reduce the 

frequency and the severity of relapses. Side effects include flu-like symptoms and local 
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reaction in the site of injection. Applied to the first CIS, it is able to counteract the 

appearance of a new attack. Another drug approved by the The Food and Drug 

Administration (FDA) is the synthetic form of myelin basic protein MBP (i.e. copolymer I 

or Copaxone). 

 Immunosuppressants decrease the activation of the immune system. The most effective 

drug against severe forms of MS is the Mitoxantrone, which use is under the stringent 

prescription from a neurologist only in case of severe form of MS, since this drug is highly 

associated with cardiac complications and blood cancers development. The FDA also 

approved the Teriflunomide, Dimethyl Fumarate and Fingolimod. 

 Specific monoclonal antibodies, i.e. Natalizumab and Alemtuzumab selectively target 

cells or molecules, thus modifying the immune response. Even so greatly specific, 

monoclonal antibodies have a black side of the medallion. In fact, the use of Natalizumab 

is associated with the risk of a viral infection of the brain called progressive multifocal 

leukoencephalopathy while the administration of Alemtuzumab is associated with the risk 

of infections and other autoimmune disorders. 

Treatment for symptoms. The purpose of symptomatic treatment is to relieve symptoms of 

the disease, in order to achieve an improved quality of life for people with MS. For some 

symptoms such as fatigue, cognitive disorders, neuropathic pain, there is still much to invest 

and do, although several molecules are avalaible. Uncontrollable spasms symptoms are cured 

with muscle relaxants. 

Not less important is the research devoted to rehabilitation. In recent years several reports 

demonstrate the effectiveness of the rehabilitation treatment in MS patients. A typical 

physical therapy session may include stretching and strengthening exercises, useful to reduce 

weakness and other gait problems often associated with MS.  
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2. OLIGODENDROCYTES 

Oligodendrocytes (from Greek: cells with few branches), also named oligodendroglia, are 

non-neuronal cells which take part of glial cells, known also with the term “neuroglia” or 

simply “glia”. The term neuroglia appeared for the first time in 1846 by Virchow whom 

described the presence of cells different from neurons in the connective tissue of brain with 

the term nervenkitt (German: nerve glue) or neuroglia (Virchow, 1846). Subsequently, Ramon 

y Cajal and his student Rio Hortega improved the technique of metallic impregnation and 

started to classify the major glial cell types. Ramon y Cajal classified the astrocytes by using 

gold impregnation, while Rio Hortega described the oligodendrocytes and microglia by using 

silver carbonate impregnation technique.  

Glial cells constitute the majority of the existing cells in the nervous system. They maintain 

homeostasis, produce the multilayer lipid fiber-insulator myelin, and provide protection and 

support to the CNS and PNS. In the CNS glial cells are classified in “Macroglia” (astrocytes, 

oligodendrocytes and ependymal cells) and “Microglia”. In the PNS glial cells include 

Schwann cells and satellite cells.  

In the last decades was commonly believed that the role of glial cells was marginal, simply 

confined to the stage of development and support (“glue”) to neurons during the course of 

individual life. In the last few years, the scenario changed and the discoveries of numerous 

receptors and neurotransmitters in glial cells suggested a possible interaction of these cells in 

the glial-neuronal network, perhaps taking part in CNS physiological processes which 

dysfunction relies to several neurological conditions. 

 

2.1 Morphology 

In comparison to astrocytes, oligodendrocytes extent a restrict number of branches 

(ramifications or processes) from the soma, showing a lower size, higher density in 

cytoplasm, clumping of nuclear chromatin and a great number of microtubules in the 

cytoplasm (Lunn et al.,1997).  

Oligodendrocytes are classified as myelinating oligodendrocytes, satellite oligodendrocyte, 

and oligodendrocyte precursor cells (OPCs). 

Myelinating oligodendrocytes extend their processes to the axons which continuous 

envelopment and condensation produces the multi-spiral membrane called myelin. The 

number of connections with axonal segments depends on CNS areas and on the different 

species. In fact, oligodendrocytes may contact up to 40 segments in the CNS (Peters et al., 

1991). 
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Rio Hortega classified oligodendrocytes in four major categories, types I to IV, in relation to 

the number of processes, morphology, size and thickness of myelin sheath formed (Pérez-

Cerdá et al., 2015). 

Electronic microscopy studies still evidenced a huge heterogeneity in oligodendrocytes 

morphology having differences in cytoplasms and nuclear chromatin densities. In fact, Mori 

and Leblond (1970) tried to define this finding defining the oligodendrocytes as “light”, 

“medium” and “dark” (Mori and Leblond, 1970). Labeling with tritiated thymidine evidenced 

light oligodendrocytes in proliferation phase, then they become darker when maturation 

occurred.  

During their maturation, myelinating oligodendrocytes pass through many different stages of 

development, from the proliferating stage of OPCs to the mature myelinating phenotype. 

Oligodendrocyte diversity is well appreciated by the specific expression patterns of antigenic 

markers (Figure 5). 

Oligodendrocyte processes myelinate axonal segments. Each of this myelinated segment is 

several hundred micrometers long and is also termed “internode”. Segments are interrupted by 

structures known as node of Ranvier which spans for less than 1 micron. At the node, as 

compared to the internodal region, the axon is not enwrapped by myelin. The end of 

internodal segment contains more cytoplasm and forms so called paranodal loop creating 

septate-like junctions with the axon. In addition, astrocyte processes contact the axonal 

membrane at the nodal region. Oligodendrocytes, similarly to astrocytes, are also connected 

by specific cell type gap junctions formed by connexins which alteration causes myelin 

disfunctions (Cotrina and Nedergaard, 2012). 

In the gray matter it has been described an oligodendrocyte type not directly connected to 

myelin sheath formation. These satellite oligodendrocytes are perineuronal oligodendrocytes 

that maintain the ionic homeostasis and regulate the microenvironment around neurons 

(Baumann and Pham-Dinh, 2001). 

A considerable number of Oligodendrocyte Precursor cells (OPCs) do persist in the adult 

brain at the pre-oligodendrocyte stage, and may provide a source of new oligodendrocyte, 

protoplasmic astrocytes, and neurons (Annunziato et al., 2013; Boscia et al., 2016) Because 

of their apparent stem-cell-like characteristics, adult OPCs have recently gained much 

attention for their potential reservoir of cells capable of self-renewal, differentiation, and 

remyelination after CNS injury. 
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2.2 Origin 

The exact site of origin of oligodendrocytes was greatly debated in the last years. Many 

researchers proposed a unique origin in the ventral neuronal tube, while others approached the 

hypothesis of multiple origin (Spassky et al., 2000; de Castro et al., 2013).  

Initially, OPCs were thought to exclusively originate in the ventral ventricular zone in 

response to the morphogen sonic hedgehog (Shh) (Noll and Miller, 1993; Warf et al.,1991).  

Then, the dorsal origin has been described occurring from the spinal cord to the telencephalon 

in an Shh-independent manner (Cai et al., 2005; Fogarty et al., 2005; Kessaris et al., 2006; 

Vallstedt et al., 2005) 

During the half of fetal life OPCs first arise in a restricted germinal area in the ventral spinal 

cord, then a dorsal-lateral migration occurs. Oligodendrogenesis follows a double direction 

from ventral to dorsal and from caudal to rostral (de Castro and Zalc, 2013). 

Some interesting findings show that radial glia, which is widespread throughout the CNS in 

development, may differentiate in oligodendrocytes after neurogenic phase (Choi et al., 1983; 

Choi and Kim, 1985; Hirano and Goldman, 1988). 

More recently, an important source of oligodendrocytes has also been found in ventral and 

dorsal forebrain. (Richardson et al.,  2006; Bradl and Lassmann, 2010). A first wave of OPCs 

is generated in the medial ganglionic eminence and anterior entopeduncular area of the ventral 

forebrain. OPCs populate the entire embryonic telencephalon including the cerebral cortex. 

Finally, a second wave of OPCs derived from the lateral and/or caudal ganglionic eminences 

and a third wave of OPCs arises within the postnatal cortex (Kessaris et al., 2006). 

From their sites of origins, OPCs migrate for long distances to colonize both gray and white 

matter (Thomas et al., 2000; Qi et al., 2002). 

In late gestational and early postnatal mammalian brain, oligodendrocytes originate mainly 

from subventricular zone (SVZ) (Baumann et al., 2001; Menn, 2006; Perez, 2014).  

OPC population is widely distributed in the adult brain. This functional redundancy represents 

as reservoir for oligodendrocyte replacement and myelin plasticity/remodelling. (Ettle et al., 

2016) but may also serve as a promising source for neuronal replacement (Crawford et al., 

2014; Nishiyama et al., 2009).  

Some speculations about the oligodendrocyte population competition to the final place 

migration is well review by Richardson 2006 who elegantly examined the “Oligodendrocyte 

wars”. In brief, ventrally-generated OPCs seems to predominate in the spinal cord, while the 

dorsal origin has been found in the ventricular telencephalon (Richardson et al., 2006). Some 

OPCs persist inside the adulthood, ready to migrate within the brain at certain stimuli, 
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maturates and eventually differentiate in myelinating oligodendrocytes (Franklin and Ffrench-

Constant, 2008). 

 

2.3 Function 

The major function of oligodendrocytes is the formation of myelin (for a review see Baumann 

and Pham-Dinh, 2001; Kettenmann and Verkhratsky, 2011; Ettle et al., 2016). 

Oligodendrocyte processes surround the axons of nerve fibers generating a complex 

concentric wrapping multilayer membrane, called myelin. In PNS the same function in 

covered by the Schwann cells. Myelin works as electrical insulation that separates the nerve 

fiber from the environment. 

Oligodendrocytes display also an homeostatic role in buffering extracellular potassium arises 

following the neuronal excitation (Menichella et al., 2006). 

Increasing the resistance and lowering the capacitance of axonal membranes is not the only 

function of oligodendrocytes and Schwann cells. Myelinating glia communicate lifelong with 

axons, and is required for the long-term integrity and survival of axons (Beirowski, 2013; Lee 

et al., 2012). Oligodendrocytes secretes glial- and brain-derived neurotrophic factors (GDNF 

and BDNF) which supports either the axonal functionality and outgrowth, playing an 

important role in preserving neuronal circuitries (Wilkins et al., 2003; Du and Dreyfus, 2002; 

Dai et al., 2003).  

2.4 Oligodendrocyte lineage 

Oligodendrocytes are end product of a cell lineage which requires a complex and precisely 

timed program of proliferation, migration, differentiation, and myelination to finally generate 

the insulating sheath. OPCs pass through four major steps of differentiation that can be easily 

identified by the cellular ability to migrate, the acquisition of an elaborate morphology and 

expression of a specific antigenic pattern (Barateiro and Fernandez, 2014) (Figure 5). 

Schematically, oligodendrocytes lineage steps can be classified as: 

 precursor cells (OPC) 

 pre-oligodendrocytes (or late OPC) 

 immature oligodendrocyte (or pre-myelinating oligodendrocyte) 

 mature oligodendrocyte (or myelinating oligodendrocyte). 
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OPCs appear in successive waves in prenatal life (Kessaris et al., 2006; Richardson et al., 

2006) and continue proliferating even in the adulthood.  OPCs shows a bipolar or multipolar 

morphology with tree-like fine processes (Huges et al., 2013) and a surprising migratory  

capability to reach each part of the brain. OPCs specifically express antigenic markers such as 

the platelet-derived growth factor receptor α (PDGF-αR), the ganglioside A2B5, the 

proteoglycan NG2 (Nishiyama et al., 1996; Pringle et al., 1992), the polysialic acid-neural 

cell adhesion molecule (Grinspan and Franceschini, 1995) and fatty-acid-binding protein 

(FABP) (Sharifi et al., 2013). 

Given the appropriate environmental signals, OPCs exit the cell cycle and differentiate into 

pre- oligodendrocytes (Emery, 2010a, b; Zuchero and Barres, 2013).  

Pre-oligodendrocytes extend multipolar short processes and expresse as markers the sulfatide 

recognized by the O4 antibody (Sommer and Schachner, 1981) and the GPR17 protein (Boda 

et al., 2011), which may be found also in immature oligodendrocytes. 

Immature oligodendrocytes do not express A2B5 and NG2 markers while continue to express 

O4 and a new marker called galactocerebroside C (GalC) (Yu et al., 1994). 

During this differentiation phase, oligodendrocytes stop proliferating and extent long ramified 

branches (Armstrong et al., 1992, Gard and Pfeiffer, 1989). 

Mature oligodendrocytes extend membranes that form compact enwrapping sheaths around 

the axons and express myelin proteins such as myelin basic protein (MBP), proteolipid 

protein (PLP), myelin associated glycoprotein (MAG), myelin oligodendrocyte glycoprotein 

(MOG) (Reynolds and Wilkin 1988; Scolding et al., 1989; Zhang, 2001), MRF/Gm98 

(Koenning et al., 2012), zinc finger protein 488 (Wang et al., 2006) and FABP5 (Sharifi et 

al., 2013). 

 
 
Figure 5. Oligodendrocyte maturation and differentiation. From Podbielska et al., (2013). 
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3. MYELIN 

The term myelin coined by Rudolf Virchow derives from the greek word “myelós” (marrow 

or core). In 18
th

 century, myelin was thought to be within the inner nerve fiber and incorrectly 

linked the substance to bone marrow (Virchow, 1854). Myelin is a complicated structure 

produced by the enrolling of membrane layers around nerve fibers by oligodendrocyte and 

Schwann cells, respectively in the CNS and PNS. 

Myelin presents a unique architecture with a characteristic composition in protein and lipids. 

The most important function of myelin is the electric insulation of nerve fibers resulting in a 

rapid and efficient transmission of action potential signals, well known as saltatory 

conduction. During saltatory conduction, action potentials “jump” among specialized gaps in 

the myelin sheath, called nodes of Ranvier where sodium channels are clustered (Baumann 

and Pham-Dinh, 2001; Jessen, 2004, Freeman et al., 2016). The high specificity of myelin in 

increasing the electrical impulses rate along axons is made possible by the decrease in 

capacitance accompanied with increase in electrical resistance across the axolemma. Myelin 

permits rapid and efficient signal transmission for long distances, thus suggesting an 

evolutionary advantage for organism with larger body size (Hartline, 2008). 

The production of the myelin sheath is referred with the name of myelination or 

myelinogenesis. Electron microscopy studies on mouse brain showed that myelinogenesis 

begins after birth, reaching a pick at P20 and being almost concluded at P60 (Baumann and 

Pham-Dinh, 2001; Vincze et al., 2008). In humans, the myelinating process begins early in 

the 3rd trimester
 
proceeding after birth through the early adult life. The threshold for axon 

diameter myelination ranges from 0.2 µm in CNS to 1 µm in the peripheral nervous system 

(PNS) (Waxman and Bennet, 1972; Voyvodic, 1989). Myelination is a highly demanding 

process requiring energy to synthetize all protein lipids membrane and all the other proteic 

components. 

 

3.1 Myelin composition 

Myelin in situ has a water content of about 40% both in CNS and PNS. The dry mass of 

myelin is composed by a high amount of lipid (80%) and a low quantity of protein (20%), 

thus having a ratio index opposite to the rest of biological body membranes. The high lipidic 

composition of myelin gives a white appearance to the nervous system, hence the coined 

name “white matter”. Lipids are not exclusively present in the myelin, but the same molecules 

are found in membranes spread out in the brain. What is typical of myelin is the specific 
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composition in membranes which is almost composed of cerebrosides, also known as well as 

galactosylceramides. With the only exception of the developmental stage, cerebrosides can be 

referred proportional to the amount of total myelin. 

The galactolipids, mostly represented by galactosylceramides (GalC) and their sulfated 

derivatives, named sulfatides, are around the fifth of lipidic composition of myelin. In the last 

decades, the sulfatides group were considered essential for oligodendrocytes differentiation, 

since the evidence of a great quantity of sulfatides in oligodendrocytes and myelin. 

Conversely, studies with knock-out mice for the UDP-galactose-ceramide 

galactosyltransferase showed that, also in absence of this enzyme, the biosynthesis of myelin 

is not altered and just few difference in myelin structure and in axonal signal conductivity 

were observed (Coetzee et al., 1996). 

In addition to cerebrosides and galactolipids, myelin contains high levels in cholesterol and 

ethanolamine-containing plasmalogens. Among this last group of lipids, lecithin is the majior 

component while sphingomyelin represent just a minority. 

The abundance in cholesterol and the relative presence of lipid microdomains influences also 

biophysical properties of membranes such as fluidity, curving, budding and fission (Huttner 

and Zimmerberg 2001). A high cholesterol amount associates with great myelin membrane 

growth (Saher et al., 2005). Cholesterol is important for partitioning, trafficking, and other 

metabolic properties of myelin such as the formation of membrane subdomains, called lipid 

rafts, (Ikonen and Jansen, 2008) that in last analysis could act as transport unit that deliver 

myelin proteins and lipids newly synthetized to the developing sheaths (de Vries and 

Hoekstra, 2000; Kramer et al., 2001). 

Minor components of myelin include at least three fatty acid esters of cerebroside and two 

glycerol-based lipids, diacylglyceryl-galactoside and monoalkylmonoacylglycerylgalactoside, 

collectively called galactosyldiglyceride.  

The distinctive myelin composition in lipids increases the compaction grade of lateral chains 

of fatty acids, thus facilitating the insulator properties of myelin.  

CNS and PNS have a similar myelin composition. There are few quantitative differences, 

since PNS myelin has less cerebroside and sulfatide and a little more sphingomyelin 

than CNS. 

Proteins and glicoproteins in myelin are the same of the other biological membranes, but in 

lower amount. Polyacrilamide gel electrophoresis technique clarifies that myelin protein 

content has a predominance of Myelin Basic Protein (MBP) and Proteolipid Protein 

(PLP/DM20) proteins that are widely used to classify the late stage of maturation of 
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oligodendrocytes. Another group of myelin proteins, insoluble after solubilization of purified 

myelin in chloroform-methanol 2:1, have been designated as the Wolfgram proteins, which 

include the CNP and other proteins (Wolfgram, 1966). Several glycoproteins are present in 

myelin, among which are the myelin associated glycoprotein (MAG) and myelin 

oligodendrocyte glycoprotein (MOG) (Quarles, 1997). 

MBP is one of the most abundant protein in myelin. The MBP was sequenced in 1971. (Eylar 

et al., 1971). Mice deficient for the MBP gene presented decreased amount of myelin in the 

CNS accompanied by several neurologic disorders such as epilepsy, seizures, tremor. 

The human gene is located to the chromosome 18 with a complex gene structure that is highly 

conserved during evolution (Saxe et al., 1985). As strongly positively charged protein, MBP 

may bind with charged lipid head-groups via electrostatic interactions. The MBP isoforms are 

the result of alternative splicing of a gene also called Golli MBP (=gene of oligodendrocyte 

lineage). mRNA transcripts for MBP have been found not only in the brain but also in bone 

marrow and the immune system. The three major isoforms of MBP have a molecular weight 

of 21.5, 18.5, 17, and 14 kDa in mice and 21.5, 20.2, 18.5, and 17.2 kDa in humans 

(Compagnoni, 1988). A great number of post-translational modifications of the protein, which 

include phosphorylation, methylation, deamination, and citrullination are described (Wood et 

al., 1999; Kim et al., 2003). In mature myelinating oligodendrocytes, MBP redistributes from 

the soma and primary processes into the myelin sheaths, reflecting a change in the site of 

MBP mRNA expression (Barbarese et al., 1999).  

MBP plays a major role in myelin compaction as revealed by studies on the shiverer mutant 

mouse, where a large deletion of the MBP gene results in severe perturbation of myelin 

compaction (Privat et al., 1979). In fact, MBP is thought to be required for facilitating the 

approach of apposed inner leaflets of the plasma membrane, structurally characterized by the 

intraperiod line. 

Proteolipid proteins (PLP) were discovered in 1951 by Folch and Lees by using organic 

solvent extraction technique. Initially, the name “proteolipid” was assumed to distinguish 

these proteins, apparently composed of lipid-protein complexes, from other hydro-soluble 

lipoproteins (Folch and Lees, 1951). The PLP protein has a molecular mass of 25 kDa, 

whereas its most common isoform, the PLP/DM20 has a mass of 20 kDa. Usually, PLP 

migrates higher than its molecular mass due the covalent binding/ligation of acylated to 

cysteine residues at the intracytoplasmatic side or glycosilated domains at the 

extracytoplasmatic side. In humans, the gene coding for PLP is placed at the region position 

Xq22 of the X chromosome, having seven exons which alternative splicing forms the PLP full 
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length protein and its isoform DM20 that lacks the a.a. 116-150 of PLP sequence, thus having 

a deletion of 35 aminoacids (Nave et al., 1987). The human sequence for PLP is identical to 

that one found in mouse. The integral-membrane protein PLP as well as its isoform DM20 is 

transported to the final location in myelin by vesicular transport (Colman et et al., 1982). On 

its way to the plasma membrane, PLP/DM20 associates with cholesterol and 

galactosylceramide in the Golgi complex, which might assist the targeting of PLP/DM20 to 

myelin (Simons et al., 2000). The PLP spans the membrane four times with its 4 alpha-helix 

hydrophobic structure, forming two extracellular and three intracellular domains. As a 

structural protein, PLP plays a major role in assembly and stabilization of the myelin, driving 

the most stable structure formation after membrane layers compaction (Rosenbluth et al., 

2006). 

Experiments performed in mouse oligodendrocytes in absence of PLP gene, demonstrated that 

they are still able to myelinate. Despite this findings, ultrastructural studies revealed a 

condensation in the intraperiodic segments, as also seen in PLP mutants, which reduces 

stability of myelin sheaths. Hence, the integral-membrane PLP could act as biological 

“zipper” that stabilizes the myelin membrane layers (Boison et al., 1995; Klugmann et al., 

1997). 

2’,3’-Cyclic nucleotide-3-phosphodiesterase (CNPase) isoforms, CNP1 and CNP2, 

representing 4% of the total of CNS myelin proteins (Pfeiffer et al., 1993), having a molecular 

mass ranging from 48 to 55 kDa (Baumann and Pham-Dinh, 2001). CNP is mostly expressed 

in the CNS myelin and oligodendrocytes and only partially expressed at the early myelination 

stages in Schwann cells, whereas it concentrates in the cytoplasm of uncompacted myelin, 

inner and outer tongue processes and lateral loops (Siegel et al., 1999; Trapp et al., 1988). 

The CNPase gene is located on the murine chromosome 11 (Bernier et al., 1988) and on 

human chromosome 17q21 (Douglas et al., 1992). The gene consists of 4 exons spanning 7 kb 

which alternative splicing produce the two CNP isoforms, CNP1 and CNP2 (Kurihara et al., 

1990). The protein receives posttranslational modifications such as acylation and 

phosphorylation, especially the larger isoform (Vogel and Thompson, 1988). Cnp null mice 

present normal myelin development and structure (Baumann and Pham-Dinh, 2001; Lappe-

Siefke et al., 2003), whilst present increased inflammation response and progressive structural 

deficits which induce premature mice death. (Edgar et al., 2009; Lappe-Siefke et al., 2003; 

Rasband et al., 2005). Cnp overexpression in transgenic mice perturbs normal myelin 

formation generating anomalous oligodendrocyte membrane expansion (Lappe-Siefke et al., 

2003). 
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The CNPase structure and function in vertebratae were recently reviewed by Myllykoski et 

al., (2016). The CNPase catalyze the hydrolysis of 2’,3’-cyclic nucleotides (Verrier et al., 

2012). CNP display a role in cytoskeletal network of myelin through binding of F-actin and 

tubulin, and overexpression of CNP stimulates process outgrowth (Quarles et al., 2006; Siegel 

et al., 1999). A recent study evidenced the fundamental role of CNPase and MBP interaction 

to regulate the time of myelin compaction during development (Snaidero et al., 2014). 

Myelin-associated glycoprotein (MAG) is a heavily glycosylated protein belonging to the 

family of sialic acid binding lectins, the sialoadhesins, present as minor constituent of myelin 

both in CNS (1%) and PNS (0,1%) (Baumann and Pham-Dinh, 2001). MAG gene includes 13 

exons which alternative splicing generate the 2 isoforms S- and L-MAG which differs for the 

cytoplasmatic domain (S=short; L=long) (Pfeiffer et al.,1993; Siegel et al., 1999). MAG 

glycoprotein play an important role in the axon-myelin interactions by functioning as 

recognition molecule (Pfeiffer et al., 1993) helping oligodendrocyte to recognize myelinated 

from unmyelinated axons (Li et al., 1994; Montag et al., 1994). Another important role of 

MAG could be the inhibition of neurite outgrowth (for a review see McKerracher and Rosen, 

2015). MAG knockout mice display a normal myelination process, while exhibiting subtle 

periaxonal structural abnormalities (Li et al., 1994; Montag et al., 1994; Siegel et al., 1999) 

and developing a dying-back oligodendropathy which affects both myelin and axons 

(Lassmann et al., 1997; Siegel et al., 1999). 

Myelin Oligodendrocyte Glycoprotein (MOG) is a minor glycoprotein of CNS myelin (Lebar 

et al., 1986), exclusively expressed in mammalians with high homology of sequences among 

species (Birling et al., 1993). MOG have a molecular mass spanning from 25-28 kDa which 

eventually forms dimers (Amiguet et al., 1992; Birling et al., 1993). The mouse and the 

human MOG gene present a total length of 12.5 and 19 kb long, respectively, composed by 8 

exons. In humans different alternative variants are described (Pham-Dinh et al., 1995). The 

MOG protein presents a structure with N-terminal domain at the extracellular side displaying 

typical characteristics of an immunoglobulin variable domains (Gardinier et al., 1992; Pham-

Dinh et al., 1993). MOG is located on the plasma membrane of the oligodendrocyte mainly at 

processes side and on the external lamellae of myelin (Brunner et al., 1979). MOG function 

could refer to the maintaining structural integrity of the myelin sheath as well as it could 

interact with proteins of the immune system. Indeed, MOG located at the cell surface, is the 

unique CNS component able to induce an antibody-mediated response and a T-cell mediated 

immune reaction in the animal model for MS, the experimental autoimmune 

encephalomyelitis (EAE) (Linington et al., 1988). 

http://www.sciencedirect.com/science/article/pii/S0006899315007015#bib97
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Figure 6. Structural features of CNS myelin. (A) Architecture; (B) 3D-molecular composition and 

conformation-based assembly and (C) sphingosine 3-O-acetylated galactosylceramide series (from 

Podbielska et al., 2013).  

 
 

3.2 Myelination 

Myelination is defined as the process of synthesis mediated by oligodendrocytes and Schwann 

cells with formation of myelin around axons. Myelin is the results of a complex biosynthetic 

machinery in which newly synthetized molecules are transported to the final destination in 

membranes with a complex trafficking which guarantees a fixed composition in lipids and 

proteins. Myelination is characterized by several steps progression: 

 OPC migration to the axon and proliferation 

 Adhesion to axons 

 Wrapping 

 Compaction 
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At first, OPCs migrates in proximity to the axons to myelinate, while maintaining mitotic 

divisions. OPCs start to express new markers as immature oligodendrocytes. After the 

adhesion to the axon by extending its processes specifically mediated by integrins and its 

derivates laminins, oligodendrocytes start to form the myelin sheath by spiral wrapping of its 

membranes around axon, which finally undergo to compaction phase (Baumann and Pham-

Dinh, 2001). 

During myelination oligodendrocytes change in shape are drived by the reorganization of the 

actin cytoskeleton (Novak et al., 2011). In 2014, Snaidero et al. (2014) described the 

mechanisms underlying the assembly of these multi-layered myelin sheaths. 

The entire myelination process is tightly regulated (for a review see Tauheed  et al., 2016). 

The number of wrappings and thickness of myelin is determined by the axonal properties of 

diameter and brain area interested (Friede, 1972). Friede (1972) described the relation 

between the diameter of the axon and the thickness of myelin with the term “g-ratio”, being 

calculated as the inner and outer perimeter of the myelin sheaths (Das et al., 2011). It was 

reported that the optimal g-ratio value for CNS is approximately 0.77, while in the PNS is 

approximately 0.6 (Chomiak and Hu, 2009). 

Myelination start early in life during developmental stage. In mice, myelination starts at birth 

in the spinal cord and is almost completed at postnatal day 60 (P60) (Baumann and Pham-

Dinh, 2001). In humans, the peak of myelination is registered during the first year, while it 

precedes till the young adult life, as revealed in some cortical areas of the brain (Fields, 2008). 

Myelination direction has been described occurring caudo-rostral in the brain and rostro-

caudal in the spinal cord (Baumann and Pham-Dinh, 2001). During the adult life myelination 

still provides the correct axons electric insulation, whilst OPCs in the adult still persist ready 

to myelinate. 

 

3.3 Remyelination 

Remyelination is an important physiological process in which oligodendrocyte repair 

demyelinated axons, restoring the saltatory conduction and reverting functional deficits 

(Liebetanz and Merkler 2006; Jeffery et al., 1999; Smith et al., 1979) through generation of 

new mature oligodendrocytes. In the adult healthy brain resides a population of adult stem 

precursor cells spread out in the entire CNS called adult oligodendrocyte precursor or NG2-

positive cells. Adult OPC can be induced to proliferate and migrate in vitro after stimulation 

with growth factors such as PDGF and FGF (Wolswijk and Noble 1992, Hinks and Franklin 

1999). After a demyelinating insult, in vivo adult OPCs nearby lesion pass from the quiescent 
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state to a regenerative phenotype, well distinguishable with both morphological changes and 

upregulation of genes, including the oligodendrocytes transcription factors Olig2, Nkx2.2, 

MyT1 and Sox2 (Watanabe et al., 2004; Fancy et al., 2004; Shen et al., 2008). The most rapid 

OPCs response is observed in presence of acute injury-activated microglia and astrocytes 

releasing factors (Glezer et al., 2006; Rhodes et al., 2006).  

After the recruitment of adult OPCs through active migration and proliferation, OPCs 

differentiate into mature myelinating oligodendrocytes. Similarly, to the myelination phase, 

oligodendrocytes increase myelin genes expression and wrap axons with their newly formed 

membranes. Finally, they compact the myelin sheaths. However, this processes often fails 

after successive multiple demyelination insults as occurr in the most advanced stages of MS 

(Franklin and ffrench-Constant, 2008). 

As reviewed by Rodgers et al. (2013), the therapeutic strategies approached to counteract the 

MS digression include the combination of three major cardinal strategies, which include 

(Figure 7):  

 stopping the immune attack against self myelin components through immunomodulatory 

drugs administration; 

 protect the oligodendrocyte from injury; 

 enhance remyelination process both by transplantation of exogenous cells or by stimulating 

the spontaneous repair via endogenous OPCs that regenerate the myelin sheets and prevent 

the further axonal loss. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Combinatorial treatment strategies for multiple sclerosis (from Rodgers et al., 2013).  
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4. IN VIVO MODELS TO STUDY DEMYELINATION AND REMYELINATION 

Several models of demyelination were proposed along decades as primary research effort in 

understanding the cellular and molecular mechanisms basis of demyelinating diseases such as 

the MS (De Vries and Boullerne, 2010; Van der Star, 2012). 

Animal models for MS are significantly used in research since they mimic the complex 

immune-pathological mechanisms of the disease as well. In vivo models are widely 

advantageous for testing novel therapeutic and reparative trials. A single model cannot resume 

all the clinical, radiological, pathological and genetic features of MS. The most common in 

vivo models of demyelinating disease include the experimental autoimmune 

encephalomyelitis (EAE), toxic demyelination, viral infections and transgenic mouse models 

presenting genetic mutations in myelin genes. 

 

4.1 EAE 

The EAE animal model was discovered by Rivers in 1930s as attempt to elucidate the strange 

cases of paralyses consequential to anti-rabies vaccine immunization. (Rivers, 1933). EAE is 

one of the most important animal model for MS, as reproduces many symptoms and 

characteristic of the disease similar to those observed in human MS patients, such as the 

mononuclear cell infiltration, the brain inflammation, the disruption of the BBB and 

demyelination of axonal segments. EAE is a demyelinating autoimmune model disease 

characterized by CD4+ T cell infiltration in the CNS. This model reproduces most of the 

features of MS through the immunization against self-component of myelin by injecting an 

emulsion under skin containing synthetic peptides, that replicate the myelin components such 

as the MOG, MBP or PLP, and an adjuvant to better configure the immunologic reaction. As 

the immunization begins, cells of the immune system activate and proliferate thus increasing 

the number of peripheral antigen-specific CD4+ T cells. T cells enter the CNS, bind 

specifically the myelin antigenic components destroying the integrity of sheaths.  

The effects of EAE model are subjected to enormous variability, thus requiring the 

consideration of parameter such as the animal strain, age and treatment duration (Matsushima 

et al., 2001; Sachs et al., 2014). 

 

4.2 Viral infections 

Several of epidemiological studies have been reported that early viral infections in childhood 

might mediate the immune-attack against nervous tissue then visible in adulthood, with the 

rise of demyelinating  diseases, such as the MS. A genetic susceptibility could have some 
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relevance as critical factor that rely the viral infection to the uprising of MS (Asherio and 

Munger, 2007). To date, there is no specific virus identified as the responsible agent for the 

onset of MS. Epstein-Barr Viruses (EBV) are currently the most accredited viruses group 

having some evidence with the susceptibility to develop the disease (Asherio, 2001; Salvetti 

et al., 2009). Other virus showing a link with the immune attack rise against myelin are the 

influenza virus type A (Markovic-Plese et al., 2005), human papilloma virus (HPV) (Ruiz et 

al., 1999) and human herpes virus type 6 (HHV-6) (Tait and Straus, 2008; Kimberlin and 

Whitley, 1998) which is well known to express some role in mimicking myelin basic protein 

(MBP) sequence. 

Oligodendrocyte may be infected by using several viral models (Atkins 2000; Amor 2010; 

Virtanen and Jacobson 2012). The two most known models include the attack on neurons 

secondarily affecting the myelinating oligodendrocytes, the “inside out model”, and the direct 

attack of myelin, the “outside in model”. 

 

4.3 Toxic models 

The toxic models are widely diffused in remyelination studies. The initial demyelinating 

insult is delivered through focal or systemic administration of a toxin. Focal lesions are 

induced via injection of lysophosphatidylcholine, known as lysolecithin or LPC, or ethidium 

bromide (EB) (Blakemore and Franklin, 2008), antibodies directed against oligodendrocyte 

antigens (Morris et al., 2002; Rosenbluth et al., 2003; Rosenbluth and Schiff, 2009), bacterial 

endotoxins (Felts et al., 2005), 6-aminonicotinamide (Blakemore, 1968), electrolytes (Rojiani 

et al., 1994) or antibodies conjugated to complement. 

The systemic administration of the copper-chelating agent, cuprizone, induces more 

heterogeneous lesion in the CNS (Kipp et al., 2009). 

The copper chelator cuprizone [oxalic acid bis (cyclohexylidene hydrazide)] is a selective 

and sensitive toxin model for demyelinating diseases. The cuprizone, added as a supplement 

to rodent chow, exert its effect specifically on oligodendrocyte energetic balance, by 

interfering with the copper-dependent mitochondrial enzymes cytochrome oxidase and 

monoamine oxidase function. The energetic metabolism failure induces oligodendrocytes 

apoptotic death, hence resulting in an extensive demyelination in the CNS. 

Interestingly, a spontaneous remyelination occurs already 4 days after withdrawal of 

cuprizone. The subsequent reversibility of the model makes the cuprizone an excellent model 

for studying factors which can prevent demyelination and stimulate remyelination. 
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Even the cuprizone is a copper chelator, its demyelinating effect may not be antidoted by 

administration of exogenous copper. 

The cuprizone model has attracted increasing interest during the last decade since, contrary to 

other models of MS, this model provides a highly reproducible system of primary 

oligodendrocytes apoptosis and secondary demyelination. 

The dosage necessary to induce appreciable demyelination is strain- and age-dependent. 

A common protocol used in the last years includes as strain the C57BL⁄6 mice, preferentially 

males, of 8 weeks of age fed with 0.2% cuprizone (w⁄w) for 5-6 weeks, named “acute 

demyelination” protocol. The administration of cuprizone for a period superior to 6 weeks 

induces a “chronic demyelination” with detrimental effects on myelin that difficulty will be 

restored (Matsushima and Morell, 2001; Torkildsen et al., 2008)(Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Characteristics of the cuprizone model.  Image obtained from the web 

http://www.promyelo.de/multiple-sclerosis-models/remyelination-models/. 

 

 

A higher degree of demyelination can be achieved by increasing the dosage of the toxin in the 

rodent chow up to 0.3% (w⁄w) (Lindner et al., 2008). 

Demyelinating lesions have been believed to exist exclusively in the caudal regions of the 

corpus callosum (CC) and in the superior cerebellar peduncles (Matsushima and Morell, 

2001), but more recent studies attest the presence of lesions also in other nervous regions such 

as hippocampus, putamen, cerebellum and even distinct grey matter areas in the cortex (Kipp 

et al., 2009; Nathoo et al., 2014). 
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The primary loss in oligodendrocyte reflects the characterization of pattern III and IV lesions 

described by Lucchinetti et al. (2000), as in the pattern III lesions oligodendrocyte function is 

disturbed and in the patter IV lesions the demyelination secondarily occurs (Lucchinetti et al., 

2000). 

In the cuprizone model, a specific time activation of microglia, macrophages and astrocytes 

occurs, while the BBB, that is defecting and destroyed in other models like the EAE, is 

maintained intact (Torkildsen et al., 2008). 

In C57BL6/J mice the cuprizone induces several behavioral responses spanning from the 

weight loss to the motor-behavioral disabilities. From the third week of cuprizone 

administration mice may present hyperactivity and decreased anxiety behavior. Around the 

fifth week the motor dysfunction becomes more evident and persists many weeks even after 

withdrawal of the cuprizone administration. Also social interaction and impaired bilateral 

sensorimotor coordination are impaired after six weeks of cuprizone intoxication (Franco-

Pons et al., 2007; Hibbits et al., 2009; Liebetanz and Merkler, 2006; Makinodan et al., 2009). 

Stopping the cuprizone administration, the mice weight becomes to the normality.  

After 5 weeks of cuprizone administration the CC is almost completely demyelinated (Figure 

9). The effect of this acute demyelination is still reversible. Conversely, chronic 

demyelination lesions are not completely restored (Komoly, 2005; Stidworthy et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The course of demyelination and remyelination in the medial corpus callosum. Image 

obtained from Gudi et al. (2014). 
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Demyelination and remyelination processes are mostly investigated in the CC through 

different techniques including: 1) the myelin-specific histochemical stainings, such as the 

Luxol Fast Blue combined with the periodic acid Schiff (LFB-PAS) (Matsushima and Morell, 

2001); 2) immunohystochemistry (IHC) by using specific antibodies, such as MBP and PLP, 

binding antigens present in the mature myelin; 3) ultrastructural morphological observations 

of myelin rings with electron microscopy analyses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Corpus callosum septostriatal section. Image obtained from  Kim et al., (2011). 

 

 

In rodent experimental models, both MRI analysis and behavioral tests, as not invasive 

techniques, identified the CC as the region mainly involved in the evolution of demyelinating 

lesions in the cuprizone mouse model (Matsushima and Morell, 2001; Armstrong et al., 2002; 

Nathoo et al., 2014; Adamo et al., 2006; Armstrong et al., 2006; Lindner et al., 2008; 

Thiessen et al., 2013) 

The CC function is associated to the integration of informations between the two 

hemispheres. The callosal agenesis in human brains does not impair superior functions despite 

some defectiveness in speech and motor skills (Paul et al., 2007; Devinsky and Laff, 2003). 

As reported by Paul et al. (2007), the language disability often is linked to the lack of social 

interaction and other autistic symptoms (Paul et al. 2007). The different CC structure also 

associates with motor skills impairment such as the bimanual finger co-ordination.  

In rodents, CC alterations impair motor coordination and balance (Schalomon and Wahlsten, 

2002), thus suggesting that association of both imaging techniques with behavioral tests could 

be an easy and not invasive investigative strategies for longitudinal studies. 
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Figure 11. Cellular and molecular response in the medial corpus callosum during cuprizone-

induced demyelination and remyelination. Image obtained from Gudi et al. (2014).  
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5.  REGULATION OF OLIGODENDROCYTE DEVELOPMENT 

Each step of the oligondedrocyte lineage differentiation is tightly time-space controlled by 

both intrinsic and extracellular factors (Emery, 2010a; Zuchero and Barres, 2013). First 

studies started on OPCs derived from the postnatal CNS (Temple and Raff, 1986; Gao and 

Raff, 1997; Gao et al., 1998). Raff and colleagues proposed that there is an internal clock that 

determined the number of divisions of cultured OPCs in the presence of growth factors (Raff, 

2006, 2007; Wang et al., 2001). Then, many researchers started to enlighten the complex 

regulatory mechanisms of OPC differentiation which are well appreciated in a tight temporo-

spatially manner. 

Recently, great interest has been given to the transcriptional events behind the differentiation 

of oligodendrocytes (Nicolay, 2007; Wegner, 2008; Li et al., 2009; Emery, 2010b). Specific 

environmental and intrinsic regulatory factors orchestry the complex oligodendrocytes lineage 

through various stages of myelination (Emery, 2010a; He and Lu, 2013; Zuchero and Barres, 

2013). 

Here, I summarize some of the most important extrinsic and intrinsic cues controlling 

oligodendrocyte maturation and differentiation. 

 

5.1 Sonic hedgehog, bone morphogenetic proteins and Wnt signaling 

Oligodendrogenesis is committed to the activation of specific signaling patterns such as the 

Shh, BMP and Wnt/β-catenin. 

In the developing spinal cord telencephalon OPC maturation is tightly regulated by the 

morphogenic Sonic hedgehog (Shh) which is secreted from the notochord and floor-plate at 

the ventral mid-line and by neuroepithelial cells in the preoptic area, respectively (Nicolay, 

2007). Shh signaling pattern induces several transcription factors including Nkx2.2, Nkx6.1, 

Nkx6.2, Olig1 and Olig2 (Richardson et al., 1988; Rowitch, 2004). The transcription factor 

Nkx2.2 is not sufficient per se for OPC formation, but is required for the progression of 

oligodendrocyte differentiation and maturation. Nkx6.1 and Nkx6.2 induce the expression of 

Olig2, which indeed is strongly reduced in the spinal cord of Nkx6.1 knockout mice 

(Vallstedt et al., 2005). 

The bone morphogenetic proteins (BMPs) belong to the superfamily of transforming growth 

factor (TGF-β) and regulates cell proliferation and differentiation of several cellular types 

(Chen et al., 2004) including astrocytes and neural progenitor oligodendrocytes (Hu et al., 

2010). BMP signaling antagonizes the effect of Shh-activated specification. In fact, it has 
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been demonstrated that the inhibition of BMP signaling induces OPC formation both in vivo 

and in vitro (Vallstedt et al., 2005; Mekki-Dauriac et al., 2002). 

Sustained BMP signaling activation is necessary for OPC maintenance through upregulation 

of negative regulators of OPC differentiation, such as the inhibitor of DNA binding 2/4 

(Id2/4) (Samanta and Kessler, 2004). 

Interestingly, the morphogen Wnt signaling acts similarly to BMP. By antagonizing dorsal 

OPC specification promotes astrocyte development (Shimizu et al., 2005). Wnt pathway acts 

to stabilize β-catenin protein, which then translocates to the nucleus and forms a complex 

with T-cell factor/lymphoid enhancer factor (Tcf/LEF) to regulate the expression of target 

genes (MacDonald et al., 2009). Even Wnt signaling was considered as a negative regulator 

of the OPC differentiation, a recent study indicates that baseline activation of the Wnt 

pathway is important for OPC differentiation (Fancy et al., 2014). However, unrestricted 

pathological high-activity of Wnt signaling impedes differentiation of oligodendrocytes 

(Fancy et al., 2014). 

 

5.2 Transcription factors 

Besides these environmental cues, which are important to define the domains that will 

generate oligodendrocytes in CNS, cell commitment toward the OLG lineage is regulated by 

the dynamic interaction between transcription factors and also epigenetic factors, including 

microRNA (miRNA) (Liu and Casaccia, 2010). 

In spinal cord and forebrain embryonic neuronal stem cells, the binding of Shh to its receptors 

initiates intracellular signalling cascades that activate or repress transcription factors whith 

visible effect on the oligodendrocyte differentiation. The morphogen sonic hedgehog (Shh) 

secreted in the neural tube (Pringle et al., 1996; Orentas et al., 1999) induces several 

transcription factors including Olig1 and Olig2, Nkx2.2, Nkx6.1, Nkx6.2, (Richardson et al., 

1988; Rowitch, 2004).  

In fact, the first transcription factors that appears in differentiating OPCs, often used as 

markers for early OPCs, are Olig1 and Olig2 (Nikolay et al., 2007). Olig1 and Olig2 are 

transcription factors belonging to the basic helix–loop–helix (bHLH) family expressed during 

fetal development and postnatal brains. Even sharing a similar structure, Olig2 seems to be 

more related to the generation of OPCs in association to Nkx2.2, while Olig1 function is 

linked to OPCs survival and maturation in spinal cord even remains necessary for the 

induction of cortical OPCs (Nikolay et al., 2007). Overexpression of both Olig1 and Olig2 in 
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combination with blocking BMP has recently been shown to enhance oligodendrocyte 

differentiation of adult NSCs (Cheng, 2009). 

Furthermore, two members of the zinc-finger superfamily of transcription factors, Myt1 and 

YinYang1 (YY1), have been recently investigated as potent regulators of OPC cell cycle exit 

towards differentiation phase (Sher et al., 2008). 

Also the SOX family of transcription factors are crucially involved in OPC progression 

lineage (Wegner and Stolt, 2005; Stolt et al., 2006). Sox9 is involved in oligodendrocyte 

specification while Sox10 is required for OPC differentiation (Stolt et al., 2004). Sox5 and 

Sox6 control OPC migration in spinal cord and forebrain (Baroti et al., 2016). 

 

5.3 Growth factors signaling 

The OPCs development from the ventral neural tube results from the interaction of all the 

extrinsic factors cited and the release of specific growth factors, such as PDGF, FGF2, IGF1 

and neurotrophins (NGF, BDNF, NT-3, NT-4/5) Kessaris et al., 2004; Lachapelle et al., 2002; 

Hsieh et al., 2004)  

The platelet-derived growth factor (PDGF) is synthesized during development from both 

astrocytes and neurons. It was described as the first discovered potent mitogen for O-2A 

progenitor cells in vitro (Pringle et al., 1989). PDGF-AA allows signals of survival and 

proliferation to the OPCs niches. As the PDGF-α receptor (PDGF-αR) is one of the first to be 

induced upon Olig2 expression, it can be used as a marker for early OPCs. In PDGF-αR null 

mice, the number of OPCs is dramatically reduced in developing spinal cord, whereas its 

overexpression induces ectopic overproduction of OPC (Calver et al., 1998). 

Interestingly, it has been demonstrated that PDGF-AA acts as survival factor controlling 

oligodendrocyte progenitor proliferation also during the early phase of remyelination both in 

the LPC and cuprizone models (Woodruff et al., 2004; Murtie et al., 2005). PDGF also acts as 

potent chemoattractant for OPC in vitro. 

PDGF-AA ligand binding to the PDGF-αR results in a series of intracellular signaling cascade 

events, including the activation of phospholipase C-γ (PLCγ), phosphoinositide-3 kinase 

(PI3K), the Src family of tyrosine kinases, and the mitogen activated kinases (MAPK) (Heldin 

and Westermark, 1999). 

Fibroblast Growth Factor (FGF) family, including the FGF2, sinergically acts with the 

PDGF-AA as crucial mitogen for OPCs survival and proliferation. FGF upregulates the 

expression of PDGF-αR thus long-lasting the proliferating phase during which OPCs or pre-

oligodendrocytes are able to respond to PDGF (McKinnon et al., 1990). FGF family factors 
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are described to stimulate rapid OPC division while show an inhibitory effect to the final 

oligodendrocyte maturation (Goddard et al., 2001).  

Similarly to PDGF-AA and FGF2, the insulin-like growth factor 1 (IGF1) promotes both 

OPC expansion and differentiation (Ye et al., 2002). 

Oligodendrocyte maturation is facilitated by both IGF1 and thyroid hormone (T3) receptor-

dependent pathways (Barres et al., 1994,1993). IGF-1 has been shown to induce myelination 

in vitro (Mozell and McMorris, 1991) and in vivo (D’Ercole et al., 1996; Werther et al., 

1998). Furthermore, IGF-1 promotes the long-term survival of mature oligodendrocytes in 

culture (Barres et al., 1993) and inhibits mature oligodendrocyte apoptosis in vitro (Cho et al., 

1997; Ye and D’Ercole, 1999).   

It has long been appreciated that these different growth factors interact with each other to a 

certain extent. PDGF, FGF and IGF-1 have been shown to cooperate to promote OPC 

expansion (Goddard et al., 1999; Baron et al., 2000; Jiang et al., 2001). Once they bind their 

receptors, they activate the Erk1/2 or PI3K/Akt signaling pathways to trigger downstream 

effectors (Baron et al., 2000; Frederick et al., 2007). However, their oligodendrocyte specific 

downstream targets are largely unknown. 

NGF, BDNF, NT-3, NT-4/5 are a family of small neurotrophins secreted in the nervous 

system having a crucial role in the regulation of differentiation, migration, proliferation and 

cellular maturation. BDNF is notoriously linked to proliferation, axonal outgrowth and 

myelination in vivo. Neurotrophin-3 (NT-3) has been shown to stimulate OPC proliferation 

and survival via the activation of its receptor trkC (Rosenberg, 2006). 

 

5.4 Ionic signaling through voltage-dependent ion channels 

OPCs express voltage-dependent sodium channels with the classic rapid kinetics in both 

activation and deactivation, and high sensitivity blocked with TTX. Sodium currents are 

required for the early stages of OPCs maturation but not in the subsequent lineage steps (Paez 

et al., 2009a, De Biase et al., 2010, Káradóttir et al, 2008). 

Oligodendrocytes express a wide range of potassium channels during the entire 

developmental stage. OPCs express both voltage- and time-dependent potassium channels. 

Delayed rectifying channels have been found in OPC either in culture (Sontheimer et al., 

1989) and in brain slices (Berger et al., 1991; Chvátal et al., 1997). In cultured cells some of 

the outward rectifying potassium channels are activated by calcium (Sontheimer et al., 1989). 

According to the transcriptome studies of Cahoy et al. (2008), OPCs express high levels of 

members of a newly-identified potassium channel two-pore domain (K2P) family, named 
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TASK-1, TREK-1 and TWIK-1 (Cahoy et al., 2008). K(V)7/KCNQ channels are functionally 

expressed in oligodendrocyte progenitor cells (Wang et al., 2011). OPCs express inwardly 

rectifying potassium channels, including Kir4.1 (Olsen and Sontheimer, 2008) and ATP-

sensitive channels (Butt and Kalsi, 2006). Actually, there is no disease related to potassium 

channel dysfunction in oligodendrocyte lineage cells even in some pathological conditions is 

described for downregulated levels of Kir4.1 channel expression in astrocytes (Olsen and 

Sontheimer, 2008). 

The voltage-gated calcium channels (VDCCs) existence in OPCs remained for many years 

problematic, since the great number of adversal studies. Initially, OPCs and oligodendrocytes 

were thought to be lacking this channels (Southeimer et al., 1989; Barres et al., 1990). More 

recently, the types R- and L-VDCCs were found to be expressed in precursor and immature 

oligodendrotcytes (Chen et al., 2000; Paez et al., 2007; Paez et al., 2009b), probably having a 

role in axon-glial signaling (Chen et al., 2000), cell migration and processes elongation (Paez 

et al., 2009b).  

Recent studies confirmed the presence of the calcium permable Acid-Sensing Ion 

Channels (ASICs) both in cultured oligodendrocytes and in brain slices (Feldman et al., 2008).  

 

5.5 Glutamate receptors signaling 

Oligodendrocytes express different receptors including those of ATP, GABA, Glutamate, 

Serotonin, Acetylcolin and Glycine (Karadiottir and Attwel, 2007). Here, I will focus on the 

role of glutamate receptors in oligodenrocytes due to their relevance in the present study. 

Recently, great evidence on the role of glutamate signaling in oligodendrocyte comes from 

the intimate relation between neurons and oligodendrocytes. Glutamate is the most abundant 

excitatory non-aminoacidic neurotransmitter spread out in the central and enteric nervous 

system of mammals (Dingeldine et al., 1999; Kirchgessner, 2001). The almost totality of 

neurons (90%) forming synapses in the CNS are glutamatergic synapses (Schmidt and Pierce, 

2010). 

Oligodendrocyte expresses all the type of glutamate receptors including ionotropic (iGluRs) 

and metabotropic (mGluRs) during all the lineage progression from OPC to mature 

myelinating oligodendrocytes enabling these cells to sense and respond to the neuronal 

activity (Verkhratsky and Kirchhoff, 2007). The iGluRs are ligand-gated ion channels divided 

into 3 distinct subtypes according to their prototypic agonists: AMPA (α-Amino-3-hydroxy-5-

methyl-4-isoxazolepropionate, Kainate (KA) and NMDA (N-methyl-D-aspartate) receptors. 
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The iGluR receptors are composed by heterogenic assembling of 4-5 subunits, which 

determines the specificity for each receptor.  

AMPA receptors are composed of four major subunits GluR1 to 4 encoded by separate genes 

and assembled in tetramers with different stoichiometry (Sommer et al. 1991, Hollmann and 

Heinemann, 1994)(Figure 12). AMPA are usually permeable to Na
+
, K

+
 and Ca

2+
 when 

lacking the GluR2 subunit, whereas the presence of this subunit make the AMPA receptor 

impermeable to Ca
2+

 (Hsu et al., 2010). The RNA editing of the GluR2 sequence in the pore-

forming site with a change of Q (Glutamine) to R (Arginine) may possible explain the 

exhibition of specific properties such as outwardly rectifying currents and minimal Ca
2+ 

permeability. By contrast, the not edited GluR2 presence associates with inwardly rectifying 

currents and permeability to Ca
2+ 

(Verdoorn et al., 1991; Burnashev et al., 1995).  

Oligodendrocytes express GluR2, 3, 4, 6, 7 AMPA subunits (Patneau et al., 1994; Matute et 

al., 1997; Itoh et al., 2002) which generate a glutamate-evoked inward currents in 

oligodendrocytes both in culture (Barres et al., 1990; Patneau et al., 1994; Gallo et al., 1996) 

and in brain slices (Berger et al., 1992b).  

Although it was initially reported that functional AMPA receptors lack GluR2 subunit in 

oligodendrocytes (Matute et al., 1997), more recently changes in GluR2 subunits levels 

during the different developmental stages have been described. In fact, mature 

oligodendrocytes express GluR2 subunit, while it has not been found in OPCs and immature 

oligodendrocytes (Itoh et al., 2002). This finding may explain the higher susceptibility of 

mature oligodendrocytes to excitotoxic death (Back et al., 2002; Deng et al., 2003). 

Transcriptosome studies performed by Cahoy and co-workers (2008) demonstrated a 

downregulation of AMPA receptor expression during development (Cahoy et al., 2008), 

whilst some functional studies produced controversial results. In fact, either in culture or in 

brain slices, the AMPA receptor response to glutamate was larger in OPCs and immature 

rather than in mature oligodendrocytes (Itoh et al., 2002; Deng et al., 2003). By contrast, 

studies performed in brain slices documented a comparable response at different stages of 

development (Berger et al., 1992b).  

The AMPA receptors have been proposed to play an important role in oligodendrocyte 

development. It has been reported that, by mediating an intracellular Na
+
 influx which blocks 

delayed rectifier potassium channels, AMPA receptor activation leads to the block of cell 

proliferation and differentiation but not of migration (Gallo et al., 1996). Conversely, other 

studies reported that the increased cell migration upon AMPA receptor activation correlated 

with [Ca
2+

]i changes and mGluR-indipendent Gi-coupled proteins activation (Wang et al., 
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1996; Gudz et al., 2006). Recently, AMPA receptor has been detected at synapse connecting 

OPCs to neuronal axons of both white (Kukley et al., 2007; Ziskin et al., 2007) and grey 

matter (Bergles et al., 2000). Unmyelinated axons extent glutamatergic synapses to near 

OPCs which activate in return through binding on their AMPA/kainate (KA) receptors. As 

major effect, the OPCs stop to proliferate and initiate the maturation program towards the 

mature myelinating oligodendrocytes which extent their processes to wrap the axon and 

enrolling it with the concentric myelin sheaths (Kukley et al., 2007; Ziskin et al., 2007). 

The number of AMPA receptors at synapses is reduced when OPCs differentiate into mature 

oligodendrocytes (De Biase et al., 2010; Kukley et al., 2010). In mature myelinating 

oligodendrocytes the expression of AMPA receptors is lower and mainly confined at the soma 

(Salter and Fern, 2005; Káradóttir and Attwell, 2007). 

NMDA receptor subunits are encoded by several genes belonging to 3 major superfamilies 

(Paoletti et al., 2013; Vyklicky et al., 2014), named GluN1-3 or NR1-3 (Collingridge et al., 

2009) (Figure 12). Specifically, GluN1 subunits binds glycine, GluN2 subunits (GluN2A, 2B, 

2C and 2D) binds glutamate and GluN3 subunits (GluN3A and 3B) binds glycine 

(Collingridge et al., 2009). NMDA receptors (NMDARs) display an heterotetrameric 

conformation in which GluN1, GluN2 and GluN3 subunits assemble with differ 

stoichiometry. Typically, the receptor is formed by the assembly of at least two glycine-

binding subunits GluN1 and two glutamate binding subunits (GluN2A, 2B, 2C and 2D 

subunits), other receptors may be composed by GluN1 and GluN3 subunits, or may contain 

all subunits, GluN1 GluN2 GluN3 (Cull-Candy and Leszkiewicz, 2004). 

NMDA receptors are voltage-gated receptors permeable to Na
+
, K

+
 and Ca

2+
. Their activation 

need a membrane potential depolarization which remove the Mg
2+

 from the pore site, and 

require also the binding of either extracellular glutamate and a co-agonist (Glycine or D-

serine) (Dingledine et al., 1999; Wollmuth and Sobolevsky, 2004; Papouin et al., 2012). 

NMDARs are widely distributed through in the CNS with a specific expression pattern 

depending on the cerebral area and the developmental stage (Sanz-Clemente et al., 2013), 

GluN1-GluN2B-GluN3A and GluN1-GluN2B-GluN2D during development, while GluN1-

GluN2A-GluN2B and GluN1-GluN2A-GluN2C in the adult life (Al-Hallaq et al., 2007; 

Brothwell et al., 2008). 

Initially, the role of NMDA receptors in oligodendrocytes was considered controversial, since 

some studies rejected the presence of NMDA receptors in oligodendrocytes. More recently, 

several works underlined the importance of NMDA receptors in mediating [Ca
2+

]i influx 



  

 
 

48 
 

changes during oligodendrocytes differentiation and early myelination (Káradóttir et al., 

2005; Salter and Fern, 2005; Micu et al., 2006). 

A recent paper of Saab et al. (2016) showed the importance of NMDA receptors in 

coordinating the energetic metabolism required during the initial steps of myelination (Saab et 

al., 2016). In particular, an NMDA-dependent mechanism is required to regulate glucose 

uptake in response to axonal glutamate release, thus making possible a metabolic 

communication between oligodendrocytes and axons (Saab et al., 2016). 

NMDA receptors expressed in oligodendrocytes display a characteristic weak sensitivity to 

Mg
2+

 which may be due to the specific receptor composition, mainly formed by NR1, NR2C 

and NR3 subunits which allow NMDA receptors to function even at the normal resting 

potential of oligodendrocytes (Káradóttir et al., 2005; Salter and Fern, 2005; Micu et al., 

2006).  

The physiological role of NMDA receptors in oligodendrocytes needs further investigations. 

In fact, it has been speculated the existence of an extrasynaptic location of receptors in the 

OPCs similarly to the neuronal extrasynaptic sites of NMDA receptors (Kukley et al., 2007; 

Ziskin et al., 2007). NMDA receptors, in fact, have been preferentially detected at 

myelinating oligodendrocytes processes (Káradóttir et al., 2005; Salter and Fern, 2005; Micu 

et al., 2006). 

 

 

 

 

Figure 12. Pharmacological properties of iGluRs. Left panel: NMDA receptors have binding 

pockets on ATD, LBD and TMD layers. Right panel: AMPA/kainate receptors have binding cavities 

for both small molecules and proteins between the ATD-LBD layer, within the LBD dimer interface, 

and within the TMDs. Abbreviations: Amino Terminal Domain (ATD), Ligand-Binding Domain 

(LBD), Transmembrane Domain (TMD). Image obtained from Zhu
 
and Gouaux (2017). 



  

 
 

49 
 

The metabotropic glutamate receptors (mGluRs) are seven transmembrane (7TM) receptor 

belonging to the family of G proteins-coupled protein (GPCRs). The 8 types of metabotropic 

receptors (mGluR1-8) are subdivided into 3 major groups in according to their sequence 

homology, different coupling to intracellular transduction mechanisms and pharmacological 

properties. In particular, mGluRs of Group I (mGluR1 and mGluR5, with their splice 

variants) are Gq-receptors coupled to the activation of phospholipase C (PLC) that hydrolyses 

some membrane phosphoinositides producing IP3 and dyacylglicerol and consequently 

activating the protein kinase C (PKC). Group II (mGluR2 and mGluR3) and Group III 

(GluR4, mGluR6, mGluR7 and mGluR8) are Gi-protein coupled receptors which activation 

has an inhibitory effect on the adenylate cyclase (AC) function, thus resulting in a decrease in 

cyclic AMP levels and blockade of the subsequent pathways (Niswender and Conn, 2010). 

Metabotropic glutamate receptors exert modulator effects on other receptor, such as the 

NMDARs (Skeberdis et al., 2001; Lea et al., 2002). 

OPC cultures express both transcripts and protein levels of mGluRs, preferentially with 

mGluR3 and mGluR5 subunits (Luyt et al., 2003; Deng et al., 2004; Luyt et al., 2006; Cahoy 

et al., 2008). With the only exception of the mGluR3 receptor, the expression level of 

metabotropic receptors decreases during maturation, probably due to a prior role in the 

differentiation stage of oligodendrocytes (Deng et al., 2004; Cahoy et al., 2008; Luyt et al., 

2006). Luyt and coworkers described an [Ca
2+

]i oscillatory pattern mediated by the activation 

of mGluRs, while the only activation of mGluR3 reduces the intracellular levels of cAMP. 

(Luyt et al., 2003; Luyt et al., 2006). Both mechanisms are needed for the motility of OPCs 

(Othman et al., 2003; Gudz et al., 2006), due to a null response occuring in case of individual 

mechanisms activation (Luyt et al., 2006).  

Figure 13. Glutamate receptor expression on oligodendrocyte lineage cells. OPCs are in tight 

connection to the unmyelinated axons. Either OPCs, immature oligodendrocytes, and mature 

oligodendrocytes express glutamate receptors. Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid, NMDA, N-methyl D-aspartate; mGluR, metabotropic glutamate receptor. 

Image obtained from Kolodziejczyk et al. (2010).  
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5.6 Glutamatergic input role on oligodendrocyte lineage 

Several recent studies evidence the importance of glutamate signaling as important effector of 

the intricate myelin plasticity phenomenon. 

Káradóttir and its group elegantly described the importance of glutamate signaling in all the 

oligodendrocyte lineage stages and how it may influence oligodendrocyte migration, 

proliferation, differentiation, myelination and other cellular properties such as cell death and 

regeneration properties (Spitzer et al., 2016). 

Disagreeing to the simple-minded vision which consider neurotransmitters just released at 

synapses, glutamate may be release in many different ways. Glutamate may be released either 

in synaptic and not-synaptic sites. Remarkably, in the synaptic signaling pathway, glutamate 

may be released in a “canonical” vescicular manner when mediated by the complex SNARE 

protein machinery activation. Thus, at synapses, presynaptic neurons releases glutamate in 

activity- and calcium-dependent manner well distinguishable from the other vesicular 

glutamate release which spontaneously and asynchronously occurs in activity-, calcium- and 

SNARE-independent manner (Keaser and Regehr, 2014; Kavalali, 2015). In not-synaptic 

sites, glutamate may be released either in vesicular and not vesicular way occurring in 

activity-dependent or independent manner (Ziv and Garner, 2004). Even few is known about 

non-synaptic release, their role is associated with increased receptor expression in early 

developmental synaptogenesis steps (Furuta et al., 1997; Demarque et al., 2002; Ziv and 

Garner, 2004; Andreae and Burrone, 2015). 

The different way of glutamate release may have some importance in oligodendrocyte lineage 

progression in which a different timing in location and expression of glutamate receptors have 

been described (Káradóttir et al., 2005, 2008; Bergles et al., 2000; Ziskin et al., 2007; Kukley 

et al., 2007). 

Oligodendrocytes receive glutamatergic inputs from unmyelinated and myelinated axons 

(Kukley et al., 2007; Tomassy et al. 2014; Ziskin et al., 2007) both in the white (Káradóttir et 

al., 2005, 2008; Kukley et al., 2007; Ziskin et al., 2007) and grey matter (Bergles et al., 2000; 

Jabs et al., 2005; Lin and Bergles, 2004).  

 

5.6.1 OPC migration 

OPCs migrates and populates the entire CNS. The growth and extension of filopodia are 

necessary for OPCs to sense the environment (Hughes et al., 2013).  

Motility seems to be influenced by the presence of both AMPA/Kainate and NMDA receptors 

which modulate OPCs leading processes. Studies focused on their role in the modulation of 
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the adhesion protein PSA-NCAM (Wang et al., 1996), the αvintegrin-PLP complex formation 

(Gudz et al., 2006) and the Tiam1 signaling (Xiao et al., 2013). In particular, the αvintegrin-

PLP complex seems to bind the GluR2 subunit of AMPA receptors making the channels not 

permeable to calcium (Gudz et al., 2006; Harlow et al., 2015). The lowering in GluR2 levels 

at the membrane increases the AMPA-mediated Ca
2+

conductance. The slight OPCs 

interaction to the extracellular matrix facilitates the progenitors motility.  

Controversial studies argued to the different effect of glutamate on OPC migration in vitro 

(neonatal) and in vivo (postnatal OPCs), mainly due to the respective different glutamate 

receptor pattern expression (Ziskin et al., 2007; Káradóttir and Attwell, 2007). Likely, the 

OPCs might be initially responsive to non-synaptic signaling, such as consequence of 

glutamate transporter reverse operation mode (Káradóttir and Attwell, 2007), whereas acting 

as long-range glutamate signals drive the OPCs migration, by influencing the NMDARs-

dependent dendritic arborization (Andreae and Burrone, 2015). 

 

5.6.2 OPC proliferation 

OPCs continuously proliferate maintaining the endogenous pool of precursors. The role of 

glutamate signaling in proliferating OPCs is found controversial, apparently due to the 

different OPC origin. In fact, in vitro studies performed on OPC cultures (Gallo et al., 1996) 

and in cultured slices (Fannon et al., 2015; Yuan et al., 1998),  glutamate signaling blocked 

OPCs proliferation through the activation of AMPA and Kainate receptors, while it has a 

stimulatory effect on striatal- or SVZ-derived OPCs (Brazel et al., 2005; Redondo et al., 

2007).  

In vitro, the proliferating effect of the PDGF-αR is antagonized via sodium influx through 

AMPA receptor activation. It is now retained that glutamate may work as signal that 

temporally pauses the proliferation thereby allowing the OPCs to reach the axon for the 

correct axon-OPC synapse formation (Borges et al., 1994; Chittajallu et al., 2005; Hossain et 

al., 2014; Larson et al., 2015). 

In vivo, the understanding of glutamate input implication on OPCs proliferation is less 

defined. Proliferation of OPCs is equally increased either as in the case of lost of glutamate 

synaptic input (Mangin et al., 2012) and in case of increased neuronal activity (Gibson et al., 

2014; McKenzie et al., 2014). Curiously, there is also the case of a study in which no 

correlation evidence between glutamate input and proliferation occurs (Hines et al., 2015; 

Mensch et al., 2015). The most interesting explanation of this apparently discrepancy is 

described by Hughes et al. (2013) that suggest a sort of “sensing quorum” case. Indeed, neural 
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activity stimulate OPCs differentiation, but a secondary OPC proliferation response  may 

occur to substitute OPC underwent differentiation, in order to replace the lacking cells in the 

progenitors pool (Hughes et al., 2013).  

5.6.3 OPC differentiation and myelination 

The role of glutamate in OPCs differentiation is still not completely understood. Initially, 

Duncan and colleagues correlated the myelin thickness to the axonal diameter (Duncan et al., 

1934). By using more modern techniques such as nanofibers and OPCs co-cultures, several 

group joined to the point of an existing axonal activity-independent myelination drived by 

axonal diameter which not necessitate of glutamate signaling (Bechler et al., 2015; Lee et al., 

2012; Li et al., 2014).  

Recently, Lundgaad et al. (2013) described a double mechanism in which differentiation may 

occur in both axonal dependent- and independent- activity manner (Lundgaard et al., 2013). 

The differentiating mechanism which depends from the axonal activity seems to date possibly 

being modulated by glutamate, even the real contribute of glutamate is not entirely elucidated. 

Some findings suggest a more complex intervention of both ionotropic AMPA/Kainate and 

NMDARs and metabotropic glutamate receptors (mGluRs) in the OPC differentiation and in 

the general oligodendrocytes homeostasis. (Lundgaard et al., 2013). 

Recent studies evidenced the role of metabotropic glutamate receptors (mGluRs) as initial 

maturation and differentiation step promoters. In fact, mGluRs trigger the upregulation of the 

AMPA receptors expression (Spampinato et al., 2014; Wake et al., 2011; Zonouzi et al., 

2011), thereby mediating a higher calcium influx via ionotropic glutamate receptors iGlurRs. 

The higher calcium influx acts in return with stimulation of early genes explicating their role 

principally in cell growth and differentiation processes (Gallo et al., 1996; Lundgaard et al., 

2013).  The latter phase with increase in myelin proteins production and covering of axonal 

segments is tightly controlled by NMDARs activation via Akt/mTOR pathway. Hence, the 

glutamate input derived from neuronal activity start the myelination program via NMDARs 

activation. (Li et al., 2013; Lundgaard et al., 2013, Káradóttir et al., 2005; Salter and Fern, 

2005; Micu et al., 2006). In mature oligodendrocytes, the roles exerted by glutamate receptor 

is slighter, being both necessary for the myelin maintenance, plasticity and architecture, 

including several structural adjustments such as myelin thickness and Ranvier’s nodes 

conformation (Pajevic et al., 2014; Ford et al., 2015). 
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Figure 14. Ionotropic glutamate receptor expression in oligodendrocytes and OPCs. Image obtained 

from Spitzer et al. (2016). 

 

 

5.7 The Na
+
/Ca

2+ 
exchanger 

The SLC8A gene family encoding Na
+
/Ca

2+ 
exchanger (NCX) family belongs to the 

superfamily membrane proteins of Calcium-Cation-Antiporters (CaCA). The NCX exchanger 

is usually found in the plasmatic, mitochondrial and endoplasmic reticulum membranes of 

excitable cells (Kiedrowski et al., 1994; Patterson et al., 2007). NCX binds Ca
2+

 ions with 

low affinity even displaying a high capacity of transport reaching up to five thousand Ca
2+

 

ions per second (Carofoli et al., 2001). In order to be activated, NCX requires great changes 

in intracellular calcium amount, as occurs after the firing of action potentials in neurons 

(Annunziato et al., 2004)(Figure 15). 

5.7.1 Structure and function 

The Na
+
/Ca

2+
 exchanger is composed of a ten transmembrane segments (TSM1-10) spanning 

in the plasmatic membranes. The first six segments (TSM1-6) are considered N-terminus 

hydrophobic and the remaining TSM7-10 the C-terminus hydrophobic domains. The 

sequence comprised between TSM 2-3 and TSM 7-8 are named α1- and α2- repeats, 



  

 
 

54 
 

respectively at the extracellular and intracellular side where they participate to the ion 

translocation portion architecture. (Nicoll et al., 1996; Ottolia et al., 2005). 

The N- and C-terminus hydrophobic domain are spatially separated by a 550 a.a. long 

sequence, well known as “f-loop” (Nicoll et al., 1999), which role is not associated to the ions 

translocations, whilst it could be the side for the regulatory effects mediated by cytoplasmic 

messengers and transductional events. In fact, the f-loop includes CD1 and CD2 domains 

(Ca
2+

-binding domains) with different sensitivity threshold to Ca
2+

 ion, thus allowing the 

exchanger a more various functioning, whilst CBD1 detect slight increases in cytosolic Ca
2+

 

and CBD2 binds Ca
2+ 

upon Ca
2+

 concentration increases (Annunziato et al., 2004; Gomez-

Villafuertes et al., 2007). A particular autoinhibitory sequence in the N-terminus domain of 

the f-loop, called XIP (exchanger inhibitory peptide) (Maack et al., 2005) was thought being 

activated by calmodulin (Matsuoka et al., 1997). Recently, the crystal structure of the 

bacterial NCX_Mj (Methanococcus jannaschii) has been described having 10 transmembrane 

domains and four sites for the binding of Na
+
 and Ca

2+
 ions (Liao et al., 2012). 

 

 

 

 

Figure 15. Structural architecture of NCX, from Annunziato et al. (2004) 
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5.7.2 Bidirectional operation mode  

The NCX exchanger may work efficiently in a bidirectional manner described as forward and 

reverse operation mode (Annunziato et al., 2004). When intracellular levels of Ca
2+

 increase, 

the NCX exchanger mediated the influx of three Na
+
  for each Ca

2+
 ion exchanged by using 

the electrical gradient of Na
+
 (forward mode). By contrast, when intracellular Na

+
 levels 

increase, as in case of depolarization or in some pathological state, the NCX revert its mode 

of operation by mediating the efflux of Na
+
, restoring the membrane potential. 

 

5.7.3 Role of NCX in oligodendrocytes 

Quednau et al. (1997) demonstrated the presence of NCX isoforms (NCX1, NCX2 and 

NCX3) transcripts in oligodendrocytes. Since there their role in oligodendrocyte maturation 

and differentiation remained unexplored. More recently, our research group evidenced the 

important role of NCX3 in oligodendrocyte lineage progression from OPCs to mature 

myelinating oligodendrocyte (Boscia et al., 2012). In particular, an upregulation of NCX3 

during the differentiation of both oligodendrocytes MO3.13 progenitor and primary OPCs 

occurred when cells were differentiated into mature myelinating oligodendrocyte with 

phorbol-myristate-acetate (PMA) or with thyroid hormones T3 and T4, respectively. Specific 

expression analyses revealed the NCX1 and NCX3 protein and transcripts levels, but not 

those of NCX2, were differentially modulated during OPC differentiation. In fact, NCX1 was 

downregulated and NCX3 was intensely upregulated during OPC maturation. In the same 

study, the importance of NCX3 in oligodendrocytes was evidenced by silencing and knocking 

out studies of NCX3 gene. In fact, NCX3 silencing via siRNA technique prevented myelin 

markers expression upregulation during OPC differentiation. By contrast, NCX3 

overexpression upregulated the myelin marker synthesis. The role of NCX3 role in 

oligodendrocyte was demonstrated by the observation that NCX3 knock out mice show a 

decreased spinal cord size and reduced expression of MBP protein levels (Boscia et al., 2012). 

More recently, the importance of NCX3 in oligodendrocyte has been investigated by our 

research group in an animal model of multiple sclerosis, the MOG-induced experimental 

autoimmune encephalomyelitis (EAE) (Casamassa et al., 2016). NCX3 protein levels were 

found significantly upregulated during the chronic EAE stage in wild type ncx3+/+ mice, 

whilst ncx3-/- mice displayed an impaired response of OPC and a worsening of EAE 

symptoms. These effects were accompanied by a reduced diameter of axons and a dramatic 

decrease in OPC and premyelinating cells in the white matter of spinal cord in ncx3-/- mice if 

compaired to ncx3+/+ (Casamassa et al., 2016).  
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7. D-AMINOACIDS 

In nature, biological molecules, such as sugars and aminoacids, may present a double stereo-

chemical configuration, named chirality, which occurs in a L- and D- form. The D- and L- 

form are mirror images of same compound also named enantiomers or optical isomers. 

D-sugars and L-Aminoacids are the most common forms of structure founded or incorporated 

in organic molecules. 

L-form aminoacids are predominantly present in biological systems as free or aminoacids 

participating to the protein elongation process, while its enantiomer, the optically inversed D-

forms, are found in lower concentrations in mammalians. The recent progress with more 

sensitive analytical technologies, revealed the presence of various D-Aminoacids in 

mammalian tissues including humans (for a review see Fujii et al., 2011). 

D-Aminoacids found in proteins can be the end products of a spontaneous mechanism of 

aminoacidic racemization that occurrs with age (Fuji 2002, 2005) 

D-Aspartate (D-Asp), D-Serine (D-Ser) and D-Alanine (D-Ala) are the only free D-

enantiomers occurring in substantial levels in mammalian tissues. These D-Aminoacids are 

found in both animals and humans in considerable concentrations in the nervous and 

endocrine systems (Hashimoto and Oka, 1997) 

Emerging evidence support a role for some D-Aminoacids as neurotransmitter or 

neuromodulators (Ota and Sweedler, 2012). More recently, a possible role of D-Aminoacids 

as “gliotransmitters” involved in several physiological processes, including dendritic 

morphology, synaptic plasticity and cognition has been proposed (Billard, 2012;  Wolosker et 

al., 2008).  

Alterations in the concentrations of D-Aminoacids might occur in some neurodegenerative 

and neuropsychiatric disorders (Fuchs et al., 2005). 

Initially, the presence of D-Aminoacids found in mammalian tissues were supposed to be 

introduced exclusively through alimentation, since only plants and bacteria are able to 

synthesize D-Aminoacids in free state or incorporated in peptides and protein linkages 

(Corrigan, 1969; Meister et al., 1965). 

7.1 D-Aspartic acid  

In 1992, Nishikawa’s group settled the high performance liquid chromatography (HPLC) 

system to separate isomers in biological samples. Nishikawa and coworkers confirmed the 

presence of free D-Ser and D-Asp in the rodent brains. Afterwards, they discovered the 

enzyme serine and aspartate racemase that synthesizes the D-Ser and D-Asp, respectively. 
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The metabolism of D-Asp is regulated by the enzymes aspartate racemase and D-Asp oxidase. 

Temporal reduction of D-Asp levels depends on the postnatal onset of D-Asp oxidase (DDO) 

activity, the only enzyme able to selectively degrade this D-amino acid (Errico et al., 2012). 

Notably, previous studies debated for decades the existence of the enzyme related to the 

endogenous synthesis of D-aminoacid Oxidase and D-Asp oxidase in mammalians. (Mothet 

and Snyder, 2012). Free D-Asp is inserted in protein chains during the early phases of 

development and the days after birth (Errico  et al., 2012). 

 

 

 

 

 

 

Figure 16. D-Aspartic acid 2D and 3D structure. Images obtained from PubChem web site 

(https://pubchem.ncbi.nlm.nih.gov). 

 

7.1.1 Distribution 

D-Aspartic Acid (D-Asp) is an endogenous aminoacid found in both invertebratae and 

vertebratae (for review see Ota et al., 2012). D-Asp was first found in the nervous system of 

marine mollusks and subsequently in nervous and endocrine tissues of many mammals, 

including humans (Fisher 1991, Hamase 1997, Morikawa, 2007).  

The distinct heterogenous localization in nervous and reproductive tissues suggests a specific 

physiological role. In fact, several studies focused on its function in nervous system 

development and sexual hormones regulation. (Furuchi and Homma, 2005; D’Aniello, 2007; 

Errico et al., 2012;). 

D-Asp levels transiently increase during the development of nervous system but decrease 

after birth at least in the rat (Dunlop 1986, Hashimoto 1993), chicken (Neidle and Dunlop 

1990) as well as in humans (Hashimoto 1993). 

Regional changes in D-Asp levels in the rat nervous system were characterized by Sakai in 

the late ’90 by using immunohistochemistry with specific antibody recognition of D-Asp. The 

major findings of this work was the demonstration of the appearance of D-Asp in the 

hindbrain during the embryonic development of the brain, then spreading out to the forebrain 

area (Sakai, 1998). Initially, D-Asp was found in the cellular soma of neuron at the external 
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layer of the neuro-epithelium and in the axons, suggesting a role of D-Asp in neuronal 

differentiation. Studies in invertebrate animals demonstrated the presence of the D-Asp both 

in the cell soma as well as in neuronal processes. The location of D-Asp in both synaptic 

terminals and in vesicle released from synaptosomes further corroborated the hypothesis of a 

potential role of D-Asp in neuronal and neuroendocrine tissues (Spinelli, 2006; D’Aniello et 

al., 2011). 

7.1.2 Biosynthesis 

D-Asp could be uptaken by dietary alimentation, since it has been demonstrated that both 

plants and bacteria are able to synthetize it through the bactivation of enzymatic pathways 

including racemase and transaminase enzymes (Lamont, 1972; Gosling and Fottrell 1978; 

Ogawa 1973). 

Studies with the rat pheocromocytome PC12 cells demonstrated how these cells did not 

spontaneosly uptake exogenous D-Asp, indeed they convert the L-Aspartate (Long 1998, 

2000, 2002). Other groups hypothesize the intracellular synthesis pathway by the interaction 

of racemase and transaminase enzymes acting on the aspartyl residues of existing peptides 

(Homma 2007, Katane and Homma 2011). In this regard, other groups studied the synthesis 

of D-Asp from the L-Aspartate by using radiolabeling techniques (Wolosker, 2000). 

D’Aniello et al. (2011) suggested that the D-Asp synthesis may occur in the soma being lower 

D-Asp levels in the synaptosomes and synaptic vesicles if compared to the whole brain 

(D’Aniello et al., 2011). 

In the last years, other possible biosynthetic pathway of D-Asp were proposed in 

mammalians, being present mitochondrial aminoacid transaminases in chicken and E.Coli 

(Kochhar and Christen, 1992; Vacca et al., 1997). The same mechanism was reported in 

plants (Funakoshi, 2008). Fujii’s group demonstrated the spontaneous isomerization of L-

Aspartic acid residues in proteins resulting in the release of free D-Asp (Fujii, 2002). 

7.1.3 Uptake, transport, degradation and release 

Uptake and accumulation of extracellular D-Asp was followed in experiments by using [3H] 

radiolabeled D-Asp. D-Asp is distributed both in neurons (Scanlan et al., 2010) and in glia 

(Kimmich et al., 2001; Gadea et al., 2004; Lau et al., 2010). D-Asp uptake was supposed to 

be carried in by the L-glutamate transporter following the Na
+
 gradient. The L-Glu transporter 

showed a similar affinity for L-Asp and L-Glu, thus suggesting a competition for the same 

transport (Kanai and Hediger, 1992). 
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The removal of D-Asp is mediated by the enzyme D-Asp Oxidase (DAspO) that degrades the 

dicarboxylic D-Aminoacids via oxidation such as in the case of the D-Asp, D-Glu and 

NMDA. For the rest of D-Amino enantiomers, the degradation is settled by the D-Amino 

Acid Oxidase DAAO (D’Aniello 1993a and c). The DAspO gene has been found activated in 

several higher mammals such as human brains (Setoyama and Miura 1997; Katane et al., 

2007a; Simonic et al., 1997). DAspO was found in peroxisome of both humans and rat liver 

(Vanveldhoven et al. 1991; Katane et al. 2010). 

Several studies demonstrated the release of D-Asp upon electrical and chemical stimulation in 

a Ca
2+

-dependent manner (Scanlan et al., 2010; Wolosker, 2000). Savage and colleagues 

investigated the D-Aspartate and L-Glutamate release with radiolabeling in hippocampal 

slices (Savage, 2001). D-Asp release was blocked by treating synaptic vesicles with toxin or 

magnesium, and just moderately decreased by using antagonists for the voltage-gated Ca
2+

 

channels. Spontaneous release of D-Asp occurred in PC12 cells (Long, 1998) either in the 

intracellular and in the extracellular environment, in absence of external stimulations. 

7.1.4 Function 

The D-Asp received great attention since it was supposed to function as neurotransmitter and 

neuromodulator (Spinelli et al., 2006; Brown et al., 2007; D’Aniello 2007; Fieber et al., 2010; 

Scanlan et al., 2010; D’Aniello et al., 2011), being synthesized and delivered upon 

stimulation by synaptic terminals and by modulating the depolarization state of post-synaptic 

membrane in presence of other neurotransmitters (Kandel et al., 2000; Ota et al., 2012). Even 

recent findings about D-Asp, the exact receptor binding the D-Aminoacid remains still 

unknown. D-Asp may activate the NMDA receptors (Verdoorn and Dingledine, 1988). D-Asp 

is able to activate the L-Glu receptors in the same manner of the L-Glutamate. It may increase 

the second messenger cAMP levels both in rat and L.Vulgaris, suggesting a possible role in 

intracellular signaling pathways (D’Aniello et al., 2011). 

Moreover, even its role as neurotransmitter acting in short cell-to-cell signaling, D-Asp was 

supposed to have also a hormone-like role in the neuroendocrine system, since it may regulate 

steroid hormone synthesis in rat pituitary glands and testis, increases the LH and GH 

hormones and prolactin release (D’Aniello 2000a and 2000b, Nagata 1999) by acting in both 

cAMP/cGMP dependent (Topa 2009) and independent mechanisms (Nagata 1999a and 

1999b). 

D-Asp may serve as precursor of endogenous synthesis of NMDA via activation of D-Asp 

methyltransferase enzyme, also namend NMDA synthetase, that converts D-Asp in NMDA 

through transfer of a methyl residue (D’Aniello 2000a and 2000b) 
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D-Asp Oxidase may oxidate and degrade also NMDA (D’Aniello 1993a and 1993c). 

Nuclear function for D-Asp were hypotized as it was discovered in nucleoli (Wang 2002) and 

it was associated to changes in supercoiled DNA (Bharathi et al., 2003). 

D-Asp acts as an endogenous agonist of NMDA receptors and its effect on this receptor has 

been associated with cognitive processes like learning and memory. D-Asp activate the 

NMDA receptor after binding of the L-Glutamate site (Fagg and Matus, 1984). D-Asp 

enhances LTP in mouse hippocampus (Errico et al., 2008a) and ameliorates rat spatial 

learning and memory skills in rats (Topo et al., 2010). Remarkably, reduced levels of D-Asp 

were found in Alzheimer’s brains (Fisher 1991, D’Aniello 1998).  

D-Asp may also act on AMPA receptors, although both stimulatory and blocking effects have 

been reported (Gong et al., 2005; Errico et al., 2012; Krashia et al., 2017 ). 

Interestingly, recent works speculate a possible correlation between altered levels of D-Asp 

and several mental disorders such as Alzheimer’s disease and schizophrenia (D’Aniello 2007; 

Katane and Homma 2011). 
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AIM OF THE STUDY 

Previous studies demonstrated that the impaired myelin sheath regeneration in demyelinating 

conditions as occurs in multiple sclerosis (MS) is significantly associated with the failure of 

oligodendrocyte precursors cells (OPC) differentiation. A significant current drive in new MS 

therapeutics is to identify pharmacological compounds that promote remyelination by 

boosting OPC to form new myelin before axons become irreversibly damaged (Crawford et 

al., 2014; Franklin et al., 2012; Hauser et al., 2013).  

Electrical activity induced by glutamate signaling has been shown to regulate OPC 

proliferation, differentiation, and myelination (Wake et al., 2011). In particular, mounting 

evidence suggests that [Ca
2+

]i signaling through glutamate receptors and the Na
+
/Ca

2+
 

exchanger NCX3 may influence oligodendrocyte development, myelin synthesis and 

remyelination processes (Gautier et al., 2015; Friess et al., 2016; Boscia et al., 2012; 

Casamassa et al., 2016). 

Recently, D-Aminoacids are emerging as important molecules with several important 

physiological roles in glial cells. Among them, D-Asp, plays an important role during nervous 

system development and in the neuroendocrine system as it is currently commercially 

available as supplement for fertility and cognition. The observation that D-Asp has been 

detected in considerable levels in the human white matter (Man et al., 1987) and it may 

influence NMDA receptor signaling in oligodendrocytes led us to investigate the effects of D-

Asp treatment on oligodendrocytes both in vitro, during OPC differentiation, and in vivo, in 

mice fed with the copper chelator cuprizone, an animal model to study demyelination and 

remyelination processes. 

The overall objective of this study was to investigate the effect of D-Asp exposure on OPC 

differentiation and during demyelination and remyelination processes in an animal model of 

multiple sclerosis, the cuprizone model. 

In details, the specific aims of our study have been:  

1) to determine whether OPC differentiation may be influenced by D-Asp exposure in human 

oligodendrocyte MO3.13 progenitors. To this aim, we performed quantitative RT-PCR and 

Western Blot experimentes for myelin markers in presence or in absence of D-Asp 

exposure.  

2) to investigate by means of RT-PCR analyses, the effects of NMDA and NCX3 blockers on 

D-Asp-induced myelin transcripts increase. 
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3)  to investigate, by using single-cell Fura2-AM video imaging the intracellular [Ca
2+

]i levels 

after D-Asp exposure. The contribution of NMDA and AMPA receptors, and the NCX3 

exchanger to D-Asp-induced [Ca
2+

]i increase have been studied both in MO3.13 cells and 

primary rat OPC. 

4) to investigate, by using behavioral testing, Western Blot, Confocal and Electron 

Microscopy, the effects of D-Asp treatment in the cuprizone model of demyelination and 

remyelination, during cuprizone feeding (demyelination) and after cuprizone withdrawal 

(remyelination). 
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CHAPTER II 

MATERIALS AND METHODS 
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II. MATERIALS AND METHODS 

 

1. Animals 

Male C57BL/6 mice aged 2 months were housed in a temperature and humidity controlled 

room under diurnal lighting conditions. Animal handling and care was in accordance with the 

International Guidelines for Animal Research and the experimental protocol was approved by 

the Animal Care and Use Committee of “Federico II” University of Naples. Wild-type 

ncx3+/+ and knockout ncx3−/− mice (Sokolow et al., 2014) were provided by Dr. S Sokolow 

(UCLA School of Nursing, Los Angeles, CA, USA) and Dr. A Herchuelz (Faculté de 

Médecine, Université Libre de Bruxelles, Brussels, Belgium).  

 

2. Cell Cultures 

The human oligodendrocyte MO3.13 cell line and D-Asp exposure  

The MO3.13 cell line is an immortalized human clonal model that expresses the phenotypic 

characteristics of OPCs (McLaurin et al., 1995; Boscia et al., 2012). Cells were cultured in 

Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum 

(FBS), 100 U/ml penicillin, 10 μg/ml streptomycin, and 2 mmol/l –glutamine (Normal 

Medium). To induce an oligodendrocyte phenotype, human MO3.13 cells were cultured in a 

serum-free chemically defined medium composed of DMEM supplemented with 500 μg/l 

insulin, 100 μg/ml human transferrin, 0.52 μg/l sodium selenite, 0.63 μg/ml progesterone, 

16.2 μg/ml putrescin, 100 U/ml penicillin, 100 μg/ml streptomycin, 2 mM glutamine (OPC 

medium), and containing 100 nM Phorbol-12-Myristate-13-Acetate (PMA) or D-Asp  for 3 

days in vitro (DIV). 10-200 m D-Asp was added in absence of PMA every day, by replacing 

the medium, and for 3 days.  

 

3. Rat and mouse primary OPC cultures and D-Asp exposure 

Purified OPC cultures were prepared as previously described (Boscia et al., 2012). In brief, 

primary mixed glial cell cultures were isolated from the cerebral cortex of postnatal day 1 

Wistar rats or C57BL/6 mice, dissociated into single cells, and cultured into poly-L-lysine 

(Sigma-Aldrich, St. Louis, MO, USA)-coated tissue culture flasks in Normal medium at 37 °C 

in a humidified, 5% CO2 incubator (Boscia et al., 2009). Once confluent (after 7–9 days), the 

microglia were separated by mechanical shaking of flasks on a rotary shaker for 60 min at 180 

r.p.m. and removed. The cultures were then subjected to an additional 16 h of shaking at 180 

r.p.m. To minimize contamination by microglial cells, the suspension of detached cells was 
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incubated twice for 40 min at room temperature (RT). The non-adhering OPCs were plated 

into 10µg/ml polyD-lysine-coated plates in Normal medium and maintained at 37 °C in a 

humidified, CO2 atmosphere. This procedure yields 98% A2B5-positive cells. Six hours after 

plating, the culture medium was replaced with OPC medium supplemented with 10 ng/ml 

PDGF-AA and 10 ng/ml bFGF each day for 3 days to maintain the undifferentiated state and 

support OPC survival. Then, PDGF and bFGF were withdrawn from the OPC medium and 

were exposed to D-Asp for 3 days. For electrophysiological and microfluorimetric 

experiments, cells were seeded on glass coverslips coated with 10 ng/ml poly-L-lysine. 

 

4. Quantitative Real-Time PCR 

Total RNA was extracted from human MO3.13 cells using Trizol (Invitrogen, Milan, Italy). 

After DNase-I treatment (1 U/ml; Sigma-Aldrich) for 15 min at RT, the first-strand cDNA 

was synthesized using 5 mg of the total RNA and 500 ng of random primers by using the 

SuperScript (high capacity cDNA RT kit; Applied Biosystems, Monza, Italy). Using 1/10 of 

the cDNAs as a template, quantitative real-time PCR was performed in a 7500 fast real-time 

PCR system (Applied Biosystems) by using the Fast SYBR Green Master Mix (cod. 4385610; 

Applied Biosystems). Samples were amplified simultaneously in triplicate in one assay run 

for 40 cycles with a single fluorescence measurement. PCR data were then collected by using 

the ABI Prism 7000 SDS software (Applied Biosystems). Afterwards, the products were 

electrophoretically separated on 3% agarose gels and bands were visualized with ethidium 

bromide and documented by using the Gel Doc Imaging System (Bio-Rad, Hercules, CA, 

USA). Normalization of data was performed by using ribosomal protein β-Actin as an internal 

control; differences in mRNA content between groups were calculated as normalized values 

by using the 2_DDC t formula and the results were tested for significance by using the 

Relative Expression Software Tool (REST). The oligonucleotide sequences were as follows: 

NCX1: 5’-CTGGAGCGCGAGGAAATGTTA-3’ and 5’-GACGGGGTTCTCCAATCT-3’ ; 

NCX3: 5’-GGCTGCACCATTGGTCTCA-3’ and 5’-GACGGGGTTCTCCAATCT-3’;          

β-Actin 5’-TGCTGTCCCTGTATGCCTCT-3’ and 5’GATGTCACGCACGATTT-3’. 

 

5. Western blotting 

Protein samples were separated on 8-15% polyacrylamide gel and electrophoretically 

transferred onto nitrocellulose membranes 0,22 µm filter pore. Filters were probed using the 

indicated primary antibodies: polyclonal anti-CNPase (1:400; Santa Cruz Biotechnology Inc., 

Santa Cruz, CA, USA), polyclonal anti-MBP (1:1000; Millipore), polyclonal anti-GFAP 
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(1:1000; Sigma), polyclonal anti-NF-200 (1:1000; Sigma), monoclonal anti-α-tubulin 

(1:1000; Sigma), polyclonal anti-Amyloid precursor protein (APP) (1:1000, Abcam), 

monoclonal mouse anti-Iba1 (1:2000, Dako). Proteins were visualized with peroxidase-

conjugated secondary antibodies, using the enhanced chemiluminescence system (Amersham-

Pharmacia Biosciences LTD, Uppsala, Sweden).  

 

6. Microfluorimetric [Ca
2+

]i measurement 

Intracellular changes in [Ca
2+

]i were measured by single-cell FURA-2AM video-imaging 

technique, as previously described (Secondo et al., 2005). Oligodendrocyte MO3.13 

progenitors were plated on 10g/ml poly-L-lysine glass coverslip, and after 24 hours of 

incubation in OPC medium were loaded with 6 μM FURA-2 AM for 30 minutes at 37 °C in 

normal Krebs solution containing 5.5 mM KCl, 160 mM NaCl, 1.2 mM MgCl2, 1.5 mM CaCl2, 

10 mM glucose, and 10 mM HEPES-NaOH (pH 7.4). Then, coverslips were placed into a 

perfusion chamber (Medical System Co., Greenvale, NY, USA) and mounted onto the stage 

of an inverted Zeiss Axiovert 200 microscope (Carl Zeiss, Milan, Italy). Images were 

acquired with a FLUAR x40 oil objective, whereas cells were alternatively illuminated at 

wavelengths of 340 and 380 nm by a Xenon lamp.  

[Ca
2+

]i oscillations were identified and quantified using a computer program written in Java 

computer language as reported in Secondo et al., (2005). Briefly, for each single cell, the 

software calculated the [Ca
2+

]i mean ± SD during the baseline recording interval before drug 

addition; these values were used to define a cutoff to identify [Ca
2+

]i oscillation, which was 

set at mean [Ca
2+

]i ± 1 SD. Subsequently, the software identified as a single [Ca
2+

]i oscillation 

each group of consecutive [Ca
2+

]i values higher than this cutoff point. To quantify the effect 

of specific pharmacological treatments on the occurrence of [Ca
2+

]i oscillations, the 

oscillation frequency was used to define the number of peaks divided by the duration of 

observation. In control experiments, no significant changes in the frequency occurred after the 

addition of drug vehicle.  

The initial calcium peak was quantified and expressed as % of [Ca
2+

]i  peak versus basal 

values of calcium.  The NMDA receptor antagonist MK-801 and the AMPA receptor blacker 

DNQX were incubated 10 minute before microfluorimetric Ca
2+

 oscillations recordings. 

 

7. Electrophysiology 

AMPA currents were recorded from human oligodencrocyte MO3.13 precursors by using 

patch-clamp technique in whole-cell configuration using a commercially available amplifier 
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Axopatch200B (Molecular Devices, CA, USA) and data were acquired with a Digidata1322A 

acquisition system (Molecular Devices, CA, USA) and pCLAMP 10 software (Molecular 

Devices, CA, USA). Patch borosilicate glass pipettes were prepared with a puller (Narishige, 

PC-10, Tokyo, Japan). The resistance of the pipette was 4–5 MΩ. The dialyzing pipette 

solution contained the following (in mM): 100 Cs-gluconate, 10 tetraethylammonium (TEA), 

20 NaCl, 1 Mg-ATP, 0.1 CaCl2, 2 MgCl2, 0.75 EGTA, and 10 HEPES, adjusted to pH 7.2 

with CsOH.  The cells were perfused with external Ringer’s solution containing the following 

(in mM): 126 NaCl, 1.2 NaHPO4, 2.4 KCl, 2.4 CaCl2, 1.2 MgCl2, 10 glucose, and 18 

NaHCO3, pH 7.4. The holding potential was maintained at -70 mV in order to record AMPA 

(Sekiguchi et al., 2002; Brown et al., 2007; Schurmann et al., 1997; Kung et al., 2013). 

Signals were low-pass filtered at 5 kHz, sampled at 10 kHz. Drugs were applied using a hand-

held pipette and used at the following concentrations: 1-100 µM AMPA, 100 µM D-Asp and 

10 µM DNQX. 

 

8. Silencing 

Silencing of NCX3 in MO3.13 cells was performed by using the HiPerFect Transfection kit 

(Qiagen, Milan, Italy), by using two different FlexiTube siRNAs for NCX3, (#7) 

Hs_SLC8A3_7 (5’-ACCATTGGtCTCAAAGATTCA-3’) and (#8) Hs_Slc8A3_8 (5’-

CACCACGCTCTTGCTTCCTAA-3’), and a validated irrelevant AllStars siRNA as a 

negative control (siCtl). Cells were incubated with OptiMEM (Invitrogen) supplemented with 

the RNAiFect Transfection Reagent (Qiagen) and 20 nM of each siRNA duplex for 15 h. 

Then, cells were incubated in culture medium for an additional 48–96 h. The construct 

expressing NCX3–Flag (GeneCopeia, Rockville, MD, USA) was transiently transfected with 

a standard procedure using Lipofectamine 2000 (Invitrogen). 

 

 

9. Cuprizone-induced demyelination/remyelination and D-Asp treatment protocols 

Experimental toxic demyelination was induced by feeding 8-week-old male C57BL/6 mice a 

diet with 0.2% (w/w) cuprizone [oxalic bis-(cyclohexylidenehydrazide); Sigma–Aldrich] 

mixed into milled chow pellets (Harlan Laboratories)  Food containing cuprizone was 

changed every 2 days for 5 weeks (Torkildsen et al., 2008; Sachs et al., 2014). 

The effects of D-Asp administration were investigated during cuprizone-induced 

demyelination and during remyelination, after cuprizone withdrawal (n=6-8 animals per 

group).  
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To analyze the effects of D-Asp on acute demyelination, animals were divided into 4 groups: 

(1) control mice, which were fed with normal chow for all the time of experiments (5 weeks); 

(2) control D-Asp mice, which received 20mM D-Asp in drinking solution for 5 weeks; (3) 

cuprizone mice, which were fed with 0.2% cuprizone for 5 weeks; (4) cuprizone plus D-Asp 

mice, which received 20mM Dasp in drinking solution and were fed with 0.2% cuprizone for 

5 weeks.  

To analyze the effects on remyelination, animals were divided into five groups: (1) control 

mice, which were fed with normal chow for all the time of experiments (7 weeks); (2) control 

D-Asp mice, which received 20mM D-Asp in drinking solution during remyelination, for 2 

weeks after cuprizone withdrawal; (3) Cuprizone mice, which were fed with 0.2% cuprizone 

for 5 weeks, and maintained with normal chow feeding for 2 weeks after cuprizone 

withdrawal; (4) cuprizone plus D-Aspartate mice (REM 4-7), which received cuprizone for 5 

weeks, and 20mM D-Asp in drinking solution one week before cuprizone withdrawal, and 

maintained with normal chow feeding for 2 weeks; (5) cuprizone plus D-Asp mice (5-7), 

which received cuprizone for 5 weeks, and 20mM D-Asp in drinking solution after cuprizone 

withdrawal (REM 5-7) (Table 1). 

 

 

 

Table 1. Demyelination (DEM) and remyelination (REM) protocols adopted in the 

present study. 
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10. Behavioral testing 

10.1 Beam Balance. Sensory-motor co-ordination was evaluated by beam balance test. 

Balance beam apparatus consist in 1 cm wide and 50 cm long beam, elevated 50 cm from the 

work-surface with a 10 degree inclination. In order to prevent mice injury, a soft sawdust-pad 

attenuates the mice foot-slips. During the training session the mice were individually placed at 

the start of the beam and allowed to freely transverse till the end of the runway where a 

resting box was located. After training mice returned to their home cages. The test consisted 

of three trials spaced out at least 5 minutes. The experiment was repeated for 3 consecutive 

days. During the session test the latency to transverse the beam has been timed by the 

operator. 

 

10.2 Rotarod. Rotarod performance is a widely used motor test to evaluate motor 

coordination and balance in rodents. The rotaraod apparatus consists in a rotating rod with 

forced motor activity applied (Panlab Harvard Apparatus, LE8200 device) with variable 

speeds determined empirically. Rotarod test provides an easy solution to study the effect of 

drugs, brain damage, motor diseases in rodents (Franco-Pons et al., 2007). In this study two 

different rotarod protocols were performed. In the first protocol, the apparatus rotation was set 

at a constant rate of 16 rpm and the number of falls recorded during 60 seconds. In the second 

protocol, the rod is accelerated (20 rpm/min, from 0 to 16 rpm in 48 seconds) then maintained 

at constant rate of 16 rpm rotation. The time latency to fall from the rod was automatically 

recorded (seconds) for each animal. When the animal safely drops into a plastic lane below, 

the test is considered concluded and the final time recorded (maximum 3 minutes). The 

experiment consisted in three consecutive sessions conducted with an inter-trial interval of 10 

min. The experiment was repeated for 3 consecutive days.  

 

11. Confocal microscopy 

Mice were deeply anesthetized with Zoletil 100 (zolazepam/tiletamine, 1:1, 10 mg/kg, 

Laboratoire Virbac) and Xilor (xilazine 2%, 0.06 ml/kg, Bio98), and transcardially perfused 

with 4% (wt/vol) paraformaldehyde in 0.1M phosphate buffer (McCarthy and de Vellis 1980; 

Boscia et al., 2012). Brains were cryoprotected in 30 % sucrose and sectioned coronally at 40 

μm on a cryostat. After being blocked with Rodent M Block (Biocare Medical, Concord, CA, 

USA) for 60 minutes to block non-specific binding, sections were incubated with primary 

antibodies for 48 hours. The primary antibodies used were the following: polyclonal anti-

NF200 (1:1000, Sigma, Milan, Italy); monoclonal anti-MBP (1:400, Covance). Subsequently, 

sections were incubated with corresponding fluorescence-labeled secondary antibodies 
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(Alexa-488- or Alexa-594-conjugated anti-mouse or anti-rabbit IgGs).  Hoechst-33258 was 

used to stain nuclei.  

 

12. Quantitative data analysis 

All stainings and morphological analyses were blindly conducted (Boscia et al., 2008; Boscia 

et al., 2012). Images were observed using a Zeiss LSM 700 laser (Carl Zeiss) scanning 

confocal microscope. Single images were taken with an optical thickness of 0.5 µm and a 

resolution of 1024x1024. The MBP fluorescence intensity on coronal tissue sections of mice 

corpus callosum was quantified in terms of pixel intensity value by using the NIH image 

software ImageJ boundled to JAVA ‘co-localization highlighter’ (NIH, Bethesda, MA, USA). 

Digital images were taken with 60× objective and identical light intensity and exposure times 

were applied to all the photographs from each experimental set. Images from the same areas 

of the middle septostriatal corpus callosum were compared. Before analyses, colocalization 

threshold settings for each image were determined, and quantification was achieved by 

counting the number of MBP and NF200 colocalized points (white) per microscope field. 

Percentage of colocalization among MBP and NF200 signals was achieved by mathematical 

analysis according to the software features and represented as white dots. 

 

13. Electron microscopy 

Brains were fixed 4% PAF and 2.5 % glutaraldehyde in 0.1M phosphate buffer. Then, small 

blocks of tissue were post-fixed in uranyl acetate and in OsO4. After dehydration through a 

graded series of ethanol, the tissue samples were cleared in propylene oxide, embedded in the 

Epoxy resin (Epon 812) and polymerized at 60°C for 72 h. From each sample, thin sections 

were cut with a Leica EM UC7 ultramicrotome. Thin sections were further investigated using 

a FEI Tecnai-12 (FEI, Eindhoven, The Netherlands) electron microscope equipped with a 

Veletta CCD camera for digital image acquisition. 

 

14. G-ratio 

The G-ratio value were obtained by dividing the diameter of each axon by the combined diameter of 

axon and myelin. Assuming that every axon was perfectly circular, the diameter was calculated with 

the formula: diameter = C/ π  (C=Circumference or axonal/myelin perimeter; π= Pi). Selected areas in 

the middle corpus callosum were imaged on the electron microscope at a fixed magnification (20X). 

Images were semiautomatically analyzed by using g-ratio calculator Image J tool (National institute of 

health, Bethesda, MD, USA). At least 100 axons were measured per group, and at least 3 animals were 

analysed per condition (n=3). 
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15. Hormonal dosage 

Cells were collected and centrifuged at 3.000 rpm for 5-10 min. Pellets were homogenised 

with 200 µl of 80% methanol and centrifuged at 13.000 rpm for 2 minutes. The supernatants 

were transferred in 1.5 ml epperdorf tube and dried by evaporation at 40-45°C under the hood 

aspiration. Then, the residue of each tube was dissolved in 100 µl of Tris-HCl 0.05 M pH 7.5 

containing 2 mg/ml bovine serum albumin (BSA) and testosterone, progesterone and 17β-

estradiol levels were determined using the ELISA method with the corresponding reagent kits 

from DIAMEDRA s.r.l., Segrate (MI), Italy. 

 

16. Statistical analysis 

The data are expressed as the mean ± S.E.M. of the values obtained from individual 

experiments. Statistical comparisons between controls and treated groups were performed by 

ANOVA one-way analysis of variance followed by Tuckey’s Post Hoc Test. P value was 

significant for values P<0.05.  
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CHAPTER III  

RESULTS 
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III. RESULTS 

 

1. D-Aspartate exposure stimulates oligodendrocyte differentiation and upregulates 

hormone levels in OPC cells 

Quantitative RT-PCR experiments revealed that, when MO3.13 cells were exposed to 10-200 

M D-Asp or PMA for 3 days, a significant dose-dependent increase in CNPase and MBP 

transcripts was observed (Figure 17A-B). In accordance, Western blotting experiments 

revelaed that 100µM D-Asp exposure upregulated MBP protein levels, as shown in Figure 

17C.  In accordance with the well-known role of D-Asp on steroidogenesis (D'Aniello, 2007), 

when MO3.13 cells were exposed to D-Asp for 3 days, a significant upregulation of both 

progesterone and testosterone levels was recorded in MO3.13 oligodendrocytes if compared 

to untreated cells (Figure 17D). 

 

2.  Blocking the NMDA receptor and the Na
+
/Ca

2+
 calcium exchanger NCX3 prevented 

D-Aspartate-induced myelin markers expression and intracellular calcium oscillations 

in oligodendrocyte precursors 

The documented ability of D-Asp to activate NMDA receptors (Errico et al., 2012) and the 

significant role played by the activation of these ionotropic glutamate receptors (Cavaliere et 

al., 2012, Káradóttir et al., 2005) and the sodium calcium exchanger NCX3 during 

oligodendrocyte maturation  (Boscia et al., 2012, 2015; Casamassa et al., 2016; Friess et al., 

2016) led us to investigate whether the boosting actions of D-Asp on OPC differentiation 

might involve NMDA receptors and NCX3 activation. To this aim we first analyze the effect 

of selective NMDA and NCX3 blockers on D-Asp-induced myelin markers increase. When 

oligodendrocyte MO3.13 progenitors were exposed for 3 days to 200M D-Asp in presence 

of 10 M MK-801 or the NCX3 blockers, 30nM YM-244769 or 100nM BED (Secondo et al., 

2015), the upregulation of both CNPase and MBP mRNA expressions induced by D-Asp 

incubation was significantly prevented (Figure 18A-B). Interestingly, exposure of MO3.13 

progenitors to 10-200M D-Asp significantly and dose-dependently upregulated NCX3 

transcripts (Figure 18C), and this upregulation was significantly prevented by the NMDA 

antagonist MK-801 (Figure 18D). By contrast, D-Asp incubation, either in presence or in 

absence of 10M MK-801, did not influence NCX1 transcripts levels (Figure 18E).  
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Then, we analyze whether the activation of NMDA receptors and NCX3 exchangers might 

contributed to the changes of intracellular calcium levels following D-Asp treatment (Figures 

19 and 20). Acute 100M D-Asp application induced an initial calcium peak of intracellular 

Ca
2+

 concentration ([Ca
2+

]i) followed by an oscillatory [Ca
2+

]i pattern both in oligodendrocyte 

MO3.13 progenitors (~90%)  and in the majority of primary OPC (~70%), as recorded by 

Fura-2 video-imaging (Figure 19). Only a small percentage of primary OPCs (~20%) 

underwent a single rise in [Ca
2+

]i (data not shown). The selective NMDA antagonist MK-801 

(10µM) completely suppressed D-Asp induced [Ca
2+

]i oscillations both in MO3.13 cells and 

primary OPC (Figure 19A-B), but only partially affected the first [Ca
2+

]i peak (see insert of 

Figures 19A-B). The [Ca
2+

]i oscillation frequency in MO3.13 progenitors or primary OPC 

after D-Asp stimulation in presence of MK-801 was 0.05 ± 0.007 Hz and 0.1 ± 0.003 Hz, 

respectively, if compared to 0.2 ± 0.023 Hz (MO3.13) and 0.4 ± 0.005 Hz (primary OPC) 

calculated in absence of MK-801 (for both p < 0.01). Similarly, pharmacological blockade of 

NCX3 exchanger with either YM-244769, or the most recently developed compound BED 

(Secondo et al., 2015), completely suppressed D-Asp-induced [Ca
2+

]i oscillations both in 

MO3.13 cells and in primary OPC (Figure 20A-B). The oscillation frequency in 

oligodendrocyte MO3.13 progenitors or primary OPC after D-Asp stimulation pretreated with 

BED was 0.013 ± 0.001 Hz and 0.2 ± 0.002 Hz, respectively, if compared to 0.2 ± 0.023 Hz 

(MO3.13) and 0.4 ± 0.005 Hz (primary OPC) calculated in absence of BED (for both p < 

0.01). The oscillation frequency in oligodendrocyte MO3.13 progenitors or primary OPC 

pretreated with YM-244769, was 0.004 ± 0.001 Hz (MO3.13) and 0.1 ± 0.002 Hz (primary 

OPC), respectively, if compared to 0.2 ± 0.023 Hz (MO3.13) or 0.4 ± 0.005 Hz (primary 

OPC) calculated in absence of YM-244769 (for both p < 0.01). Nevertheless, both YM-

244769 or BED only partially prevented the initial rise of [Ca
2+

]i observed following D-Asp 

application (see insert of Figures 20A-B). 

To further investigate the contribution of NCX3 exchanger to D-Asp induced [Ca
2+

]i 

oscillations we recorded calcium response in MO3.13 progenitors previously silenced for 

ncx3 gene or in mouse primary OPC obtained from ncx3+/+ and ncx3-/- mice. As shown in 

Figure 20C-D, quantitative analysis of the oscillatory index revealed that silencing or 

knocking out  ncx3 gene considerably and significantly suppressed the [Ca
2+

]i oscillatory 

pattern following D-Asp exposure. Similarly to what we observed by using pharmacological 

approach, blocking NCX3 activity by using silencing or transgenic approaches only partially 

affected the the initial [Ca
2+

]i peak following D-Asp application (see insert of Figure 20C-D).   
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Figure 17. Effects of D-Asp exposure on OPC differentiation and hormone levels. A-B, Real-time PCR of 

CNPase and MBP mRNA expression in MO3.13 cells under control conditions and following D-Asp exposure 

(10mM, 100mM and 200mM) for 3 days. A positive control of differentiation was obtained by PMA stimulation. 

C, Western Blot analysis of MBP protein levels in MO3.13 cells under control conditions and following D-Asp 

exposure (1mM, 100mM and 100mM) for 3 days. A positive control of differentiation was obtained by PMA 

stimulation. D, Elisa assay of testosterone, progesterone and 17-β-estradiol hormone levels.in progenitor 

MO3.13 oligodenderocytes exposed to D-Asp 100 mM for 3 days  The values represent the means ± S.E.M. 

(n=3). *P< 0.05 versus control.   
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Figure 18.  Effects of the NMDA receptor antagonist and NCX3 blockers on D-Asp-induced myelin 

marker expression. A, Real-time PCR of CNPase mRNA expression in MO3.13 cells under control conditions 

and following D-Asp exposure for 3 days, in absence or in presence of 10M MK-801 (left panel), or in absence 

or presence of 30nM YM-244769 or 100nM BED (right panel). B,  Real-time PCR of MBP mRNA expression in 

MO3.13 cells under control conditions and following D-Asp exposure for 3 days, in absence or in presence of 

10MK-801 (left panel), or in absence or presence of 30nM YM-244769 or 100nM BED (right panel). C, 

Real-time PCR of NCX3 mRNA expression under control conditions and following 10-200M D-Asp exposure 

or  100nM PMA for 3 days; D, Real-time PCR of NCX3 mRNA expression following 200M D-Asp exposure, 

in absence or in presence of 10M MK-801; E, Real-time PCR of NCX1 mRNA expression following 200M 

D-Asp exposure, in absence or in presence of 10M MK-801. The data were normalized on the basis of the -

actin levels and expressed as percentage of controls. The values represent the means ± S.E.M. (n=4). *P< 0.05 

versus control. 
˄
 P< 0.05 versus D-Asp.    
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Figure 19. Contribution of NMDA receptor on D-Asp-induced intracellular [Ca
2+

]i levels in 

oligodendrocyte precursors.  A-B, left panels; superimposed single-cell traces representative of the effect of 

100M D-Asp on [Ca
2+

]i detected in MO3.13 cells (A) and primary OPC (B) in absence or in presence of the 

NMDA receptor antagonist, 10M MK-801. A-B, right panels; quantification of the oscillation index in MO3.13 

cells (A) and primary OPC (B) in absence or in presence of the NMDA receptor antagonist, 10M MK-801. The 

panel inserted on the right top indicated the quantification of the initial [Ca
2+

]i increase elicited by D-

Asp measured as % of peak versus basal values in absence or in presence of 10M MK-801, both in M03.13 

cells (A) and primary OPC (B). MK-801 was preincubated 10 minutes before registration. Data are reported as 

mean of n=30 cells recorded in 3 different experimental conditions. *P< 0.05 versus control (basal 

value). 
˄
 P< 0.05 versus D-Asp.  
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Figure 20. Contribution of NCX3 exchanger activities on D-Asp-induced intracellular [Ca
2+

]i levels in 

oligodendrocyte precursors.  A-B, left panels; superimposed single-cell traces representative of the effect of 

100M D-Asp on [Ca
2+

]i detected in MO3.13 cells (A) and primary OPC (B) in absence or in presence of the 
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NCX3 blockers,  30nM YM-244769 or 100nM BED. A-B, right panels; quantification of the oscillation index in 

MO3.13 cells (A) and primary OPC (B) in absence or in presence of 30nM YM-244769 or 100nM BED. The 

panel inserted on the right top indicated the quantification of the initial [Ca
2+

]i increase elicited by D-

Asp measured as % of peak versus basal values in absence or in presence of 30nM YM-244769 or 100nM 

BED, both in M03.13 cells (A) and primary OPC (B). YM244769 or BED were preincubated 10 minutes before 

registration. Data are reported as mean of n= 30 cells recorded in three different experimental conditions. 

*P< 0.05 versus control (basal value). 
˄
 P< 0.05 versus D-Asp. C, left panel; superimposed single-cell traces 

representative of the effect of 100M D-Asp on [Ca
2+

]i detected in MO3.13 cells in presence of sictl or ncx3 

silencing. C, right panel; quantification of the oscillation index in MO3.13 cells in absence or in presence 

of sincx3. The panel inserted on the right top indicated the quantification of the initial [Ca
2+

]i increase elicited by 

D-Asp  and measured as % of peak versus basal values in absence or in presence of sincx3. Data are reported as 

mean of n= 30 cells recorded in three different experimental conditions. *P< 0.05 versus sictl (basal 

value). 
˄
 P< 0.05 versus D-Asp + sictl. D, left panel, superimposed single-cell traces representative of the effect 

of 100M D-Asp on [Ca
2+

]i detected in primary OPC obtained from wild-type ncx3+/+, heterozygous ncx3 +/-, 

and knock-out ncx3-/- mice. D, right panel; quantification of the oscillation index elicited by D-Asp in primary 

mouse OPC obtained from ncx3+/+, ncx3 +/-, and ncx3-/- mice. The panel inserted on the right top indicated the 

quantification of the initial [Ca
2+

]i increase measured as % of peak versus basal values registrations. Data are 

reported as mean of n=30 cells recorded in 3 different experimental conditions. *P< 0.05 versus basal 

value. 
˄
 P< 0.05 versus ncx3+/+. 
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3. AMPA receptors blockade prevented D-Asp-elicited currents in MO3.13 

oligodendrocyte precursors and the initial [Ca
2+

]i rise after D-Asp stimulation  

Based on the emerging role of glutamate AMPA receptors during OPC development (Fannon 

et al., 2015; Gautier et al., 2015), we investigated whether the boosting effects of D-Asp on 

oligodendrocyte maturation may also involve AMPA receptor activation. 

Electrophysiological experiments performed by patch-clamp in whole cell configuration 

showed that when MO3.13 cells were clumped at -70 mV, 1-100 M AMPA elicited a 

concentration-dependent inward current which was prevented by the AMPA receptor 

antagonist 10M DNQX (Figure 21A-B). Similarly, in the same experimental conditions, 

100M D-Asp elicited an inward current that was completely prevented by 10M DNQX 

(Figure 21C-D). Both D-Asp and AMPA were able to elicit comparable inward currents after 

two consecutive applications (I and II, Figure 21B and D), thus excluding the possibility that 

the desensitization of AMPA receptors might contribute to the inhibitory effects observed 

with DNQX. Moreover, the inhibition exerted by DNQX was reversible, since both AMPA 

and D-Asp were able to trigger again the inward currents after the washout (Figure 21B and 

21D). 

Based on these results, we aimed to characterize whether the activation of AMPA receptor 

might be involved in the initial [Ca
2+

]i peak elicited by 100M D-Asp stimulation in 

oligodendrocyte precursors. As shown in Figure 22, 10µM AMPA perfusion triggered [Ca
2+]

i 

oscillations in oligodendrocyte MO3.13 progenitors. The selective and competitive AMPA 

receptor antagonist DNQX (10M) was preincubated with 10µM AMPA for 10 minutes to 

block the channel before AMPA stimulation. Under these experimental conditions, no 

significant changes in [Ca
2+

]i were recorded after 10µM AMPA addition (Figure 22A). 

Interestingly, in oligodendrocyte MO3.13 progenitors pretreated with DNQX+AMPA, D-Asp 

failed to induce the first [Ca
2+

]i peak as well as the [Ca
2+

]i oscillatory pattern (Figure 22B). 

 

  



  

 
 

81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Effects of AMPA receptor blockade on D-Asp-induced inward currents in oligodendrocyte 

precursors. A, representative inward current traces elicited by 10M AMPA application in human 

oligodendrocyte MO3.13 progenitor cells in absence or in presence of the AMPA antagonist, 10M DNQX. The 

quantification of the concentration-dependent effect of AMPA (1-100 M) on inward currents is showed at the 

bottom of panel A. B, representative traces of the inward current observed after 4 consecutive AMPA (10 M) 

applications in human oligodendrocyte MO3.13 progenitors: (I), the first application with 10 M AMPA alone; 

(II), the second application with 10M AMPA alone; (III) the third application with 10M AMPA in presence of 

10M DNQX; (IV) the fourth application with 10M AMPA alone. The quantification of the inward currents 

represented at the bottom of panel B. The values are expressed as mean ± SEM of current densities of 3 

independent experimental sessions and expressed as % of control (n=9 cells for each group). *P< 0.05 versus 

AMPA (I). C, representative inward current traces elicited by 100M D-Asp application in MO3.13 cells in 

absence or in presence of the AMPA antagonist, 10M DNQX. D, representative traces of the inward current 

observed after 4 consecutive D-Asp (100 M) applications in human oligodendrocyte MO3.13 progenitors: (I), 

the first application with 100 M D-Asp alone; (II), the second application with 100M D-Asp alone; (III) the 

third application with 100M D-Asp in presence of 10M DNQX; (IV) the fourth application with 100M D-

Asp alone. The quantification of the inward currents represented at the bottom of panel D. The values are 

expressed as mean ± SEM of current densities of 3 independent experimental sessions and expressed as % of 

control (n=9 cells for each group). *P< 0.05 versus D-Asp (I).  
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Figure 22. Effects of AMPA receptor blockade on D-Asp-induced initial [Ca
2+

]i increase in 

oligodendrocyte precursors. A, left panel; superimposed single-cell traces representative of the effect of 10M 

AMPA on [Ca
2+

]i detected in MO3.13 cells in absence or in presence of 10M DNQX. A, right 

panel; quantification of the oscillation index in MO3.13 cells after 10M AMPA exposure in absence or in 

presence of 10M DNQX. DNQX was preincubated 10 minutes before registration. Data are reported as mean of 

n= 30 cells recorded in 3 different experimental conditions. *P< 0.05 versus control (basal value). 
˄
 P< 0.05 

versus AMPA. B, left panel; superimposed single-cell traces representative of the effect of 100M D-Asp on 

[Ca
2+

]i detected in MO3.13 cells in absence or in presence of 10M DNQX. B, right panel; quantification of the 

oscillation index in MO3.13 progenitors after 100M D-Asp exposure in absence or in presence of 

10M DNQX. The panel inserted on the right top of panel B indicate the quantification of the initial 

[Ca
2+

]i increase elicited by D-Asp in M03.13 cells measured as % of peak versus basal values in absence or in 

presence of 10M DNQX. Data are reported as mean of n=30 cells recorded in 3 different experimental 

conditions. *P< 0.05 versus control (basal value), 
˄
 P< 0.05 versus D-Asp. 
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4. D-Aspartate treatment improves motor performance in the cuprizone mouse model of 

demyelination and remyelination 

To explore whether the positive effects of D-Asp on oligodendrocytes may also be beneficial 

during acute demyelination and remyelination, we analyzed the effect of D-Asp treatment in 

vivo, in mice fed with the cupper chelator cuprizone. To analyze the effects on acute 

demyelination, D-Asp was given to the mice in drinking solution for 5 weeks during all the 

cuprizone treatment (DEM). To explore the effects on remyelination, D-Asp treatment was 

initiated one week before cuprizone withdrawal (REM 4-7) or immediately after cuprizone 

withdrawal (REM 5-7) and, in both cases, maintained for additional 14 days (Table 1).  

The effects of D-Asp treatment in DEM and REM were assessed on motor coordination 

performance in beam balance and both fixed-speed and accelerating rotarod test. Mice 

completed 3 trials for each task during 1, 3 and 5 weeks of demyelination and after 2 weeks of 

remyelination. The number of falls and the latencies across daily trials and their average was 

calculated and showed in Figures 23, 24, 25. One week after cuprizone feeding no significant 

changes in motor performance among animal groups were assessed with both beam balance 

and rotarod tests (data not shown). By contrast, after 3 and more so after 5 weeks, cuprizone 

mice displayed a significant increase in latency to transverse the beam and number of falls 

from the rotarod, and a shorter latency to fall off the accelereted rotarod if compared to 

control mice (Figures 23, 24, 25). Interestingly, cuprizone mice treated with D-Asp performed 

significantly better and the performance often improved over trials when compared to 

cuprizone group during 3 and 5 weeks of demyelination. In particular, D-Asp mice showed 

significantly shorter latency to walk the beam, reduced number of falls from the rotarorod and 

increased latencies to fall off the accelereted rotarod, when compared to cuprizone group 

(Figures 23, 24, 25).  

Assessment of motor performance during REM revealed that mice treated with D-Asp one 

week before cuprizone withdrawal and for two weeks after cuprizone withdrawal  presented 

improved motor performance when compared to cuprizone mice (REM 4-7). By contrast, no 

significant improvement of motor skills was observed when D-Asp was given immediately 

after cuprizone withdrawal (REM 5-7). No difference in averall performance accross days 

were observed between control groups on beam balance and rotarod tests (Figures 23, 24, 25). 
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Figure 23. Effects of D-Asp treatment on motor coordination performance in beam balance test. A-B, 

beam crossing latency during daily training (left panel, averaged across 3 trials per day) and average latency to 

cross the beam over 3 consecutive days (right panel) recorded during demyelination (DEM) in control (open 

circles), cuprizone- (filled black circles) and in D-Asp- treated  mice (filled red triangles) at 3 weeks (A), and  5 

weeks (B). C, beam crossing latency during daily training (left panel, averaged across three trials per day) 

and average latency to cross the beam over 3 consecutive days (right panel) recorded after 2 weeks of 

remyelination (REM) in control (open circles), cuprizone- (filled black circles) and in D-Asp- treated mice. D-

Asp 4-7 weeks (filled red triangles) refers to the group of mice which received D-Asp during the last week of 

cuprizone feeding and 2 additional weeks after cuprizone withdrawal; D-Asp 5-7 weeks (filled grey 

triangles) refers to the group of mice which received D-Asp only for 2 weeks after cuprizone withdrawal. The 

values represent the means ± S.E.M (n=6-8 mice for each group).  ^P<0.05 versus control; *P<0.05 versus cpz. 
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Figure 24. Effects of D-Asp treatment on motor coordination performance in fixed-speed rotarod test. A-

B, number of falls during daily training in fixed-speed rotarod test (left panel, averaged across 3 trials per day) 

andaverage of falls over 3 consecutive days (right panel) recorded during demyelination (DEM) in control (open 

circles), cuprizone- (filled black circles) and cuprizone plus 20mM D-Asp- treated (filled red triangles) mice at 3 

weeks (A), and 5 weeks (B). C, number of falls during daily training in fixed-speed rotarod test (left panel, 

averaged across 3 trials per day) and average of falls over 3 consecutive days (right panel) recorded after 2 

weeks of remyelination (REM) in control, cuprizone-, and in D-Asp- treated mice. D-Asp 4-7 weeks refers to the 

group of mice which received D-Asp during the last week of cuprizone feeding and 2 additional weeks after 

cuprizone withdrawal. The values represent the means ± S.E.M (n=6-8 mice for each group).  ^P<0.05 versus 

control; *P<0.05   versus cpz. **P<0.05 versus control and D-Asp. 
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Figure 25. Effects of D-Asp treatment on motor coordination performance in accelerating rotarod test. A-

B, latency to fall during daily training in accelerating rotarod test (left panel, averaged across 3 trials per day) 

and average of falls over 3 consecutive days (right panel) recorded during demyelination (DEM) in control, 

cuprizone- and cuprizone plus 20mM D-Asp- treated mice at 3 weeks (A), and 5 weeks (B). C, number of falls 

during daily training in accelerating rotarod test (left panel, averaged across 3 trials per day) and average of falls 

over 3 consecutive days (right panel) recorded after 2 weeks of remyelination (REM) in control, cuprizone- and 

in D-Asp- treated mice. D-Asp 4-7 weeks refers to the group of mice which received D-Asp during the last week 

of cuprizone feeding and 2 additional weeks after cuprizone withdrawal. The values represent the means ± 

S.E.M (n=6-8 mice for each group).  ^P<0.05 versus control; *P<0.05   versus cpz. **P<0.05 versus control and 

D-Asp. 
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5. D-Aspartate treatment prevents demyelination and accelerates remyelination in the 

cuprizone mouse model 

Immunoblot analysis performed on corpus callosum lysates after cuprizone treatment for 5 

weeks revealed a significant reduction of MBP protein levels if compared to controls. This 

reduction was significantly prevented by D-Asp treatment, as revealed the quantitative 

analysis (Figure 26A). By contrast no significant alterations were observed in protein levels of 

the axonal marker APP, both in absence or in presence of D-Asp (Figure 26A). Quantitative 

immunofluorescence analysis performed in the middle corpus callosum showed a significant 

reduction in MBP fluorescence intensity in cuprizone mice when compared with control mice 

(Figure 26B). Furthermore, quantitative double immunofluorescence analysis performed with 

anti-MBP and anti-NF200 antibodies in the corpus callosum revealed that the percentage of 

colocalization between MBP and NF200, used as myelination index, was intensely reduced 

after cuprizone treatment, but partially preserved by D-Asp treatment (Figure 26B). D-Asp 

treatment during DEM also prevented demyelination-associated inflammation 5 weeks after 

cuprizone treatment, as revealed by the less immunoreactivity intensity of the bands 

corresponding to the microglial marker Iba1 and the astrocytic marker GFAP in corpus 

callosum lysates if compared to cuprizone treatment (Figure 26C). To analyze the effects of 

D-Asp during remyelination we performed electron microscopy studies both in absence or in 

presence of D-Asp. As shown in Figure 27, quantitative analysis of myelinated axons 

revealad that mice feeded with cuprizone for 5 weeks and 2 additional weeks with normal 

chow in presence of D-Asp (4-7) displayed a significant higher number of myelinated axons 

in the middle corpus callosum when compared to those oberved in absence of D-Asp 

treatment. 
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Figure 26.  Effect of D-Asp treatment on corpus callosum demyelination. A, Western Blot analysis of MBP 

and APP protein levels in corpus callosum lysates under control conditions and following D-Asp exposure (100 

μM) during 5 weeks of cuprizone feeding.  B, left; Quantitative immunofluorescence analysis performed with 

anti-MBP and anti-NF200 antibodies in the middle corpus callosum. B, right; MBP immunofluorescence and 

percentage of colocalization between MBP and NF200, used as myelination index, upon D-Asp (20mM) 

stimulation during 5 weeks of cuprizone treatment. The values represent the means ± S.E.M (n=6-8 mice for 

each group).  *P<0.05   versus control; ^P<0.05 versus cpz. 
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Figure 27. Effect of D-Asp treatment on corpus callosum remyelination. A, representative electron 

miscroscopy images of middle corpus callosum sections (Magnification 20X). B, upper panel; axonal G-Ratio 

value dispersion (y-axis: G-Ratio; x-axis: axonal diameter in μm). B, lower panel; quantitative analysis of 

myelinated axons in presence and in absence of D-Asp exposure after 5 weeks of demyelination and 2 weeks (D-

Asp 4-7) of remyelination  in the middle corpus callosum . The values represent the means ± S.E.M (n=at least 

one hundred axons for each group).  *P<0.05   versus control; ^P<0.05 versus cpz. 
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CHAPTER IV  

DISCUSSION 
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IV. DISCUSSION 

Myelination is a physiological mechanism occurring when, during the early stages of 

development,  OPCs contact target axons and generate the myelin sheets which protect axons, 

sustaining and guaranteeing the electrical signaling conduction in the CNS. 

During normal adulthood, mature oligodendrocytes are actively replaced by OPCs, a widely 

expressed glial population spanning from 5% and 8% according to the specific region taken 

into account (Dawson et al., 2000; Young et al., 2013). In some pathological conditions, such 

as demyelinating insults (multiple sclerosis, leukodystrophies), traumatic and vascular 

injuries, neurodegenerative diseases and schizofrenia (Edgar and Sibille, 2012; Goldman et 

al., 2012), the death of injured oligodendrocytes affects the total number of mature 

myelinating cells and latterly the myelin amount and its function. Multiple sclerosis is one of 

the more common demyelinating diseases as it is the more frequent neurological disease 

affecting young adults (Prineas and Parratt, 2012; Cui et al., 2013; Noseworthy et al., 2000; 

Compston and Coles, 2008; Henderson et al., 2009). In the early phases of MS, a spontaneous 

program of remyelination may occur. However, at later stages, this process for some reasons 

fails (Franklin and Ffrench-Constant,  2008).  

Recent studies evidenced the importance of D-Aminoacids in the nervous system playing 

important roles in neurotransmission and neuroendocrine regulation (Billard 2012;  Wolosker 

et al., 2008). In particular, we focused our study on the effects exerted by D-Aspartate, which 

is also considered an NMDA receptor agonist, on oligodendrocytes during differentiation and 

remyelination processes, with particular attention to its effects on intracellular [Ca
2+

]i levels. 

We first determined whether D-Aspartate could effectively stimulate in vitro the 

differentiation of oligodendrocytes. Quantitative RT-PCR analyses revealed a significant 

dose-dependent increase in myelin CNPase and MBP transcripts 3 days after D-Asp exposure, 

thus suggesting that D-Asp may stimulate oligodendrocyte maturation. In accordance with our 

results, Martinez-Lozada et al. (2014) found that D-Asp exposure stimulated oligodendrocyte 

maturation, as revealed by the increased network area of oligodendrocyte arborization. In 

accordance with the boosting effects of D-Asp on OPC maturation, we found that D-Asp 

exposure also upregulated the transcripts of NCX3 exchanger, but not those of NCX1.  This 

result is in line with a previous study from our research group demonstrating that the 

progression of OPCs into mature myelinating oligodendrocytes involves changes in [Ca
2+

]i  

levels through the Na
+
/Ca

2+
 exchanger NCX3 (Boscia et al., 2012). Indeed, Boscia et al. 

(2012) found that while NCX3 was intensely upregulated during OPC development, NCX1 
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was instead downregulated. The importance of NCX3 exchanger was further demonstrated by 

the results showing that NCX3 silencing prevented myelin markers upregulation during 

oligodendrocyte differentiation, while its overexpression induces myelin markers increase 

(Boscia et al., 2012). More recently, the crucial role of NCX3 was further highlighted by the 

observation that ncx3-/- knockout mice display increased susceptibility to EAE insult 

(Casamassa et al., 2016), and an impairment of OPCs response to demyelination in the spinal 

cord of EAE mice. 

In addition, we found that the increase in myelin CNPase and MBP transcripts elicited by D-

Asp exposure in oligodendrocyte MO3.13 precursors was significantly prevented by the 

selective NMDA receptor blocker, MK-801, and the two NCX3 blockers, YM-244769 and 

BED (Secondo et al., 2015).  Collectively, our findings further suggest that both the glutamate 

NMDA receptor and the Na
+
/Ca

2+
 exchanger NCX3 are involved in the mechanism leading to 

oligodendrocytes differentiation (Li et al., 2013; Lundgaard et al., 2013; Martinez-Lozada et 

al., 2014; Boscia et al., 2012). Next, we explored the functional contribution of the NMDA 

receptor and NCX3 activities on D-Asp-induced intracellular [Ca
2+

]i levels in 

oligodendrocytes. Microfluorimetric analyses show that the pharmacological blocking of both 

NMDA receptors and NCX3 completely prevented D-Asp–induced [Ca
2+

]i  oscillations, but 

only partially affected the initial [Ca
2+

]i rise both in oligodendrocyte MO3.13 precursors and 

primary rat OPCs. To further investigate the contribution of NCX3 exchanger to D-Asp 

induced [Ca
2+

]i oscillations we recorded calcium response in oligodendrocyte MO3.13 

progenitors previously silenced for ncx3 gene or in mouse primary OPC obtained from 

ncx3+/+ or ncx3-/- mice. Indeed, by using both silencing and transgenic approaches we found 

that D-Asp-induced [Ca
2+

]i oscillations in OPC lacking NCX3 were significantly prevented. 

Our functional data highlight the crucial role of NMDA receptor and NCX3 in mediating D-

Asp-induced [Ca
2+

]i levels changes during OPC differentiation. In line, several data support 

the importance of intracellular [Ca
2+

]i  changes during OPCs maturation and differentiation, as 

well as the intracellular [Ca
2+

]i  oscillatory pattern during oligodendrocyte development 

(Barres et al., 1990; Kettenmann et al., 1994; Soliven et al., 2001; Boscia et al., 2012; Paez et 

al., 2012). In fact, intracellular [Ca
2+

]i  oscillations are considered as important signals during 

OPCs proliferation, survival, growth and differentiation (Paez et al., 2009). Similarly, a large 

number of studies emerging in the last years point to glutamate signaling-mediated [Ca
2+

]i 

changes as crucial regulator of various aspects of the biology of oligodendrocytes, including 

oligodendrocyte lineage progression, proliferation, survival, growth, migration and 

differentiation  (Bergles et al., 2000; Gudz et al., 2006; Paez et al., 2009; Cavaliere et al., 



  

 
 

93 
 

2012; de Castro et al., 2013; Martinez-Lozada et al., 2014). Recently, great importance was 

given to the intracellular [Ca
2+

]i changes in OPCs after release of glutamate at NG2-neuron 

synapse (Kolodziejczyk et al., 2010). In addition, oligodendrocyte differentiation and 

myelination has also been demonstrated to be promoted by the NMDA receptor-mediated 

increase in cytosolic calcium levels, as revealed by microfluorimetric analysis of intracellular 

[Ca
2+

]i  changes in cocultures models in response to glutamate (Cavaliere et al., 2012). In this 

regard, it is now clear that neuronal activity influences oligodendrocyte development and 

myelin formation (Demerens et al., 1996; Gibson et al., 2014; Stevens et al., 2002; Wake et 

al., 2011, Fannon et al., 2015). Neuronal activity promotes myelination via AMPA and 

NMDA glutamate receptors activation on OPC surface (Gautier et al., 2015; Fannon et al., 

2015). In fact, OPCs express functional glutamate AMPA and NMDA receptors which enable 

these cells to sense axonal action potential activity (Bakiri et al., 2009; Gallo et al., 2008). 

The intracellular [Ca
2+

]i changes mediated by the activation of AMPA and NMDA receptors 

during the OPCs lineage progression make these cells able to sense the neuronal activity 

(Gautier et al., 2015; Fannon et al., 2015). As reviewed in Spitzer et al. (2016), the complex 

temporal intervention of both receptors orchestrate important Ca
2+

 influxes necessaries to 

boost and regulate morphological development of OPCs. Most recent studies indicated that 

the glutamate released from demyelinated axons may first preferentially bind the AMPA 

receptor on OPC membrane, with consequent inhibition of OPC proliferation and 

consequently start of the myelination program (Kukley et al., 2007; Ziskin et al., 2007).  

It has been reported that D-Asp might also interact with AMPA receptors, although both 

stimulatory and blocking effects have been described (Gong et al., 2005). Although it is not 

clear whether these opposite roles exerted by D-Asp maybe ascribed to the different D-Asp 

concentrations used or different experimental models employed in these studies, we 

investigated whether, in our experimental model, D-Asp might also exert a role on AMPA 

receptors. This hypothesis arise from the observation that, in our experiments both in 

oligodendrocytes MO3.13 and primary rat OPC, the NMDA receptor antagonist MK-

801completely prevented [Ca
2+

]i oscillations but only partially affected the initial 

[Ca
2+

]i  peak. Thus, in order to further characterize the functional contribution of AMPA 

receptors to the inward currents elicited by D-Asp stimulation in oligodendrocyte 

differentiation, we performed electrophysiological recordings in single-cell oligodendrocytes 

M03.13, by using the patch-clamp technique. First, we verified the existence of the dose-

response of oligodendrocytes MO3.13 progenitors elicited by AMPA stimulation.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3865447/#B16
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Interestingly, AMPA induced a first [Ca
2+

]i rise followed by an oscillatory pattern in 

oligodendrocyte MO3.13 progenitors, and both effects were completely prevented by the 

AMPA antagonist, DNQX. Remarkably, in oligodendrocyte MO3.13 progenitors pretreated 

with DNQX, D-Asp failed to induce the first [Ca
2+

]i peak as well as the [Ca
2+

]i oscillatory 

pattern, suggesting a crucial role for AMPA receptor in D-Asp-induced inward currents. 

Collectively, our in vitro results suggest that D-Asp may promote oligodendrocyte 

differentiation via a mechanism involving changes in intracellular [Ca
2+

]i levels through both 

glutamate AMPA and NMDA receptors, and consequently the activation of the Na
+
/Ca

2+
 

exchanger NCX3. 

These in vitro findings led us to investigate whether D-Asp administration in vivo might have 

a beneficial role on oligodendrocytes in the cuprizone mouse model of demyelination and 

remyelination. Cuprizone feeding in 8-old weeks C57BL/6J mice induces selective 

oligodendrocyte death with decrease in myelin markers protein expression (Hiremath et al., 

1998; Mason et al., 2000a; Morell et al., 1998). The cuprizone model has been well 

characterized over time and specific regional damage in the brain of treated animals are 

described (Van der Star et al., 2012). The most affected brain regions in animals which 

received 0,2% (w/w) copper chelator cuprizone are those enriched in white matter such as the 

corpus callosum, but also the hippocampus and cerebral cortex (Gudi et al., 2014). The 

corpus callosum is an important brain region which integrates information coming from both 

hemispheres, regulating important functions such as balance and motor coordination that can 

be assessed by monitoring performance in mice with two behavioral tests, the beam balance 

and rotarod (Hagemeyer et al., 2012; Franco-Pons et al., 2007). Indeed, we investigated the 

effect of D-Asp on motor performance in beam balance and rotarod test. These behavioral 

tests have been largely characterized in the cuprizone model by Franco-Pons et al. (2007). 

When animals received D-Asp, we observed an improvement in motor performance either 

when was given during demyelination and during remyelination. D-Asp mice showed 

significantly shorter latency to walk the beam, reduced number of falls from the rotarod and 

increased latencies to fall off the accelerated rotarod, when compared to cuprizone group. 

Interestingly, the effect of D-Asp during the remyelination phase was more evident in mice 

treated with D-Asp one week before the cuprizone withdrawal. This effect may be possible 

ascribed to the fact that, as it was given by oral administration, longer time might be required 

to reach significant levels in the brain. 

Our behavioral findings are in accordance with our results obtained in biochemical and 

morphological studies. In fact, immunoblot analysis performed after cuprizone treatment for 5 
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weeks revealed a significant reduction of MBP protein levels in the corpus callosum if 

compared to controls. Interestingly, this reduction was significantly prevented by D-Asp 

treatment. We did not observe significant alterations in APP protein levels both in presence or 

in absence of D-Asp, thus suggesting that no axonal damage occurred in both animal groups 

(Anthony et al., 2000; Dutta and Trapp, 2011). Moreover, quantitative immunofluorescence 

analysis showed a significant reduction in MBP fluorescence intensity in cuprizone mice 

when compared to control or D-Asp mice 5 weeks after cuprizone treatment. Consistently 

with these results, quantitative double immunofluorescence analysis performed with anti-

MBP and anti-NF200 antibodies revealed that the percentage of colocalization between MBP 

and NF200, used as myelination index, was intensely reduced after cuprizone treatment, but 

partially preserved by D-Asp treatment.   

D-Asp treatment also prevented demyelination-associated inflammation following cuprizone 

treatment, as revealed by the lower immunoreactivity intensity corresponding to the bands 

detected with the microglial marker Iba1 and the astrocytic marker GFAP if compared to 

cuprizone alone treatment.  

Collectively, our in vivo results show that D-Asp treatment partially prevented the cuprizone-

induced demyelinating and inflammation.  

In accordance with the beneficial effect of exogenous D-Asp treatment, it has been 

demonstrated that D-Asp increases levels of sexual hormones, such as testosterone and 

progesterone. In this regard, a large number of studies demonstrated that sexual hormones 

testosterone and estrogen have been inferred in some neuroprotective mechanisms in myelin 

via their immunomodulatory and neuroprotective properties (for a review see Gold and 

Voskuhl, 2009). 

 

In conclusion, our findings shed light on the mechanisms promoting oligodendrocyte 

differentiation. The beneficial role of D-Asp in preventing demyelination and enhancing 

remyelination could be important in the next future to design a possible translational therapy 

for human demyelinating disease such as Multiple Sclerosis. 
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