
	

	

 

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II 
	

PH.D. THESIS IN 
INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING 

 

 
	

MODELING AND CONTROL OF GENE EXPRESSION 
DYNAMICS IN YEAST 

	

	

	

GIANSIMONE PERRINO 
 

 

 

TUTOR: PROF. DIEGO DI BERNARDO 

CO–TUTOR: PROF. MARIO DI BERNARDO 
 

XXIX CICLO 

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE 
DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL’INFORMAZIONE 
 



ii



Contents

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . 1
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 List of main contributions . . . . . . . . . . . . . . . . . . . 4

2 Control theory meets synthetic biology 7
2.1 Control theory . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The role of control theory in synthetic biology . . . . . . . . 8

2.2.1 External feedback control . . . . . . . . . . . . . . . 8

3 An experimental platform for controlling an ensemble of
yeast cells 19
3.1 Experimental platform characteristics . . . . . . . . . . . . . 19

3.1.1 Microfluidics device for the observation and manipu-
lation of yeast cells . . . . . . . . . . . . . . . . . . . 21

3.1.2 Hydrostatic pressure actuation . . . . . . . . . . . . . 21
3.1.3 Microscopy and image analysis . . . . . . . . . . . . 24
3.1.4 External feedback controller . . . . . . . . . . . . . . 24

4 A comparative analysis of external feedback control strate-
gies in yeast 27
4.1 An experimental testbed for the assessment of control strate-

gies: the galactose–inducible promoter in S. cerevisiae . . . . 28
4.2 A mathematical representation for the transcription driven

by the galactose–inducible promoter . . . . . . . . . . . . . . 29

iii



iv

4.3 Control strategies . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Proportional–Integral control . . . . . . . . . . . . . 31
4.3.2 Model Predictive Control . . . . . . . . . . . . . . . . 33
4.3.3 Zero Average Dynamics control . . . . . . . . . . . . 36

4.4 Controlling gene expression from the galactose–inducible pro-
moter: setpoint and tracking control tasks . . . . . . . . . . 38
4.4.1 Performance measures . . . . . . . . . . . . . . . . . 40

4.5 Numerical simulations and in vivo experiments . . . . . . . . 41
4.5.1 Setpoint control experiments . . . . . . . . . . . . . . 41
4.5.2 Signal tracking control experiments . . . . . . . . . . 41

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Analysis, modeling and control of single–cell gene expression
in yeast 49

5.1 Single cell quantification of protein expression . . . . . . . . 50
5.1.1 Image segmentation and tracking algorithm for yeast

cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Single–cell fluorescence time–series data . . . . . . . 51

5.2 Analysis of single cell fluorescence data . . . . . . . . . . . . 53
5.2.1 Quantification and analysis of cellular noise at steady-

–state . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2 Quantification and analysis of cellular noise dynamics 54

5.3 Mathematical representation of single–cell gene expression from
the galactose–inducible promoter . . . . . . . . . . . . . . . 59
5.3.1 Mixed–effects model as an ideal framework for describ-

ing cell to cell variability . . . . . . . . . . . . . . . . 59
5.3.2 Mixed–effects model inference . . . . . . . . . . . . . 60
5.3.3 Numerical simulations of the mixed–effects model of

protein expression from the galactose–inducible pro-
moter in yeast cells . . . . . . . . . . . . . . . . . . . 62

5.4 A novel model–predictive–control strategy for controlling an
ensemble of yeast cells . . . . . . . . . . . . . . . . . . . . . 65



v

5.4.1 Numerical simulations of the MEMPC strategy to steer
protein expression from the galactose–inducible pro-
moter . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Feedback control of human α–synuclein protein expression
in yeast 71

6.1 A quantitative study for protein aggregation in yeast: the
human α–synuclein case . . . . . . . . . . . . . . . . . . . . 73

6.2 A pilot study on the feasibility of controlling α–synuclein ex-
pression in yeast . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.1 External feedback controller of α–synuclein expression 77
6.2.2 Identification and modeling of α–synuclein protein ex-

pression . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.3 Tracking control experiments . . . . . . . . . . . . . 79

6.3 Experimental investigation of human
α–synuclein protein aggregation in yeast . . . . . . . . . . . 81
6.3.1 Open–loop dynamics of α–synuclein protein expression

in the multiple copy SNCAA53T–GFP yeast strain . . 83
6.3.2 Offset–free Model Predictive Control of α–synuclein

protein expression in the multiple copy SNCAA53T–GFP
yeast strain . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusions 95

A Materials and methods 97

A.1 Yeast strains . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.1.1 Single copy SNCAA53T–GFP strain construction . . . 98
A.1.2 Multiple copy SNCAA53T–GFP strain construction . . 99

A.2 Microfluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.2.1 Master–mold . . . . . . . . . . . . . . . . . . . . . . 100
A.2.2 Device fabrication . . . . . . . . . . . . . . . . . . . . 101



vi

A.3 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.4 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.4.1 Custom offline tracking algorithm . . . . . . . . . . . 103
A.5 Computational analysis . . . . . . . . . . . . . . . . . . . . . 104

A.5.1 Model quality metrics . . . . . . . . . . . . . . . . . 104
A.6 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . 105
A.7 Cell culture . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.7.1 Microfluidic device set up . . . . . . . . . . . . . . . 106
A.7.2 Feedback control phase . . . . . . . . . . . . . . . . . 108

B 109

Bibliography 113



Chapter 1

Introduction

1.1 Background and motivation

Control Engineering aims at driving a physical system in order to attain
a specific value of a quantity of interest (such as a boiler that needs to
warm water to a desired temperature, or a car cruise–control maintaining
a constant speed) despite the presence of disturbances. This is achieved by
appropriately varying its inputs (switch on or off a heater in the case of the
boiler, or accelerating or braking in the cruise–control) as a function of the
difference between the measured value of the output and its desired target
value (control error).

At the core of most control schemes lies a negative feedback loop [1],
as depicted in Fig. 1.1. The variable to be controlled (system output y)
is measured through a sensor and its value is subtracted from the desired
value (control reference r). The quantity that is obtained is minimised by
the controller, a set of logical and mathematical rules through which an
appropriate value of the input u is chosen in order to guarantee that the
output y matches the desired reference r. The input u is thus applied to the
system by an actuator.

Synthetic biology is a novel research field, in which biomolecular circuits
are assembled in living cells with the final goal of controlling cellular behavior
for a number of uses, from energy, to environment, to medicine [2].
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Figure 1.1: Negative feedback loop.

However, realisation of synthetic biomolecular circuits is often a lengthy
and ad hoc process. Mainly, this is due to nonlinearity, stochasticity, vari-
ability and lack of modularity in biomolecular processes [3]. In recent years,
control theory has been applied to synthetic biology for tackling several of
these problems, leading to promising results [4].

Implementations of negative feedback in synthetic biology fall into two
different categories [4]:

• embedded feedback control, which has both the controller and the pro-
cess realised inside the cell by means of biomolecular processes;

• external feedback control, which has the whole cell as the process to
be controlled, while the controller is implemented in a computer work-
station.

In this study, I deal exclusively with external feedback control, since the
controller is realised outside the cell.

So far, external feedback control has been extensively applied to control
growing conditions of cells in chemostats in terms of temperature and/or
CO2 and it is a current feature of bench–top and industrial chemostats [5, 6].
Only recently, however, the application of control theory principles has been
exploited to regulate molecular events in living cells, thanks to innovative
microfluidics and optogenetics platforms [7–13].

A multitude of successful attempts to control gene expression, or even
signaling pathways, have been described in the literature. They mainly differ
in the control input (osmotic pressure, light, small–molecules) and the con-
trol strategy adopted. Optogenetics–based light inducible systems have been
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exploited to control gene expression in yeast [7, 11, 13], to regulate intracel-
lular signalling dynamics in mammalian cells [8], and to drive protein levels
by using light–switchable two–component systems in bacteria [14]. Microflu-
idic–based devices, allowing a tight control of cellular growing medium and
the administration of inducer small–molecules, have been successfully em-
ployed to investigate synchronisation properties of synthetic biological clocks
in bacterial cells [15], to control the transcription from the STL1 promoter
in yeast S. Cerevisiae by varying the osmotic pressure [9], to control the
transcription from the endogenous GAL1 promoter in yeast S. Cerevisiae
using galactose and glucose as input [10], and to regulate the transcription
from a tetracycline–inducible (CMV–TET ) promoter in mammalian cells by
varying the concentration of an antibiotic [12].

The main aim of this Thesis is to explore and extend the methodology to
model and control gene expression in population of living cells by applying
concepts borrowed from control theory.

So far, the different control strategies proposed in the literature have
never been compared in the same experimental model, thus making a direct
comparison of their performance impossible. Here, I performed a rigorous
comparative analysis of different control algorithms for regulating gene ex-
pression from the endogenous GAL1 promoter in yeast cells.

Furthermore, I present an application of gene expression control to study
aggregation of α–synuclein, a pathological hallmark of Parkinson’s disease.

1.2 Thesis outline

In Chapter 2, I present control theory in the framework of synthetic biology.
I provide an overview of both disciplines, focusing the discussion on the role
of control engineering to develop and improve synthetic biology. Moreover, I
illustrate the–state–of–the–art of gene expression control in cell populations.

In Chapter 3, I introduce the experimental platform which I used to
perform time–lapse experiments on populations of living yeast cells and to
implement external feedback control of gene expression.
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In Chapter 4, I present a comparative analysis of different control algo-
rithms for regulating gene expression from the endogenous galactose–inducible
promoter in yeast cells. To this aim, I implemented and compared two feed-
back control strategies reported in literature, and conceived an additional
strategy employed so far only in power electronic systems. The comparative
analysis was carried out both in silico (i.e. by numerical simulations) and
in vivo.

In Chapter 5, I analysed single cell gene expression data from the time–lapse
experiments reported in Chapter 4, and characterised intrinsic and extrinsic
gene expression noise. I derived a mixed–effects dynamical model to cor-
rectly describe the variability in fluorescence level both in individual cells and
at the population level. I finally propose a novel model–predictive–control
approach, based on mixed–effects models.

In Chapter 6, I describe medically relevant application of feedback control
to model and study aggregation dynamics of α–synuclein protein, which
is a pathological hallmark of Parkinson’s disease. The aim is to attain a
quantitative understanding of the aggregation dynamics of α–synuclein by
carefully regulating its expression and following its dynamics in living cells.

Finally, in Chapter 7, final considerations are drawn.

1.3 List of main contributions

The main contributions of this study are fourfold.

• Firstly, I contributed to improve the efficiency of feedback control of
gene expression in cell populations (Chapter 4).

• Secondly, I contributed to characterise gene expression from endoge-
nous galactose–inducible promoter both at single cell and at population
level (Chapter 5).

• Thirdly, I proposed a novel model–predictive–control strategy to pre-
dict the overall behavior of the cell population. The novelty lies on
employing single cell models to carry out the prediction (Chapter 5).
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• Lastly, I studied aggregation dynamics of the α–synuclein protein, that
is a pathological hallmark of Parkinson’s disease (Chapter 6).

The main results of this study are presented in a number of past [16–18]
and ongoing publications.
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Chapter 2

Control theory meets synthetic
biology

In this Chapter, I introduce control theory in the framework of synthetic
biology. A brief introduction of control theory is provided, together with an
overview of the novel field of synthetic biology. I then analyse the role of
control theory in developing and improving synthetic biology. Lastly, the
state–of–the–art of external feedback control in synthetic biology is illus-
trated.

2.1 Control theory

Control theory aims at driving a physical system in order to attain a specific
value of a quantity of interest despite the presence of disturbances. This
task is achieved by appropriately changing its inputs as a function of the
difference between the measured value of the output and its desired target
value (control error).

Control theory has been used in a number of applications for improving
the stability, robustness, and performance of physical systems [1]. Indeed,
it has been successfully applied in mechanical devices, electrical/power net-
works, space and air systems, and chemical processes [1].

Nature discovered feedback long ago. It created feedback mechanisms

7
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and exploited them at all levels that are central to homeostasis and life
[1]. The human being started to use feedback as a technology almost two
millennia ago [1]. Nevertheless, only in recent years the technology has
been exploited in a biological context [4]. In this context, one of the most
promising field of application is synthetic biology.

2.2 The role of control theory in synthetic bi-

ology

Synthetic biology is a novel research field (cf. Fig. 2.1), which aims to engi-
neer new functions in living cells by creating, characterizing and assembling
biological parts, devices and systems [19].

The practical realisation of synthetic circuits is often a often a lengthy
and ad hoc process. Nonlinearity, stochasticity, variability and lack of mod-
ularity in cell processes arise as problems to be solved when dealing with
synthetic biology [3]. In recent years, control theory has been applied to
synthetic biology for tackling several of these problems, leading to initial
but promising results [4].

2.2.1 External feedback control

External feedback control is an application of control theory to synthetic
biology. It has been conceived to overcome the limitations arising from
implementing an entire feedback control loop inside a cell (i.e. embedded
feedback control) [4]. Indeed, the feedback control loop is realised outside
the cell.

An external feedback control system can be decomposed into four mod-
ules: measurement, control, actuation, and biological process to be con-
trolled. The measurement module measures the reporter fluorescence level
of either a single cell or a cell population by employing flow cytometry or
fluorescence microscopy. The measured fluorescence level is sent to the con-
trol module, normally a computer workstation, that elaborates the measured
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Figure 2.1: Condensed timeline of synthetic biology. (a) The de-
velopment of synthetic biology is grounded on molecular biology, genetic
engineering and genomics. (b) The early phases of synthetic biology were
focusing mostly on forward engineering simple modules, such as switches
and oscillators. (c) After the ‘era’ of modules, synthetic biology is heading
towards the era of systems, in which modules will serve as functional units to
create more complex and sophisticated systems with potential applications
to energy, environment and medicine. From [4].
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data to obtain the state of the biological process. The state is then employed
by a control algorithm to compute a control input to be applied to the cell in
order to steer the biological process dynamics. The control input is actuated
by applying external stimuli such as light (optogenetics method) [7, 8, 11,
13] or small–molecules [9, 10, 12]. Finally, the biological process responds
to the external stimuli through biomolecular reactions producing a change
in a fluorescence reporter, which is measured thus closing the feedback loop.

Applications of control to biological system in literature differ substan-
tially in the control strategy and in the biological process to be regulated
[4].

Toettcher et al. [8] were the first to present in literature an operating
external feedback control. They employed a light–based feedback to control
protein–protein interaction dynamics in mammalian cells (cf. Fig. 2.2). A
PI controller was chosen to carry out the control objectives (setpoint, linear
ramp up, exponential ramp up, and linear ramp down).

Almost simultaneously, Milias–Argeitis et al. [7] applied a model pre-
dictive controller to regulate gene expression from a light–switchable system
based on PhyB–PIF3 interaction in yeast cells (cf. Fig. 2.3).

Subsequently, Uhlendorf et al. [9] implemented an external feedback
loop to control gene expression from an endogenous osmostress responsive
promoter in yeast cells (cf. Fig. 2.4). It is noteworthy that for the first
time in literature, a microfluidics approach was employed to carry out the
study. In this case, the cell process is responsive to an osmotic shock, which is
mediated by the high osmolarity glycerol (HOG) signaling cascade. Since the
presence of short–term (non transcriptional) and long–term (transcriptional)
negative feedback loops ensures perfect adaptation of yeast cells to osmotic
stress, a more sophisticated feedback control algorithm was needed. Indeed,
a model predictive control strategy was chosen to compute the control input.

Melendez et al. [11] employed a bang–bang control strategy to steer gene
expression dynamics from a light–switchable two–component system in yeast
cells (cf. Fig. 2.5).

Menolascina et al. conceived and implemented a microfluidics–based
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Light
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Figure 2.2: External feedback control of intracellular signaling dy-
namics via optogenetics. Schematic of feedback control of the Phy–PIF
optogenetic module. Upon ligation to the small–molecule chromophore phy-
cocyanobilin (PCB), membrane–fused, fluorescent Phy fusion proteins can
be used to drive fluorescent PIF–tagged proteins to the plasma membrane by
exposure to 650−nm light, and this interaction can be reversed by exposure
to 750− nm light. By automatically tuning input light levels, feedback con-
trol sets the activity state at downstream nodes for which live–cell readouts
are available. Adapted from [8].
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Figure 2.3: External feedback control of gene expression from GAL1
inducible–promoter via optogenetics. Light–switchable gene system
based on PhyB–PIF3 interaction. Transformed cells grown in darkness and
incubated with the chromophore phycocyanobilin (PCB) synthesize both
PhyB(Pr)–GBD and PIF3–GAD fusion proteins. Because PIF3 interacts
only with the activated form of PhyB (Pfr), the Gal1 target gene is initially
off. Upon exposure to red light, PhyB is rapidly converted into its active
Pfr form and binds the PIF3 moiety of PIF3–GAD. The transcription ac-
tivation domain of Gal4 is therefore recruited to the promoter and induces
transcription of the target gene. Exposure to far–red light switches off gene
expression by rapidly converting PhyB into its inactive Pr form, causing its
dissociation from PIF3–GAD. Adapted from [7].
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Figure 2.4: External feedback control of gene expression from en-
dogenous STL1 promoter via microfluidics. Schematic of high os-
molarity glycerol (HOG) signaling cascade. A hyperosmotic stress triggers
the activation and nuclear translocation of Hog1. Short–term adaptation is
mainly implemented by cytoplasmic activation of the glycerol–producing en-
zyme Gpd1 and closure of the aqua–glyceroporin channel Fps1. Long–term
adaptation occurs primarily through the production of Gpd1. From [9].
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Figure 2.5: External feedback control of gene expression from
light–switchable two–component system via optogenetics. Ara-
bidopsis proteins CRY2 and CIB1 are used to make transcription blue–light
responsive. (a) In response to blue light, CRY2 and CIB1 bind. When fused
to appropriate DNA–binding and activation domains, transcription becomes
blue–light inducible. (b) CRY2 and CIB1 constructs fused to the GAL4
DNA–binding and GAL4 activation domains respectively. When plasmids
containing these constructs are co–transformed with a pGAL1–yEVenus re-
porter plasmid, yEVenus expression becomes blue–light inducible. From
[11].
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Figure 2.6: External feedback control of gene expression from
endogenous and synthetic gene networks via microfluidics. (a)
Schematic of endogenous GAL1 promoter gene network. The Gfp protein
was integrated downstream of the endogenous GAL1 promoter [20]. (b)
Schematic of synthetic gene network IRMA. IRMA is composed of 5 genes
encoding for transcription factors modulating the expression of each other
[21]. From [10].

feedback control for regulating gene expression both from endogenous and
synthetic gene networks in yeast (cf. Fig. 2.6). A PI controller was used
to achieve the control tasks for both the cell processes. Despite the simple
control strategy, the control objectives were satisfied also in the case of the
complex synthetic gene network (cf. Fig. 2.6b), that was composed by five
interacting genes.

Fracassi et al. [12] proposed an external feedback control loop for regulat-
ing gene expression from the tetracycline–inducible promoter in mammalian
cells (cf. Fig. 2.7). Despite the simple control task (setpoint) and the simple
control strategies adopted to carry out the study (relay control and PI con-
trol), this work is remarkable since it presented for the first time in literature
a control of gene expression in mammalian cells.

Recently, Milias–Argeitis et al. [13] significantly improved the results
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Figure 2.7: External feedback control of gene expression from the
CMV–TET inducible–promoter via microfluidics. Schematic of the
CMV–TET inducible–promoter. The tetracycline transactivator protein
(tTA) is constitutively expressed by a CMV promoter. tTA binds the
CMV–TET promoter, which harbors seven tet–responsive elements (tetO7 )
upstream of a minimal CMV promoter, thus driving the transcription
of a destabilized enhanced yellow fluorescent reporter protein (d2EYFP).
Doxycycline or tetracycline binds tTA and prevents it from binding to the
CMV–TET promoter. Adapted from [12].

in [7] by presenting a completely automatic system capable of long–term
optical feedback control of gene expression in continuous liquid cultures.
The light–switchable cyanobacterial two–component system in Escherichia
coli was used as cell process (cf. Fig. 2.8). Instead, the control tasks were
achieved by means of two control strategies: PI control and MPC.
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Figure 2.8: External feedback control of gene expression from the
light–switchable cyanobacterial two–component system via opto-
genetics. Schematic of the light–switchable two–component system. On
absorption of green light, the sensor histidine kinase CcaS is quickly au-
tophosphorylated and transfers its phosphate group to the cognate response
regulator CcaR. Phosphorylated (active) CcaR in turn binds to the cpcG2
promoter to activate transcription of sfGFP. Absorption of red light inac-
tivates CcaS, and transcription is eventually switched off. Adapted from
[13].
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Chapter 3

An experimental platform for
controlling an ensemble of yeast
cells

In this Chapter, I introduce the experimental platform for external feedback
control of gene expression in living cells. I exploited this integrated exper-
imental set–up to perform time–lapse experiments on populations of living
yeast cells, as detailed in Chapters 5 and 6. Further details about its design
and implementation can be found in [10, 22, 23].

3.1 Experimental platform characteristics

The experimental platform consists of an integrated set–up comprising a
microfluidic device, a time–lapse fluorescence microscope and a set of auto-
mated syringes, all controlled by a computer workstation. An overview of
the platform is given in Fig. 3.1.

19
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Figure 3.1: Overview of the experimental platform. Cells are loaded in
a microfluidic device in order to guarantee their survival during time–lapse
experiments lasting thousands of minutes. Two different growing media can
be administrated to cells by means of an automated system of syringes by
adjusting their relative heights and hence differences in hydrostatic pressure
to dynamically steer the flow of medium from one of the two syringes to the
cells. The syringes are controlled by a computer workstation running the
control algorithm.
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3.1.1 Microfluidics device for the observation and ma-

nipulation of yeast cells

Microfluidics is the science and technology of systems that process or ma-
nipulate small amounts of fluids (10−9 to 10−18 L), employing channels with
dimensions of tens to hundreds of micrometres [24].

The application of microfluidics to biology offers a number of advantages
[24]. In fact, a microfluidic device allows to grow cells ensuring their vitality
along the entire duration of experiment and to dynamically change the cell
microenvironment (e.g. providing different drugs or inducing molecules).
Moreover, it employs small quantities of samples and reagents thus to re-
ducing experimental costs.

The MFD0005a device (Fig. 3.2) has been used for all the microfluidics
experiments reported in this thesis. It was designed by the Biodynamics
Laboratory of Prof. Jeff Hasty (UCSD) [25].

The geometry of the MFD0005a device is represented in Fig. 3.2a. Yeast
cells are trapped into a micro–chamber (Fig. 3.2a – grey area), whose height
is 3.5 µm allowing them to grow only as a monolayer thus enabling accu-
rate microscopic image analysis by preventing cells to move out of focus.
Two different media can be used as inputs to steer the cell behaviour: the
flow from ports 1 and 2 reaches the trap through the staggered herringbone
mixer (Fig. 3.2c) in the Dial–A–Wave junction (Fig. 3.2b). This mixer is
needed to mix the fluids since flows in microfluidics are laminar (no turbu-
lence). A complete descriptions of the MFD0005a device, comprising of all
its characteristics, has been published in [25].

I produced replicas of the device MFD0005a thanks to the master–mold
that Prof. Jeff Hasty kindly provided us as a blueprint, according to the
protocol procedures published in [25].

3.1.2 Hydrostatic pressure actuation

The fluid that reaches the yeast trap is a mixture of two fluids coming from
the inlet ports 1 and 2. The Dial–A–Wave junction (Fig. 3.2b) is used as
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Figure 3.2: Microfluidic device MFD0005a. (a) Overview of the
MFD0005a chip’s architecture. (b) Dial–A–Wave junction. (c) Staggered
herringbone mixer (SHM). (d) Trap region under loading conditions. (e)
Cell trap upon running of an experiment. Picture adapted from [25].
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Figure 3.3: Motorised linear rails.

mixer, and the blending of the fluids depends from the relative pressure
between the two fluids at the inlet ports. Thus, in order to change the
fluid that arrives at the trap, it is necessary to modify its relative pressure.
Physically, the aim can be achieved by changing the hydrostatic pressure of
the syringes linked to the two inlet ports.

The hydrostatic pressure actuation relies on a system of two vertically
mounted linear actuators (Fig. 3.3). In this way, it is possible to change the
height of the liquid–filled syringes, and hence the relative pressure of the
fluids at the inlet ports.

In detail, the actuation system comprises two linear guides, that are
conceived to move independently; and two stepper motors, that realise the
motion of the syringes through two timing belt and four pulleys (a timing
belt and two pulleys for guide). The entire actuation system is represented
in Fig. 3.3.

Complete details regarding the sizing and the specifications of the actu-
ation system has been reported in [23].
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3.1.3 Microscopy and image analysis

Fluorescence is acquired by means of an inverted fluorescence Eclipse Ti–E
microscope (Nikon Instruments) equipped with an automated and programmable
stage, an incubator to guarantee fixed temperature (30◦C) and gasses (O2)
to cell environment, and a high sensitivity Electron Multiplying CCD (EM-
CCD) Camera (iXON Ultra897; Andor Technology Ltd); as depicted in
Fig. 3.4.

The microscope and the camera were programmed to acquire, at 5 min in-
tervals, two types of images: (a) a phase contrast image, and (b) fluorescence
images (with the appropriate filters) to monitor fluorescence due to fluores-
cent proteins and to coloured dyes, as e.g. Sulforhodamine B (Sigma–Aldrich
Co.), that can be added to one of the enriched media in order to evaluate
the inputs administered to the cells.

A custom image processing algorithm was developed to quantify the fluo-
rescence signals being expressed by the entire population of yeast cells. The
measurement units for the fluorescence are considered arbitrary and, thus,
a calibration phase at the beginning of each control experiment is needed to
calculate a reference value for the fluorescence steady states.

Further details about the image processing algorithm are reported in [22,
23, 26]

3.1.4 External feedback controller

The computer workstation runs the control algorithm, which at each sam-
pling interval:

1. processes images acquired by the microscope to estimate the fluores-
cence;

2. executes the control algorithm to derive the input u for the next sam-
pling period;

3. controls the set of automated syringes to administrate the calculated
input (i.e. induction medium or no induction medium) to the cells.
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Figure 3.4: Nikon Eclipse Ti–E microscope.
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In a previous work, this experimental platform was successfully used to
demonstrate that the average fluorescence level of a yeast population can
be effectively regulated by means of a simple Proportional–Integral control
strategy [10]. However, the possibility of exploiting new control strategies
to improve the control performance motivated the study proposed in the
following chapters.



Chapter 4

A comparative analysis of
external feedback control
strategies in yeast

Many successful attempts to control gene expression, or even signaling path-
ways, have been described in literature (refer to Chapter 2 for details). They
mainly differ in the control input (osmotic pressure, light, small–molecules)
and the control strategy adopted to steer the amount of protein expres-
sion. So far, the different control strategies proposed in the literature have
never been compared in the same experimental model, thus making a direct
comparison of their performance impossible. This is extremely important
for practical applications where knowing advantages and limitations of each
strategy can be useful, if not necessary, to select the most appropriate and
effective one.

In this Chapter, I compared in silico, that is by numerical simulations,
and in vivo, by experiments with yeast cells, the performance of different con-
trol algorithms when applied to the problem of controlling gene expression
from the galactose–inducible promoter. In addition to the control strategies
that have already been described in the literature and reported in Chap-
ter 2, namely the Proportional–Integral (PI) control and the Model Predic-
tive Control (MPC), I also tested a different control strategy named Zero

27
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Average Dynamics (ZAD) control. ZAD is a control strategy inspired by slid-
ing control techniques [27] in power electronic systems, but that has never
been applied to biological systems. Practical considerations of the pros and
cons of each control strategy are provided in details.

The content of this chapter has been developed in collaboration with Dr.
Gianfranco Fiore and partially published in [16].

4.1 An experimental testbed for the assessment

of control strategies: the galactose–inducible

promoter in S. cerevisiae

The endogenous galactose–inducible promoter is the most widely used in-
ducible promoter in yeast genetics. Thousands of strains, each expressing a
different yeast gene, are available to the research community, making this
an attractive choice for practical applications of control engineering. The
activity of the galactose–inducible promoter is governed by the presence of
galactose in the cells’ growing medium. This sugar is interpreted as a "switch
on" signal for the expression of the GAL1 gene; conversely when yeasts are
fed with glucose, the expression of the GAL1 gene is repressed [28]. Yeast
cells will first consume all the available glucose in the medium before start-
ing metabolising galactose. Hence, the control input can either be glucose
(switch off signal) or galactose (switch on signal), but not an intermediate
concentration of the two sugars, because cells will not respond to galactose
when glucose is present.

I decided to use the galactose–inducible promoter upstream of a reporter
gene (GFP fused with the Gal1 protein – cf. Fig. 4.1) in Saccharomyces cere-
visiae (commonly known as baker’s yeast) as a testbed for comparing and
assessing the performance of the different control strategies. When dealing
with living cells, one of the major issues is represented by the uncertainty af-
fecting transcriptional and translational processes, introducing a remarkable
cell–to–cell variability in mRNA and protein production [29]. Rather than
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PGAL GAL1 GFP

Figure 4.1: Galactose–inducible promoter in Saccharomyces cere-
visiae.

trying to control stochastic behaviour of cells, here I addressed the simpler
problem of regulating the average fluorescence intensity expressed by all cells
as the quantity to be controlled (y), thus averaging out the effects due to
intrinsic and extrinsic sources of noise [30].

In vivo control experiments were carried out using the integrated exper-
imental set–up described in detail in Chapter 3. As reported in Chapter 2,
Dr. Filippo Menolascina and Dr. Gianfranco Fiore demonstrated in a pre-
vious work that the average fluorescence level of a yeast population can be
effectively regulated with this real–time platform using a simple Propor-
tional–Integral controller [10].

4.2 A mathematical representation for the tran-

scription driven by the galactose–inducible

promoter

The control strategies I compared in this Chapter need a mathematical
model of the process being controlled to compute the control input (u).
Thus, in order to implement these regulators, I used the mathematical rep-
resentation for the transcription driven by galactose–inducible promoter de-
rived by Dr. Gianfranco Fiore and reported in [23, 31].

The mathematical representation that I chose is a state–space linear
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model defined as:

ẋ(t) = A x(t) + B u(t)

y(t) = C x(t)

(4.1)

where the matrices A, B and C are defined as:

A =

[
−d1 0

v2 −d2

]
(4.2)

B =

[
b1

0

]
(4.3)

C =
[
0 c2

]
(4.4)

In Eq. (4.1), u is the only external stimulus to the model and it is assumed
to be equal to 1 when cells are fed with galactose, whereas, when glucose is
provided to yeasts, it is assumed to be equal to 0 (note that these values are
related to the concentration of galactose in the growing medium).

The numerical values for the model parameters are taken from [16, 23],
and are reported in the following:

A =

[
−0.0063 0

0.0274 −0.0166

]
(4.5)

B =

[
0.0037

0

]
(4.6)

C =
[
0 1.0343

]
(4.7)

4.3 Control strategies

In designing the control strategies, two major constraints were identified:
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• the sampling time;

• the admissible values of the control input.

I set the sampling time (T ) equals to 5 min as a compromise to minimise pho-
totoxicity to the cell but maintain a reasonable temporal resolution. The
control input u can instead assume only two values (galactose–ON, glu-
cose–OFF). Thus, at each sampling time kT , the control algorithms can only
choose the duration of galactose pulse (ON), which can vary from 0 min to
5 min, and it is defined as the duty–cycle:

dk =
tON
T
, (4.8)

i.e. the percentage of the time interval during which the cells are fed with
galactose. The control input u is mathematical described as follows, where
ON means that cells are fed with galactose enriched medium, and conversely
OFF with glucose enriched medium:

u(t) =

uMAX = ON kT ≤ t < (k + dk)T

uMIN = OFF (k + dk)T ≤ t < (k + 1)T
(4.9)

4.3.1 Proportional–Integral control

The Proportional–Integral (PI) control algorithm uses the control error

e(t) = r(t)− y(t) (4.10)

to compute, at each sampling time (kT ), the duty–cycle value (dk). Specifi-
cally, dk has a value proportional to the weighted sum of two contributions,
one proportional to the actual error e(t) and the other proportional to the
sum of the past values of the error (the integral term). The proportionality
constants Kp and Ki are called respectively proportional and integral gains,
and their values were calculated with the Ziegler–Nichols’ open–loop tuning
method [1] applied to the mathematical model of the galactose–inducible
promoter. Thus, the gains were set to Kp = 13.49 and Ki = 0.17.
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Given the constraints on the control input as well as on the sampling
time described above, a modulation on the PI output was implemented to
calculate the duty cycle (dk) as:

dk =
û− uMIN

uMAX − uMIN

. (4.11)

where û is the output of the PI regulator saturated between uMIN = 0 and
uMAX = 1. To avoid delays and overshoots introduced by the saturation of
the regulator output [1], an anti–windup block was added to the feedback
loop.

PI control implementation

In practical control implementations, the control signal û(t) is fed to the
process being regulated by means of actuators (i.e. motors, valves, pumps).
These components have physical limitations: motors have limited speed and
acceleration, valves cannot be more than fully opened or fully closed and
pumps cannot go slower than stopped. Thus the control signal acting on
the system is saturated between the minimum (uMIN) and the maximum
(uMAX) values achievable with the actuator being used.

If the control variable û exceeds the saturation limits, the actuator will
constantly run at its saturation limits, thus the feedback loop becomes un-
responsive to the error being measured and the error remains nonzero. In
the case of PI feedback control strategy, the error is integrated and the inte-
gral term may become very large, hence the control signal remains saturated
even if the error changes and, it may take a long time before the integrator
and the controller output return inside the saturation range. This situation
is called integrator windup and leads to large transient in system response.

Anti–windup compensation. To fulfil the constraints on the control
input (u), a modulation was implemented on the PI output. Specifically, the
modulation introduces a saturation on the regulator output; thus leading to
a possible integrator windup. To overcome this issue, I introduced in the
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Figure 4.2: In silico control with and without windup compensation.
The blue line is the reference signal (r). The orange line is the simulated
fluorescence level (y). The grey line is the control input (u). (a–d) Four
in silico control experiments performed on the mathematical model of the
galactose–inducible promoter by the means of the PI control algorithm in the
case of set–point control with (a) and without anti–windup compensation
(b) and, to accomplish the tracking of the staircase reference signal with (c)
and without anti–windup compensation (d).

feedback control loop an anti–windup scheme proposed in [1].

I compared in silico the performance of the PI regulator with and with-
out the anti–windup compensation scheme (cf. Fig. 4.2). The system out-
put (y) reaches the control objective faster when being controlled with the
anti–windup compensation (setpoint control task – cf. Fig. 4.2a–b) and ex-
hibits less oscillations around the reference (staircase control reference – cf.
Fig. 4.2c–d).

4.3.2 Model Predictive Control

Model Predictive Control (MPC) is an iterative optimisation–based tech-
nique which uses a mathematical model of the process being controlled to
predict the future values of a cost function of the control error within a finite



34

MPC

State
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r u y

x

Figure 4.3: Model Predictive Control scheme.

prediction horizon and to find the best value of the control input (in this
case the duty–cycle value (dk)) that minimises the cost function over the
prediction horizon [32].

Specifically, in my implementation, at each sampling time (kT ), the MPC
algorithm computes the optimal control input that minimises the sum of the
squared control error (SSE):

SSE ,
k+N∑
i= k+1

(
N+1+k−i

)
ε2i =

k+N∑
i= k+1

(
N+1+k−i

) (
ŷi − ri

)2 (4.12)

where ŷ is the output provided by the mathematical model of the galac-
tose–inducible promoter (cf. Section 4.2), which is computed by a Kalman
state estimator, able to reconstruct system states from the measured output
y, as depicted in Fig. 4.3. The integer N = 12 (corresponding to 60 min)
defines the length of the prediction horizon in terms of sampling intervals.
The forgetting factor (N + 1 + k− i) weights the error samples more at the
beginning of the prediction horizon than at the end; this guarantees faster
corrections of output deviations from the reference. The optimisation was
carried out by adopting the MATLAB (The MathWorks, Inc.) implementa-
tion of the Genetic Algorithm described in [33].

The result of the optimisation is an array of N optimal duty–cycles
dk+i, i ∈ [1, N ]. In the absence of external disturbances and other sources
of uncertainty, the optimal input computed by the MPC could, in principle,
be applied to the yeast cells over the entire prediction horizon. However,
in order to make the control action robust to any source of uncertainty and
variability, the feedback loop is closed by applying only the first element of
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the calculated control input and at the next sampling time (k + 1)T when
the entire procedure is repeated.

MPC implementation

To reduce the computational effort to solve the optimal control problem, I
decided to use a discretised version of the mathematical model introduced
in Section 4.2, defined as

xk+1 = A xk + B uk

yk = C xk

(4.13)

and assuming that the control input (u) is piecewise constant during the sam-
pling period (Zero–order hold method described in [34]). xk = [xk,1 xk,2]

T

is the vector of system state, uk = u(kT ) is the control input, yk = y(kT )

is the measured output, with k being a natural number {k ∈ N}; and
x0 = [x0,1 x0,2]

T is the vector of the initial condition. In this case, the
matrices A, B and C are:

A =

[
a1,1 0

a2,1 a2,2

]
(4.14)

B =

[
b1

0

]
(4.15)

C =
[
0 c2

]
(4.16)

The control input, as in the continuous time case, affects directly only the
first system equation via the coefficient b1, and it can take values uMAX = 1

and uMIN = 0.
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4.3.3 Zero Average Dynamics control

The Zero Average Dynamics (ZAD) algorithm relies on a feedback strategy
devised for the regulation of power converters [35, 36], and allows to directly
calculate the duty–cycle (dk) of a switching control input [35, 37].

ZAD control is a practical implementation of Sliding Mode Control [27],
where the control objective consists in attracting and then maintaining onto
a fixed surface s(x) = 0 (denoted as the sliding surface) the states of the
system by appropriately switching the available inputs.

In the ZAD control approach, the sliding condition has to be fulfilled only
on average over each sampling period (kT ), thus allowing to directly calcu-
late the duty–cycle (dk) via the solution of the following integral equation:

ET
[
s
(
x(t)

)]
=

1

T

∫ (k+1)T

kT

s
(
x(t)

)
dt = 0 (4.17)

where ET indicates the operator taking the average over the time interval T.
For controlling galactose–inducible promoter dynamics onto the desired

reference signal, I considered the following sliding surface, which was derived
by the mathematical model introduced in Section 4.2:

s
(
x
)

=
(
x2 − x2ref

)
+
(
ẋ2 − ẋ2ref

)
(4.18)

where x2 is the state variable describing the dynamics of the fluorescent
reporter (GFP). Note that ẋ2ref (t) = 0 in the case of setpoint regulation.

ZAD implementation

The solution of Eq. 4.17 can be computationally expensive. Thus, to over-
come this issue, I considered the piecewise–linear approximation of the slid-
ing surface s

(
x
)
proposed in [37]:

s
(
x(t)

)
=

sk + (t− kT ) ṡ on
k kT ≤ t < (k + dk)T

sk + dk T ṡ on
k + (t− (k + dk)T ) ṡ off

k (k + dk)T ≤ t < (k + 1)T

(4.19)
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where sk, ṡ on
k , and ṡ off

k are defined as:

sk = s(xk)

ṡ on
k = ṡ(xk)

∣∣∣
u=1

ṡ off
k = ṡ(xk)

∣∣∣
u=0

(4.20)

Considering the mathematical model of gene expression from the galac-
tose–inducible promoter introduced in Chapter 4, the sliding surface is de-
fined as:

s
(
x
)

=
(
x2 − x2ref

)
+
(
ẋ2 − ẋ2ref

)
(4.21)

By substituting the piecewise–linear approximation (4.19) into Eq. 4.17, I
obtained:

ET
[
s
(
x(t)

)]
=

1

T

∫ (k+dk)T

kT

[
sk + (t− kT ) ṡ on

k

]
dt

+
1

T

∫ (k+1)T

(k+dk)T

[
sk + dk T ṡ on

k + (t− (k + dk)T ) ṡ off
k

]
dt

(4.22)

and by computing the integral in (4.22):

ET
[
s
(
x(t)

)]
= 0 =⇒ 1

2
d2k T (ṡ off

k − ṡ on
k )− dk T (ṡ off

k − ṡ on
k ) + sk +

1

2
T ṡ off

k = 0

(4.23)

The duty cycle dk can then be calculated by solving the quadratic equa-
tion (4.23), thus obtaining:

dk =
−T (ṡ on

k − ṡ off
k ) ±

√
T (ṡ on

k − ṡ off
k ) (2 sk + T ṡ on

k )

−T (ṡ on
k − ṡ off

k )
(4.24)

Moreover, considering that

ṡ off
k − ṡ on

k = −b1 a2,1 < 0 =⇒ ṡ on
k − ṡ off

k > 0 (4.25)
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then, the solutions of (4.23) are

dk = 1 ∓

√
2 sk + T ṡ on

k

T (ṡ on
k − ṡ off

k )
(4.26)

As the duty cycle assumes values only in [0, 1], the only admissible solution
is

dk = 1 −

√
2 sk + T ṡ on

k

T (ṡ on
k − ṡ off

k )
(4.27)

Furthermore, to avoid saturation, I imposed this constraint

0 ≤ 2 sk + T ṡ on
k

T (ṡ on
k − ṡ off

k )
≤ 1 (4.28)

4.4 Controlling gene expression from the galactose-

–inducible promoter: setpoint and track-

ing control tasks

I compared the performance of the three control strategies (PI, MPC and
ZAD) when performing two different control tasks, as shown in Fig. 4.4:

• setpoint control, where the average GFP fluorescence expressed from
the galactose–inducible promoter must reach and maintain a desired
reference level;

• signal tracking control where the average GFP fluorescence must
follow (or track) a desired time–varying signal.

Specifically, in the setpoint control (Fig. 4.4a), the desired fluorescence r
was set equal to 50% of the initial average fluorescence expressed by the cell
population during the calibration phase of 180 min. During the calibration
phase, cells are kept in galactose, in order to set the unit of measure of
fluorescence, which may vary due to technical and biological variability in
each experiment. In the signal tracking control, three different references r
are used:
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Figure 4.4: Reference signals for setpoint and tracking control tasks.
(a) The desired setpoint r (blue line) is equal to 50% of the average fluores-
cence measured during the initial calibration phase of 180 min (black line).
(b) The desired level of fluorescence (r) is a three–step descending staircase
signal, each step is set at a given percentage (75%, 50% and 25%) of the av-
erage fluorescence measured during the initial calibration phase of 180 min.
(c) The desired level of fluorescence (r) is a linear descending ramp starting
at 100% of the average fluorescence measured during the initial calibration
phase of 180 min and going down to 25%. (d) The desired level of fluores-
cence (r) is a steady state signal equal to 75% of the average fluorescence
measured during the calibration phase, with a duration of 100 min; followed
by a sinusoidal wave of period T = 2000 min.

• a descending staircase function (Fig. 4.4b) where each step lasts 500 min,
beginning at 75% of the fluorescence measured during the calibration
phase, then stepping down to 50% and then 25%;

• a linear descending ramp of 1500 min (Fig. 4.4c) starting at the 100%

of average fluorescence measured during the calibration phase, and
decreasing down to 25%;

• a sinusoidal wave s(t) of period T = 2000 min (Fig. 4.4d) defined as

s(t) = 0.5 + 0.25 sin

(
2π

T
(t− 100) +

π

2

)
. (4.29)
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4.4.1 Performance measures

For assessing and comparing control performance obtained from the different
control algorithms, I used metrics based on the analysis of the control error
e. These measures, in general, are adopted for optimising the tuning of PI
and PID controller gains on the basis of the control outcome [1].

In details, the performance measures used in this work are: ISE, IAE
and ITAE.

ISE The Integral Square Error is defined as:

ISE =

∫ t

0

e(τ)2dτ (4.30)

and integrates the square of the error over the time. It penalises large errors
more than smaller ones.

IAE The Integral Absolute Error is defined as:

IAE =

∫ t

0

|e(τ)|dτ (4.31)

and integrates the absolute error of the control over time.

ITAE The Integral Time Absolute Error is a weighted version of the IAE,
and is calculated as:

ITAE =

∫ t

0

τ |e(τ)|dτ . (4.32)

Integrating the absolute error multiplied by the time, ITAE penalises more
persisting errors than those at the start of the response.
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4.5 Numerical simulations and in vivo exper-

iments

4.5.1 Setpoint control experiments

I first tested in silico, by numerical simulations, the three control strategies
described above, by simulating the behavior of yeast cells by means of identi-
fied dynamical model. Numerical simulations’ results are shown in Fig. 4.5.
All the control strategies are able to reach and maintain the reference fluo-
rescence value without exhibiting oscillations at steady–state. Performance
measures (ISE, IAE, ITAE in Fig. 4.5d) are of the same order of magni-
tude for all the control strategies; interestingly the ZAD controller is able
to achieve satisfying results with a reduced number of input switches (five
and six fold less than respectively MPC and PI). This is advantageous in
the experimental setting because it reduces unnecessary stress to cells.

In vivo control experiments confirm results from numerical simulations,
demonstrating that the three strategies are indeed all able to reach and
maintain the desired fluorescence level (cf. Fig. 4.6). As predicted by the
in silico simulations, the ZAD controller employs fewer galactose pulses (cf.
Fig. 4.6c) and displays smaller oscillations around the setpoint than the
MPC strategy (cf. Fig. 4.6b).

4.5.2 Signal tracking control experiments

Numerical simulation of the descending staircase tracking control task shows
that the three control strategies have very different performances. The PI
is not able to properly follow the reference signal (Fig. 4.7a). This is to be
expected, since the PI controller was designed specifically to solve setpoint
control tasks [1]. The MPC algorithm, with its intrinsic predictive ability,
achieves a good performance, specifically noticeable in the proximity of the
steps’ edges (Fig. 4.7b). Indeed, the MPC is able to foresee changes in the
reference signal and to adjust the control input accordingly, by starting to
"switch off" the system in advance. The ZAD control algorithm (Fig. 4.7c)
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Figure 4.5: In silico setpoint control task. The blue line is the refer-
ence signal (r). The orange line is the simulated fluorescence level (y). The
grey line is the control input (u). (a–c) Three in silico setpoint control ex-
periments performed on the mathematical model of the galactose–inducible
promoter by the means of the PI (a), MPC (b) and ZAD (c) controllers. The
initial level of fluorescence is assumed to be equal to 1 (n.u.). The control
action starts at time t = 0 min and ends at t = 1000 min. d) Performance
measures: Integral Square Error (ISE), Integral Absolute Error (IAE), Inte-
gral Time Absolute Error (ITAE), number of switches of the control input,
and the percentage of time during which the model is provided with the
’ON’ input.
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Figure 4.6: In vivo setpoint control task. The black line is the average
fluorescence intensity during the calibration phase of 180 min. The blue line
is the reference signal (r). The orange line is the measured fluorescence level
(y) across the yeast population. The grey line is the control input (u). (a–c)
Three in vivo setpoint control experiments by the means of the PI (a), MPC
(b) and ZAD (c) controllers. The control action starts at time t = 0 min
and ends at t = 1000 min. d) Performance measures: Integral Square Error
(ISE), Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE),
number of switches of the control input, and the percentage of time during
which the model is provided with the ’ON’ input.
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Figure 4.7: Numerical simulation of the staircase tracking control
task. The blue line is the reference signal (r). The orange line is the
simulated fluorescence level (y). The grey line is the control input (u).
(a–c) Three in silico staircase tracking control experiments performed on
the mathematical model of the galactose–inducible promoter by the means of
the PI (a), MPC (b) and ZAD (c) controllers. The initial level of fluorescence
is assumed to be equal to 1 (n.u.). The control action starts at time t = 0 min
and ends at t = 1000 min. d) Performance measures: Integral Square Error
(ISE), Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE),
number of switches of the control input, and the percentage of time during
which the model is provided with the ’ON’ input.

achieves satisfying results, comparable to the MP Controller (except in the
proximity of the steps’ edges), but with a smaller number of galactose pulses.

In vivo tracking control task for the descending staircase tracking control
task (Fig. 4.8) confirm in silico results. The PI controller (Fig. 4.8a) poorly
tracks the reference r, despite the high number of control input switches.
The MPC, as already demonstrated by numerical simulations, has a much
better performance, quantitatively confirmed by the performance indeces (cf.
Fig. 4.8b and Fig. 4.8d). As in the case of the in silico simulations, the ZAD
controller (cf. Fig. 4.8c and Fig. 4.8d) achieves a performance comparable
to that of the MPC (even if not as good in the proximity of the steps’ edges)
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Figure 4.8: In vivo tracking control task for the descending staircase
tracking control task. The black line is the average fluorescence intensity
during the calibration phase of 180 min. The blue line is the reference signal
(r). The orange line is the measured fluorescence level (y) across the yeast
population. The grey line is the control input (u). (a–c) Three in vivo
staircase tracking control experiments by the means of the PI (a), MPC
(b) and ZAD (c) controllers. The control action starts at time t = 0 min
and ends at t = 1000 min. d) Performance measures: Integral Square Error
(ISE), Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE),
number of switches of the control input, and the percentage of time during
which the model is provided with the ’ON’ input.

by employing fewer control input switches than the MPC.

Because of the poor tracking results achieved by the PI controller, I de-
cided to compare only the MPC and ZAD strategies when tracking the ramp
and the sinusoidal signals. Both in silico numerical simulations (Fig. 4.9)
and in vivo (Fig. 4.10) experiments confirmed that the ZAD controller is
able to guarantee a performance (Fig. 4.9e and Fig. 4.10e) similar to that
of the MPC strategy, but again with a reduced number of control input
switches.
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Figure 4.9: Numerical simulations of the ramp and sine wave track-
ing control tasks. The blue line is the reference signal (r). The orange
line is the simulated fluorescence level (y). The grey line is the control input
(u). (a–b) Two in silico ramp tracking control experiments performed on
the mathematical model of the galactose–inducible promoter by the means
of the MPC (a) and ZAD (b) controllers. The initial level of fluorescence is
assumed to be equal to 1 (n.u.). The control action starts at time t = 0 min
and ends at t = 1500 min. (c–d) Two in silico sin wave tracking control
experiments performed on the on the mathematical model of the galac-
tose–inducible promoter by the means of the MPC (c) and ZAD (d) con-
trollers. The initial level of fluorescence is assumed to be equal to 1 (n.u.).
The control action starts at time t = 0 min and ends at t = 2100 min. e)
Performance measures: Integral Square Error (ISE), Integral Absolute Error
(IAE), Integral Time Absolute Error (ITAE), number of switches of the con-
trol input, and the percentage of time during which the model is provided
with the ’ON’ input.
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Figure 4.10: In vivo experiments of ramp and sine wave tracking
control tasks. The black line is the average fluorescence intensity dur-
ing the calibration phase of 180 min. The blue line is the reference signal
(r). The orange line is the measured fluorescence level (y) across the yeast
population. The grey line is the control input (u). (a–b) Two in vivo
ramp tracking control experiments by the means of the MPC (a) and ZAD
(b) controllers. The control action starts at time t = 0 min and ends at
t = 1500 min. (c–d) Two in vivo sin wave tracking control experiments by
the means of the MPC (c) and ZAD (d) controllers. The control action
starts at time t = 0 min and ends at t = 2100 min. e) Performance mea-
sures: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral
Time Absolute Error (ITAE), number of switches of the control input, and
the percentage of time during which the model is provided with the ’ON’
input.
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4.6 Discussion

In this Chapter, I provided a comparative analysis, in silico and in vivo,
of three different control strategies for regulating gene expression from the
galactose–inducible promoter. To this end, I implemented and compared PI
and MPC controllers, which have been previously reported in the literature
[7–10] and proposed an additional strategy, the ZAD controller [35].

I demonstrated that both MPC and ZAD control strategies can be suc-
cessfully employed to control gene expression from the galactose–inducible
promoter to generate any desired time–varying concentration of the reporter
protein (GFP). These controllers require a quantitative model of the system
to be controlled. This is not a strong limitation, since it is possible to identify
a dynamical input–output model of the biological system under investiga-
tion using standard system identification techniques, which work very well
at least for simple inducible promoters [16, 23, 31].

The PI controller, as expected from control theory [1] and from numerical
simulations as reported in this Chapter, performs similarly to the MPC and
ZAD strategies only in the setpoint control task, whereas it is the worst
performer in the case of signal–tracking experiments.

The MPC and ZAD controllers perform similarly well in all the con-
trol tasks. The main differences are that the MPC performs slightly better
than ZAD for fast switching reference signals (such as the staircase signal in
Fig. 4.8), however it requires a higher number of input switches when com-
pared to the ZAD controller. The ZAD technique may be advantageous in
those applications in which a high cost is associated to the actuation such as
when the input administration can cause stress to the cells (e.g light stimuli,
antibiotic, osmotic shocks etc.).

In conclusion, the choice of the control strategy to employ will depend
on which kind of control task needs to be achieved (setpoint or tracking),
the complexity of the synthetic circuit to be controlled, the availability of
a descriptive mathematical model of the circuit to be controlled, the cost
associated to the actuation effort and, whether a minimal stress to the cells
is required (i.e. a small number of input switches).



Chapter 5

Analysis, modeling and control of
single–cell gene expression in
yeast

Gene expression is an intrinsically noisy process, since the amount of protein
produced by a particular gene is affected by stochastic fluctuations due to
low copy numbers of regulatory molecules contained in living cells [29]. The
stochasticity, or noise, of gene expression has been largely investigated in
the literature [38–42]. In summary, gene expression noise can be classified
as intrinsic, when it is caused by stochastic effects inherent the biomolecular
process of gene expression, and extrinsic, when it is caused by variations
in the level or activity of other cellular components involved in the process
[29]. In eukaryotes, like yeast and mammalian cells, extrinsic effects pre-
dominate [43], conversely in prokaryotes, like bacterial cells, intrinsic effects
predominate [44].

Recently, a mixed–effects dynamical modelling framework has been shown
to correctly capture the dynamical behavior of gene expression from the
STL1 promoter at both single cell and population levels in yeast cells [45].
In this framework, expression variability across cells is assumed to be caused
by stable differences among cells, which are modeled with a deterministic
linear time–invariant model with cell–specific parameters but with the same

49
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structure for all the cells. This class of models makes it possible to imple-
ment more realistic simulators to describe the dynamics of gene expression
in individual cells, and hence simulate not only the average fluorescence level
but also the variance of the fluorescence across the cell population [45, 46].

In this Chapter, I developed and used an offline cell segmentation and
tracking algorithm to collect single cell gene expression data from the time-
–lapse experiments presented in Chapter 4. Thus, I performed an analysis
of the single cell data, characterising the intrinsic and extrinsic noise of gene
expression from the galactose–inducible promoter. I then verified that a
mixed–effect dynamical model could correctly describe the observed vari-
ability in protein expression both in individual cells and at the population
level. Moreover, I proposed a novel model–predictive–control approach able
to steer the average fluorescence level across a population of yeast cells,
by using single cell models to describe and predict the overall dynamics of
the cell population. This control strategy is different from the one that I
and others have applied in the past, since it is not based on an average
model describing the dynamics of the average fluorescence level of the entire
cell population, but on a set of models describing gene expression at sin-
gle cell level. I proposed to name this control strategy, maybe improperly,
Mixed–effects Model Predictive Control (MEMPC).

The contents of this Chapter are part of an ongoing work and has been
partially published in [17].

5.1 Single cell quantification of protein expres-

sion

Single cell time–series of protein expression were obtained by means of a
custom offline segmentation and tracking algorithm, able to calculate the
fluorescence level of each yeast cell in a time–lapse experiment. For this aim,
I adapted and improved the algorithm first proposed in [26] and extended
in [23].
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5.1.1 Image segmentation and tracking algorithm for

yeast cells

The custom image processing algorithm was developed and implemented as
a series of scripts and functions in the MATLAB (The MathWorks, Inc.)
environment. The algorithm receives in input the sequence of images in a
time–lapse experiment, and returns in output a set of time–series related to
each one of the tracked cells, consisting of the single–cell fluorescence levels
and mother–daughter relationships among the cells in order to track also the
phylogeny of each yeast cell.

Basically, in order to measure the fluorescence level of a single cell over
time, a three–step image analysis approach was devised:

1. detection of the cells’ position within each image (segmentation);

2. tracking of the movements of each cell in the entire image sequence
(tracking);

3. generation of a lineage tree describing the mother–daughter relation-
ships among cells (phylogenetic analysis).

Further details on the implementation of the segmentation and tracking
algorithm are provided in Appendix A.

5.1.2 Single–cell fluorescence time–series data

I ran offline the image processing algorithm on the time–lapse control exper-
iments described in Chapter 4, thus obtaining a total of ten different data
sets. I decided to consider only the fluorescence level expressed by single
cells, and to discard mother–daughter relationships among cells. Data sets
were enumerated with progressive numbers, and the correspondence between
data sets and time–lapse experiments are reported in Table 5.1.

An example to elucidate of the single cell fluorescence data collected in
each experiment is shown in Fig. 5.1.
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Table 5.1: Correspondence between data sets and time–lapse ex-
periments.

Time–lapse experiment Reference figure

Data set 1 Setpoint – PI Fig. 4.6a
Data set 2 Setpoint – MPC Fig. 4.6b
Data set 3 Setpoint – ZAD Fig. 4.6c
Data set 4 Signal tracking – PI Fig. 4.8a
Data set 5 Signal tracking – MPC Fig. 4.8b
Data set 6 Signal tracking – ZAD Fig. 4.8c
Data set 7 Ramp – MPC Fig. 4.10a
Data set 8 Ramp – ZAD Fig. 4.10b
Data set 9 Sine wave – MPC Fig. 4.10c
Data set 10 Sine wave – ZAD Fig. 4.10d
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Figure 5.1: Single cell fluorescence data extrapolated from data set
5. Fluorescence measurements were obtained by means of an offline tracking
algorithm that computes the single cell fluorescence for each cell in each
image. (a) Averaged fluorescence level across the cell population. The orange
line is the mean of single cell fluorescence data. The shaded grey area is the
standard deviation of the single cell fluorescence data. The shaded box is
the initial calibration phase of 180 min at the beginning of each time–lapse
experiment, as described in Chapter 4. The grey line in bottom panel is the
duty cycle (d.c.) of the galactose pulse administered to the cells during the
time–lapse experiment. (b) Each panel reports fluorescence level for a single
cell (orange line). Single cells were chosen randomly as examples among cell
ensemble.
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5.2 Analysis of single cell fluorescence data

In order to derive a mathematical representation describing the behavior of
protein expression both at single cell and cell population levels, I had to
understand and characterise gene expression noise from the data. Thus, I
performed an analysis to quantify the variability of gene expression from the
galactose–inducible promoter at single cell and population levels. The single
cell fluorescence data were extrapolated from the data sets presented in the
previous Section 5.1.

5.2.1 Quantification and analysis of cellular noise at

steady–state

Variability in protein expression was quantified both at single cell and pop-
ulation levels by considering only fluorescence data measured during the
initial calibration phase of each time–lapse experiment (e.g., shaded box in
Fig. 5.1a). Before and during this phase, cells were kept in galactose enriched
medium, in order to fully activate the expression of the reporter protein from
the galactose–inducible promoter. Hence, during the calibration phase, pro-
tein expression can be considered to be at steady state (galactose steady
state).

The distribution of single–cell fluorescence level of cells growing in galac-
tose were analysed for a total of ten replicates, and the results are depicted
in Fig. 5.2. Each panel of Fig. 5.2 (a–j) corresponds to an experimental
replicate and it consists of three insets. The central inset reports the flu-
orescence distribution at the single cell level, i.e. the variability in protein
expression in the cell due to the inherent stochasticity of the biomolecular
reactions (intrinsic noise); the left inset reports the fluorescence distribution
across the population, i.e. the cell to cell variability in protein expression,
which represents the total noise afflicting the biomolecular process of gene
expression, and it is composed by intrinsic and extrinsic noise [29]. Since in
eukaryotes extrinsic effects predominate over intrinsic effects [43], I consid-
ered the cell to cell variability as a source of only extrinsic noise. Cell to
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cell variability was obtained by analysing fluorescence of all the cells in the
population at each time point. Instead, single cell variability was obtained
by analysing fluorescence of a single cell for all the time points. Lastly, the
right inset compares the coefficient of variation (CV = σ

µ
) of the intrinsic

and extrinsic noise [29].

At the population level, cells exhibited very similar distributions of flu-
orescence across time, as can be observed in the left insets of Fig. 5.2a–j
reporting the fluorescence distribution across the cell population as a box
plot. It can be observed that mean and standard deviation of the fluores-
cence remain similar as time progresses (Fig. 5.2a–j – Left inset). I also
estimated the fluorescence distribution within each cell, which can be con-
sidered to be caused by intrinsic noise (Fig. 5.2a–j – Central inset). It can be
appreciated that the mean fluorescence, and to a lesser extent the standard
deviation, change for each cell (Fig. 5.2a–j – Central inset). Interestingly,
standard deviations for population data (Fig. 5.2a–j – Left inset) are much
greater compared to the standard deviations of single cell data (Fig. 5.2a–j
– Central inset). I also compared the level of intrinsic and extrinsic noise
by estimating the coefficient of variation, demonstrating the predominance
of the extrinsic noise over intrinsic noise (Fig. 5.2a–j – Right inset). Taken
together, these results confirm that yeast cells exhibit a large cell to cell
variability (i.e. extrinsic noise) and a low variability at the single cell level
(i.e. intrinsic noise), in line with what is expected from eukaryotic cells [43].

5.2.2 Quantification and analysis of cellular noise dy-

namics

Variability in protein expression was quantified both at single cell and pop-
ulation levels by considering fluorescence data measured during the en-
tire time–lapse experiments, during which cells undergo a series of growth
medium switches between galactose–rich and glucose–rich growth media.
Since in the previous section I demonstrated that the cells exhibit much
higher extrinsic noise than intrinsic noise, in what follows I decided to ne-
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Figure 5.2: Cell to cell variability, single cell variability and cellular
noise when cells are grown in galactose. (a–j) Each panel represents
an experimental replicate, for a total of ten replicates. (Left inset) Fluo-
rescence distribution across the population, i.e. the cell to cell variability in
protein expression. (Central inset) Fluorescence distribution at the single
cell level, i.e. the variability in protein expression in the single–cell. (Right
inset) Coefficient of variation computed for the intrinsic and extrinsic noise.
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Figure 5.2: Cell to cell variability, single cell variability and cellular
noise during the galactose steady state. (...)
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Table 5.2: Duration of each phase for the several time–lapse exper-
iments.

Time–lapse experiment Initial calibration T1 T2 T3

Setpoint – PI 180 min 200 min 620 min 180 min
Setpoint – MPC 60 min 200 min 620 min 180 min
Setpoint – ZAD 180 min 200 min 620 min 180 min
Signal tracking – PI 180 min 500 min 500 min 500 min
Signal tracking – MPC 180 min 500 min 500 min 500 min
Signal tracking – ZAD 180 min 500 min 500 min 500 min
Ramp – MPC 180 min 500 min 500 min 500 min
Ramp – ZAD 180 min 500 min 500 min 500 min
Sine wave – MPC 180 min 100 min 1075 min 1075 min
Sine wave – ZAD 180 min 100 min 1075 min 1075 min

glect intrinsic noise. Hence, cellular noise (ηt) consists only of the extrinsic
noise (ηe) with a coefficient of variation (CV) estimated from single cell
fluorescence data grouped for each time point. I divided each time–lapse
experiment into four consecutive temporal phases, in order to better under-
stand and characterise noise dynamics: galactose steady state, T1, T2, and
T3. Table 5.2 details the duration of each phase for each of the time–lapse
experiments used to in this analysis.

The noise distributions during the entire time–lapse experiments are de-
picted in Fig. 5.3. The noise distributions are grouped according the different
set–point and signal tracking control tasks, in order to understand if control
strategies could affect the cell noise at population level (i.e. extrinsic noise).
Interestingly, control strategies did not affect cellular noise neither in the
set–point (Fig. 5.3a) nor in the signal tracking control tasks (Fig. 5.3b–d).
Moreover, as expected from the literature [47], the coefficient of variation is
a function of the absolute fluorescence levels, decreasing exponentially with
the increase of fluorescence levels (e.g. Fig. 5.3b).
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a Setpoint control

b Signal tracking control

c Ramp reference

d Sine wave reference
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Figure 5.3: Cellular noise during time–lapse control experiments.
Coefficients of variation (CV) computed on single cell gene expression data
grouped for time points.
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5.3 Mathematical representation of single–cell

gene expression from the galactose–inducible

promoter

Starting from the findings of Section 5.2, I decided to improve the modeling
of fluorescence dynamics caused by the expression of the reporter gene from
the galactose–inducible promoter by adopting a mixed–effects modelling ap-
proach, which has been recently applied in yeast cells [45]. In this way,
cell–to–cell variability can be modeled by mixed–effects linear models, thus
capturing protein expression dynamics both in single cell and at population
level.

5.3.1 Mixed–effects model as an ideal framework for

describing cell to cell variability

Mixed–effects models are suitable to describe mathematically ensemble of
similar entities, such as a cells within a population. Each entity of the en-
semble is described by a mathematical model with a fixed structure, equal
for all the entities in the ensemble, and a set of parameters different for
each entity [45]. By adopting a mixed–effects approach for modeling gene
expression from the galactose–inducible promoter, the dynamics of the fluo-
rescence level in a single cell can be described as a single–input single–ouput
(SISO) system of two coupled linear ordinary differential equations defined
as:

d

dt

[
x1

x2

]
=

[
−α 0

γ −δ

] [
x1

x2

]
+

[
β

0

]
u, x(0) = x0

y = x2

(5.1)

where x is the vector state, x0 is the vector of initial conditions, u is the
input (glucose or galacote), and y (the measured fluorescence in a single
cell) is the output. Note that in Eq. (5.1) u is the only external stimulus
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to the model and it is assumed to be equal to 1 when single cell is fed with
galactose, whereas, when glucose is provided to cell, it is assumed to be equal
to 0 (note that these values are related to the concentration of galactose in
the growing medium).

Intrinsic noise could be modeled by transforming the set of ordinary
differential equations in a set of stochastic differential equations, consider-
ing the presence of multiplicative and additive white Gaussian noise on the
state equations. However, I decided to neglect these effects to simplify both
numerical simulations and analytical approaches.

As stated before, the mixed–effects model is defined by a mathematical
structure fixed for all the entities in the ensemble, in this case the structure
of the state–space linear model; with model parameters ψ = {α, β, γ, δ}
changing from one entity to another entity. I considered the mathematical
structure of the mixed–effects model, comprising the vector state x and the
set of parameters ψ, without physical meanings. I also assumed that the set
of parameters ψ varies within the population.

5.3.2 Mixed–effects model inference

As in [45], I assumed that model parameters ψ = {α, β, γ, δ} were dis-
tributed across the cell population with a multivariate log–normal distribu-
tion, i.e. ln(ψ) ∼ N (µ,Σ) is a multivariate normal distribution defined by
the means vector µ and the covariance matrix Σ.

Thus, the mixed–effects model is defined mathematically by its structure,
represented in Eq. (5.1); and the multivariate log–normal distribution, which
is defined by its center of mass, i.e. a vector of means; and its spread, i.e.
a covariance matrix, across cell population. I inferred the distribution’s
parameters with the simplest approach presented in [45], that the authors
named naive approach. In the naive approach, the distribution’s parameters
are inferred in two steps. In the first step, the task is to estimate numerically
the best parameters that describe the expression dynamics of each single cell;
and then, in the second step, to compute the statistics of the underlying
log–normal distribution from the collected sets of parameters.
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I extrapolated the single cell fluorescence data from the data sets pre-
sented in Section 5.1, considering only the cells present since the initial
calibration phase of each time–lapse control experiment. I then applied a
grey–box state–space identification technique to fit the model parameters
ψ = {α, β, γ, δ} to fluorescence data available for each cell [48].

I discarded the single cell model whose fitting percentage (FIT – see
Appendix A for further details about the formula) was smaller than the
50%, thus obtaining a total of N = 112 sets (one set for each cell) of model
parameters {αn, βn, γn, δn}. Thus, I collected each set of model parameters
in the matrix Ψ defined as

Ψ =


α1 β1 γ1 δ1

α2 β2 γ2 δ2
...

...
...

...
αN βN γN δN

 =


ψT1

ψT2
...
ψTN

 . (5.2)

The matrix Ψ describes the 112 observations of the four model parameters,
and each row vector ψTn denotes an observation of the four parameters.

Starting from the estimated model parameters collected in Ψ, I obtained
the vector of means (µ) and the covariance matrix (Σ) of the underlying
multivariate log–normal distribution by means of the method of moments,
according to the procedure reported in [45]:

µ =
1

N

N∑
n=1

φn

Σ =
1

N − 1

N∑
n=1

(φn − µ) (φn − µ)T

(5.3)

where φn = log(ψn).

The estimated statistics for the multivariate log–normal distribution by
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means of the method of moments were:

µ =


−4.2260

−3.8739

−5.4030

−5.0355

 (5.4)

and

Σ =


1.7494 1.8165 −0.2996 −0.2654

1.8165 3.5977 −1.7806 −0.2930

−0.2996 −1.7806 2.3108 0.8920

−0.2654 −0.2930 0.8920 0.8560

 (5.5)

5.3.3 Numerical simulations of the mixed–effects model

of protein expression from the galactose–inducible

promoter in yeast cells

By numerical simulations, I tested the performance of the identified mixed-
–effects model by considering an ensemble of 100 cells, whose model param-
eters were sampled randomly from the multivariate log–normal distribution.
I reported the model parameters for the cell ensemble in Appendix B.

Numerical simulations were carried out by simulating the response of the
cell ensemble to the same input as the one applied during the time–lapse
control experiments and detailed in Chapter 4. By way of example, I show
in Fig. 5.4 the results of the numerical simulation for the input depicted in
the bottom panel of Fig. 5.1a. The mixed–effects model was able to capture
dynamics of protein expression both for the entire population (Fig. 5.4a) and
for single cells (e.g., Fig. 5.4b). The overall behaviour of the cell population
was captured through mean (Fig. 5.4a; orange line) and standard deviation
(Fig. 5.4a; gray area) of fluorescence level across the cell population. Fig.
5.4b shows the simulated fluorescence levels for nine cells chosen randomly
in the population. By comparing experimental (Fig. 5.1) and simulated
(Fig. 5.4) data, I concluded that a mixed–effects model can successfully
describe the dynamics of gene expression from the galactose–inducible pro-
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Figure 5.4: Numerical simulation of the mixed–effects dynamical
model. An open loop experiment was simulated by applying the same in-
put as the one used in the time–lapse experiment depicted in Fig. 5.1a. (a)
Averaged behavior of simulated fluorescence dynamics. The orange line is
the mean of simulated single cell fluorescence data. The grey area is the
standard deviation of simulated single cell fluorescence data. The grey line
in the bottom panel is the input given to the mixed–effects model and to
the average model during simulation. (b) Each panel reports simulated flu-
orescence levels for one single cell (orange line). Cells were chosen randomly
from cell ensemble.

moter both at the population and single cell levels, as previously reported
for the STL1 promoter [45].

I then verified whether the mixed–effects model was able to describe the
experimentally observed cell to cell variability (extrinsic noise) by quantify-
ing the coefficient of variation (CV ) on the simulated single cell expression
levels at each time point.

The numerical simulations confirmed that a mixed–effects model is able
to replicate the experimentally observed extrinsic noise (Fig.5.5). As in the
experimental data, the specific control strategy did not affect the variability
across the cell population. Interestingly, the CV tends to decrease when the
average fluorescence level reaches a setpoint value, as can be appreciated in
Fig. 5.5a–b; however the CV computed on experimental data did not show
this behavior (Fig. 5.3a–b). The reason for this disceprancy maybe due to
the exclusion of the intrinsic noise component that was not modeled in the
mixed–effects model.
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a Setpoint control

b Signal tracking control

c Ramp reference

d Sine wave reference
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Figure 5.5: Cell noise during numerical control simulations. Co-
efficients of variation (CV) computed on single cell gene expression data
grouped for time points.
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5.4 A novel model–predictive–control strategy

for controlling an ensemble of yeast cells

In order to improve the control performance, I proposed a novel MPC strat-
egy, that employs single cell models to predict the overall effect of each
cell on the average behavior of the cell population. In agreement with the
mixed–effects modeling approach, I assumed a fixed dynamical structure for
the single cell models, and a set of parameters different for each cell, as
previously described in Section 5.3. Each single cell model was then used to
predict the average behavior of the cell population in time, exploiting the
characteristic of mixed–effects model to capture the cell to cell variability. I
called this approach Mixed–effects Model Predictive Control (MEMPC).

The proposed MPC scheme with single cell models is depicted in Fig. 5.6b.
In order to understand the differences between the proposed controller and
the one presented in Chapter 4, I also report in Fig. 5.6a the MPC scheme
with population–averaged model. The main difference between the control
schemes lies in the mean operator, that in the case of Fig. 5.6a is upstream
of the population–averaged model; conversely in the case of Fig. 5.6b it is
found downstream of the single cell models.

5.4.1 Numerical simulations of the MEMPC strategy

to steer protein expression from the galactose-

–inducible promoter

In order to assess performance of the proposed MEMPC strategy, I per-
formed numerical simulations on the same ensemble of 100 cell sampled in
Section 5.3.3 (see Appendix B for single cell model parameters). I chose
as control tasks the reference signals presented in Fig. 4.4a–b. In order
to add an uncertainty to the model parameters of the single cells used by
the MEMPC, I identified again (with a grey–box state–space identification)
the model parameters for each cell in the population using the simulated
input–output data depicted in Fig. 5.4.
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Figure 5.6: Comparison of Model Predictive Control schemes. (a)
MPC scheme with population–averaged model. (b) MPC scheme with single
cell models.
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The proposed MEMPC strategy was compared to the MPC strategy pre-
sented in Chapter 4, which adopts a population–averaged model to predict
the average fluorescence level of the cell population. The average model
was identified on the same simulated input–output data (Fig. 5.4a) used to
identify the parameters of each single cell model.

Simulated control experiments were performed by means of the MPC
strategy using either the average model describing the population–averaged
dynamics (Fig. 5.7a–b), or the single cell models (Fig. 5.7c–d). Both imple-
mentations achieved the control tasks. Numerical simulations with MEMPC
however showed a much smoother control input, hinting to a better perfor-
mance in predicting the future behaviour of the system being controlled.

5.5 Discussion

In this Chapter, I verified that a mixed–effects dynamical model can cor-
rectly describe the variability in fluorescence level both in individual cells
and at the population level. In order to achieve this task, I developed a cus-
tom offline image segmentation and cell tracking algorithm, and used it to
collect single cell gene expression data from the time–lapse experiments pre-
sented in Chapter 4. I then performed an analysis on these single cell data,
characterising the intrinsic and extrinsic noise of gene expression. I found
that extrinsic noise is predominating over intrinsic noise in yeast cells. I
then derived a mathematical representation of protein expression neglecting
intrinsic noise using the mixed–effects modeling framework.

Finally, I proposed a novel model–predictive–control approach, based on
single cell models, for predicting the overall behaviour of the cell popula-
tion. I decided to name it, maybe improperly, Mixed–effects Model Predic-
tive Control (MEMPC). Numerical simulations confirmed that the proposed
strategy could successfully achieve the regulation of gene expression from
the galactose–inducible promoter in yeast cells. Interestingly, the proposed
approach generates a smoother control input compared to classical imple-
mentation of MPC based on a population–averaged model.
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Figure 5.7: Numerical simulations of the time–lapse control exper-
iments. The black line is the reference signal. The orange line is the mean
of simulated single cell fluorescence data. The shaded grey area is the stan-
dard deviation of the simulated single cell fluorescence data. The grey line is
the duty cycle (d.c.) of the galactose pulse administered to the cells during
simulated time–lapse experiment. Control tasks were achieved by means of
a Model Predictive Control strategy using either an average model (a–b) or
single cell models (c–d).
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Despite the control performances of the MEMPC and MPC controllers
being similar, at least in terms of reference tracking, MEMPC is much more
flexible and could have a great impact in practical applications. For exam-
ple, the proposed MEMPC strategy can be used to control only a subpopu-
lation of cells, by excluding in real–time unhealthy cells that have extreme
behaviours (no expression or full expression of the reporter protein inde-
pendently of the induction medium concentration). MEMPC could also be
useful when additional safety constrains must be satisfied, such as prevent-
ing any cell from expressing the protein being controlled above a certain
toxic threshold. In this case, the MEMPC could be used to steer average
population dynamics, but deviations from the control objective would be
allowed if one cell (or a given percentage) is predicted to exceed the safety
threshold. In addition to the above applications, the MEMPC strategy en-
ables the prediction of the variance of the population over time, and if the
experimental system were to allow more than one control input, it could
be used to control the variance of the population as well as its mean. In
summary, further experimental work is needed to assess the performance of
the MEMPC strategy in a real–case scenario, however this control strategy
offers a new tool for control applications of living cells.
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Chapter 6

Feedback control of human
α–synuclein protein expression in
yeast

In this Chapter, a practical application of the external feedback control of
gene expression is presented. In detail, I explored the feasibility of using
the experimental platform presented in Chapter 3 to model and study a
pathological hallmark of Parkinson’s disease (PD), the most common among
neurodegenerative disorders, affecting about 1% of people aged 65 or older
worldwide [49].

PD, as other neurodegenerative disorsers, is characterised by the progres-
sive disruption of specific neuronal population partly due to the formation of
abnormal protein aggregates that interfere with normal cell functions [50]. A
neuropathological hallmark of PD is the aggregation of the α–synuclein pro-
tein in intraneuronal proteinaceous inclusions, termed Lewy bodies (LBs)
or Lewy neurites, that are toxic for neurons [51]. Since the α–synuclein
accumulation contributes to PD pathogenesis (further details in Fig. 6.1),
it is important to investigate and understand the dynamics of α–synuclein
aggregation.

So far, a quantitative understanding of the dynamics of α–synuclein pro-
tein aggregation in living cells is lacking. Thus, I investigated the aggre-

71
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Figure 6.1: The proposed pathological functions of α–synuclein in
neurons. When expressed at a moderate level, wild–type α–synuclein
(blue) associates with synaptic vesicles at axon terminals. Typically,
α–synuclein undergoes degradation either through lysosomal or proteasomal
pathways. Thus, the pathological accumulation of wild–type α–synuclein can
result from an increase in its production or from ineffective degradation or
mis–trafficking. These defective mechanisms have also been associated with
rare, familial PD–associated mutations in α–synuclein (red) as well as muta-
tions in trafficking–associated genes linked to PD and environmental factors
such as ageing [52]. An excess of α–synuclein in the form of monomers,
multimers or aggregates can disrupt intracellular trafficking and synaptic
function and contributes to the formation of LBs. Adapted from [51]
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gation dynamics of the human α–synuclein protein in yeast by exploiting
the potentiality of the external feedback control and of the experimental
platform introduced in Chapter 3. The aim was to attain a quantitative
understanding of the dynamics of α–synuclein protein’s aggregation by care-
fully regulating its expression and following its dynamics in real–time in
living cells. By regulating the expression level of the α–synuclein protein
at different set–points, I can assess quantitatively the threshold protein ex-
pression level and the dynamics that lead to the formation of α–synuclein
aggregates.

The following work has been conducted in collaboration with Dr. Cathal
Wilson of the Telethon Institute of Genetics and Medicine as regards the ma-
nipulation of yeast strains, and Dr. Marco Santorelli as regards the molecular
cloning of the constructs that were inserted into the yeast strains. More-
over, the contents of this Chapter are part of an ongoing work which has
been partially published in [18].

6.1 A quantitative study for protein aggrega-

tion in yeast: the human α–synuclein case

Neurodegenerative disorders are associated to the formation of abnormal
protein aggregates that interfere with the normal functions of neurons, caus-
ing the progressive disruption of the neuronal population. The dysfunction
of α–synuclein protein, which is encoded in SNCA gene [53], is involved in
PD and related neurodegenerative disorders [51]. Mutations in α–synuclein
protein are also associated with rare forms of early–onset familial PD [53–
59].

The toxicity of the α–synuclein protein has been characterised in sev-
eral cell–based and organism–based models [60]. For example, yeast strains
overexpressing normal and mutant human α–synuclein protein fused to a
green fluorescent reporter protein under the galactose–inducible promoter
successfully recapitulate protein aggregation observed in PD patients [61].
The overexpression of the human α–synuclein protein in yeast cells mimics
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the situation of the aging neurons when the capacity of the quality–control
(QC) system to cope with accumulating misfolded proteins is exceeded [61].
One copy of the α–synuclein construct is not able to saturate the QC system
of the yeast (Fig. 6.2a). However, when inserting multiple copies of the hu-
man α–synuclein gene in yeast, formation of protein aggregates is observed,
follow by reduced growth rate and death of yeast cells (Fig. 6.2b). Thus, the
toxicity of the α–synuclein protein can be studied using yeast strains carrying
multiple copies of the galactose–inducible α–synuclein construct as depicted
in Fig. 6.2b. However, as soon as the promoter is activated by growing these
cells in galactose enriched medium, α–synuclein toxicity causes cell death
thus preventing a thorough investigation and quantification of aggregation
dynamics.

External feedback control of the galactose–inducible promoter can over-
come these limitations and enable quantitative analysis of α–synuclein dy-
namics in yeast strains carrying multiple copies of the SNCA–GFP con-
struct. Specifically, as depicted in Fig. 6.3, external feedback control of gene
expression from the galactose–inducible promoter can be used to increase
α–synuclein expression at discrete steps, starting from a fully repressed pro-
moter (glucose steady state), thus enabling precise quantification of the ex-
pression level needed for the protein to aggregate as well as analysis of the
aggregation dynamics of α–synuclein, both in wild type and mutant forms.

6.2 A pilot study on the feasibility of control-

ling α–synuclein expression in yeast

I started the investigation on the feasibility of controlling human α–synuclein
expression by performing a pilot study on yeast cells carrying only a single
copy of SNCAA53T–GFP construct driven by the galactose–inducible GAL1
promoter. This yeast strain expresses human mutant A53T α–synuclein at
a moderate level which prevents protein aggregation (Fig. 6.2a). Further
details about the yeast strain and how it was generated are provided in
Appendix A.
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Figure 6.2: Expression of α–synuclein protein in yeast. (a) One copy
of the α–synuclein construct is not able to saturate the QC system of the
yeast. In this case, α–synuclein protein concentrates at the plasma mem-
brane, and small amounts concentrate in the cytoplasm. (b) Multiple copies
of the α–synuclein construct are able to saturate the QC system of the yeast,
exhibiting cytoplasmic inclusions and reduced membrane localization.
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Figure 6.3: Proof–of–concept to investigate α–synuclein aggrega-
tion dynamics. So far, the α–synuclein accumulation was studied only in a
qualitative manner, since the expression could be activated or repressed by
means of an inducible promoter without the possibility to maintain inter-
mediate concentration levels. External feedback control of gene expression
from the galactose–inducible promoter makes it is possible to quantitatively
study the dynamics of α–synuclein expression and aggregation.
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6.2.1 External feedback controller of α–synuclein ex-

pression

The controller is based on the model predictive control strategy presented
in Section 4.3 . The implementation details of the control algorithm are de-
scribed in Section 4.3.2, except for the differences presented in the following
paragraphs.

Since the system dynamics of the α–synuclein protein expression is slower
compared to that of the experimental testbed used in Chapter 4, the length
of the prediction horizon (Tp) was doubled, and set to 120 min. In this way,
the number of sampling intervals to be considered in Eq. 4.12 is equals to
the integer number N = 24.

Moreover, the optimisation was performed by adopting the Sequential
Quadratic Programming (SQP) method described in Chapter 14 of Nocedal
and Wright [62]. The SQP method is a constrained nonlinear optimization
algorithm and it is implemented as a solver method in the fmincon function
of the Optimization Toolbox (The MathWorks, Inc.).

6.2.2 Identification and modeling of α–synuclein pro-

tein expression

The model predictive controller needs a dynamical model of the system being
controlled to compute the control input (u). Thus, I derived a state–space
linear model of the single copy SNCAA53T–GFP yeast strain. To this end, a
system identification time–lapse experiment was performed, as depicted in
Fig. 6.4. Before the experiment, yeast cells were kept in galactose enriched
medium in order to fully activate the galactose promoter (galactose steady
state). The identification time–lapse experiment was carried out for 40 hrs,
feeding yeast cells alternatively with galactose and glucose enriched media
for 480 min (Fig. 6.4). The average fluorescence of the cell population was
quantified at each sampling time and taken as the system output (Fig. 6.4,
orange line).

I decided to describe the dynamics of the α–synuclein expression by
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Figure 6.4: Time–lapse experiment for the identification of
α–synuclein protein expression. The grey line is the input u provided to
the yeast cells. The orange line is the output y measured as the average fluo-
rescence (GFP) of the cell population. The blue line is the simulated output
to the same stimuli as the one provided for the identification experiment,
using the identified discrete model.

means of a single–input single–ouput (SISO) linear discrete time system
consisting of two coupled difference equations:

xk+1 = A xk + B uk

yk = C xk

(6.1)

where xk ∈ R2 is system state, uk ∈ [0, 1] is the input, and yk ∈ R is the
measured output. I assumed that the input (u) is piece–wise constant during
the sampling period T (zero–order hold method as described in [34]).

The model parameters were estimated from the input–output data shown
in Fig. 6.4 (grey and orange lines). Thus, the state–space identification was
carried out by employing the ssest function of the System Identification
Toolbox (The MathWorks, Inc.). The algorithm used the prediction error
minimization (PEM) approach to estimate the numerical model parameters
from the identification input–output data (for further details see Chapter 7
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in [48]). The estimated model parameters are:

A =

[
0.9623 0.0095

0.0067 0.9709

]
(6.2)

B =

[
−0.0001461

0.006252

]
(6.3)

C =
[
9.569 −0.0424

]
(6.4)

The identified model was able to recapitualte the experimental data
across the identification scenario, as depicted in Fig. 6.4 (blue line); obtain-
ing a fitting percentage (FIT% – see Appendix A for further details about
the formula) equal to 95.81%.

6.2.3 Tracking control experiments

As I would like to increase the protein expression at discrete steps, I chose
two reference signals:

1. a descending staircase function where each step lasts 750 min, begin-
ning at 75% of the maximum fluorescence when cells are grown in
galactose, then stepping down to 50% and then 25%;

2. an ascending staircase function where the first and the second step
last 750 min, and the third 500 min, beginning at 25% of the maximum
fluorescence value, then stepping up to 50% and then 75%.

Numerical simulations.

I tested the feasibility of achieving the control tasks by simulating the be-
havior of cell population by means of the identified population–averaged
model illustrated in Section 6.2.2. Numerical simulations of the control ex-
periments confirmed the ability of the MPC controller to follow the desired
time–varying reference signals (Fig. 6.5).
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Figure 6.5: Numerical simulation of tracking control tasks using
the MPC strategy. The blue line is the reference signal. The orange
line is the simulated value of the green fluorescent reporter. The grey line
is the administered control input. (a) Control experiment simulated on the
mathematical model of the strain carrying human mutant A53T α–synuclein
construct in single copy with a descending staircase reference signal. The
initial level of fluorescence is assumed to be equal to 1. The control ac-
tion starts at t = 0 min and ends at t = 2250 min. (b) Control experiment
simulated on the mathematical model of the strain carrying human mutant
A53T α–synuclein construct in single copy with an ascending staircase ref-
erence signal. The initial level of fluorescence is assumed to be equal to 0.
The control action starts at t = 0 min and ends at t = 2250 min.
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In vivo time–lapse control experiments.

Numerical simulations presented in the previous section confirmed that the
MPC strategy could achieve a satisfactory control performance. Therefore,
I performed the control experiments in vivo, whose results are shown in
Fig. 6.6. Prior to each control experiment, cells were inoculated in proper
enriched medium to induce, or repress, the expression of the α–synuclein
construct, depending on the reference signal (descending or ascending stair-
case). In the case of the descending staircase, cells were inoculated in galac-
tose/raffinose enriched medium, and then the culture was repeatedly diluted
to achieve a desired concentration on the day the cells were injected into the
microfluidics device. A calibration phase lasting 180 min was performed
at the beginning of each experiment to normalize the measured fluorescence
value during the control experiment (Fig. 6.6a). Conversely, in the case of as-
cending reference signal, cells were inoculated in raffinose enriched medium,
and then repeatedly diluted to achieve the desired concentration. The raf-
finose enriched medium allows a faster induction of the galactose–inducible
promoter when the cells are fed with galactose. The calibration phase in
this case lasts 15 min and the mean of the fluorescence emitted by a con-
stitutively expressed mCherry fluorescent reporter was used to estimate the
maximal fluorescence value associated to the full induction of the galactose
promoter (Fig. 6.6b).

The experimental results confirmed the numerical simulations, demon-
strating the ability of the methodology to study quantitatively the dynamics
of α–synuclein protein aggregation.

6.3 Experimental investigation of human

α–synuclein protein aggregation in yeast

The experimental results of the pilot study presented up to now firmly
demonstrate that the α–synuclein expression can be controlled at intermedi-
ate concentration levels by applying principles drawn from control theory. I
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Figure 6.6: Experiment of tracking control tasks using the MPC
strategy in yeast cells. The blue line is the reference signal. The orange
line is the measured value of the green fluorescent reporter. The grey line
is the administered control input. (a) Control experiment performed on the
strain carrying human mutant A53T α–synuclein construct in single copy
with a descending staircase reference signal. The calibration phase lasts
180 min, and the mean value of the measured green fluorescence across the
cell population is set equal to 1. The control action starts at t = 0 min
and ends at t = 2250 min. (b) Control experiment performed on the strain
carrying human mutant A53T α–synuclein construct in single copy with an
ascending staircase reference signal. The calibration phase lasts 15 min, and
the mean value of the measured green fluorescence across the cell population
is set equal to 0, whereas the high steady state is set to a fluorescence value
proportional to the mean of measured mCherry fluorescent protein across
the cell population. The control action starts at t = 0 min and ends at
t = 2000 min.
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then investigated the dynamics of α–synuclein aggregation by applying the
same methodology described above.

As stated in Section 6.1, α–synuclein aggregation can be induced in yeast
strains only by inserting multiple copies of the SNCAA53T–GFP construct
under the GAL1 galactose–inducible promoter. Hence, we generated such a
yeast strain as described in Appendix A.

6.3.1 Open–loop dynamics of α–synuclein protein ex-

pression in the multiple copy SNCAA53T–GFP yeast

strain

In order to confirm α–synuclein protein aggregation in the multiple–copies
yeast strain, I first performed experiments in open–loop. Specifically, I per-
formed an in vivo time–lapse experiment by simply switching cells from raf-
finose enriched medium to galactose enriched medium in order to induce the
expression of the α–synuclein protein. The complete experimental procedure
is reported in Appendix A.

The experimental results of the in vivo open–loop experiment are shown
in Fig. 6.7. The mean value of the fluorescence measured across the cell
population shows that protein expression is induced as expected following
growth medium switch (Fig. 6.7a, orange line). Moreover, the α–synuclein
protein is expressed at high levels and thus it aggregates during the course
of the experiment, as shown in Fig. 6.7.

6.3.2 Offset–free Model Predictive Control of α–synuclein

protein expression in the multiple copy SNCAA53T–GFP

yeast strain

In vivo control experiments in the pilot study were carried out by means of
a model predictive control strategy. Experimental results demonstrate the
feasibility of using the control strategy to steer in vivo SNCA gene expres-
sion. However, they also highlighted the presence of a steady state error



84

a

b

0 500 1000 1500 2000
Time (min)

1000

2000

3000

4000

5000

Fl
uo

re
sc

en
ce

 (a
.u

.)

0 min 250 min 500 min

750 min 1000 min 1250 min

1500 min 1750 min 2000 min

Figure 6.7: Open–loop dynamics of human mutant A53T
α–synuclein protein expression from the galactose–inducible pro-
moter in the multiple copy SNCAA53T–GFP yeast strain. Yeast cells
were growth in raffinose enriched medium, and then switched to galactose en-
riched medium at 15 min. (a) The orange line is the mean fluorescence level
(GFP) measured across the cell population. The grey area is the standard
deviation of the expression levels measured across the cell population. (b)
Representative microscopy images acquired from the green channel showing
the expression of the α–GFP during the time–lapse experiment.
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when the fluorescence has to track the lowest value of the reference signal
in Fig. 6.6. Since the numerical simulations did not show any steady state
error, I deduced that a model mismatch influenced the tracking performance
of the MPC.

For this reason, I redesigned the MPC following the approach first pro-
posed by Pannocchia and Rawlings in order to reduce the steady–state error
[63]. In this approach, the model predictive control algorithm achieves off-
set–free control by augmenting the system model with an additional state
representing a constant disturbance. Thus, the state of the original system
is translated onto the manifold that suppresses the effects of the disturbance
on the controlled variables.

The state–space formulation of the augmented model is:

xk+1 = A xk + B uk

dk+1 = dk

yk = C xk + dk

(6.5)

where xk ∈ R2 is system state, dk ∈ R is the integrated disturbance on the
controlled variable (y), uk ∈ [0, 1] is the input, and yk ∈ R is the measured
output. Considering the integrating disturbance as a state variable, I can
recast the disturbance model in the following augmented system[

xk+1

dk+1

]
=

[
A 0

0 I

] [
xk

dk

]
+

[
B

0

]
uk

yk =
[
C I

] [xk
dk

] (6.6)

The state of the system, and thus also the additional disturbance are
numerically estimated from the measured fluorescence data by employing
a Kalman filter designed for the augmented system as depicted in Eq. 6.6,
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according to the procedure described in Pannocchia and Rawlings [63]. The
estimation of the disturbance (d) achieves an offset–free steady state in the
model predictive control strategy, as described in 6.2.1.

As next step in analysing the aggregation dynamics of α–synuclein pro-
tein, I performed a series of time–lapse control experiments to understand
the aggregation point of the α–synuclein protein in the cell population. The
time–lapse experiments were carried out in vivo by means of a offset–free
model predictive control strategy, as exposed in Section 6.3.2.

As a control task, I decided to track an ascending staircase signal so
that α–synuclein protein expression is steered from no expression to high
expression in discrete steps (e.g. Fig. 6.5b and Fig. 6.6b). This choice allows
to precisely quantify at which expression level aggregation occurs and also
to observe and model the protein aggregation dynamics.

On setting the reference signal for α–synuclein protein expression
from the multiple copy SNCAA53T–GFP yeast strain.

Fluorescence intensity is proportional to α–synuclein protein expression,
however the scaling constant is not known and prone to vary in each ex-
periment due to biological (gene expression noise) and technical constraints
(e.g. wearing of the fluorescence lamp). Moreover, it is not possible to fully
induce the expression of α–synuclein in the multiple copy SNCAA53T–GFP
yeast strain, because the mutant α–synuclein protein will aggregate, thus dis-
torting fluorescence readings, therefore I cannot directly measure the max-
imum fluorescence level of α–synuclein–GFP (GFPm.f.l.) expressed by the
cells. The GFPm.f.l. value is needed to set the unit of measure of the refer-
ence signal (expressed as a % of the maximum fluorescence).

To solve this issue, I hypothesised that the α–synuclein’s GFPm.f.l. prior
to aggregation is proportional to the fluorescence level emitted by the mCherry
protein expressed in the yeast strain under a constitutive promoter (as de-
tailed in Appendix A).

In order to estimate the GFPm.f.l. prior to aggregation, I analysed the
open–loop experiment depicted in Fig. 6.7. I observed that the protein ag-
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gregation starts between 250 min and 500 min. This observation is confirmed
by the fluorescence images for the green fluorescence channel (e.g. Fig. 6.7b).
I then performed the following steps:

1. I filtered the fluorescence time–series in the time interval between
250 min and 500 min using polynomial interpolation. To this aim, I em-
ployed a robust implementation of the LOESS method, a non–parametric
regression method available in the smooth function of the Curve Fitting
Toolbox (The MathWorks, Inc.) [64, 65]. In detail, the smooth function
implements local regression using weighted linear least squares and a
second degree polynomial model. Moreover, the robust implementa-
tion of the LOESS method can be exploited to reduce the method
sensitivity to outliers. I considered a span of 0.25% for the smoothing
of the fluorescence levels.

2. I considered as the time in which aggregation begins, the time point
in the interval between 250 min and 500 min at which the fluorescence
level changes in slope. Therefore, I computed numerically the sec-
ond derivative of the smoothed time–course data, and found that its
maximum occurs at 270 min and that at this time point the green fluo-
rescence level (i.e. α–synuclein) is approximately 665 (a.u.). This value
is set as the GFPm.f.l. prior to aggregation.

3. Since fluorescence values are not comparable across experiments be-
cause of biological and technical issues, the GFPm.f.l. I estimated in
the previous step needs to be normalised to the red (mCherry) fluores-
cence signal in the cell population, which can instead be measured in
each experiment. To this end, I computed a scaling factor as follows:

SF =
GFPm.f.l.

mCherryglucose
(6.7)

where mCherryglucose is the red fluorescence value measured across
cell population during the initial calibration phase of the open–loop
experiment during which cells were kept in glucose.
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ThemCherryglucose is computed in each control experiment by measuring
it during the calibration phase. Assuming that the value of SF is constant
across experiment, the value of GFPm.f.l. can be estimated simply as:

GFPm.f.l. = SF × mCherryglucose. (6.8)

Understanding the aggregation dynamics of human α–synuclein
protein.

Figure 6.8 shows the results of the reference tracking experiment in the mul-
tiple copy SNCAA53T–GFP yeast using an ascending staircase as reference
signal. The control objective was achieved (Fig. 6.8a, upper panel), however
the protein did not aggregate during the experiment (Fig. 6.8b).

Therefore, I performed an additional control tracking experiment setting
the maximum value of the reference signal to 4 (i.e. four time the estimated
GFPm.f.l.) as shown in Fig. 6.9. Specifically, I decided to divide the second
time–lapse control experiment in two parts:

1. a closed–loop control phase lasting 2000 min;

2. an open–loop phase lasting 1000 min in which I just provided galactose
enriched medium to the cells in order to maximally overexpress the
protein and check if it aggregates.

The experimental results are shown in Fig. 6.9. Also in this case, the protein
did not aggregate during the closed–loop control phase (Fig. 6.9b), whereas
it aggregated during the open–loop phase.

The third time–lapse experiment in chronological order is equals to the
second one in terms of control objectives, although this time I set the refer-
ence signal to reach a maximum value of 16 (i.e. sixteen times the estimated
GFPm.f.l. in Eq. 6.8). The experimental results of the in vivo experiment are
shown in Fig. 6.10. This time the protein aggregates during the controlled
expression phase of the experiment (e.g. in Fig. 6.10b). I thus decided to
stop the experiment, since the aggregation point was reached at the second
step pf the reference signal.
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Figure 6.8: Signal tracking control experiment of human mutant
A53T α–synuclein expression. The value of 1 in the reference signal is
the estimated GFPm.f.l. computed as in Eq. 6.8.
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Figure 6.9: Signal tracking control experiment of the human mutant
A53T α–synuclein. Time–lapse signal tracking control experiment where
the maximum level of the reference signal is fourfold the GFPm.f.l. computed
in Eq. 6.8.



91

a

b

250 min 750 min 1250 min

1500 min

0

4

8

12

16

0

1000

2000

3000

0 500 1000 1500 2000 2500 3000
GLC

GAL

Fl
uo

re
sc

en
ce

 (n
.u

.)
Fl

uo
re

sc
en

ce
 (a

.u
.)

Time (min)

Figure 6.10: Signal tracking control experiment of the human mu-
tant A53T α–synuclein. Time–lapse signal tracking control experiment
where the maximum level of the reference signal is sixteen–fold the GFPm.f.l.

computed in Eq. 6.8.
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In the final time–lapse experiment, I controlled the expression of the
α–synuclein protein at intermediate concentration level between the first
and the second plateaus of Fig. 6.10. Therefore, I set the reference signal
to reach a maximum value of 10 (i.e. ten times the estimated GFPm.f.l. in
Eq. 6.8). The experimental results are depicted in Fig.6.11. As it can be
appreciated from the Fig. 6.11, the α–synuclein protein shows a threshold
effect (highlighted in Fig. 6.12 and Fig. 6.13; grey area), since it starts
aggregating within a fixed range of fluorescence levels.

Concluding, the entire analysis is recapitulated in Fig. 6.12, which high-
lights the threshold effect (Fig. 6.12 and Fig. 6.13; grey area).

6.4 Discussion

In this Chapter, I presented a possible application scenario for the experi-
mental platform described in Chapter 3. I exploited the potential of external
feedback control of gene expression to study in yeast a pathological hallmark
of Parkinson’s disease, i.e. the aggregation of the human α–synuclein protein.

So far, a quantitative understanding of the dynamics involving the ac-
cumulation of the α–synuclein protein is lacking. Here, I performed a quan-
titative analysis of the aggregation dynamics of the mutant form A53T of
the human α–synuclein protein. I have discovered that the accumulation of
the mutant form is characterised by a threshold level. Below this level, the
protein does not aggregate, whereas above it, the protein accumulates in
cells, and the aggregated corps are visible as cytoplasmic inclusions.

The work presented in this Chapter is part of an ongoing work, further
analysis are required to completely dissect the accumulation dynamics of
the α–synuclein protein. For example, it will be interesting to study the
aggregation properties exhibited at the single cell level. Moreover, a com-
parison of the aggregation dynamics among yeast strains expressing wild
type and mutant forms of human α–synuclein protein can elucidate further
details about the pathological hallmark, since the mechanisms underlying
the protein aggregation are still unclear.
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Figure 6.11: Signal tracking control experiment of the human mu-
tant A53T α–synuclein. Time–lapse signal tracking control experiment
where the maximum level of the reference signal is ten–fold the GFPm.f.l.

computed in Eq. 6.8.
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Figure 6.12: Overview of signal tracking control experiments. The
expression levels (orange lines) of the four time–lapse control experiments,
reported in normalized units, are shown together in order to highlight the
threshold effect (grey area) exhibited by the protein expression.
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Figure 6.13: Overview of signal tracking control experiments. The
expression levels (green lines) of the four time–lapse control experiments,
reported in arbitrary units, are shown together in order to highlight the
threshold effect (grey area) exhibited by the protein expression.



Chapter 7

Conclusions

In this Thesis, I contributed to the emerging role of control theory in syn-
thetic biology. Exploiting the concept of negative feedback loop, I extended
the field of controlling cellular processes in real–time to biomedically rele-
vant applications. Indeed, I devised novel approaches to model and control
gene expression dynamics in yeast from the endogenous galactose–inducible
GAL1 promoter. I performed most of the experiments here described by
means of the experimental platform presented in Chapter 3.

The first contribution of this Thesis is presented in Chapter 4, where
I provide a comparative analysis of different control strategies that can be
used to control gene expression in living cells. So far, a similar comparison
has never performed in literature, thus representing an important contri-
bution to the field of control theory in synthetic biology. I carried out
the analysis by comparing three control strategies: proportional-integral
control, model–predictive–control, and zero–averaged–dynamics control. I
demonstrated that both MPC and ZAD control strategies can be success-
fully employed to control gene expression from the galactose–inducible pro-
moter to generate any desired time–varying concentration of the reporter
protein (GFP). Instead, the PI controller performed similarly to the MPC
and ZAD strategies only in the setpoint control task, whereas it was the
worst performer in the case of signal–tracking experiments.

The second achievement of this Thesis is proposed in Chapter 5, that

95



96

deals with the characterisation of gene expression from endogenous galac-
tose–inducible promoter both at single cell and at population level. I verified
that a mixed–effects dynamical model can correctly describe the variability
in fluorescence level both in individual cells and at the population level.
To this aim, I performed an analysis on single cell data obtained from the
time–lapse control experiments presented in Chapter 4. The main aim of the
analysis was to characterise both the intrinsic and extrinsic noise arising from
the gene expression. I then derived a mathematical representation of protein
expression neglecting intrinsic noise using the mixed–effects modeling frame-
work. The third contribution is a novel model–predictive–control approach,
based on single cell models in order to predict the overall behaviour of the
cell population (Chapter 5). Numerical simulations confirmed that the pro-
posed strategy may successfully achieve the regulation of gene expression
from the galactose–inducible promoter in yeast cells.

Finally, the fourth contribution of this Thesis is described in Chapter 6,
where I presented a biomedically relevant application of external feedback
control of gene expression from the endogenous GAL1 promoter. In partic-
ular, I dissected in yeast a pathological hallmark of Parkinson’s disease, i.e.
the aggregation of the human α–synuclein protein.



Appendix A

Materials and methods

A.1 Yeast strains

All yeast strains used to carry out this study are here described.
The comparative analysis of the control strategies presented in Chapter 4

has been accomplished through the GAL1–GFP yeast strain (Gal1–GFP-
–KanMX, Gal10–mCherry–NatMX) kindly provided us by Prof. David
Botstein [20]. In this strain the Gal1 protein, expressed by the galac-
tose–inducible promoter, is fused to a green fluorescent protein (GFP).

The aggregation dynamics of the α–synuclein protein has been elucidated
in Chapter 6 by means of two different yeast strains:

1. single copy SNCAA53T–GFP yeast strain (Gal1pr–SNCAA53T–GFP-
–KanMX);

2. multiple copy SNCAA53T–GFP yeast strain (Gal1pr–SNCAA53T–GFP-
–KanMX, Gal1pr–SNCAA53T–GFP–HphMX, YCplac111 Gal1pr–SNCAA53T-
–GFP–LEU2).

The yeast strains have been constructed in collaboration with Dr. Cathal
Wilson and Dr. Marco Santorelli. To this aim, we have inserted into the
strains the Gal1pr–SNCAA53T–GFP construct in single and multiple copy.
The construct has been taken from the the plasmid (pRS304–Syn–A53T)
kindly provided us by Prof. Susan Lindquist [61]. Moreover, both yeast
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strains have been manipulated to express the mCherry fluorescent protein
from a constitutive promoter.

A.1.1 Single copy SNCAA53T–GFP strain construction

1. α–Synuclein A53T construct fused to a Green Fluorescent Protein
(GFP) under control of the galactose–inducible promoter (Gal1pr-
–SNCAA53T–GFP) was amplified by PCR from the plasmid pRS304-
–Syn–A53T [61], using the forward primer
O.Gal.Fwd
5’ – CAGCTGAAGCTTCGTACGCTGCAGGTCGACAGTACGGA
TTAGAAGCCGCC – 3’
and reverse primer
O.Cyc.Rev
5’ – GGCGGGGACGAGGCAAGCTAAACAGATCTCAAATTAAA
GCCTTCGAGCGTCC – 3’
and cloned SalI/BglII into the vector pYM27 [66].

2. After sequencing, a cassette containing α–synuclein sequence together
with the Kan resistance gene was amplified from the respective pYM27
construct using primers with a 50 bp overhang corresponding to the
5’ and 3’ sequences of the yeast dubious ORF YMR082C using the
primers
Gal.Syn.Fwd
5’ – TGATTATCTAAGCAGCAATCCCCTTGTCCTACAAAACA
GAAACTGGAAGAAGTACGGATTAGAAGCCGCCGAG – 3’
and
S2.Syn.Rev
5’ – ACGCAGACCCATTCGAGGGGCTCATTGGAAACACGTAG
TCGACATTAGTTATCGATGAATTCGAGCTCGTT – 3’.

3. A yeast strain with a constitutively expressed cytosolic marker (TEF2pr-
–mCherry; [67]) was transformed with the amplicon and transformant
was selected on kanamycin–containing plates.
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4. Insertion of the α–synuclein cassette into the YMR082C locus by ho-
mologous recombination was verified by PCR from genomic DNA pre-
pared from the strain.

A.1.2 Multiple copy SNCAA53T–GFP strain construc-

tion

1. To insert a second copy of the construct into the genome, the Gal1pr-
–SNCAA53T–GFP cassette was cloned SalI/BglII into the vector pYM25,
as described above.

2. After sequencing, the cassette containing the α–synuclein sequence to-
gether with the Hph resistance gene was amplified from the pYM25
construct using primers with a 40 bp overhang corresponding to the
5’ and 3’ sequences of the yeast dubious ORF YFR054C using the
primers
YFR054C–KO–pYM–F
5’ – TAATGCCGAAGTATTACGTACTACGAAAGTTAAGACTA
TGCGTACGCTGCAGGTCGAC – 3’
and
YFR054C–KO–pYM–R
5’ – TAGAGTGTAATCTCGCCAAACCCAGTAATAGCATCGTT
TAATCGATGAATTCGAGCTCG – 3’.

3. The yeast strain expressing a single copy of SNCAA53T–GFP–KanMX
and TEF2pr–mCherry was transformed with the amplicon, and trans-
formants were selected on kanamycin/hygromycin–containing plates.

4. Insertion of the α–synuclein cassette into the YFR054C locus by homol-
ogous recombination was verified by PCR from genomic DNA prepared
from the transformants.
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Figure A.1: Blueprint of device MFD0005a. Adapted from [25].

A.2 Microfluidics

A.2.1 Master–mold

The microfluidic device MFD0005a has been conceived and designed by the
Biodynamics Laboratory of Prof. Jeff Hasty (UCSD) [25]. The device fab-
rication has been carried out with a replica molding technique by means
of the master–mold kindly provided us by Prof. Jeff Hasty as a blueprint
(Fig.A.1).
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A.2.2 Device fabrication

The devices are fabricated with polydimethylsiloxane (PDMS; Sylgard 184,
Dow Corning).

1. Before the fabrication, the master–mold is exposed to chlorotrimethyl-
silane (Sigma–Aldrich Co.) for 10min in order to create an anti–slicking
layer for PDMS.

2. PDMS with a 10 : 1 ratio (base to curing agent, w/w) is poured on
top of the master–mold and cured at 80◦C for 2 hrs.

3. Successively, the PDMS layer is cut and peeled from the master–mold.

4. The inlet ports of the devices are pierced with a micro–puncher (0.5 mm;
World Precision Instruments, Inc.).

5. Afterwards, the PDMS devices are washed overnight in isopropyl alco-
hol (Sigma–Aldrich Co.). At the same time, thin glass slides (Thick-
ness No. 1.5; Paul Marienfeld GmbH & Co. KG) are cleaned in acetone
(Sigma–Aldrich Co.) and isopropyl alcohol (Sigma–Aldrich Co.). Both
PDMS devices and cleaned glass slides are left overnight to dry under
vacuum.

6. A PDMS device and a glass slide are undergone to plasma treatment
for 1 min in a plasma cleaner machine (ZEPTO version B; Diener elec-
tronic GmbH + Co. KG), and then are bonded together irreversibly.

7. Finally, an inspection is performed on the fabricated devices to check
for possible defects.

A.3 Microscopy

The experimental platform presented in Chapter 3 exploits an inverted fluo-
rescence Nikon Eclipse Ti–E microscope (Nikon Instruments) to acquire raw
images of cells into microfluidic device. The microscope is equipped with
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an iXON Ultra897 EMCCD camera (Andor Technology Ltd) and a Perfect
Focus System (PFS; Nikon Instruments). The PFS has been conceived to
combat axial focus fluctuations, due to thermal noise, in real–time during
long–term imaging acquisitions.

The microscope and the camera were programmed to acquire, at 5 min

intervals, three different type of image:

1. a phase contrast image,

2. a fluorescence image in the green spectrum (Piston GFP Bandpass
Emission filter; Nikon),

3. a fluorescence image in the red spectrum (TRITC HYQ filter; Nikon).

All the types of image have been acquired with a 40X dry objective (CFI
Plan Fluor DLL 40X, Nikon Instruments).

Image acquisition has been performed with the NIS–Elements AR v. 3.22

(Nikon Instruments) control software.

A.4 Image analysis

The image analysis has been carried out in MATLAB R2012b (The Math-
Works, Inc.) by employing the custom image processing algorithm developed
by Menolascina et al. [10]. In summary, it was conceived and developed to
quantify the fluorescence signals being expressed by the entire population of
yeast cells.

This aim has been achieved implementing the following pipeline:

1. Raw images (phase contrast and fluorescence images) are acquired by
the microscope and fed to the image processing algorithm.

2. The image processing algorithm elaborates the phase contrast image
to detect the yeast cell inside the frame.

3. Once yeast cells are detected inside the frame, a binary mask is created
to define the regions in which yeast cells have been found.
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4. The binary mask is overlapped to raw fluorescence images (logical AND
operator) to select only the fluorescence intensity emitted by cells.

5. The average fluorescence intensity is calculated.

Further details about the image processing algorithm can be found in
[22, 23, 26].

A.4.1 Custom offline tracking algorithm

The single cell quantification of protein expression presented in Chapter 5
has been achieved by means of a custom offline segmentation and tracking
algorithm. To this aim, I adapted and improved the algorithm proposed in
[26].

The custom image processing algorithm has been developed and imple-
mented as a function in the MATLAB (The MathWorks, Inc.) environment.
The algorithm receives in input the sequence of images in a time–lapse ex-
periment, and returns in output a set of time–series related to each one
of the tracked cells, consisting of the single–cell fluorescence levels and
mother–daughter relationships among the cells in order to track also the
phylogeny of each yeast cell.

Basically, in order to measure the fluorescence level of a single cell over
time, a three–step image analysis approach was devised:

1. detection of the cells’ position within each image (segmentation);

2. tracking of the movements of each cell in the entire image sequence
(tracking);

3. generation of a lineage tree describing the mother–daughter relation-
ships among cells (phylogenetic analysis).

The segmentation step was rearranged from the custom image segmen-
tation algorithm described above. Instead, the tracking step was developed
as an improvement of the algorithm presented in [26].
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Since yeast cells make small frame–to–frame movements, tracking and
cell division detection can be performed by finding the correspondences be-
tween the objects detected in two consecutive frames (phase contrast images)
spotting a minimum cost configuration. This association cost increases as
long as the displacement between the centroids of the corresponding ob-
jects. The minimum cost configuration can be determined by setting up and
solving a linear programming problem (LPP).

GPU–parallel software implementation in CUDA

The proposed segmentation and tracking algorithm, implemented as a MAT-
LAB function, is not suitable for real–time applications, like the time–lapse
control experiments presented in Chapter 4. In order to reduce the compu-
tational time requested by the algorithm, an efficient GPU–parallel software
implementation was developed in collaboration with Dr. Diego Romano
and Dr. Livia Marcellino, exploiting the NVIDIA CUDA (Compute Unified
Device Architecture) environment.

The computational time was sped up by transforming the tracking mod-
ule of the algorithm, that holds the CPU for the 40% of the total time
requested by the algorithm to be executed, in a GPU–parallel component
according to the procedure described in [68].

A.5 Computational analysis

A.5.1 Model quality metrics

Model quality metrics are computational tools that can be used to assess
the quality of identified mathematical models, compare different models,
and choose the best one.

The fitting percentage (FIT%) has been used as index to evaluate the
quality of the identified mathematical models. It provides a measure of the
percentage of the output variation that is reproduced by the mathematical
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model and is given by the following formula:

FIT% = 100

(
1− ‖ymeasured − ymodel‖
‖ymeasured − ymeasured‖

)
(A.1)

where:

• ymeasured is the measured output data.

• ymeasured is the mean value of ymeasured.

• ymodel is the simulated or predicted response.

• ‖ · ‖ denotes the 2− norm operator of a vector.

A.6 Experimental Protocol

A.7 Cell culture

GAL1–GFP strain

1. On day 0, batch culture is inoculated in 10 mL Synthetic Complete
medium (SC) + galactose/raffinose (2%).

2. The batch culture is grown overnight at 30◦C until it reaches log or
mid–log phase.

3. On day 1, the batch culture is then normalized for OD600.

Single copy SNCAA53T–GFP strain

1. On day 0, batch culture is inoculated in 10 mL Synthetic Complete
medium (SC) enriched either with galactose/raffinose (2%) or raffi-
nose (2%), according the control task. The galactose/raffinose enriched
medium is used to allow the induction of the galactose–inducible pro-
moter, conversely the raffinose enriched medium is employed to repress
the induction.
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2. The batch culture is grown overnight at 30◦C until it reaches log or
mid–log phase.

3. On day 1, the batch culture is then normalized for OD600.

Multiple copy SNCAA53T–GFP strain

1. On day 0, batch culture is inoculated in 10 mL Synthetic Complete
medium without leucine (SC-L) + raffinose (2%).

2. The batch culture is grown overnight at 30◦C until it reaches log or
mid–log phase.

3. On day 1, the batch culture is then normalized for OD600.

A.7.1 Microfluidic device set up

1. On day 1, 60 mL syringes (Becton, Dickinson and Company, NJ) filled
with 10 mL SC + galactose/raffinose (2%) and SC + glucose (2%)
media are prepared, as well as sink syringes (filled with 10 mL ddH2O);
capillaries and needles are used to allow connection to the microfluidic
device. Sulforhodamine B (Sigma–Aldrich Co.) is added to the syringe
filled with galactose–enriched medium.

2. Temperature in the micro–environment surrounding the moving stage
of the microscope is allowed to settle at 30◦C.

3. Before connecting media and sink syringes, the microfluidic device
MFD0005a wetting is carried out as described in [25].

4. After air bubbles are removed, media and water filled 60 mL syringes
are attached to the device and correct functioning is checked by in-
specting the red–fluorescence emitted by Sulforhodamine B as a result
of the automatic height control of syringes. This allowed us to carry
out a correct calibration of the actuation strategy before the actual
experiment is run.
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5. At this point cells are injected in the microfluidic device by pouring
the batch culture in a 60 mL syringe similar to the ones used to media
and sinks.

6. Once cells are trapped in the defined area (see [25] for details) Perfect
Focus System is activated to assist autofocusing during the experiment
and the acquisition routine of the microscope software is started to
initiate image acquisition.

Calibration phase

The calibration phase is needed both to let cells adapt to the microfluidic
environment, and to set the unit of measure of fluorescence, which may vary
due to technical and biological variability in each experiment.

GAL1–GFP strain

1. Once cells are loaded in the microfluidic device, they are kept in a
galactose enriched growing medium for 180 min by controlling the ac-
tuators in order to hold the syringe filled with galactose in a higher
position with respect to the one carrying glucose.

Single copy SNCAA53T–GFP strain

1. Once cells are loaded in the microfluidic device, they are kept either
in a galactose enriched growing medium for 180 min or in a glucose
enriched growing medium for 15 min, according the control task.

Multiple copy SNCAA53T–GFP strain

1. Once cells are loaded in the microfluidic device, they are kept in a
glucose enriched growing medium for 15 min.
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A.7.2 Feedback control phase

Once cells are loaded in the microfluidic device, the user has to start a
custom MATLAB script, that manages the entire experimental platform
(controller implementation, actuation, image analysis), and has to set the
reference signal for the control experiment.

Setpoint control experiments: the script is built to calculate the set-
point for the control as a percentage (indicated by the user at the beginning
of the experiment) of the average of the fluorescence measured by the im-
age processing algorithm during the calibration phase previously described.
After this, the implemented script proceeds in executing all the code blocks
necessary to reach and maintain the fluorescence reference.

Signal tracking control experiments: the length and the values of the
steps of the staircase reference used in signal tracking control experiments is
calculated by a custom MATLAB script that manages the entire experimen-
tal platform. The script is built to calculate the values of each of the steps as
percentages (indicated by the user at the beginning of the experiment in the
case of the staircase control reference) of the average of the fluorescence mea-
sured by the image processing algorithm during the calibration phase. At
the end of the calibration, the implemented script proceeds in executing all
the code blocks necessary to reach and maintain the fluorescence reference.
The same procedure, with a different calculation for the control reference,
applies to the case of signal tracking control with the ramp reference signal
and the sinusoidal wave.



Appendix B

Table B.1: Model parameters for the cell ensemble employed to
carry out the numerical simulations in Chapter 5.

Cell no. α β γ δ

1 0.02975 0.13054 0.00186 0.00691
2 0.16523 0.08070 0.00288 0.00139
3 0.00074 0.00106 0.01732 0.02601
4 0.04570 0.03330 0.00928 0.00902
5 0.02227 0.04788 0.00341 0.00918
6 0.00259 0.00157 0.01989 0.01027
7 0.00823 0.02174 0.00372 0.01025
8 0.02299 0.08750 0.00071 0.00284
9 1.66023 26.58133 0.00025 0.00362
10 0.56949 0.72304 0.00258 0.00400
11 0.00245 0.00020 0.03969 0.00772
12 0.80907 0.44750 0.03120 0.01386
13 0.03814 0.33104 0.00035 0.00253
14 0.01344 0.00469 0.00939 0.00636
15 0.03760 0.19493 0.00064 0.00146
16 0.01114 0.01844 0.00127 0.00213
17 0.01240 0.11476 0.00076 0.00357
18 0.10481 0.01236 0.02211 0.00345

(continued on next page)
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Table B.1 (continued from previous page)
Cell no. α β γ δ

19 0.09420 0.11110 0.01884 0.02204
20 0.09522 0.02997 0.00989 0.00540
21 0.03551 2.34582 0.00005 0.00158
22 0.00296 0.01165 0.01162 0.02640
23 0.03773 0.33795 0.00279 0.01621
24 0.12622 0.04884 0.00812 0.00355
25 0.02789 0.02203 0.00152 0.00188
26 0.05741 0.06025 0.00310 0.00421
27 0.03821 0.23726 0.00095 0.00351
28 0.00978 0.00952 0.00868 0.00820
29 0.02155 0.07788 0.00148 0.00232
30 0.00516 0.00048 0.08400 0.01691
31 0.04731 0.04430 0.00810 0.00608
32 0.00320 0.00146 0.00422 0.00192
33 0.00355 0.00061 0.01309 0.00342
34 0.00501 0.01328 0.00146 0.00249
35 0.00030 0.00053 0.00385 0.00761
36 0.09793 0.15651 0.00227 0.00306
37 0.02246 0.00567 0.01895 0.01343
38 0.00538 0.03220 0.00007 0.00089
39 0.08950 0.21571 0.00141 0.00140
40 0.00152 0.00134 0.03212 0.03022
41 0.01276 0.01860 0.00155 0.00167
42 0.01062 0.01059 0.01622 0.01363
43 0.02229 0.00326 0.04245 0.00885
44 0.02210 0.02197 0.00562 0.00778
45 0.00465 0.00213 0.01672 0.00827
46 0.01404 0.00554 0.00285 0.00313
47 0.01175 0.00365 0.01575 0.00538

(continued on next page)
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Table B.1 (continued from previous page)
Cell no. α β γ δ

48 0.03352 0.02448 0.03530 0.02461
49 0.06204 0.00679 0.03678 0.00735
50 0.06337 0.33655 0.00124 0.00548
51 0.00466 0.01253 0.00147 0.00567
52 0.01619 0.02251 0.00439 0.00699
53 0.00293 0.00375 0.00777 0.00765
54 0.00335 0.00158 0.02175 0.00623
55 0.01448 0.07803 0.00099 0.00903
56 0.11093 0.14324 0.00292 0.00318
57 0.00528 0.00283 0.09030 0.04282
58 0.02388 0.20272 0.00010 0.00110
59 0.01084 0.01136 0.05655 0.04543
60 0.06405 0.04461 0.00949 0.00505
61 0.00346 0.00317 0.02177 0.01585
62 0.01525 0.00717 0.00220 0.00157
63 0.03034 0.01025 0.00776 0.00607
64 0.06265 2.56571 0.00016 0.00296
65 0.11264 1.51085 0.00075 0.00873
66 0.01637 0.03496 0.00059 0.00177
67 0.00203 0.00052 0.04151 0.01217
68 0.00547 0.00242 0.00419 0.00192
69 0.00359 0.00384 0.00746 0.00772
70 0.32720 1.47635 0.00209 0.00670
71 0.00647 0.00156 0.03204 0.00588
72 0.03930 0.00275 0.15352 0.01521
73 0.01133 0.00240 0.06543 0.01194
74 0.04733 0.10892 0.00132 0.00305
75 0.00531 0.01213 0.00446 0.01051
76 0.00229 0.00547 0.00145 0.00284

(continued on next page)
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Table B.1 (continued from previous page)
Cell no. α β γ δ

77 0.00223 0.00248 0.00192 0.00261
78 0.02787 0.05166 0.00826 0.01436
79 0.01156 0.00873 0.00800 0.00357
80 0.01127 0.04902 0.00169 0.00918
81 0.09549 0.02458 0.03745 0.02486
82 0.02149 0.05624 0.00458 0.01399
83 0.01898 0.00898 0.01585 0.00758
84 0.11931 0.11867 0.01596 0.01563
85 0.00504 0.01418 0.00735 0.01144
86 0.03671 0.21060 0.00152 0.01314
87 0.04409 0.01516 0.00656 0.00437
88 0.01058 0.07735 0.00060 0.00514
89 0.01943 0.06627 0.00672 0.01225
90 0.00313 0.00383 0.00127 0.00240
91 0.00320 0.00333 0.00710 0.00661
92 0.01679 0.01805 0.00080 0.00113
93 0.03798 0.03769 0.01489 0.01082
94 0.44651 0.74615 0.00578 0.00554
95 0.00605 0.00889 0.00495 0.00541
96 0.01872 0.07919 0.00159 0.00543
97 0.01310 0.13675 0.00007 0.00045
98 0.00113 0.00269 0.00738 0.01911
99 0.00818 0.00864 0.00070 0.00110
100 0.00136 0.00400 0.00033 0.00171
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