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INTRODUCTION

A subgroup H of a group G is said to be permutable (or quasinormal) if
HK = KH for every subgroup K of G. This concept has been introduced by
Ore [54] and the condition HK = KH is equivalent to the requirement that
the set HK is a subgroup. As a consequence, if H is a permutable subgroup
of a group G, then for any subgroup K, 〈H, K〉 is just the set of all elements
hk, where h is in H and k is in K. With an easy argument based on set
equality, it can be proved that if H is permutable, then HK ∩ L = (H ∩ L)K
for any subgroups K and L such that K ≤ L. This property is known as
Dedekind identity (or modular law) and note that, since K∩ L = K, the equality
HK ∩ L = (H ∩ L)(K ∩ L) is a form of associative law.

The most important examples of permutable subgroups are the normal
subgroups, but not every permutable subgroup is normal. In [54] Ore proved
that a permutable subgroup of a finite group is always subnormal and,
many years later, Stonehewer [61] generalized Ore’s result to infinite groups,
showing that a permutable subgroup of an arbitrary group is ascendant.

The aim of this thesis is to study permutability in different aspects of the
theory of infinite groups. In particular, it will be studied the structure of
groups in which all the members of a relevant system of subgroups satisfy
a suitable generalized condition of permutability.

Chapter 1 is an introduction to the theory of permutable subgroups and
it contains some reminds that are needed in the following chapters. In par-
ticular, a proof of the quoted results of Ore and Stonehewer is exhibited
and it will be shown that there exists a bound on the ascending length of a
permutable subgroup in an arbitrary group. Moreover, several known gen-
eralizations of the concept of permutability are presented, where the most
natural way, of generalizing it, is to require that, for a fixed subgroup H of
a group G, the condition HK = KH is satisfied for subgroups K belonging
to a certain system of subgroups of G.
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A group G is said to have finite (Prüfer) rank r if every finitely generated
subgroup of G can be generated by at most r elements and r is the least
positive integer with such property; is such an r does not exist, G is said to
have infinite rank. A recent research topic in group theory is the study of the
effect that the imposition of a certain property, to the subgroups of infinite
rank of a group, has on the structure of the whole group. Many authors have
proved that, in many cases, the behaviour of the subgroups of finite rank can
be neglected, at least in a suitable universe of (generalized) soluble groups.
For instance, Dixon and Karatas [31] proved that if every subgroup of in-
finite rank of a locally soluble group G of infinite rank is permutable, then
the same property holds also for the subgroups of finite rank. In Chapter 2,
some new contributions to this topic are presented, with the investigation
of generalized radical groups of infinite rank whose subgroups of infinite
rank satisfy a generalized permutability condition (recall that a group G is
called generalized radical if it has an ascending series of normal subgroups
such that every factor is either locally nilpotent or locally finite).

Chapter 3 is devoted to some other aspects of the theory of permutable
subgroups in infinite groups. In particular, some results proved for finite
groups have been extended to infinite groups. In the first section, poly-
cyclic groups are considered. It is known that the behaviour of the finite
homomorphic images of a polycyclic group has an influence on the struc-
ture of the group itself. In this context, the first result, and maybe the most
important, is by Hirsch [43] who proved that a polycyclic group G is nilpo-
tent whenever its finite homomorphic images are nilpotent. Starting from
a structure theorem obtained by Robinson [59], we describe the structure
of a polycyclic group such that the subgroups of its finite quotients satisfy
different conditions of generalized permutability.

The last section of Chapter 3 deals with groups which coincide with the
product HK, for some subgroups H and K, such that H permutes with ev-
ery subgroup of K and K permutes with every subgroup of H. In this sit-
uation, H and K are said to be mutually permutable and clearly any pair
of permutable subgroups is mutually permutable. In [14], Beidleman and
Heineken proved that if H and K are mutually permutable subgroups of
the finite group G = HK, then the commutator subgroups H′ and K′ are
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subnormal in G and, in the last section, we prove a correspondent result
for Černikov groups: it is shown that if H and K are finite-by-abelian mu-
tually permutable subgroups of a Černikov group G = HK, then H′ and
K′ are subnormal. As a corollary of the quoted Beidleman and Heineken’s
theorem, one can observe that under the same hypothesis, if H′ and K′ are
nilpotent, then they are both contained in the Fitting subgroup of G. A gen-
eralization of this result to soluble-by-finite group of finite rank is obtained
in the conclusion of this work.

Most of our notation is standard and can be found in [56].



CHAPTER 1

PRELIMINARIES

1.1 Permutable subgroups

A subgroup H of a group G is called permutable (or quasinormal) if HK = KH
for every subgroup K of G. This concept has been introduced by Ore [54].
Of course every normal subgroup is permutable, but the converse is not
true. However, Ore proved that in a finite group G a permutable subgroup
is always subnormal and this is an easy consequence of the following fact.

Lemma 1.1.1 (Ore [54]). If H is a maximal permutable subgroup of a group G,
then H is normal in G.

PROOF. By a contradiction, suppose that H is not normal in G, so that there
exists an element x of G such that H 6= Hx. Put K = Hx, then HK is a
permutable subgroup of G containing properly H and, by the maximality
of H, we have that G = HK. Therefore x = hk, for some h ∈ H and k ∈ K,
so K = Hx = Hk and this implies that H = K, a contradiction. �

Corollary 1.1.1 (Ore [54]). If H is a permutable subgroup of a finite group G, then
H is subnormal in G.

In contrast to what happens for finite groups, if G is an infinite group, a
permutable subgroup need not to be subnormal. For instance, consider the
group G = 〈x〉A, where A is a group of type p∞, p > 2, and ax = a1+p, for
every a ∈ A. By Theorem 2.4.11 of [60], every subgroup of G is permutable
in G. Since the automorphism induced by x in the subgroup of order pn of
T has order pn−1, we have 〈x〉G = {1}; moreover, if H is a normal subgroup
of G containing 〈x〉, then G′ = T is contained in H and hence 〈x〉G = G. It
follows that 〈x〉 is not subnormal in G.

1
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However, it has been proved by Stonehewer [61] that a permutable sub-
group of an arbitrary group G is ascendant. Recall that a subgroup H of a
group of G is called ascendant (of length β) if there exists a set {Hα | α < β}
of subgroups of G, indexed by ordinals less than an ordinal β such that
Hα1 ≤ Hα2 if α1 ≤ α2, H0 = H and Hβ = G, Hα / Hα+1 and Hλ =

⋃
α<λ Hα

for any limit ordinal λ ≤ β.

For the proof of Stonehewer’s theorem, the following lemma is needed,
which shows that a permutable subgroup is always normalized by an in-
finite cyclic subgroup disjoint from it.

Lemma 1.1.2 (Stonehewer [61]). Let H be a permutable subgroup of a group G.
If x is an element of infinite order of G such that H ∩ 〈x〉 = {1}, then H / H〈x〉.

Let G be a group and let H be a subgroup of G. The series of normal closures of
H in G is the sequence of subgroups (HG,n)n∈N, defined inductively by the
rules HG,0 = G and HG,n+1 = HHG,n

, for each non-negative integer n. Note
that HG,1 = HG is just the normal closure of H in G and H is subnormal in
G of defect d if and only if HG,d = H.

Theorem 1.1.1 (Stonehewer [61]). If H is a permutable subgroup of a group G,
then H is ascendant in G.

PROOF. By Zorn’s Lemma, there exists an ascending chain of permutable
subgroups of G

H = H0 / H1 / . . . Hα / Hα+1 / · · · / Hρ ≤ HG

such that Hα+1/Hα is cyclic and finite, for any ordinal α < ρ and there is
no permutable subgroup of G Hρ+1 in HG, containing properly Hρ, such
that Hρ / Hρ+1 and Hρ+1/Hρ is cyclic and finite. By contradiction, suppose
that K = Hρ is a proper subgroup of HG, so that there exists an element x
of G such that K is properly contained in KKx. For some positive integer
n, we have that KKx = K〈xn〉 and, by Lemma 1.1.2, K has finite index in
KKx. Then, it follows by corollary 1.1.1 that K is subnormal in K〈xn〉 and
denote with d its defect of subnormality. Let M = KG,d−1 be the penultimate
term of the normal closure series of K in K〈xn〉. Then M, being generated

2
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by conjugates of K, is a permutable subgroup of G contained in HG and
M = K(K ∩ 〈xn〉), so M/K is cyclic and finite, a contradiction, since K is
properly contained in M. Thus, Hρ = HG and H is an ascendant subgroup
of G. �

In all known examples, a permutable subgroup is ascendant of length ω

and there is a conjecture that the minimal length of an ascending series of
a permutable subgroup is always ω. Some years ago, Napolitani proved
that the minimal length of an ascending series of a permutable subgroup is
ω + 1 but he did not publish his result. We propose here our version of the
proof of this statement.

Proposition 1.1.1. If H is a permutable subgroup of a group G, then there exists
an ascending series of H in G of length ω + 1.

PROOF. We define inductively an ascending series of H in G by choosing
H1 = H and, for any positive integer n, Hn+1 is the subgroup generated
by all the conjugates Hx

n of Hn in G such that Hx
n normalizes Hn. Clearly,

Hn is a permutable subgroup of G contained in HG, for any n ≥ 1, so that
the subgroup K =

⋃
n Hn is still a permutable subgroup of G contained in

HG. By a contradiction, suppose that K is properly contained in HG and let
g be an element of G such that K is not normal in K〈g〉. By Lemma 1.1.2, K
has finite index in K〈g〉, so that K is subnormal in K〈g〉. Let t be a positive
integer and let L = KKx1 . . . Kxt be a subgroup of K〈g〉 such that K / L. For
any i ≤ t, K〈xi〉 = KKxi ([60], Lemma 6.3.4), so that K / K〈xi〉 / K〈xi〉. Let n be
a positive integer such that K ∩ 〈xi〉 = Hj ∩ 〈xi〉 for any j ≥ n. Then

K ∩ Hj〈xi〉 / K〈xi〉 ∩ Hj〈xi〉 / K〈xi〉 ∩ Hj〈xi〉

and, since K ∩ Hj〈xi〉 = Hj(K ∩ 〈xi〉) = Hj, it follows that

Hj / K〈xi〉 ∩ Hj〈xi〉 / Hj〈xi〉.

In particular, Hj / H〈xi〉
j = HjH

xi
j and Hxi

j ≤ Hj+1. Thus, Hxi
j ≤ K for any

j ≥ n. As a consequence, Kxi is contained in K, for any i ≤ t, and K = L.
Since K is a subnormal subgroup of finite index of K〈g〉, every term of its
normal closure series in K〈g〉 is the product of finitely many conjugates of

3
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K in K〈g〉 and, by the previous argument, K is normal in K〈g〉. This contra-
diction proves that K = HG and H is ascendant in G of length ω + 1. �

A group G is called a Dedekind group if every subgroup of G is normal. Of
course, any abelian group is a Dedekind group and a non-abelian Dedekind
group is called Hamiltonian. The dihedral group of order 8 is the least exam-
ple of a Hamiltonian group. The structure of an arbitrary Dedekind group
is well-known. The following theorem describes it and a proof of it can be
found in [58].

Theorem 1.1.2 (Dedekind, Baer). All the subgroups of a group G are normal if
and only if G is abelian or the direct product of a quaternion group of order 8, an
elementary abelian 2-group and an abelian group with all its elements of odd order.

A group G is called quasihamiltonian if every subgroup of G is permutable.
The structure of a quasihamiltonian group has been completely described
by Iwasawa [44]. It follows by Stonehewer’s theorem that a quasihamil-
tonian group has all its subgroups ascendant and so it is locally nilpotent.
As a consequence, a periodic quasihamiltonian group G is the direct prod-
uct of its primary components and it is locally finite. Thus, the description
of its structure reduces to the study of the structure of a quasihamiltonian
p-group, for some prime p.

Theorem 1.1.3 (Iwasawa [44]). Let p be a prime. The group G is a quasihamilto-
nian p-group if and only if G is one of the following types:

(a) G is abelian,

(b) G is the direct product of a quaternion group of order 8 and an elementary
abelian 2-group,

(c) G contains an abelian normal subgroup A of exponent pk with cyclic factor
group G/A of order pm and there exists an element b ∈ G with G = A〈b〉
and an integer s, which is at least 2 in case p = 2, such that s < k ≤ s + m
and b−1ab = a1+ps

for all a ∈ A.

In particular, it turns out that an arbitrary quasihamiltonian p-group G is
abelian-by-finite and, if G is not abelian, it has finite exponent.

4
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Theorem 1.1.4 (Iwasawa [44]). Let G be a non-periodic quasihamiltonian group.
Then:

(a) The set T of all elements of finite order of G is a characteristic subgroup and
both T and G/T are abelian.

(b) Every subgroup of T is normal in G.

(c) Either G is abelian or G/T is locally cyclic.

It could be said more about the structure of non-periodic quasihamiltonian
groups but it is way beyond the purpose of this thesis, for a detailed account
on this and on other topics related to permutability we refer to [60].

1.2 Generalized permutable subgroups

The most natural way to generalize the concept of permutability is to require
that a subgroup H of a group G permutes only with the members of a certain
system of subgroups of G.
A subgroup H of a periodic group G is said to be S-permutable if HP = PH
for every Sylow p-subgroup P of G. The consideration of the dihedral group
of order 8 shows that there exists S-permutable subgroups which are not
permutable. In [45], Kegel proved that in a finite group G an S-permutable
subgroup is subnormal, so, in particular, finite groups in which every sub-
group is S-permutable are exactly the finite nilpotent groups.
In contrast to what happens for permutable subgroups of infinite groups,
an S-permutable subgroup of an arbitrary group need not be ascendant.
In fact, in a periodic locally nilpotent group every subgroup is trivially
S-permutable and there are many examples of periodic locally nilpotent
groups with non-subnormal (or even non-ascendant) subgroups (one can
be found in [58], Example 18.2.2).

In general, normality is not a transitive relation in an arbitrary group, i.e. if
H and K are subgroups of a group G such that H is normal in K and K is
normal in G, then H need not to be normal in G. A group G in which nor-
mality is a transitive relation is called a T-group. Thus, T-groups are exactly

5
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the groups in which every subnormal subgroup is normal. The structure of
a finite soluble T-group has been determined by Gaschütz [37], who showed
that if G is a finite soluble T-group and L is the last term of its lower cen-
tral series, then L is abelian of odd order, G/L is a Dedekind group and the
order of L is coprime to |G : L|. Later, infinite soluble T-groups have been
studied by Robinson [55].
As normality, neither permutability nor S-permutability are transitive rela-
tions. A group G in which permutability is a transitive relation is called
a PT-group, while if S-permutability is a transitive relation G is called a
PST-group. Thus, an arbitrary group G is a PT-group (resp. PST-group) if
and only if its subnormal subgroups are permutable (resp. S-permutable).
Zacher and Agrawal described the structure of finite soluble PT-groups and
PST-groups respectively.

Theorem 1.2.1 (Zacher [65]). A finite group G is a soluble PT-group if and only
if the last term of the lower central series L of G is an abelian subgroup, the order
of L is odd and it is relatively prime to |G : L|, every subgroup of L is normal in G
and G/L is a quasihamiltonian group.

Theorem 1.2.2 (Agrawal [1]). A finite group G is a soluble PST-group if and only
if the last term of the lower central series L of G is an abelian subgroup, the order of
L is odd and it is relatively prime to |G : L| and every subgroup of L is normal in
G.

We refer to [3] for a detailed account on this topic in the universe of finite
groups.

A subgroup H of a periodic group G is said to be semipermutable if HK = KH
for every subgroup K of G such that π(H) ∩ π(K) = ∅ (recall that π(G)

denotes the set of all prime numbers p such that G contains an element
of order p). In the symmetric group on 3 letters S3 every subgroup of or-
der 2 is semipermutable, but clearly none of them is permutable. Semiper-
mutable subgroups behave very differently from permutable subgroups: for
instance, in S3 none of the subgroups of order 2 is subnormal.
In a similar way, we say that a subgroup H of a periodic group G is S-
semipermutable if HP = PH for every Sylow p-subgroup P of G such that

6
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p /∈ π(H). A group G in which semipermutability is a transitive relation is
called a BT-group. A structure theorem for finite soluble BT-groups has been
obtained by Wang, Li and Wang.

Theorem 1.2.3 (Wang-Li-Wang [64]). For a finite group G, the following sen-
tences are equivalent:

(a) G is a soluble BT-group.

(b) Every subgroup of G is semipermutable.

(c) Every subgroup of G is S-semipermutable.

(d) G is a soluble PST-group with nilpotent residual L and if p and q are distinct
primes not dividing the order of L then [P, Q] = {1}, for any Sylow p-
subgroup P and any Sylow q-subgroup Q of G.

It has been noticed above that in general semipermutable subgroups are not
subnormal, so the class of BT-groups and the class of groups in which every
subnormal subgroup is semipermutable are distinct. A group G is called an
SP-group if its subnormal subgroups are semipermutable and G is called an
SPS-group if its subnormal subgroups are S-semipermutable.

A subgroup H of a periodic group G is called seminormal if H is normalized
by every subgroup K of G such that π(H) ∩ π(K) = ∅. A group G is called
an SN-group if every subnormal subgroup of G is seminormal.

Theorem 1.2.4 (Beidleman-Ragland [15]). For a finite group G, the following
sentences are equivalent:

(a) G is a PST-group.

(b) G is an SP-group.

(c) G is an SPS-group.

(d) G is an SN-group.

7
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A group G is called an SNT-group if seminormality is a transitive relation.
Ballester-Bolinches et al. [8] proved that any finite SNT-group is a PST-
group, but the converse does not hold in general and an example is exhib-
ited.

A subgroup H of a group G is called SS-permutable if H has a supplement
K in H such that HP = PH for every Sylow p-subgroup of K. A group
G in which SS-permutability is a transitive relation is called an SST-group.
In [19] the authors proved that any finite SST-group is a BT-group, but the
converse is not true in general. The following theorem gives a criterion for
a BT-group to be an SST-group.

Theorem 1.2.5 (Chen-Guo [19]). Let G be a finite soluble BT-group and let L be
the last term of the lower central series of G. Then G is a BT-group if and only if for
every p-subgroup P of G with p ∈ π(G) \ π(L), G has a subgroup Kp such that
PKp is a Sylow p-subgroup of G and [P, Kp] ≤ Op(G).

A group G is called an MS-group if the maximal subgroups of the Sylow
subgroups of G are S-semipermutable in G. Ballester-Bolinches et al. [7]
studied the structure of finite MS-groups, showing also that the class of MS-
groups and the class of BT-groups are not comparable.

Finally, the relation between all the classes of groups introduced in this sec-
tion can be pictured by the following diagram, with the exception of MS-
groups which are not comparable with all the other ones.

SST⇒ BT⇒ SNT⇒ SN⇔ SP⇔ SPS⇔ PST

8



CHAPTER 2

PERMUTABILITY CONDITIONS ON
SUBGROUPS OF INFINITE RANK

A property θ pertaining to subgroups of a group G is called an embedding
property if all the images under automorphisms of G of a θ-subgroup have
still the property θ. Normality, subnormality and permutability are some
examples of embedding properties. Let X and U be classes of groups (here,
a non-empty collection X of groups is called a group class if every group
isomorphic to a group in X belongs to X) and let θ be an embedding prop-
erty, we say that X controls θ in the universe U if the following condition
is satisfied: if G is any U-group, containing some X-subgroup, and all the
X-subgroups of G satisfy θ, then every subgroup of G has the property θ.
It is immediate to see that, for instance, the class of cyclic groups and the
class of finitely generated groups control both normality and permutabil-
ity in any universe, while neither of them control subnormality. Groups
in which every cyclic (resp. finitely generated) subgroup is subnormal are
called Baer groups (resp. Gruenberg groups), and there exist Baer and Gruen-
berg groups with some non-subnormal subgroup ([56], part 2, Cap. 6).
The reason of this failure may be seen in the fact that cyclic groups and
finitely generated groups groups are too small and in a group G the be-
haviour of its finitely generated subgroups may not have an influence on
the structure of the whole group G. So, it is natural to consider classes X of
groups which are larger in some sense, in order to obtain some results about
the control of X of many properties pertaining the subgroups of a group.
The most natural class of large groups that could be considered is the class I
of infinite groups, but the locally dihedral 2-group is an example of a group
in which normality is not controlled by the class I.
A group G is said to have finite (Prüfer) rank r if every finitely generated sub-

9
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group of G can be generated by at most r elements and r is the least positive
integer with such property; if such an r does not exist then we say that G has
infinite rank. It is easy to see that any subgroup and any epimorphic image
of a group of finite rank has finite rank and, moreover this class of groups is
closed by extension. Clearly, every finite group has finite rank and its rank
is bounded by its order, so the class of groups of infinite rank may be seen
as a class of large groups.
In contrast to the class of infinite groups, in recent years many authors have
obtained positive results in terms of properties θ controlled by the class of
groups of infinite rank, for different choices of the property θ, at least in
a suitable universe of (generalized) soluble groups. We refer to [22] for a
detailed survey on this topic.

The existence of groups of infinite rank in which every proper subgroup has
finite rank (see [30]) shows that the imposition of an embedding property
to the subgroups of infinite rank of an arbitrary group G does not affect
the structure of G. So, when dealing with the problem of the control, it is
natural to restrict the attention to a suitable universe of groups U such that
every U-group of infinite rank contains some proper subgroup of infinite
rank. Locally soluble are a good universe in this sense, as the following
theorem shows.

Theorem (Dixon-Evans-Smith [30]). Let G be a locally soluble group of infinite
rank. Then G contains a proper subgroup of infinite rank.

For locally nilpotent groups we can say more, in fact Mal’cev proved the
following fact.

Theorem (Mal’cev [49]). Let G be a locally nilpotent group of infinite rank. Then
G contains an abelian subgroup of infinite rank.

Later, Šunkov proved an analogous result for locally finite group.

Theorem (Šunkov [62]). Let G be a locally finite group of infinite rank. Then G
contains an abelian subgroup of infinite rank.

Mal’cev’s theorem has been generalized by Baer and Heineken [6] to radical
groups of infinite rank and, eventually in [22] the authors proved the ex-
istence of abelian subgroups of infinite rank in generalized radical groups,

10
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where a group is said to be generalized radical if it contains an ascending
normal series in which every factor is either locally finite or locally nilpo-
tent. So, this last result can be seen as a generalization of both Baer and
Heineken’s theorem and Šunkov’s theorem.

In the end, we list here some results which are related to the subject of this
thesis.
The first one has been obtained by Evans and Kim and it relates to normality.

Theorem (Evans-Kim [34]). Let G be a locally soluble group of infinite rank in
which every subgroup of infinite rank is normal. Then G is a Dedekind group.

Later, Dixon and Karatas studied groups in which every subgroup of infinite
rank is permutable.

Theorem (Dixon-Karatas [31]). Let G be a locally (soluble-by-finite) group of
infinite rank in which every subgroup of infinite rank is permutable. Then G is
quasihamiltonian.

In particular the latter result has been the motivation to consider groups of
infinite rank whose subgroups of infinite rank satisfy a certain generalized
permutability condition.

2.1 S-permutable subgroups of infinite rank

Since in a finite group any S-permutable subgroup is subnormal, a locally
finite group whose subgroups are S-permutable is locally nilpotent. In [11],
the authors proved that a periodic hyper-(abelian or finite) group of infi-
nite rank in which every subgroup of infinite rank is S-permutable is locally
nilpotent.
The aim of this section is to prove a corresponding result for locally finite
groups, obtaining in this way a generalization of the quoted result in [11].

Theorem 2.1.1 (Ballester-Bolinches, Camp-Mora, Dixon, Ialenti, Spagnuolo
[10]). Let G be a locally finite group of infinite rank whose subgroups of infinite
rank are S-permutable. Then G is locally nilpotent.

11
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It is easy to see that if H is an S-permutable subgroup of a group G and K
is a subgroup of G containing H, then H is S-permutable in K. On the other
hand, if N is a normal subgroup of G, then H may not be S-permutable in
the factor group G/N. So, in general if N is a normal subgroup of infinite
rank of a group G and every subgroup of infinite rank of G is S-permutable,
we can not say that G/N has all its subgroups S-permutable.
The situation is different for countable groups, as the following lemma shows.

Lemma 2.1.1. Let G be a countable locally finite group of infinite rank whose sub-
groups of infinite rank are S-permutable. If N is a normal subgroup of infinite rank
of G, then the factor group G/N is locally nilpotent.

PROOF. Let K/N be any subgroup of G/N. Then K has infinite rank and
so it is S-permutable in G. Application of Corollary 2.3 of [12] yields that
K/N is S-permutable in G/N. In particular, every subgroup of the locally
finite group G/N is S-permutable and G/N is locally nilpotent. �

Proof of Theorem 2.1.1. By contradiction, assume that the theorem is false
and let G be a counterexample. Let X be a finitely generated non-nilpotent
subgroup of G and let A be any abelian subgroup of infinite rank of G. Then
the socle S of A is the direct product of cyclic groups of prime power-order,
so that S is countable. It follows that the countable subgroup of infinite rank
〈X, S〉 of G is still a counterexample and so, replacing G with 〈X, S〉, we may
assume that G is countable. The result will be proved in a series of steps.

Step 1. If G has a p-subgroup X of infinite rank, then X ∩ P has infinite rank for
every Sylow p-subgroup P of G. In particular, P has infinite rank.
Let P be a Sylow p-subgroup of G. By contradiction, suppose that X ∩ P has
finite rank and let A be an abelian subgroup of infinite rank of X such that
A ∩ (X ∩ P) = A ∩ P = {1}. Let x be any non-trivial element of A, then A
contains a direct product B = B1× B2 such that B1 and B2 have infinite rank
and B ∩ 〈x〉 = {1}. Then Bi〈x〉P is a subgroup of G, for i = 1, 2, and, since
P ∩ B〈x〉 = {1}, we have that

〈x〉P = (B1〈x〉 ∩ B2〈x〉) P = B1〈x〉P ∩ B2〈x〉P

and 〈x〉P is a p-subgroup of G. Thus, x belongs to P, a contradiction. Hence,
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X ∩ P has infinite rank and, in particular, P has infinite rank.

Step 2. If G has a Sylow p-subgroup of infinite rank, then every element of order q
of G belongs to Oq(G), for any q 6= p.
Let P be a Sylow p-subgroup of infinite rank of G and let x be an element
of order q of G, with q 6= p. By contradiction, suppose that there exists a
Sylow q-subgroup Q of G such that x /∈ Q. Put P̄ =

⋂q
i=1 Pxi

. Clearly, P̄ is
an 〈x〉-invariant p-subgroup of G and, by Step 1, it has infinite rank, so it
contains an abelian subgroup B = B1 × B2, where B1 and B2 are both 〈x〉-
invariant and of infinite rank ([41], Theorem 1). Thus, 〈x〉 = B1〈x〉 ∩ B2〈x〉
and Bi〈x〉Q is a subgroup of G, for i = 1, 2. If Q ∩ B〈x〉 = {1}, then

〈x〉Q = (B1〈x〉 ∩ B2〈x〉) Q = B1〈x〉Q ∩ B2〈x〉Q

and 〈x〉Q is a q-subgroup of G. Thus x ∈ Q, a contradiction by the choice of
Q. Hence, Q∩ B〈x〉 is not trivial. As 〈x〉 is a Sylow q-subgroup of B〈x〉, Q∩
B〈x〉 = 〈y〉, for some element y of order q ([29], Proposition 2.2.3). Since y
belongs to Q, y 6= x and so we may assume that 〈y〉 is not contained in B1〈x〉.
In particular, B1〈x〉 ∩ 〈y〉 = {1} and this implies that also Q ∩ B1〈x〉 = {1}.
As B1 is normal in B1〈x〉, it contains a direct product C1 × C2, with C1 and
C2 of infinite rank, such that 〈x〉 = C1〈x〉 ∩ C2〈x〉 ([41], Theorem 1). Thus,

〈x〉Q = (C1〈x〉 ∩ C2〈x〉) Q = C1〈x〉Q ∩ C2〈x〉Q

and 〈x〉Q is a q-subgroup of G, a contradiction again. It follows that x be-
longs to any Sylow q-subgroup of G and the second step is proved.

Step 3. If G has a p-subgroup X of infinite rank, then every Sylow q-subgroup of
G is normal, for any q 6= p.
Fix a prime q 6= p and put Ḡ = G/Oq(G). If Oq(G) has infinite rank, then
Ḡ is locally nilpotent by Lemma 2.1.1, so that, in particular, it has no non-
trivial q-subgroups. On the other hand, if Oq(G) has finite rank, then Ḡ has
infinite rank and X̄ is a p-subgroup of infinite rank of Ḡ, so that, by Step 2,
Ḡ has no non-trivial elements of order q. Hence, in both cases, the factor
group G/Oq(G) is a q′-group and Oq(G) is the unique Sylow q-subgroup of
G.

13
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Step 4. If G has a p-subgroup of infinite rank, then every q-subgroup of G has finite
rank for any q 6= p.
If P and Q are respectively a p-subgroup and a q-subgroup of infinite rank,
then it follows by Step 3 that every Sylow subgroup of G is normal. Hence,
G is locally nilpotent, a contradiction.

Step 5. G has a Sylow p-subgroup of infinite rank, for some prime p.
By contradiction, suppose that every Sylow subgroup of G has finite rank,
so that G satisfies the minimal condition on p-subgroups for every prime p
([56], p.98, part 1). Let F be any finite subgroup of G and put π = π(F).
Then π is a finite set and G/Oπ′(G) is a Černikov group ([29], Theorem
3.5.15 and Corollary 2.5.13). It follows that Oπ′(G) has infinite rank and the
factor group G/Oπ′(G) is locally nilpotent by Lemma 2.1.1. In particular,
F ' FOπ′(G)/Oπ′(G) is nilpotent and G is locally nilpotent, a contradiction.

Step 6. Final step.
By Step 5, G has a Sylow p-subgroup of infinite rank, for some prime p.
Then, by Step 3, G has a unique Sylow q-subgroup Gq, for any q 6= p and,
by Step 4, Gq has finite rank. Thus R = Drq 6=pGq is a normal p′-subgroup
of G and, since G is countable, it follows by Theorem 2.4.5 of [29] that there
exists a Sylow p-subgroup P of G such that G = RP. In particular, P has
infinite rank by Step 1.
Fix a prime q 6= p and put Q = Gq. Since Q has finite rank, Q is a Černikov
group and so P/CP(Q) has finite rank, as it is isomorphic to a periodic
group of automorphisms of Q ([56], Theorem 3.29, part 1). It follows that
CP(Q) has infinite rank and PQ/CP(Q) is locally nilpotent by Lemma 2.1.1.
On the other hand, PQ/Q is trivially locally nilpotent. Since CP(Q) ∩ Q =

{1}, PQ embeds in the direct product of PQ/CP(Q) and PQ/Q, so that
PQ is locally nilpotent. In particular, [P, Q] = {1} and this holds for ev-
ery Sylow q-subgroup Gq of G, with q 6= p. It follows that [P, R] = {1}
and G = P× R is locally nilpotent, a contradiction. This last contradiction
completes the proof of the theorem. �

14



2. PERMUTABILITY CONDITIONS ON SUBGROUPS OF INFINITE RANK

2.2 Semipermutable subgroups of infinite rank

If p is a prime number, a group G is said to have finite section p-rank if every
elementary abelian p-section of G has finite order at most pr and r is the
least positive integer with such property; if such an r does not exist, we say
that G has infinite section p-rank. We say that G has finite section rank if G has
finite section p-rank for every prime number p.
Note that if G is a group of finite rank, then it has finite section rank, but the
converse is not true in general. On the other hand, for a primary group the
two concepts coincide, that is a p-group G has finite rank if and only if it has
finite section p-rank.
In this section, our aim is to show that both the class of groups of infi-
nite rank and the class of groups of infinite section p-rank control semiper-
mutability in the universe of locally finite groups, obtaining the following
two results.

Theorem 2.2.1 (Ballester-Bolinches, Camp-Mora, Dixon, Ialenti, Spagnuolo
[10]). Let G be a locally finite group of infinite section p-rank whose subgroups of
infinite section p-rank are semipermutable. Then every subgroup of G is semiper-
mutable.

Theorem 2.2.2 (Ballester-Bolinches, Camp-Mora, Dixon, Ialenti, Spagnuolo
[10]). Let G be a locally finite group of infinite rank whose subgroups of infinite
rank are semipermutable. Then every subgroup of G is semipermutable.

In contrast to S-permutability, we will show that, in general, S-semipermutability
is not controlled by the class of groups of infinite rank and at the end of this
section it will be exhibited an example of a periodic soluble group of infinite
rank in which every subgroup of infinite rank is S-semipermutable but not
every subgroup of G satisfies the same property.
On the other hand, the situation is different if we restrict the attention to lo-
cally finite groups of infinite rank with the minimal condition on p-subgroups.

Theorem 2.2.3 (Ballester-Bolinches, Camp-Mora, Dixon, Ialenti, Spagnuolo
[10]). Let G be a locally finite group of infinite rank whose subgroups of infinite
rank are S-semipermutable. If G satisfies the minimal condition on p-subgroups for
every prime p, then every subgroup of G is S-semipermutable.
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For the convenience of the reader, we put here the following lemma which
will be very useful in our proofs.

Lemma 2.2.1 (Wang-Li-Wang [64]). Let G be a locally finite group. Then all
subgroups of G are semipermutable if and only if for every p-element x and q-
element y of G, with q 6= p, the set 〈x〉〈y〉 is a subgroup of G.

We begin with the study of locally finite groups of infinite section p-rank,
for a fixed prime number p.
Notice that Lemma 9 of [11] guarantees that any locally finite group of infi-
nite section p-rank contains some p-subgroup of infinite rank. So, in what
follows, the cited lemma will be always implicitly used.

Lemma 2.2.2. Let G be a locally finite group of infinite section p-rank whose sub-
groups of infinite section p-rank are semipermutable and let S be any p-subgroup
of infinite rank of G. Then every subgroup of S permutes with every q-element of
G, for any q 6= p. In particular, S〈x〉 is a {p, q}-group for any q-element x of G.

PROOF. Let y be any element of S and let x be an element of G of order
qn, for some positive integer n. By Theorem 1 of [41], S contains an abelian
subgroup A = A1 × A2, where A1 and A2 are 〈y〉-invariant subgroups of
infinite rank and A ∩ 〈y〉 = {1}. Since Ai〈y〉 is a p-subgroup of infinite
rank, 〈x〉Ai〈y〉 is a subgroup of G, for i = 1, 2 and, as A〈y〉 ∩ 〈x〉 = {1}, the
following equalities hold:

〈x〉〈y〉 = 〈x〉 (A1〈y〉 ∩ A2〈y〉) = 〈x〉A1〈y〉 ∩ 〈x〉A2〈y〉

and 〈x〉〈y〉 is a subgroup of G. �

Lemma 2.2.3. Let G be a locally finite group of infinite section p-rank whose sub-
groups of infinite section p-rank are semipermutable. Then every q-element per-
mutes with every r-element of G, for any prime numbers q and r, where q 6= r and
q and r are both different from p.

PROOF. Fix two prime numbers q and r, with q 6= r and both q and r
different from p and let x and y be respectively a q-element and an r-element
of G. Let A = A1 × A2 be an abelian p-subgroup of G, with A1 and A2 of
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infinite rank. Then, by Lemma 2.2.2, for every i = 1, 2 Ai〈x〉 is a {p, q}-
subgroup, so that it permutes with 〈y〉, for i = 1, 2 and, as Ai〈x〉 ∩ 〈y〉 = {1},
the following equalities hold:

〈x〉〈y〉 = (A1〈x〉 ∩ A2〈x〉) 〈y〉 = A1〈x〉〈y〉 ∩ A2〈x〉〈y〉

and 〈x〉〈y〉 is a subgroup of G. �

Next lemma will allow us to reduce the proof of Theorem 2.2.1 to the count-
able case, as in the proof of Theorem 2.1.1.

Lemma 2.2.4. Let G be a locally finite group of infinite section p-rank whose sub-
groups of infinite section p-rank are semipermutable. If every countable subgroup
of infinite section p-rank of G has all its subgroups semipermutable, then every
subgroup of G is semipermutable.

PROOF. Let x and y be elements of G with relatively prime orders and
let A be an abelian p-subgroup of infinite rank of G. Then, the socle S of
A is elementary abelian of infinite rank and, in particular, it is countable.
Thus 〈x, y, S〉 is a countable subgroup of infinite section p-rank and, by hy-
pothesis, 〈x〉〈y〉 is a subgroup of G. The statement now follows by Lemma
2.2.1. �

Proof of Theorem 2.2.1. By Lemma 2.2.4, we may assume that G is a count-
able group. Let q and r be prime numbers with q 6= r and let x and y be a
q-element and an r-element of G, respectively. If both q and r are different
from p, then 〈x〉〈y〉 = 〈y〉〈x〉 by Lemma 2.2.3. So, we only have to consider
the case in which one between q and r coincides with p. Without loss of
generality, we can assume that q = p and let P be a Sylow p-subgroup of
infinite rank of G.
As G is countable, we can consider an ascending chain of finite subgroups
of G (Fn)n∈N such that G =

⋃
n Fn. Clearly, we may assume that x ∈ F1. Let

(Pn)n∈N be an ascending chain of finite subgroups of P such that P =
⋃

n Pn

and the rank of Pn is at least n for any n. Put Gn = 〈Fn, Pn〉. For a fixed
n, assume that Gn contains a Sylow p-subgroup Sn such that x ∈ Sn and
Sn has rank at least n. As Gn ≤ Gn+1, Sn is contained in some Sylow p-
subgroup Sn+1 of Gn+1. Moreover, since Sn+1 contains a conjugate of Pn+1,
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the rank of Sn+1 is at least n + 1. So, by induction, we have that S =
⋃

n Sn

is a p-subgroup of infinite rank of G, containing x. Then, by Lemma 2.2.2,
〈x〉〈y〉 = 〈y〉〈x〉 and the theorem is completely proved. �

Proof of Theorem 2.2.2. If G contains a p-subgroup of infinite rank, for some
prime p, then G has also infinite section p-rank and if H is any subgroup of
infinite section p-rank of G, then H has infinite rank and, by hypothesis, H
is semipermutable. So, in this case, the theorem is a direct consequence of
Theorem 2.2.1. Thus, we can assume that every p-subgroup of G has finite
rank, so that G satisfies the minimal condition on p-subgroups, for every
prime p. By Theorem 3.5.15 of [29], G contains a locally soluble normal
subgroup S of finite index in G. Let x and y be respectively a p-element
and a q-element of G, with p 6= q, and put π = {p, q}. Then G/Oπ′(S) is
a Černikov group ([29], Corollary 2.5.13) and Oπ′(S) has infinite rank. By
Theorem 1 of [41], Oπ′(S) contains an abelian subgroup B = B1× B2, where
B1 and B2 are 〈x〉-invariant subgroups of infinite rank and 〈x〉 ∩ B = {1}.
Therefore, for every i = 1, 2, Bi〈x〉 is a q′-subgroup of infinite rank of G and
Bi〈x〉〈y〉 = 〈y〉Bi〈x〉. As B〈x〉 ∩ 〈y〉 = {1}, the following equalities hold:

〈x〉〈y〉 = (B1〈x〉 ∩ B2〈x〉) 〈y〉 = B1〈x〉〈y〉 ∩ B2〈x〉〈y〉

and 〈x〉〈y〉 is a subgroup of G. The theorem now follows from Lemma 2.2.1.
�

We now turn our attention to locally finite groups of infinite rank whose
subgroups of infinite rank are S-semipermutable. The following lemma is
correspondent to Lemma 2.2.1 and it is easy to prove.

Lemma 2.2.5. Let G be a locally finite group. Then every subgroup of G is S-
semipermutable if and only if every p-element of G permutes with every Sylow
q-subgroup of G, for any prime number p and q with p 6= q.

Proof of Theorem 2.2.3. Let x be a p-element of G and let Q be a Sylow
q-subgroup of G, where p and q are different prime numbers. Application
of Theorem 3.5.15 of [29] yields that G contains a locally soluble normal
subgroup S such that the index of S in G is finite. Since S has infinite rank,
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the set π(S) is infinite ([29], Lemma 3.1.2) and so there exists a finite subset
π of π(S) such that p, q do not belong to π′ ∩ π(S). Moreover, Oπ′(S) has
infinite rank ([29], Lemma 2.5.13). Clearly, Oπ′(S) is normal in G and so,
by Theorem 1 of [41], it contains an abelian subgroup B = B1 × B2, where
B1 and B2 are 〈x〉-invariant and have infinite rank. Thus, the q′-subgroups
Bi〈x〉 permute with Q, for i = 1, 2 and from the equality

〈x〉Q = B1〈x〉Q ∩ B2〈x〉Q

follows that 〈x〉Q is a subgroup of G. In particular, 〈x〉 is S-semipermutable
in G and the theorem now follows from Lemma 2.2.5. �

The following proposition shows that in Theorem 2.2.3 the hypothesis that
G satisfies the minimal condition on p-subgroups cannot be removed.

Proposition 2.2.1. There exists a periodic metabelian group G of infinite rank
whose subgroups of infinite rank are S-semipermutable but not every subgroup is
S-semipermutable.

PROOF. For every positive integer i, let Ti = 〈ai, bi | a3
i = b2

i = 1, b−1
i aibi =

a−1
i 〉 be an isomorphic copy of the symmetric group on 3 letters and let T =

DriTi.
Let P = Dri〈bi〉 and Q = 〈a1〉 × 〈a2〉 and put G = PQ. Clearly, P is an
elementary abelian 2-group of infinite rank and G is a countable metabelian
{2, 3}-group of infinite rank.
Let A be any subgroup of infinite rank of G. Since the unique Sylow 3-
subgroup Q of G is finite, either π(A) = {2} or π(A) = {2, 3}. In both
cases, A is trivially S-semipermutable.
Now, suppose that every subgroup of G is S-semipermutable and take X =

〈a1a2〉. Then, PX is a subgroup of G and X = PX ∩ Q is normal in PX, a
contradiction, since the element b−1

1 a1a2b1 = a2
1a2 does not belong to X. �
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2.3 Nearly and almost permutable subgroups of

infinite rank

A subgroup H of a group G is said to be almost normal if H is normal in a
subgroup of finite index of G or, equivalently, if H has only finitely many
conjugates in G. A famous theorem by B.H. Neumann [53] states that every
subgroup of a group G is almost normal if and only if the centre Z(G) of G
has finite index in G. Later, this result was generalized by I.I. Eremin [33],
who proved that for a group G, the factor group G/Z(G) is finite if and only
if its abelian subgroups are almost normal.
A subgroup H of a group G is said to be nearly normal if H has finite index
in its normal closure HG. In [53], B.H. Neumann proved also that every
subgroup of a group G is nearly normal if and only if the commutator sub-
group G′ of G is finite. So, in particular, a group G in which every subgroup
is nearly normal is a BFC-group, that is a group in which every element has
finitely many conjugates and the number of these conjugates is bounded by
the order of G′. Moreover, it is worth to notice that, combining Neumann’s
theorem with a famous result by I. Schur, if every subgroup of a group G is
almost normal, then every subgroup of G is nearly normal.
Corresponding properties, where normality is replaced by permutability,
have been introduced in [40] and in [23]. A subgroup H of a group G is said
to be almost permutable if H is permutable in a subgroup of finite index of
G and H is said to be nearly permutable if it has finite index in a permutable
subgroup of G. The structure of a group in which either every subgroup is
almost permutable or every subgroup is nearly permutable has been stud-
ied.
More precisely, in [40] the authors have proved that a periodic group G
has all its subgroups almost permutable if and only if G is simultaneously
finite-by-quasihamiltonian and quasihamiltonian-by-finite; while, if G is a
non-periodic group in which every subgroup is almost permutable then the
set of the elements of finite order T of G is a subgroup and the factor group
G/T is abelian, every subgroup of T is almost normal in G and either G is
an FC-group or G/T is locally cyclic. Notice that the latter result for non-
periodic groups is correspondent to Iwasawa’s theorem for non-periodic
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quasihamiltonian groups.
In [23] it has been proved that every subgroup of a periodic group G is
nearly permutable if and only if G is finite-by-quasihamiltonian. In analogy
to Neumann’s results, it follows at once that if every subgroup of a group
G is almost permutable, then every subgroup of G is nearly permutable.
In [39], non-periodic groups with nearly permutable subgroups have been
considered and their structure is similar to non-periodic groups with almost
permutable subgroups. In fact, the authors proved that if G is a non-periodic
group in which every subgroup is nearly permutable, then the set of the
elements of finite order T of G is a subgroup and the factor group G/T is
abelian, every subgroup of T is nearly normal in G and either G is an FC-
group or G/T is locally cyclic.

De Falco, de Giovanni and Musella [21] proved that the class of groups of
infinite rank controls almost normality and nearly normality in the universe
of generalized radical groups.
The aim of this section is to investigate the structure of a generalized radical
group of infinite rank in which either every subgroup of infinite rank is
almost permutable or every subgroup of infinite rank is nearly permutable.
The non-periodic case and the periodic case will be treated separately.

In section A. structure theorems for non-periodic groups will be obtained.
In order to give a common approach to both properties, we have introduced
the following property which generalizes almost permutability and nearly
permutability: a subgroup H of a group G is said to be finite-permutable-
finite if there exist subgroups K and L of G such that the indeces |K : H| and
|G : L| are finite and K is permutable in L. In case K is normal in L, then H
is called a finite-normal-finite subgroup of G. The following theorem will be
proved.

Theorem 2.3.1 (De Luca, Ialenti [26]). Let G be a non-periodic generalized rad-
ical group of infinite rank whose subgroups of infinite rank are finite-permutable-
finite. Then:

• The set T of all elements of finite order of G is a normal subgroup of G and
the factor group G/T is abelian.
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• Every subgroup of T is finite-normal-finite in G and either G is an FC-group
or G/T is locally cyclic.

Since any almost permutable and nearly permutable subgroup is finite-permuta-
ble-finite, the theorem 2.3.1 guarantees that in a non-periodic generalized
radical group G whose subgroups of infinite rank are almost permutable
(resp. nearly permutable) the set of the elements of finite order T is a sub-
group containing G′, and either G is an FC-group or G/T is locally cyclic.
Then we will be able to show, as a corollary, that every subgroup of T is
almost normal in G (resp. nearly permutable).

Section B. and section C. are devoted to the periodic case. In particular, it
will be shown that the class of groups of infinite rank controls nearly per-
mutability (section B.) and almost permutability (section C.) in the universe
of locally finite groups.

Theorem 2.3.2 (De Luca, Ialenti [25]). Let G be a locally finite group of infinite
rank whose subgroups of infinite rank are nearly permutable. Then every subgroup
of G is nearly permutable.

Theorem 2.3.3 (De Luca, Ialenti [24]). Let G be a locally finite group of infinite
rank whose subgroups of infinite rank are almost permutable. Then every subgroup
of G is almost permutable.

A. The non-periodic case

In order to prove the main theorem of this section, first we have to inves-
tigate the structure of a group in which every subgroup is finite-permutable-
finite and, since every finite-normal-finite subgroup is obviously finite-permutable-
finite, we begin with the study of groups in which every subgroup is finite-
normal-finite.
Recall that an element x of a group G is said to be an FC-element of G if x has
finitely many conjugates in G or, equivalently, if the centralizer CG(x) of x
has finite index in G. The FC-centre of G is the subgroup of all FC-elements
of G and G is called an FC-group if it coincides with its FC-centre.

Lemma 2.3.1. Let G be a group and let x be any element of G. If the subgroup 〈x〉
is finite-normal-finite in G, then x is an FC-element.
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PROOF. Let H and K be subgroups of G such that |H : 〈x〉| and |G : K|
are finite and H is normal in K. Then 〈x〉 is nearly normal in K and so there
exists a positive integer n such that the normal subgroup (〈x〉K)n of K is
contained in 〈x〉. As 〈x〉K/(〈x〉K)n is finite, we have that

K/CK

(
〈x〉K/(〈x〉K)n

)
is finite and, in particular NK(x) has finite index in K. As NK(x)/CK(x) is
finite, it follows that the index |K : CK(x)| is finite. Thus, since K has finite
index in G, the index |G : CG(x)| is finite and x is an FC-element of G. �

Corollary 2.3.1. Let G be a group whose subgroups are finite-normal-finite. Then
every subgroup of G is nearly normal in G.

PROOF. By Lemma 2.3.1, G is an FC-group. Let X be any subgroup of G
and let H and K be subgroups of G such that |H : X| and |G : K| are finite
and H is normal in K. Then H is almost normal in the FC-group G and so
|HG : H| is finite ([63], Lemma 7.13). It follows that X has finite index in HG

and so X is nearly normal in G. �

Now we consider groups in which every subgroup is finite-permutable-
finite and, before proving the structure theorem for this class of groups, we
introduce some preliminary results.

Proposition 2.3.1. Let G be a group whose cyclic subgroups are finite-permutable-
finite. Then the set of all elements of finite order of G is a subgroup.

PROOF. Let T be the largest periodic normal subgroup of G. Clearly, every
cyclic subgroup of G/T is finite-permutable-finite, so that replacing G with
G/T it can be assumed without loss of generality that G has no periodic
non-trivial normal subgroups. Let x be any element of finite order of G. As
〈x〉 is finite-permutable-finite, there exist H and K subgroups of G such that
|H : 〈x〉| and |G : K| are finite and H is permutable in K. Then H is a finite
permutable subgroup of K and, by Lemma 6.2.15 of [60], HK is periodic. Let
N be the core of K in G, then HN is periodic and so [H, N] is a subnormal
periodic subgroup of G. Thus [N, H] = 1 and, in particular, N ≤ CG(x).
Then x is a periodic FC-element of G and, by Dietzmann’s Lemma ([56],
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part 1, p.45), 〈x〉G is finite and, therefore, x = 1. Thus G is torsion-free and
the proposition is proved. �

Proposition 2.3.2. Let G be a group whose cyclic subgroups are finite-permutable-
finite. If G contains two elements a and b of infinite order such that 〈a〉 ∩ 〈b〉 =
{1}, then G is an FC-group.

PROOF. Let x be any element of G. As 〈x〉 is finite-permutable-finite, there
exist H and K subgroups of G such that |H : 〈x〉| and |G : K| are finite and H
is permutable in K. Let y be any element of K of infinite order and suppose,
first, that 〈x〉 ∩ 〈y〉 = {1}. Then H ∩ 〈y〉 = {1} and hence Hy = H ([60],
Lemma 6.2.3). Suppose now that 〈x〉 ∩ 〈y〉 6= {1}, so that in particular x has
infinite order and there exists an element z of K of infinite order such that

〈x〉 ∩ 〈z〉 = 〈y〉 ∩ 〈z〉 = {1}.

Thus Hz = H. Now, as 〈y〉 is finite-permutable-finite, there exist M and L
subgroups of G such that |M : 〈y〉| and |G : L| are finite and M is permutable
in L. Let k be a positive integer such that zk is in L. Then Mzk

= M and
M is normal in M〈yzk〉 = M〈zk〉, so that yzk must have infinite order and
M ∩ 〈yzk〉 = {1}. Since 〈y〉 ∩ 〈yzk〉 = {1}, we have also 〈x〉 ∩ 〈yzk〉 =

{1}, so that yzk normalizes H and Hy = H. Therefore H is normalized by
any element of infinite order of K and, as K is generated by its elements
of infinite order, H is normal in K. Thus 〈x〉 is finite-normal-finite in G
and, hence x is an FC-element of G by Lemma 2.3.1. Therefore, G is an
FC-group. �

Theorem 2.3.4. Let G be a non-periodic group whose subgroups are finite-permutable-
finite. Then:

(a) The set T of all elements of finite order of G is a normal subgroup and the
factor group G/T is abelian.

(b) Every subgroup of T is finite-normal-finite in G.

(c) Either G is an FC-group or the group G/T is locally cyclic.

PROOF. (a) By Proposition 2.3.1, T is a subgroup of G. In order to prove that
G/T is abelian, we may assume that G is torsion-free. Let x be any element
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of G. As 〈x〉 is finite-permutable-finite, there exist H and K subgroups of G
such that |H : 〈x〉| and |G : K| are finite and H is permutable in K. Since
H is a cyclic-by-finite torsion-free group, H is cyclic. Put H = 〈h〉, so that
〈x〉 = 〈hn〉 for some positive integer n. By a contradiction, assume that H is
not normal in K, so that there exists an element y of K such that Hy 6= H. Let
L = 〈h〉〈y〉. By Lemma 6.2.3 of [60], M = 〈h〉 ∩ 〈y〉 is a non-trivial subgroup
of L contained in Z(L). Therefore L/M is finite so that also the commutator
subgroup L′ of L is finite, and so L is abelian. This contradiction proves
that 〈h〉 is normal in K and so also 〈x〉 is normal in K. Therefore all cyclic
subgroups of G are almost normal and G is an FC-group. As G is torsion-
free, it follows that G is abelian.

(b) Let X be any subgroup of T. As X is finite-permutable-finite, there exist
H and K subgroups of G such that |H : X| and |G : K| are finite and H is
permutable in K. In particular, H is periodic. Let a be any element of infinite
order of K, so that 〈a〉 ∩ T = {1}. Then H = H〈a〉 ∩ T is a normal subgroup
of H〈a〉. It follows that H is normal in K.

(c) This part follows directly from Proposition 2.3.2. �

Corollary 2.3.2. Let G be a non-periodic group whose subgroups are finite-permutable-
finite and let T be the torsion subgroup of G. Then every subgroup of T is nearly
normal in G.

PROOF. By Theorem 2.3.4, every subgroup of T is finite-normal-finite in G
and so by Corollary 2.3.1, T′ is finite. Without loss of generality, we may
replace G with G/T′, so that we may assume that T is abelian. Let X be a
finite subgroup of T and let H and K be subgroups of G such that |H : X|
and |G : K| are finite and H is normal in K. Then H and |G : NG(H)| are
finite, so that HG is finite ([56], part 1, p. 45). In particular, XG is finite.
Let H be a periodic subgroup such that N = NG(H) has finite index in G. If
G is an FC-group, then H is nearly normal in G ([63], Lemma 7.13). Suppose
that G/T is locally cyclic. Put G = EN, where E is finitely generated. If
E ≤ T, G = N and H is normal in G. Suppose that ET is a non-periodic
group and, without loss of generality, we may assume that G = ET. Then
G = 〈a〉n T, where a is an element of infinite order of G. Let A and B be
subgroups of G such that |A : 〈a〉| and |G : B| are finite and A is permutable
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in B. As A∩ T is finite, (A∩ T)G is also finite and, replacing G with G/(A∩
T)G, we can assume that 〈a〉 is permutable in B. Since B ∩ T is a subgroup
of finite index of T, T = (T ∩ B)X, where X is a normal finite subgroup
of G. Therefore G = BT = BX and 〈a〉X/X is permutable in G/X. Since
〈a〉X ∩ T = X, every subgroup of T/X is G-invariant ([23], Lemma 2.5).
Thus, HX is normal in G and the index |HX : H| is finite.
Since every subgroup X of T has finite index in a subgroup H which is
almost normal in G, it follows that X is nearly normal in G. �

Now, we are in a position to focus on generalized radical groups of infi-
nite rank in which only the subgroups of infinite rank are finite-permutable-
finite. In the proof of the main theorem, we will need the following lemmas.

Lemma 2.3.2. Let G be a periodic group whose subgroups are finite-permutable-
finite. Then G is locally finite.

PROOF. Let E be any finitely generated subgroup of G. Since any subgroup
of E is finite-permutable-finite, we may assume without loss of generality
that G is finitely generated. Let x be any element of G, then there exist H
and K subgroups of G such that |H : 〈x〉| and |G : K| are finite and H is
permutable in K. It follows that H is finite and K is finitely generated and,
hence, by Theorem 6.2.18 of [60], HK is finite. In particular, x has finitely
many conjugates in K and so also in G. Therefore, G is an FC-group and
hence it is finite.

Recall that an element x of a group G has finite order modulo a permutable
subgroup H of G if the index |H〈x〉 : H| is finite; otherwise x is said to have
infinite order modulo H.

Lemma 2.3.3. Let G be a group and let X be a permutable subgroup of G such
that any subgroup of G containing X is finite-permutable-finite. If there exists an
element of G having infinite order modulo X, then X is normal in G.

PROOF. Let x and y be elements of G of finite order modulo X and let
L = X〈x, y〉. The factor group L/XL has all its subgroups finite-permutable-
finite and it is generated by two periodic elements. As a consequence, L/XL

is periodic and so it is also finite by Lemma 2.3.2. It follows that, since the
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index |XL : X| is finite ([60], Theorem 6.2.18), X has finite index in L, so that
also the product xy has finite order modulo X. Thus the set T of all elements
of G having finite order modulo X is a proper subgroup of G. Since G is
generated by G \ T and any element of G \ T normalizes X ([60], Lemma
6.2.3), X is normal in G and the lemma is proved. �

Here, we highlight the following argument, as it will be frequently used in
the next proofs.
Let G be a group of infinite rank whose subgroups of infinite rank are finite-
permutable-finite and let A = A1 × A2 be an abelian subgroup of G, where
both factors A1 and A2 have infinite rank. Then, A1 and A2 are finite-
permutable-finite, so there exist subgroups Hi and Ki of G such that the
indeces |Hi : Ai|, |G : Ki| are finite and Hi is permutable in Ki, for i = 1, 2.
It follows that N = (K1 ∩ K2)G is a normal subgroup of finite index of G,
Hi ∩ N is a permutable subgroup of N and |Hi ∩ N : Ai ∩ N| is finite, for
i = 1, 2. Then, replacing A with Ā = (A1 ∩ N)× (A2 ∩ N), we will always
assume that H1 and H2 are both permutable in a same normal subgroup N
of finite index of G. If G is a group of infinite rank whose subgroups of infi-
nite rank are finite-normal-finite, then the same argument can be used, just
replacing permutability with normality.
Next proposition shows that, restricting the hypothesis to the subgroups of
infinite rank, it is possible to obtain a result similar to Corollary 2.3.1.

Proposition 2.3.3. Let G be a generalized radical group of infinite rank in which
all subgroups of infinite rank are finite-normal-finite. Then every subgroup of G is
nearly normal.

PROOF. Let A = A1 × A2 be an abelian subgroup of G, with A1 and A2

of infinite rank. Then there exists a normal subgroup N of finite index of
G such that Ai has finite index in a N-invariant subgroup Hi of N, for i =
1, 2. Every subgroup of N/Hi is finite-normal-finite and so, by Corollary
2.3.1, N′Hi/Hi is finite, for i = 1, 2. Since H1 ∩ H2 is finite, N′ is finite and,
replacing G with G/N′, we may assume that N is abelian. Therefore, N
contains a direct product Y1 × Y2 of G-invariant subgroups of infinite rank
Y1 and Y2 ([21], Lemma 6) and it follows that G′Yi/Yi is finite, for i = 1, 2.
Hence, also G′ is finite and every subgroup of G is nearly normal. �
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For the convenience of the reader, we state as a Lemma the results of [40]
and [39] concerning non-periodic groups in which either every subgroup is
almost permutable or every subgroup is nearly permutable.

Lemma 2.3.4 ([40],[39]). Let G be a non-periodic group in which every subgroup
is almost permutable (resp. nearly permutable). Then the set of all elements of
finite order T of G is a normal subgroup of G and the factor group G/T is abelian;
moreover, every subgroup of T is almost normal (resp. nearly normal) in G and
either G is an FC-group or G/T is locally cyclic.

Proof of Theorem 2.3.1. (a) Suppose firstly that G has no non-trivial pe-
riodic normal subgroups. Let x be an element of infinite order of G and
let A = A1 × A2 be an abelian subgroup of G such that A1 and A2 have
both infinite rank and A ∩ 〈x〉 = {1}. Then there exists a normal sub-
group N of finite index of G such that Ai has finite index in a subgroup Hi

which is a permutable subgroup of N, for i = 1, 2. Put 〈y〉 = 〈x〉 ∩ N, then
〈y〉 ∩ H1 = 〈y〉 ∩ H2 = {1} and so, by Lemma 2.3.3, H1 and H2 are normal
subgroups of N. Therefore every subgroup of N/Hi is finite-permutable-
finite and hence, by Theorem 2.3.4, N′Hi/Hi is periodic, for i = 1, 2. Since
H1 ∩ H2 is finite, N′ is periodic and N′ = {1}. Thus N contains two G-
invariant subgroups Y1 and Y2 of infinite rank such that Y1 ∩Y2 = {1} ([21],
Lemma 6). Since G embeds in the direct product G/Y1 × G/Y2, it follows
from Theorem 2.3.4 that G′ is periodic. Thus G′ = {1} and G is a torsion-free
abelian group.
Now, in the general case, let T be the largest normal periodic subgroup of
G. If T has finite rank, then G/T has infinite rank and, by the previous
argument, G/T is a torsion-free abelian group. On the other hand, if T
has infinite rank, then G/T is a non-periodic group whose subgroups are
finite-permutable-finite and, by Theorem 2.3.4, G/T is a torsion-free abelian
group. In both cases, T coincides with the set of all periodic elements of G
and G/T is abelian.

(b) Assume that T has finite rank, so that G has infinite torsion-free rank.
Let A = A1 × A2 be an abelian subgroup of G, with A1 and A2 of infi-
nite rank, such that A ∩ T = {1}. Then there exists a normal subgroup N
of finite index of G such that Ai has finite index in a subgroup Hi which
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is a permutable subgroup of N, for i = 1, 2. Let x be an element of A2;
as |H1 : A1| is finite, H1 ∩ 〈x〉 = {1}. Therefore, by Lemma 2.3.3, H1 is
normal in N. Similarly, H2 is a normal subgroup of N. Thus, N/Hi is a
non-periodic group with infinite torsion-free rank in which every subgroup
is finite-permutable-finite and, by Theorem 2.3.4, N/Hi is an FC-group, for
i = 1, 2. It follows that N is finite-by-FC and so it is an FC-group. Since
G/Z(N) is a periodic group, Z(N) is a G-invariant subgroup with infinite
torsion-free rank. Let X be a subgroup of T, so Z(N) contains a torsion-free
subgroup Y = Y1 × Y2, with Y1 and Y2 G-invariant of infinite rank, such
that X ∩ Y = {1} ([21], Lemma 6). Thus, G/Yi is an FC-group and XYi is
finite-normal-finite in G, for i = 1, 2. It follows that G is an FC-group and
X = XY1 ∩ XY2 is finite-normal-finite in G.
Assume now that T has infinite rank and let X be any subgroup of T of
infinite rank. Then there exist subgroups H and K such that |H : X| and
|G : K| are finite and H is permutable in K. In particular, H is periodic.
Let a be an element of infinite order of K, then H = H〈a〉 ∩ T is a normal
subgroup of H〈a〉. It follows that H is normal in K and X is finite-normal-
finite in G. By Proposition 2.3.3, T′ is finite. Without loss of generality, we
may replace G with G/T′ and assume that T is abelian. Let X be a subgroup
of T of finite rank and let A = A1× A2 be an abelian subgroup of T, with A1

and A2 of infinite rank, such that A ∩ X = {1}. Then XAi is finite-normal-
finite in G, for i = 1, 2, and X = XA1 ∩ XA2 is finite-normal-finite in G. Let
N be a normal subgroup of finite index of G such that Ai has finite index in
a normal subgroup Hi of N, for i = 1, 2.
Suppose that G/T is not locally cyclic. Then, by Theorem 2.3.4, N/Hi is
an FC-group, for i = 1, 2, and so N is an FC-group. It follows that G is
FC-by-finite and, in particular, G satisfies locally the maximal condition on
subgroups.
In order to prove that G is an FC-group, we first show that any subgroup
of T is nearly normal in G. It is enough to show that if a periodic sub-
group is almost normal in G, then it is also nearly normal in G. So, let
H ≤ T be an almost normal subgroup of G. Then, N = NG(H) has finite
index in G and G = EN, where E is finitely generated. Put L = ET, so
HG = HL. Since G is FC-by-finite, the FC-centre F of L has finite index in
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L. Moreover, as every subgroup of T is finite-normal-finite in G, T ≤ F and
F = (F ∩ E)T, where F ∩ E is finitely generated. As F/Z(F) is locally finite,
it follows that the G-invariant abelian subgroup A = TZ(F) has finite in-
dex in F and hence also in L. Put L = AM, where M is finitely generated,
and A ∩ M is a normal, finitely generated abelian subgroup of L. Then,
L/(A ∩M) is a group of infinite rank whose subgroups of infinite rank are
finite-permutable-finite and consequently its periodic subgroups are finite-
normal-finite. Hence ML/(A ∩ M) is finite and ML is finitely generated.
Replacing M with ML, we may assume that M is normal in L. Therefore,
[H, M] is a finitely generated subgroup of L′ and, by (a), L′ is contained in
T. Therefore [H, M] is finite and H has finite index in H[H, M] = HM = HL.
Let A = A1 × A2 be an abelian subgroup of T, with A1 and A2 of infinite
rank. Then G/AG

i is an FC-group and, since |AG
i : Ai| is finite for i = 1, 2, G

is finite-by-FC and G is an FC-group. �

Now we will apply Theorem 2.3.1 to the study of groups of infinite rank in
which either every subgroup of infinite rank is almost permutable or every
subgroup of infinite rank is nearly permutable.

Corollary 2.3.3. Let G be a non-periodic generalized radical group of infinite rank
whose subgroups of infinite rank are almost permutable. Then

(a) The set T of all elements of finite order of G is a normal subgroup of G and
the factor group G/T is abelian.

(b) Every subgroup of T is almost normal in G.

(c) Either G is an FC-group or G/T is locally cyclic.

PROOF. (a) and (c) follow directly from Theorem 2.3.1.

(b) If T has finite rank and X ≤ T, take Y1 and Y2 as in the proof of (b) in
Theorem 2.3.1. Then, by Lemma 2.3.4, XYi is almost normal in G and also
X = XY1 ∩ XY2 is almost normal in G.
If T has infinite rank, let X be a subgroup of T of infinite rank and let K be a
subgroup of finite index of G such that X is permutable in K. Then the same
argument used in the proof of Theorem 2.3.1 shows that X is normal in K.
Therefore, every subgroup of infinite rank of T is almost normal in G and
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T/Z(T) is finite by Theorem A of [21]. Now, let X be any subgroup of finite
rank of T and let A = A1 × A2 be a subgroup of Z(T) with A1 and A2 of
infinite rank and X ∩ A = {1}. Then X = XA1 ∩ XA2 is almost normal in
G. �

Corollary 2.3.4. Let G be a non-periodic generalized radical group of infinite rank
whose subgroups of infinite rank are nearly permutable. Then

(a) The set T of all elements of finite order of G is a normal subgroup of G and
the factor group G/T is abelian.

(b) Every subgroup of T is nearly normal in G.

(c) Either G is an FC-group or G/T is locally cyclic.

PROOF. (a) and (c) follow directly from Theorem 2.3.1.

(b) If T has finite rank and X ≤ T, take Y1 and Y2 as in the proof of (b) in
Theorem 2.3.1. Then, by Lemma 2.3.4, XYi is nearly normal in G and also
X = XY1 ∩ XY2 is nearly normal in G.
If T has infinite rank, let X be a subgroup of T of infinite rank and let K
be a permutable subgroup of G such that X has finite index in K. Then the
same argument used in the proof of Theorem 2.3.1 shows that K is normal
in G. Therefore, every subgroup of infinite rank of T is nearly normal in
G and T′ is finite by Theorem B of [21]. We can now replace G with G/T′

and assume that T is abelian. Thus, if X is any subgroup of finite rank of T
and A = A1 × A2 is a subgroup of T, with A1 and A2 of infinite rank and
X ∩ A = {1}, then X = XA1 ∩ XA2 is nearly normal in G. �

B. Nearly permutable subgroups of infinite rank

The study of the periodic case is firstly restricted to primary groups and our
first purpose is to show that a locally finite p-group of infinite rank whose
subgroups of infinite rank are nearly permutable is finite-by-quasihamiltonian.
The following lemma shows that, at least in the universe of locally finite
groups, under certain conditions a subgroup of finite rank is the intersection
of two subgroups of infinite rank.
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Lemma 2.3.5. Let G be a group and let A be a periodic normal subgroup of infinite
rank of G. If X is a subnormal Černikov subgroup of G, then A contains a subgroup
of infinite rank B such that [X, B] = {1}.

PROOF. Let
X = L0 / L1 / · · · / Lk−1 / Lk = XA

be a subnormal series of X in XA and argue by induction on k. If k = 1,
then X is normal in XA, so the factor group A/CA(X) is a Černikov group
([56], Theorem 3.29) and we can choose B = CA(X). Now, let k > 1 and put
L = Lk−1. If L has finite rank, then L is a Černikov group and we can choose
B = CA(L). So we can suppose that L has infinite rank. Since L = X(A∩ L),
then A ∩ L has infinite rank and, by induction, there exists a subgroup B of
A ∩ L such that [X, B] = {1} and the statement is true for any k. �

Since a locally finite quasihamiltonian p-group is abelian-by-finite, a pri-
mary group in which every subgroup is nearly permutable is finite-by-abelian-
by-finite. Next proposition shows that this holds only requiring that the
subgroups of infinite rank are nearly permutable.

Proposition 2.3.4. Let G be a locally finite p-group of infinite rank whose sub-
groups of infinite rank are nearly permutable. Then G is finite-by-abelian-by-finite.

PROOF. Assume by contradiction that G is not finite-by-abelian-by-finite
and put A = Ω1(G). Every subgroup of infinite rank of A is nearly nor-
mal in A and so A′ is finite ([21], Theorem B). Moreover, G/A is finite-by-
quasihamiltonian ([23], Theorem). In particular, G/A is finite-by-abelian-
by-finite. Let H be a normal subgroup of finite index of G such that H/A
is finite-by-abelian. Thus H/A′ is still a counterexample to the proposition
and we may assume that A is abelian and G/A is finite-by-abelian. Let N/A
be a finite normal subgroup of G/A such that G/N is abelian, and let K be
a permutable subgroup of G. Then K is normal in KA, the index |KN : KA|
is finite and KN is normal in G; it follows that there exists a positive inte-
ger n such that every permutable subgroup of G is subnormal of defect at
most n. Hence, every subgroup of infinite rank of G has finite index in a
subnormal subgroup of defect at most n. In particular, every subgroup of
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infinite rank of G is subnormal. Therefore, every subgroup of G is subnor-
mal in G ([46], Theorem 5). Let X be any subgroup of finite rank of G, then
X is a Černikov group ([56], Corollary 1, p.38, part 2) and X is subnormal
in XA, so by Lemma 2.3.5 A contains a subgroup C = C1 × C2, with C1 and
C2 of infinite rank and X ∩ C = {1}, such that X = XC1 ∩ XC2. As XCi

has infinite rank, for i = 1, 2, X has finite index in a subnormal subgroup
of G of defect at most n. Thus there exists a finite normal subgroup K of G
such that G/K is nilpotent ([28], Theorem 1) and G is nilpotent. Among all
counterexamples to the proposition obtained in this way, choose a nilpotent
group G with minimal nilpotency class c > 1.
If the centre Z(G) of G has infinite rank, then Z(G) contains a subgroup
Z1 × Z2, with Z1 and Z2 of infinite rank. Then G/Zi is finite-by-abelian-by-
finite, for i = 1, 2, and so the same holds for G, a contradiction. It follows
that Z(G) has finite rank and, by the minimality of c, G/Z(G) is finite-by-
abelian-by-finite. Thus, Z(G) ∩ Ω1(G) is finite and G/(Z(G) ∩ Ω1(G)) is
finite-by-abelian-by-finite, so that G is finite-by-abelian-by-finite and this
last contradiction completes the proof of the proposition. �

Lemma 2.3.6. Let G be a group of infinite rank whose subgroups of infinite rank
are nearly permutable. If G contains an elementary abelian normal p-subgroup A
of finite index, then the commutator subgroup G′ of G is finite.

PROOF. Let H be any subgroup of infinite rank of G and let K be a per-
mutable subgroup of G such that H has finite index in K. Then, K is normal
in KA, KA has finite index in G and it follows from Proposition 3.3 of [26]
that G′ is finite. �

Theorem 2.3.5. Let G be a locally finite p-group of infinite rank whose subgroups
of infinite rank are nearly permutable. Then G is finite-by-quasihamiltonian.

PROOF. By Proposition 2.3.4, G contains a finite normal subgroup N such
that G/N is abelian-by-finite. Without loss of generality it can be assumed
that N = {1}, so that G is abelian-by-finite. Let A be an abelian normal sub-
group of finite index of G. First, suppose that G has infinite exponent. By
Lemma 6 of [21], Ω1(A) contains a direct product Y1×Y2 of G-invariant sub-
groups of infinite rank Y1 and Y2 and G/Yi is finite-by-quasihamiltonian, for
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i = 1, 2. Since Y1 and Y2 have finite exponent, it follows that G/Yi is finite-
by-abelian, for i = 1, 2. Hence, G is finite-by-abelian. So, we can suppose
that G has finite exponent. Put G = AE, where E is a finite subgroup of G
and let H be any subgroup of infinite rank of G. Then there exists a per-
mutable subgroup K1 of G such that |K1 : H| is finite. Let K be a permutable
subgroup of G such that K1E has finite index in K. It follows that |K : H|
is finite and G = AK. As a consequence, |K : HK| is finite and K ∩ A is a
G-invariant subgroup of finite index of K. Hence, HK ∩ A has finite index
in K and, being a normal subgroup of HK A, it is also normal in G. In partic-
ular, every subgroup of infinite rank of G is normal-by-finite, so that every
subgroup of G is normal-by-finite ([21], Theorem C). Since A is a bounded
abelian group, it is the direct product of cyclic subgroups and so it is clearly
residually finite. Application of Lemma 2.1 of [17] yields that A contains
a subgroup B of finite index such that every subgroup of B is G-invariant.
Then B has finite index in G and, replacing A by B, we may assume that
every subgroup of A is G-invariant.
Let Y = Y1×Y2 be a subgroup of A with Y1 and Y2 of infinite rank such that
E ∩ Y = {1} and let Ki be a permutable subgroup of G such that |Ki : EYi|
is finite, for i = 1, 2. Then E = EY1 ∩ EY2 has finite index in F = K1 ∩ K2,
so that F is finite and G = AF. Without loss of generality we may assume
that E = K1 ∩ K2. Moreover, we can replace G with G/EG, so that E is a
core-free subgroup of G. In particular, A ∩ E = CE(A) = {1}, and E acts
on A as a group of power automorphisms. If p > 2, then E is cyclic and
by Lemma 2.3.4 of [60] G is locally quasihamiltonian and hence it is also
quasihamiltonian. So, we can assume p = 2. If A has exponent 2, then G is
finite-by-abelian by Lemma 2.3.6. So, we can suppose that the exponent of
A is at least 4. Let U be a cyclic subgroup of order 4 of A, then UKi/CKi(U)

has order at most 8 and, as Ki is permutable, it follows that [U, Ki] ≤ Ki.
Thus, [U, E] = {1} and U ≤ Z(G). Hence, E is cyclic and, applying Lemma
2.3.4 of [60] again, we obtain that G is quasihamiltonian and so the theorem
is completely proved. �

The investigation of primary groups is completed and we can focus now to
the general case of an arbitrary locally finite group.
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Since a quasihamiltonian group is locally nilpotent, a periodic group G in
which every subgroup is nearly permutable is finite-by-(locally nilpotent)
and hence G is also (locally nilpotent)-by-finite. In order to prove the main
theorem of this section, the first step is to show that a locally finite group
of infinite rank whose subgroups of infinite rank are nearly permutable is
(locally nilpotent)-by-finite.
Recall that the Hirsch-Plotkin radical of a group G is the largest locally nilpo-
tent normal subgroup of G and it contains every locally nilpotent ascendant
subgroup of G.

Lemma 2.3.7. Let G be a locally finite group of infinite rank whose subgroups of
infinite rank are nearly permutable. Then G contains a nilpotent normal subgroup
A of infinite rank such that the commutator subgroup A′ of A is finite and for every
prime p the p-component of A is generated by elements of order p.

PROOF. Let B be an abelian subgroup of infinite rank of G and let K be a
permutable subgroup of G such that |K : B| is finite. Then |K : BK| is finite
and BK is an abelian ascendant subgroup of infinite rank of G. Thus, BK

is contained in the Hirsch-Plotkin radical R of G and, in particular, R has
infinite rank. Let A = DrpΩ1(Rp), where Rp is the p-component of R. Then
A has infinite rank and every permutable subgroup of A is normal in A. It
follows that every subgroup of infinite rank of A is nearly normal in A and
A′ is finite ([21], Theorem B) and the lemma is proved. �

Lemma 2.3.8. Let G be a locally finite group, and let S be a Sylow p-subgroup of
G. If S is finite-permutable-finite in G, then S/Op(G) is finite.

PROOF. Let H and K be subgroups of G such that the indeces |H : S| and
|G : K| are finite and H is permutable in K. The core SH of S in H is an
ascendant p-subgroup of K and so it is contained in Op(K). Since S/SH

is finite, it follows that S/Op(K) is finite. Clearly, Op(G) = Op(K) ∩ KG

and, since G/KG is finite, we have that also the factor group S/Op(G) is
finite. �

We put here a technical lemma that will be needed in the following.
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Lemma 2.3.9. Let G be a locally finite group of infinite rank whose subgroups of
infinite rank are finite-permutable-finite such that every section H/K of G is finite-
by-quasihamiltonian, when K has infinite rank. If G contains an abelian normal
subgroup of infinite rank A such that for every prime p the p-component of A is
elementary abelian, then one of the following conditions holds:

1. G is (locally nilpotent)-by-finite,

2. G contains a non-(locally nilpotent)-by-finite subgroup M = QB, where B
is a normal elementary abelian p-subgroup of infinite rank of M and Q is a
locally nilpotent p′-group of finite rank, for some prime p.

PROOF. Assume that G is not (locally nilpotent)-by-finite. If for every
prime p the p-component Ap of A has finite rank, then A contains a di-
rect product B1 × B2 of G-invariant subgroups of infinite rank B1 and B2.
Then G/Bi is (locally nilpotent)-by-finite, for i = 1, 2, and also G is (locally
nilpotent)-by-finite, a contradiction. It follows that for some prime p the
rank of B = Ap is infinite. Then there exists a normal subgroup H of finite
index of G such that H/B is locally nilpotent. Therefore, H is not (locally
nilpotent)-by-finite and we can replace G by H, so that we can assume that
G/B is locally nilpotent. Moreover, as G/B is finite-by-quasihamiltonian,
its primary components are nilpotent and so every finite subgroup of G/B
is subnormal in G/B. Let x be any element of G of order pn, for some
positive integer n, then the p-subgroup 〈x〉B is subnormal in G and so it
is contained in Op(G). In particular, x belongs to Op(G) and, as a conse-
quence, P = Op(G) is the unique Sylow p-subgroup of G. Clearly, B ≤ P
and so G/P is a locally nilpotent p′-group. By contradiction, suppose that
there exists a Sylow q-subgroup Q of infinite rank of G, with q 6= p. Then
Q is finite-permutable-finite and Q/Oq(G) is finite by Lemma 2.3.8. Thus,
Oq(G) has infinite rank and, as P ∩Oq(G) = {1}, G is (locally nilpotent)-
by-finite, a contradiction. It follows that for every q 6= p, every Sylow q-
subgroup of G has finite rank and G satisfies the minimal condition on q-
subgroups. Therefore, by Lemma 2.5.10 of [29] every q-component of G/P
is a Černikov group and so, in particular, G/P is countable. Hence, there
exists a locally nilpotent p′-subgroup Q of G such that G = QP ([29], Theo-
rem 2.4.5). Since G/B is locally nilpotent, QB is normal in G, so that QB is
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not (locally nilpotent)-by-finite. If Q has infinite rank, then there exist sub-
groups H and K of QB such that the indeces |H : Q| and |QB : K| are finite
and H is permutable in K. In particular, K = H(K ∩ B) and H is normal in
K. It follows that H ∩ B is a finite normal subgroup of K and K/(H ∩ B) is
the product of two (locally nilpotent)-by-finite normal subgroups. Hence,
K is finite-by-(locally nilpotent)-by-finite and this implies that K is also (lo-
cally nilpotent)-by-finite. Since K has finite index in G, also G is (locally
nilpotent)-by-finite, a contradiction. Thus, Q has finite rank and M = QB is
the required subgroup. �

Proposition 2.3.5. Let G be a locally finite group of infinite rank whose subgroups
of infinite rank are nearly permutable. Then G is (locally nilpotent)-by-finite.

PROOF. By contradiction, assume that G is not (locally nilpotent)-by-finite.
By Lemma 2.3.7, G contains a normal subgroup of infinite rank A such that
A′ is finite and for every prime p the p-component of A is generated by el-
ements of order p. Thus, G/A′ is still a counterexample and so, replacing
G by G/A′, we can suppose that A is abelian. Then it follows from Lemma
2.3.9 that G contains a non-(locally nilpotent)-by-finite subgroup M = QB,
where B is a normal elementary abelian p-subgroup of infinite rank of M
and Q is a locally nilpotent p′-group of finite rank, for some prime p. With-
out loss of generality we can replace G by M. Put π = π(Q) and first
suppose that π is a finite set. Then Q is a Černikov group. Let J be any qua-
sicyclic subgroup of Q and let x be any element of J. It follows from Lemma
2.9 of [23] that JB and X = 〈x〉B are normal subgroups of G. Moreover, by
Lemma 2.3.6, X′ = [x, B] is finite. As a consequence, J is normal in J[x, B]
for every x ∈ J and, hence, J is normal also in J[J, B] = JB. Therefore the
finite residual of Q is subnormal in G and Q/Oπ(G) is finite. As Oπ(G)B is
contained in the Hirsch-Plotkin radical R of G, we have that G/R is finite.
By this contradiction, the set π is infinite. Let C = C1 × C2 be a subgroup
of B, with C1 and C2 of infinite rank, and let Ki be a permutable subgroup
of G such that |Ki : Ci| is finite, for i = 1, 2. Then K1 ∩ K2 is finite and, by
Lemma 1.2.5 of [2], C has finite index in K1K2 and, it follows that the set
σ = π(K1K2) is finite. Put Q = Qσ × Qσ′ , then Qσ′ ∩ K1K2 = {1}, so that
Qσ′K1 ∩ Qσ′K2 = Qσ′(K1 ∩ K2). Let Li be a permutable subgroup of G such
that Qσ′Ki has finite index in Li, for i = 1, 2. Then Qσ′ has finite index in
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L = L1 ∩ L2. As L / LB, there exists a normal subgroup N of Qσ′B such
that |N : Qσ′ | is finite. Hence, N ∩ B is finite and Qσ′B/(N ∩ B) is locally
nilpotent, so that Qσ′B is (locally nilpotent)-by-finite. On the other hand,
as σ is a finite set, the previous argument shows that also QσB is (locally
nilpotent)-by-finite. Thus, G is the product of its (locally nilpotent)-by-finite
normal subgroups QσB and Qσ′B and this last contradiction completes the
proof. �

Lemma 2.3.10. Let G be a locally finite group of infinite rank whose subgroups of
infinite rank are nearly permutable. If X is a subgroup of finite rank of G, then X
is finite-by-quasihamiltonian.

PROOF. Let A be an abelian subgroup of infinite rank of G such that A ∩
X = {1} and let L be any subgroup of X. As A has finite index in a per-
mutable subgroup H of G, H ∩ X is finite and L has finite index HL ∩ X =

L(H ∩ X). Let K be a permutable subgroup of G such that |K : HL| is fi-
nite, then K ∩ X is permutable in X and L has finite index in K ∩ X. It
follows that every subgroup of X is nearly permutable and X is finite-by-
quasihamiltonian ([23], Theorem). �

Next lemma is a generalization of Lemma 3.3 of [23]. We omit the proof
since it is analogous to the proof contained in [23].

Lemma 2.3.11. Let G be a periodic group and let (En)n∈N be a sequence of sub-
groups of G such that π(En) is finite for every n, π(En) ∩ π(Em) = ∅ for n 6= m
and all subgroups of En+1 are normalized by 〈E1, . . . , En〉 for each positive inte-
ger n. If every En contains a non-permutable subgroup Hn, then the subgroup
H = 〈Hn | n ∈N〉 is not nearly-permutable in G.

We are now in a position to prove the main theorem of this section. First,
we consider the locally nilpotent case.

Proposition 2.3.6. Let G be a periodic locally nilpotent group of infinite rank
whose subgroups of infinite rank are nearly permutable. Then G is finite-by-quasihamiltonian.

PROOF. Assume by contradiction that G is not finite-by-quasihamiltonian.
Let n be a positive integer for which there exist n subgroups E1, . . . , En of G
such that π(Ei) is finite for every i ≤ n, π(Ei) ∩ π(Ej) = ∅ for i 6= j, every
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Ei contains a non-permutable subgroup Hi of rank ri and ri < ri+1 for every
i < n. By Theorem 2.3.5 and Lemma 2.3.10, every primary component Gp

of G is finite-by-quasihamiltonian. As the set π = π(E1) ∪ · · · ∪ π(En) is
finite, it follows that Gπ is finite-by-quasihamiltonian and, hence, Gπ′ con-
tains a finite subgroup Ēn+1 and a subgroup H̄n+1 of Ēn+1 such that H̄n+1

is not permutable in Ēn+1. Let rn+1 be the rank of H̄n+1. If rn < rn+1, put
En+1 = Ēn+1 and Hn+1 = H̄n+1. So, suppose that rn+1 ≤ rn and put πn+1 =

π ∪ π(Ēn+1). As πn+1 is finite, Gπ′n+1
is not finite-by-quasihamiltonian and

hence it has infinite rank, by Lemma 2.3.10. It follows that there exists a
prime p /∈ πn+1 such that rn is strictly less than the rank of Gp. In this case,
put En+1 = Ēn+1 × Gp and Hn+1 = H̄n+1 × Gp.
In both cases, we have that π(En+1) is finite, π(Ei)∩π(En+1) = ∅ for i ≤ n,
Hn+1 is not permutable in En+1 and rn < rn+1. It follows from Lemma
2.3.11 that H = 〈Hn | n ∈ N〉 is not nearly permutable in G and this is a
contradiction, since H has infinite rank. �

Proof of Theorem 2.3.2. By Lemma 2.3.5, G contains a locally nilpotent
normal subgroup Q such that the index |G : Q| is finite, so there exists a
finite subgroup E of G such that G = QE. It follows from Theorem 1 of
[41] that Q contains an abelian subgroup A = A1 × A2 such that A1 and
A2 are E-invariant subgroups of infinite rank and A ∩ E = {1}. Let Ki be a
permutable subgroup of G such that EAi has finite index in Ki, for i = 1, 2.
Then E has finite index in K1 ∩ K2 and K = K1 ∩ K2 is a finite subgroup of
G such that G = QK. Replacing G with G/KG, it can be assumed without
loss of generality that K is core-free. In particular, (K1)G ∩ (K2)G = {1}.
Since (Ki)

G/(Ki)G is locally nilpotent, for i = 1, 2 ([60], Theorem 6.3.1), KG

is locally nilpotent. Then G = QKG is locally nilpotent and, by Proposition
2.3.6, G is finite-by-quasihamiltonian. �

C. Almost permutable subgroups of infinite rank

The study of the periodic case is firstly restricted to primary groups and our
first purpose is to show that a locally finite p-group of infinite rank in which
every subgroup of infinite rank is almost permutable is abelian-by-finite and
finite-by-quasihamiltonian.
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Lemma 2.3.12. Let G be a periodic locally nilpotent group. If there exists a positive
integer n such that every subgroup of G is subnormal of defect at most n in a
subgroup of finite index of G, then G is nilpotent.

PROOF. Every subgroup of G is subnormal and by Lemma 1 of [18] there
exist a subgroup K of finite index of G, a finite subgroup F of K and a posi-
tive integer m such that every subgroup of finite index of K containing F is
subnormal in K of defect at most m. Then every subgroup of K containing
F is subnormal in K of defect at most m + n and K is nilpotent ([27], p.386).
It follows that G is nilpotent-by-finite and, replacing K with KG, we can as-
sume that K is normal in G, so that there exists a finite subgroup E of G such
that G = KE. In particular, E is a nilpotent subnormal subgroup of G and G
is nilpotent. �

In [51] and [52], Möhres proved that a group G in which every subgroup
is subnormal is soluble and, in addition, if G is the extension of a periodic
nilpotent group by a soluble group of finite exponent, then G is nilpotent.
An easy argument by induction on the derived length shows that if G is a
group generated by elements of finite bounded order and every subgroup
of G is subnormal, then G is nilpotent. This remark will be used in the proof
of the next theorem.

Theorem 2.3.6. Let G be a locally finite p-group of infinite rank whose subgroups
of infinite rank are almost permutable. Then G is abelian-by-finite.

PROOF. Assume by contradiction that G is not abelian-by-finite and put
A = Ω1(G). Then A has infinite rank and G/A is abelian-by-finite ([40],
Theorem 4.13). Let B/A be an abelian normal subgroup of G/A such that B
has finite index in G, then B is not abelian-by-finite and, replacing G with B,
we may assume that G/A is abelian. Let H be a subgroup of infinite rank
of G and let X be a subgroup of finite index of G such that H is permutable
in X. Then N = XG has finite index in G and Ω1(N) is a G-invariant sub-
group of infinite rank, so that G/Ω1(N) is nilpotent and, as H / HΩ1(N),
H is subnormal in G. It follows that every subgroup of infinite rank of G
is subnormal and, by Theorem 5 of [46], G has all its subgroups subnormal.
In particular, A is a nilpotent group of finite exponent. Put Ḡ = G/A′. If
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A′ has finite rank, then Ḡ has infinite rank and Ā is an elementary abelian
p-group of infinite rank, containing Ḡ′. It is easy to see that every subgroup
of infinite rank of Ḡ is subnormal of defect at most 2 in a subgroup of fi-
nite index of Ḡ. By Lemma 2.3.5 every subgroup of finite rank of Ḡ is the
intersection of two subgroups of infinite rank, so that every subgroup of Ḡ
is subnormal of defect at most 2 in a subgroup of finite index of Ḡ and, by
Lemma 2.3.12, Ḡ is nilpotent. On the other hand, if A′ has infinite rank, then
Ḡ is nilpotent. Therefore G is a nilpotent group by a well-known result of
P. Hall. Among all counterexamples to the theorem obtained in this way,
choose a nilpotent group G with minimal nilpotency class c > 1.
If the centre Z(G) of G has infinite rank, then Z(G) contains a subgroup
Z1 × Z2, with Z1 and Z2 of infinite rank. Then G/Zi is abelian-by-finite,
for i = 1, 2, and so the same holds for G, a contradiction. It follows that
Z(G) has finite rank and, by the minimality of c, G/Z(G) is abelian-by-
finite. Thus, the subgroup M = Z(G)∩Ω1(G) is finite and G/M is abelian-
by-finite. If B is a subgroup of finite index of G such that B/M is abelian,
then B is still a counterexample and, replacing G with B, we may assume
that G is a nilpotent group of nilpotency class 2 and G′ has exponent p.
Let A = A1 × A2 be an abelian subgroup of G, with A1 and A2 of infinite
rank, and let Xi be a subgroup of finite index of G such that Ai is permutable
in Xi, for i = 1, 2. Then N = (X1 ∩ X2)G has finite index in G and Bi = Ai ∩
N is a permutable subgroup of infinite rank of N, for i = 1, 2. Application
of Lemma 2.10 of [23] yields that Bi/(Bi)N is finite, so that (Bi)N has infinite
rank and N/(Bi)N is abelian-by-finite, for i = 1, 2. Therefore, N is abelian-
by-finite and so the same holds for G, a contradiction. This last contradiction
completes the proof of the theorem. �

We are now in a position to prove that if G is a locally finite p-group of
infinite rank whose subgroups of infinite rank are almost permutable, then
every subgroup of infinite rank of G is nearly permutable, so that G will be
finite-by-quasihamiltonian as an application of Theorem 2.3.5.

Lemma 2.3.13. Let G be a locally finite p-group of infinite rank whose subgroups
of infinite rank are almost permutable such that the centre Z(G) of G has infinite
rank. If H is a core-free subgroup of infinite rank of G, then H is nearly permutable.
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PROOF. Let A = A1 × A2 be a subgroup of Z(G) such that A1 and A2

have infinite rank. As H ∩ Z(G) = {1}, H = HA1 ∩ HA2. By Theorem
2.3.6, G is abelian-by-finite so that there exist an abelian normal subgroup B
and a finite subgroup E of G such that G = BE. For any i = 1, 2, G/Ai is
finite-by-quasihamiltonian ([40], Corollary 4.14), so EAi/Ai is contained in
a finite permutable subgroup Fi/Ai of G/Ai. It follows that Li = HAiFi is a
subgroup of G and the index |Li : HAi| is finite. Then, the index |L1∩ L2 : H|
is finite and, as E is contained in L1 ∩ L2, H has finite index in K = 〈H, E〉.
Clearly, K has infinite rank and there exists a subgroup X of finite index of
G such that K is permutable in X. Let C be a finite normal subgroup of G
such that B = C(B∩X), then G = XC and KC is permutable in G. It follows
that H is nearly permutable in G. �

Theorem 2.3.7. Let G be a locally finite p-group of infinite rank whose subgroups
of infinite rank are almost permutable. Then G is finite-by-quasihamiltonian.

PROOF. Assume by contradiction that G is not finite-by-quasihamiltonian.
By Theorem 2.3.6, G contains an abelian normal subgroup A of finite index.
By contradiction, suppose that G has infinite exponent. By Lemma 6 of [21],
Ω1(A) contains a direct product Y1×Y2 of G-invariant subgroups of infinite
rank Y1 and Y2 and G/Yi is finite-by-quasihamiltonian, for i = 1, 2. Since Y1

and Y2 have finite exponent, it follows that G/Yi is finite-by-abelian, for
i = 1, 2. Hence, G is finite-by-abelian, a contradiction. Therefore G has
finite exponent and G is nilpotent ([56], Lemma 6.34, part 2). Among all
counterexamples to the theorem obtained in this way, choose a nilpotent
group G with minimal nilpotency class c > 1.
If the centre Z(G) has finite rank, then Z(G) is finite and, by the minimal-
ity of c, G/Z(G) is finite-by-quasihamiltonian, so the same holds for G, a
contradiction. From this observation follows that in any counterexample of
nilpotency class c the centre has infinite rank. Let H be any subgroup of
infinite rank of G. If the core HG of H in G has infinite rank, then G/HG is
finite-by-quasihamiltonian and H is nearly permutable in G. On the other
hand, if HG has finite rank, then HG is finite and G/HG is still a counterex-
ample. By Lemma 2.3.13, H is nearly permutable in G. As a consequence,
every subgroup of infinite rank of G is nearly permutable and G is finite-by-
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quasihamiltonian by Theorem 2.3.5, a contradiction. This last contradiction
completes the proof of the Theorem. �

By Corollary 5.9 of [40], in a locally finite p-group of infinite rank whose
subgroups of infinite rank are almost permutable, every subgroup is almost
permutable.

Recall that the Hirsch-Plotkin radical of a group G is the largest locally nilpo-
tent normal subgroup of G and it contains every locally nilpotent ascendant
subgroup of G. It is easy to see that in a locally finite group G of infinite rank
whose subgroups of infinite rank are almost permutable, the Hirsch-Plotkin
radical R has infinite rank. In fact, let A be an abelian subgroup of infinite
rank of G (see [62]) and let X be a subgroup of finite index of G such that
A is permutable in X. Then, A ∩ XG is an abelian ascendant subgroup of
infinite rank of G and it is contained in R.

Lemma 2.3.14. Let G be a locally finite group of infinite rank whose subgroups of
infinite rank are almost permutable. If X is a p-subgroup of finite rank of G, then
the factor group X/Z(X) is finite.

PROOF. Since X is a Černikov group ([56], Corollary 1, p.38, part 2), if J
is its finite residual there exists a finite subgroup E of X such that X = EJ.
By Theorem 1 of [41], the Hirsch-Plotkin radical of G contains an abelian
subgroup A = A1 × A2 such that A1 and A2 are E-invariant subgroups of
infinite rank and A ∩ E = {1}. Let Xi be a subgroup of finite index of G
such that EAi is permutable in Xi, for i = 1, 2 and put N = (X1 ∩ X2)G.
Let R = DrpRp be the Hirsch-Plotkin radical of N, where Rp is the unique
Sylow p-subgroup of R. Since N has finite index in G, B = DrpΩ1(Rp) is a
G-invariant subgroup of infinite rank such that EAi is normalized by B, for
i = 1, 2. In particular, E = EA1 ∩ EA2 is normal in EB. On the other hand,
the p-subgroup XB/B of G/B is nilpotent, so that EB is subnormal in XB
and E is subnormal in X. It follows that X is a Černikov nilpotent group
and X/Z(X) is finite. �

Lemma 2.3.15. Let G be a locally finite group of infinite rank whose subgroups of
infinite rank are almost permutable. Then G contains an abelian normal subgroup
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A of infinite rank such that for every prime p the p-component of A is elementary
abelian.

PROOF. Let R = DrpRp be the Hirsch-Plotkin radical of G, where Rp is
the unique Sylow p-subgroup of R. Since R has infinite rank, the subgroup
A = DrpΩ1(Rp) is a G-invariant subgroup of infinite rank. Let H be any
subgroup of infinite rank of A and let X be a subgroup of finite index of A
such that H is permutable in X. Then there exists a finite subset π of π(R)
such that Aπ′ is contained in X and so H / HAπ′ . Let p ∈ π. If Ap has
infinite rank, then Ap is abelian-by-finite and finite-by-quasihamiltonian by
Theorem 2.3.6 and Theorem 2.3.7 and hence Ap is also finite-by-abelian. In
particular, the centre of Ap has finite index in Ap. On the other hand, the
same conclusion holds if Ap has finite rank, by Lemma 2.3.14. It follows
that the centre of Aπ has finite index in Aπ and, as a consequence, H ∩ Aπ

is almost normal in A. Thus, H = (H ∩ Aπ)× (H ∩ Aπ′) is almost normal
in A and by Theorem A of [21] the factor group A/Z(A) is finite. Then, the
socle S of Z(A) is a G-invariant subgroup of infinite rank whose primary
components are elementary abelian and the lemma is proved. �

Since a quasihamiltonian group is locally nilpotent, a periodic group in
which every subgroup is almost permutable is (locally nilpotent)-by-finite
and we will show that this holds requiring that only the subgroups of infi-
nite rank are almost permutable.

Proposition 2.3.7. Let G be a locally finite group of infinite rank whose subgroups
of infinite rank are almost permutable. Then G is (locally nilpotent)-by-finite.

PROOF. By contradiction, assume that G is not (locally nilpotent)-by-finite.
By Lemma 2.3.15, G satisfies the hypothesis of Lemma 2.3.9, so that G con-
tains a non-(locally nilpotent)-by-finite subgroup M = QB, where B is a
normal elementary abelian p-subgroup of infinite rank of M and Q is a lo-
cally nilpotent p′-group of finite rank, for some prime p. Without loss of
generality we can replace G with M and put π = π(Q). First, suppose that
π is a finite set. Let P be a quasicyclic subgroup of Q and let A = A1 × A2

be an abelian subgroup of G, with A1 and A2 of infinite rank, such that
A ∩ P = {1}. Then P = PA1 ∩ PA2 is ascendant in a subgroup of finite
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index of G and hence P is also ascendant in G. Since π is finite, Q is a
Černikov group ([56], Corollary 1, p.38, part 2) and, by the previous argu-
ment, its finite residual is ascendant in G. In particular, Q/Oπ(G) is finite.
As Oπ(G)B is contained in the Hirsch-Plotkin radical R of G, we have that
G/R is finite, a contradiction. It follows that π is infinite. Let C = C1 × C2

be a subgroup of B, with C1 and C2 of infinite rank and let Ki be a sub-
group of finite index of G such that Ci is permutable in Ki, for i = 1, 2. If
N = (K1 ∩ K2)G, then C1 ∩ N and C2 ∩ N are permutable subgroups of in-
finite rank of N, so that, without loss of generality, we can assume that C1

and C2 are both permutable in a same normal subgroup of finite index N
of G. Put σ = π(G/N), then Qσ′ is contained in N. Let Yi be a subgroup
of finite index of G such that Qσ′Ci is permutable in Yi, for i = 1, 2. It fol-
lows that L = B ∩ (Y1 ∩ Y2) is a subgroup of finite index of B such that
Qσ′ = Qσ′C1 ∩ Qσ′C2 is normal in Qσ′L. In particular, Qσ′L is locally nilpo-
tent and it has finite index in Qσ′B ([2], Lemma 1.2.5). On the other hand,
as σ is a finite set, QσB is (locally nilpotent)-by-finite from the previous ar-
gument. Thus, G is the product of its (locally nilpotent)-by-finite normal
subgroups QσB and Qσ′B and this last contradiction completes the proof of
the proposition. �

We are now in a position to prove the main theorem. First, we consider the
locally nilpotent case.

Proposition 2.3.8. Let G be a periodic locally nilpotent group of infinite rank
whose subgroups of infinite rank are almost permutable. Then G is finite-by-
quasihamiltonian.

PROOF. Let H be any subgroup of infinite rank of G and let X be a subgroup
of finite index of G such that H is permutable in X. Put π = π(G/XG), then
Gπ′ is contained in X and H ∩ Gπ′ is a permutable subgroup of G. On the
other hand, as π is finite, Gπ is finite-by-quasihamiltonian by Theorem 2.3.7
and Lemma 2.3.14, so that H ∩ Gπ is nearly permutable in G. It follows
that H = (H ∩ Gπ)× (H ∩ Gπ) is nearly permutable in G and the assertion
follows from Theorem 2.3.2. �

Corollary 2.3.5. Let G be a periodic locally nilpotent group of infinite rank whose
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subgroups of infinite rank are almost permutable. Then G is quasihamiltonian-by-
finite

PROOF. By Proposition 2.3.8, G contains a finite normal subgroup N such
that G/N is quasihamiltonian. Put π = π(N), then Gπ′ is quasihamiltonian.
On the other hand, as π is finite, Gπ is abelian-by-finite by Theorem 2.3.6
and Lemma 2.3.14. Hence, G = Gπ × Gπ′ is quasihamiltonian-by-finite. �

Proof of Theorem 2.3.3. By Proposition 2.3.7, G is (locally nilpotent)-by-
finite and by Corollary 2.3.5, G is also quasihamiltonian-by-finite. Let Q be
a quasihamiltonian normal subgroup of finite index of G and put G = QE,
where E is a finite subgroup of G. By Theorem 1 of [41], Q contains an
abelian subgroup A = A1 × A2 such that A1 and A2 are E-invariant sub-
groups of infinite rank and A ∩ E = {1}. It follows that E = EA1 ∩ EA2 is
ascendant in a subgroup of finite index X of G. Put π = π(G/XG) ∪ π(E),
then Qπ′ is contained in X and [Qπ′ , E] = {1}. Hence, G = Qπ′ × (QπE),
where Qπ′ is quasihamiltonian and QπE is abelian-by-finite by Theorem
2.3.6 and Lemma 2.3.14. By Theorem B of [40], it is enough to prove that
QπE is finite-by-quasihamiltonian. If QπE has finite rank, then Qπ′ has in-
finite rank and every subgroup of QπE ' G/Qπ′ is almost permutable. In
particular, QπE is finite-by-quasihamiltonian by Corollary 5.9 of [40]. Thus,
we can assume that QπE has infinite rank and, without loss of generality, we
can replace G with QπE, and assume that G contains an abelian subgroup
B of finite index. Let H be any subgroup of finite rank of G, then by Lemma
6 of [21], B contains a direct product B1 × B2 of G-invariant subgroups of
infinite rank B1 and B2 such that H ∩ B1B2 = {1}. Then H = HB1 ∩ HB2 is
ascendant in a subgroup of finite index of G. Thus, by Theorem A of [47],
G is finite-by-(locally nilpotent) and application of Proposition 2.3.8 yields
that G is also finite-by-quasihamiltonian. �
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CHAPTER 3

SOME FURTHER PROBLEMS ON
PERMUTABILITY

3.1 Polycyclic groups with permutability condi-

tions on finite homomorphic images

If G is a polycyclic group, it is known that its finite homomorphic images
have a strong influence on the structure of the whole group. The first result
on this topic was obtained by Hirsch [43], who proved that if all the finite ho-
momorphic images of a polycyclic group are nilpotent, then the group itself
is nilpotent. Later, Baer [5] proved an analogous theorem, where nilpotency
is replaced by supersolubility.
A famous theorem of Mal’cev [50] states that in a polycyclic group any sub-
group is closed in the profinite topology, so it is easy to see that a polycyclic
group is a T-group if and only if its finite quotients are T-groups. A corre-
sponding result for PT-groups can be obtained using a theorem of Lennox
and Wilson [48], which states that a subgroup H of a polycyclic group G is
permutable if Hσ is permutable in Gσ for every finite homomorphic image
Gσ of G.
As any torsion-free polycyclic group is trivially a PST-group, the require-
ment that the finite quotients of a polycyclic group are PST-groups can not
just have as a consequence that the group itself is a PST-group. Robinson
[59] studied this problem in a more general universe, obtaining the follow-
ing classification.

Theorem 3.1.1 (Robinson [59]). Let G be a finitely generated hyperabelian group.
Then every finite quotient of G is a PST-group if and only if G is one of the follow-
ing:
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3. SOME FURTHER PROBLEMS ON PERMUTABILITY

(a) A finite soluble PST-group.

(b) A nilpotent group.

(c) A group of infinite dihedral type.

According to [59], a group G is said to be of infinite dihedral type if the hy-
percenter Z∞(G) of G is a finite 2-group and the factor group G/Z∞(G) is
isomorphic with the dihedral group on a finitely generated, infinite abelian
group containing no involutions. For the convenience of the reader, we put
here the following useful characterization of this kind of groups.

Lemma 3.1.1 (Robinson [59]). A group G is of infinite dihedral type if and only
if it contains an abelian normal subgroup A such that the following conditions are
satisfied:

(a) A is finitely generated, infinite and it contains no involutions.

(b) G/A is a finite 2-group and the centralizer CG(A) has index 2 in G.

(c) every element of G \ CG(A) induce inversion in A.

The aim of this section is to obtain similar results for polycyclic groups
whose finite quotients belong to one of the classes of generalized quasi-
hamiltonian groups described in Chapter 1. All the following results have
been proved in [9] by Ballester-Bolinches, Beidleman and Ialenti.

Let X be one of the classes SST, BT, SNT, SN, SP or SPS. In order to extend
Robinson’s Theorem to finitely generated hyperabelian groups with all fi-
nite quotients belonging to X, we first need to study the finite quotients of
groups of infinite dihedral type. The next lemma shows that their structure
is quite transparent.

Lemma 3.1.2 (see [59]). Let G be a group of infinite dihedral type. If G/N is a
finite quotient of G and L/N is the nilpotent residual of G/N, then L/N is a Hall
2′-subgroup of G/N.

PROOF. By Lemma 3.1.1, G/N has a normal abelian subgroup T/N such
that G/T is a 2-group, |G/N : CG/N(T/N)| = 2 and the elements in G/N \
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CG/N(T/N) induce inversion in T/N. Let B/N = O2′(T/N). Then G/B is
a 2-group so that the nilpotent residual L/N of G/N is contained in B/N.
On the other hand, since B/N has odd order and the elements of G/N \
CG/N(T/N) induce inversion in B/N, we have that B/N ≤ L/N. Then
B/N = L/N is the nilpotent residual of G/N. �

Next, we observe that all the finite quotients of a group of infinite dihedral
type are BT-groups.

Lemma 3.1.3. If G is a group of infinite dihedral type, then all its finite quotients
are BT-groups.

PROOF. By Lemma 3 of [59], every finite quotient of G is a soluble PST-
group. Furthermore, if G/N is a finite quotient and L/N is the nilpotent
residual of G/N, then G/L is a 2-group by Lemma 3.1.2. Therefore G/N is
a BT-group by Theorem 1.2.3. �

In [59], it is showed that a group of infinite dihedral type is not a PST-group.
However, the class of all infinite dihedral type is a subclass of the class of all
BT-groups. In fact, we have:

Lemma 3.1.4. If G is a group of infinite dihedral type, then every subgroup of G is
semipermutable. In particular, G is a BT-group.

PROOF. Applying Lemma 3.1.1, G has a normal finitely generated, infinite
abelian subgroup A containing no involutions, such that G/A is a finite 2-
group, |G : CG(A)| = 2 and the elements in G \ CG(A) induce inversion in
A. In particular, every subgroup of A is normal in G and, if D is the torsion
subgroup of A then π(G) = {2} ∪ π(D). Clearly, if A is torsion-free, every
subgroup of G is semipermutable. Hence, we may assume that D is not
trivial. Let x, y be elements of G of order pα and qβ respectively, with p and
q different prime numbers. Since p and q are different, one of them must
belong to π(D). Assume p ∈ π(D), so that x ∈ A. In this case, 〈x〉 is a
normal subgroup of G and therefore 〈x〉〈y〉 = 〈y〉〈x〉. �

Since in a group of infinite dihedral type all finite quotients are BT-groups,
we can prove that actually its finite quotients are SST-groups using Theorem
1.2.5.
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Lemma 3.1.5. Let G be a finite group with a normal abelian subgroup A such that:

(a) G/A is a 2-group and |G : CG(A)| = 2,

(b) elements in G \ CG(A) induce inversion in A.

Then G is an SST-group.

PROOF. By Theorem 1.2.3, G is a BT-group. Therefore G = L o M, where
M ∈ Syl2(G) and L the nilpotent residual of G. In particular, π(G) \π(L) =
{2}. Clearly, CG(A) ≤ CG(L). If G = CG(L) then G is nilpotent and so G is
an SST-group. Hence we may assume that G is not nilpotent and CG(A) =

CG(L).
First, suppose that O2(G) = 1. Since M ∩ CG(L) is a normal 2-subgroup
of M of G, it follows that M ∩ CG(L) = {1} and M has order 2. If P is
a 2-subgroup of G, then P ∈ Syl2(G) and choosing K2 = 1 we have that
[P, KL

2 ] ≤ O2(G).
Now suppose that O2(G) is not trivial. Since the factor group G/O2(G)

satisfies the same hypothesis of G, it follows from the previous argument
that |M : O2(G)| = 2. Let P a 2-subgroup of G. Without loss of generality,
we may assume that P ≤ M. If M = PO2(G) then we may choose K2 =

O2(G) and clearly [P, KL
2 ] ≤ O2(G). Otherwise, if P ≤ O2(G), let K2 = M,

then [P, KL
2 ] ≤ [O2(G), ML] ≤ O2(G). �

Corollary 3.1.1. Let G be a group of infinite dihedral type. Then every finite ho-
momorphic image of G is an SST-group.

Theorem 3.1.2. Let G be a finitely generated hyperabelian group. Then every finite
quotient of G is an SST-group if and only if G is one of the following:

(a) A finite soluble SST-group;

(b) A nilpotent group;

(c) A group of infinite dihedral type.

PROOF. Since any finite soluble SST-group is a PST-group, if every finite
quotient of G is an SST-group, then the result follows by Robinson’s theo-
rem.
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Conversely, if G is finite or nilpotent, then trivially G is an SST-group. If
G is a group of infinite dihedral type, the assertion follows from Corollary
3.1.1. �

Bearing in mind the relation between the classes SST, BT, SNT, SN, SP and
SPS-group in the finite universe, the following theorem is a direct conse-
quence of Robinson’s result and Theorem 3.1.2.

Theorem 3.1.3. Let X be one of the classes BT, SNT, SN, SP or SPS and let G
be a finitely generated hyperabelian group. Then every finite quotient of G is an
X-group if and only if G is one of the following:

1. a finite soluble X-group;

2. a nilpotent group;

3. a group of infinite dihedral type.

We bring the section to a close by studying the finitely generated hyper-
abelian MS-groups.

Lemma 3.1.6. If G is a group of infinite dihedral type, then all its finite quotients
are MS-groups.

PROOF. Let G/N be a finite quotient of G and let L/N be the nilpotent
residual of G/N. By Lemma 3 of [59], G/N is a soluble PST-group and,
by Lemma 3.1.2, L/N is a normal abelian Hall 2′-subgroup of G/N. Then
conditions (iv) and (v) of Theorem 3.1 of [7] are trivially satisfied and then
G/N is an MS-group ([7], Theorem 3.2). �

In the proof of the main theorem for MS-groups, we used some results
showed in [42] about polycyclic groups whose finite quotients are T0-groups.
Here, a finite group G is called a T0-group if the factor group G/Φ(G) over
the Frattini subgroup is a T-group.

Theorem 3.1.4. Let G be a polycyclic group. Then every finite quotient of G is an
MS-group if and only if G is one of the following:

• a finite soluble MS-group;

• a nilpotent group;
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• a group of infinite dihedral type.

PROOF. Assume that every finite quotient of G is an MS-group. If G/Φ(G)

is abelian, then any maximal subgroup of G is normal, so that any finite
quotient of G is a nilpotent group and G itself if nilpotent ([43]).
If G/Φ(G) is finite, then only finitely many primes are possible for the in-
dices of maximal subgroups and so G has no infinite abelian factors. Then
G is finite. In particular, G is a finite MS-group.
Hence we may assume that G is an infinite polycyclic group, such that the
Frattini quotient group G/Φ(G) is an infinite non-abelian group. By Theo-
rem C of [16], any finite MS-group is a T0-group. Hence, G is the semidirect
product of an abelian group A by a cyclic group 〈t〉 of order 2 ([42], The-
orem C). Let N be a normal subgroup of G of finite index. Since A is a
maximal subgroup of G, we have that G = AN or N ≤ A. In the first
case, the quotient G/N is abelian. So assume that N ≤ A. In this case,
G/N = A/N o 〈t〉N/N is a finite T0-group whose nilpotent residual is
abelian. By Lemma 4 of [16], G/N is a PST-group. Thus, all finite quotients
of G are PST-groups and therefore, by Theorem of [59], G is either nilpotent
or a group of infinite dihedral type. �

Theorem 3.1.5. Let G be a finitely generated hyperabelian group whose finite quo-
tients are MS-groups. Then G is polycyclic.

PROOF. We follow the proof of the theorem of [59] and use the same no-
tation. We may assume, arguing by contradiction, that G is just non- poly-
cyclic. Note that the group Ḡ obtained there is, in our case, a finite MS-group
whose nilpotent residual is abelian. Since Ḡ is a T0-group, it follows that Ḡ
is a PST-group by Lemma 4 of [16]. Then the contradiction follows as in
Theorem [59]. �

Corollary 3.1.2. Let G be a finitely generated hyperabelian group. Then every
finite quotient of G is an SST-group if and only if G is one of the following:

(a) A finite soluble MS-group.

(b) A nilpotent group.

(c) A group of infinite dihedral type.
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A proof of Robinson’s theorem

We propose here an alternative proof for Robinson’s Theorem. Our proof
depends on Theorem D of [42] and the following lemma.

Lemma 3.1.7. Let G be an infinite non-nilpotent supersoluble group whose finite
quotients are PST-groups. Then the hypercentre Z∞(G) of G does not have finite
index in G.

PROOF. Applying 5.4.10 of [58], G/F is a finite abelian group. Assume that
G/Z∞(G) is finite. Then, by Theorem 4.21 of [56], there exists a positive
integer k such that γk(G) = γ∞(G) is finite. Since G is not nilpotent, there
exists a prime p and a positive integer i such that G/Fpi

is not nilpotent (oth-
erwise, γ∞(G) would be contained in every p′-component of F by Lemma 1
of[59] and G would be nilpotent). Then G/Fpj

is not nilpotent for all j ≥ i.
Let Nj be a normal subgroup of finite index in G which is maximal with
respect to F ∩ Nj = Fpj

. Then G/Nj is not nilpotent. By Theorem 2.1.8 of
[3], the nilpotent residual of G/Nj is an abelian Hall subgroup of G/Nj con-
tained in FNj/Nj with non-central chief factors. Hence Z∞(G) ≤ Nj and so
Z∞(G) ≤ F ∩ Nj = Fpj

. Thus Z∞(G) ≤ ⋂
j>i Fpj

which is a finite subgroup
of F by Lemma 1 of [59]. This contradiction proves the lemma. �

Theorem 3.1.6. Let G be an infinite polycyclic group and let F be its Fitting sub-
group. If every finite quotient of G is a PST-group, then either G is nilpotent or the
following conditions are satisfied:

(a) Z∞(G) is a 2-group.

(b) F/Z∞(G) is an abelian group containing no involutions.

(c) |G : F| = 2 and every element of G \ F induces inversion in F/Z∞(G).

PROOF. Assume that G is not nilpotent. Since any finite PST-group is su-
persoluble, G is supersoluble by a result of Baer [5]. By 5.4.10 of [58], G/F
is a finite abelian group.
Let N be any normal subgroup of G of finite index and let Ḡ = G/N. Then
Ḡ is a PST-group. By Theorem 2.1.8 of [3], the nilpotent residual Ā of Ḡ is
an abelian Hall subgroup of G. Note that Ā ≤ Ḡ′ ≤ F̄. We have that Ā is
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complemented by a Carter subgroup D̄ of Ḡ ([32], IV, Theorem 5.18). Put
C̄ = F̄ ∩ D̄, then F̄ = Ā× C̄ and C̄ ≤ CD̄(Ā). Therefore C̄ is contained in
the hypercentre Z∞(Ḡ) of Ḡ ([32], IV, Theorem 6.14) and Ḡ/C̄ is a T-group.
Hence Ḡ/Z∞(Ḡ) is a T-group and Ḡ is a T1-group.
Applying Lemma 3.1.7, G/Z∞(G) is infinite. By Theorem D of [42], G/Z∞(G)

is an extension of an abelian group A/Z∞(G) containing no involutions by
a cyclic subgroup of order 2 such that the elements of G \ A inverts all the
elements in A/Z∞(G). Since A/Z∞(G) is abelian, A is nilpotent and A = F.
In particular, the 2-component F2 of F is contained in Z∞(G) and |G : F| = 2.
Applying 5.2.10 of [58], G/F′ is not nilpotent and F/F′ is the Fitting sub-
group of G/F′. By 5.2.6 of [58], F/F′ is infinite. Let p be an odd prime and
assume that G/Fpi

is nilpotent for some positive integer i. Let j > i. Since
the nilpotent residual of G/Fpj

is a Hall subgroup of G/Fpj
contained in

Fpi
/Fpj

, it follows that G/Fpj
is nilpotent. Let Nj be a normal subgroup of

finite index of G which is maximal with respect to F ∩ Nj = F′Fpj
. Then

G/Nj is nilpotent. Since FNj/NJ is a p-group, it follows that G/Nj is a
p-group. Moreover, G = FNj. Since F/F′ is infinite, F/F′ contains a non-
trivial torsion-free subgroup M/F′ such that M is a normal subgroup of G
and G/M is finite. If j ≥ i, [M, G] = [M, Nj] ≤ M ∩ Nj = Mpj

(mod F′).
Then [M/F′, G/F′] is finite by Lemm 1 of [59]. Hence [M/F′, G/F′] = 1 and
M/F′ ≤ Z(G/F′). Then G/F′/Z(G/F′) is finite, contrary to Lemma 3.1.7.
Therefore G/Fpi

is a non-nilpotent PST-group and F/Fpi
is the nilpotent

residual of G/Fpi
for each odd prime p and positive integer i. Since G/Fpi

acts on F/Fpi
as a power automorphisms by conjugation ([3], Theorem 2.1.8)

and the only power automorphism of order 2 is the inversion, the elements
of G \ F invert all the elements of F/Fpi

. Since
⋂

r>2

(⋂
i>0 Fri

)
=
⋂

r>2 Fr′ =

F2 by Lemma 2 of [59], it follows that every element of G \ F induces inver-
sion on F/F2 so that Z(G/F2) = 1 and F2 = Z∞(G). �

3.2 Groups with finite abelian section rank factor-

ized by mutually permutable subgroups

If a group G = AB is the product of two abelian subgroups A and B, a fa-
mous theorem of N. Itô shows that G is metabelian (see [2], Theorem 2.1.1).
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This result has been proved by means of a surprisingly short and elemen-
tary commutator computation. However, there are only few statements on
factorized groups which can be proved without further assumptions on the
factors. The situation is much easier to control when the two factors are
normal subgroups, as Fitting’s theorem and more generally the consider-
ation of Fitting classes show. Although finite supersoluble groups do not
form a Fitting class, it was proved by R. Baer [5] that if a finite group G
is the product of two supersoluble normal subgroups and its commutator
subgroup G′ is nilpotent, then G is supersoluble. This result was later im-
proved by M. Asaad and A. Shaalan [4], who were able to show that if a fi-
nite group G = AB is factorized by two supersoluble mutually permutable
subgroups A and B, then G itself is supersoluble, provided that G′ is nilpo-
tent. Here two subgroups A and B of a group G are said to be mutually
permutable if AY = YA and XB = BX for all subgroups X of A and Y
of B; of course any two normal subgroups are mutually permutable. The
structure of a product of two mutually permutable subgroups has been re-
cently investigated by several authors, especially in the finite case (we refer
to chapters 4 and 5 of the monograph [3] for problems and results on this
subject; for the case of infinite groups see also [13] and [20]). In particular,
J.C. Beidleman and H. Heineken [14] proved that if a finite group G = AB is
the product of its mutually permutable subgroups A and B, then A′ and B′

are subnormal in G. The arguments used in the proof of this result cannot be
adapted to the infinite case, and the aim of this section is to obtain informa-
tion of a similar type for infinite groups factorized by mutually permutable
subgroups. Our first main theorem is an extension of this result to the case
of Černikov groups.

Theorem 3.2.1 (de Giovanni, Ialenti [38]). Let G = AB be a Černikov group
which is factorized by two mutually permutable subgroups A and B. If A′ and B′

are finite, then they are subnormal in G.

It follows clearly from the theorem of Beidleman and Heineken that if the
finite group G is factorized by two mutually permutable subgroups A and
B such that A′ and B′ are nilpotent, then the normal closure 〈A′, B′〉G is
likewise nilpotent. We will prove a corresponding statement for soluble-by-
finite groups with finite abelian section rank.
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Recall that a group has finite abelian section rank if it has no infinite abelian
sections of prime exponent. Thus, every primary locally finite group with
finite abelian section rank satisfies the minimal condition on abelian sub-
groups and hence is a Černikov group (see [56] Part 1, Theorem 3.32); it
follows that any locally finite group with finite abelian section rank satisfies
the condition min-p for all prime numbers p.

Theorem 3.2.2 (de Giovanni, Ialenti [38]). Let G = AB be a soluble-by-finite
group with finite abelian section rank which is factorized by two mutually per-
mutable finite-by-nilpotent subgroups A and B. If A′ and B′ are locally nilpotent,
then also the normal closure 〈A′, B′〉G is locally nilpotent.

Since every locally nilpotent group with finite abelian section rank is hyper-
central (see [56] Part 2, p.38), and in particular all its subgroups are ascen-
dant, Theorem 3.2.2 has the following consequence.

Corollary 3.2.1. Let G = AB be a soluble-by-finite group with finite abelian sec-
tion rank which is factorized by two mutually permutable finite-by-nilpotent sub-
groups A and B. If A′ and B′ are locally nilpotent, then they are ascendant in
G.

The monograph [2] can be used as a general reference on products of groups.

Recall that two subgroups A and B of a group G are said to be totally per-
mutable if XY = YX for all subgroups X of A and Y of B. It can be proved
that if A and B are mutually permutable and A ∩ B = {1}, then A and B
are also totally permutable (see [3], Proposition 4.1.16). This result can be
improved in the following way.

Lemma 3.2.1. Let the group G = AB be the product of its mutually permutable
subgroups A and B. If N is a normal subgroup of G containing A ∩ B, then the
subgroups AN/N and BN/N of G/N are totally permutable.

PROOF. Let X/N and Y/N be subgroups of AN/N and BN/N, respec-
tively. Then X = N(A ∩ X) and Y = N(B ∩ Y). Moreover, A ∩ B is con-
tained in A ∩ X and B ∩Y, and hence

(A ∩ X)(B ∩Y) = (B ∩Y)(A ∩ X)
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(see [3], Proposition 4.1.16). It follows that XY = YX, and in particular
AN/N and BN/N are totally permutable. �

Proof of Theorem 3.2.1 Assume for a contradiction that the statement is
false, and choose a counterexample G such that the finite residual J of G has
smallest total rank r (recall that the total rank of J is the sum of the ranks of
the primary component of J). Since A and B are Černikov groups with finite
commutator subgroup, the indeces |A : Z(A)| and |B : Z(B)| are finite, so
that the central subgroup C = Z(A) ∩ Z(B) of G has finite index in A ∩ B.
Clearly, the factor group G/C is also a counterexample, and hence without
loss of generality we may suppose that A∩ B is finite. Moreover, as the sub-
group 〈Z(A), Z(B)〉 has finite index in G, also the index |G : CG(A ∩ B)| is
finite, and so the normal closure N = (A ∩ B)G is finite. Let J(A) and J(B)
the finite residuals of A and B, respectively. Then J(A)N/N is the finite
residual of AN/N and J(B)N/N is the finite residual of BN/N. Applica-
tion of Lemma 3.2.1 yields that the factor group G/N is the product of its
totally permutable subgroups AN/N and BN/N, and hence it follows that
J(A)N and J(B)N are normal subgroups of G. Clearly, J(A) is the finite
residual of J(A)N, and so it is normal in G. Similarly, J(B) is a normal sub-
group of G. Assume first that J(A) 6= {1}. Then the finite residual J/J(A)

of G/J(A) has total rank less than r, so that A′ J(A) is subnormal in G by
the minimal assumption on r, and hence A′ is subnormal in G. Suppose
now that J(A) = {1}, i.e. A is finite and J = J(B). If P is any subgroup
of type p∞ of B, then P coincides with the finite residual of AP = PA and
hence it is normal in G. Thus the factor group G/CG(J) is abelian, so that G′

centralizes J and in particular A′ is normal in A′ J. As A′ J/J is a subnormal
subgroup of the finite factorized group G/J, it follows that A′ is subnormal
in G. A similar argument shows that also B′ is a subnormal subgroup of G,
and this contradiction completes the proof. �

If G is any group, the intersection of all normal subgroups N of G such that
the factor group is locally nilpotent is called the locally nilpotent residual of
G. Of course, if G is finite-by-(locally nilpotent), then its locally nilpotent
residual M is finite and the group G/M is locally nilpotent.
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Lemma 3.2.2. Let G be a group, and let K be a normal subgroup of G such that
Kσ is nilpotent for every homomorphism σ of G onto a finite group Gσ. If K is
finite-by-(locally nilpotent), then K is locally nilpotent.

PROOF. Assume for a contradiction that the statement is false, and choose a
counterexample G such that the locally nilpotent residual M of K has small-
est order. Then M is a minimal normal subgroup of G. As M is finite, the
group G/CG(M) is also finite, so that K/CK(M) is nilpotent and hence M is
abelian of prime exponent p. Moreover, [M, K] is a non-trivial normal sub-
group of G, and hence [M, K] = M. It follows that G contains a subgroup L
such that G = ML and M ∩ L = {1} (see [2], Theorem 5.3.11). Clearly, the
centralizer CL(M) is a normal subgroup of G and the factor group G/CL(M)

is finite. Therefore KCL(M)/CL(M) is nilpotent, and so K is locally nilpo-
tent. This contradiction proves the lemma. �

Corollary 3.2.2. Let the group G = AB be the product of its mutually permutable
subgroups A and B. If the subgroups A′ and B′ are locally nilpotent and the normal
closure 〈A′, B′〉G is finite-by-(locally nilpotent), then 〈A′, B′〉G is locally nilpotent.

PROOF. Put W = 〈A′, B′〉G, and let Gσ be any finite homomorphic image of
G. Then the nilpotent subgroups (A′)σ and (B′)σ are subnormal in Gσ, and
hence

Wσ = 〈(A′)σ, (B′)σ〉Gσ

is nilpotent. Therefore W is locally nilpotent by Lemma 3.2.2. �

Our next lemma is a slight extension of a result by D.J.S. Robinson [57].
Recall here that if Q is a group and A is any Q-module, then H0(Q, A) is
isomorphic to the additive group of A/[A, Q], the largest homomorphic im-
age of A which is a trivial Q-module, and H0(Q, A) is isomorphic to the
additive group of the Q-submodule of A consisting of all elements fixed by
Q.

Lemma 3.2.3. Let Q be a finite-by-nilpotent group, and let A be a Q-module whose
additive group is a divisible p-group of finite rank (where p is a prime number). If
H0(Q, A) = {0}, then H0(Q, A) is finite.
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PROOF. Assume for a contradiction that the statement is false, and choose
a counterexample such that the divisible part U of the infinite Q-submodule
B = CA(Q) has smallest rank. Suppose first that Q/CQ(A) is finite. Then
there exists a proper Q-submodule V of A such that U + V = A and U ∩V
is finite (see [36]). It follows that

[A, Q] = [V, Q] ≤ V,

contradicting the assumption H0(A, Q) = A. Therefore Q/CQ(A) is infi-
nite, and so its centre contains a non-trivial element xCQ(A) (see [56] Part 1,
Theorem 4.25). The mapping

θ : a 7→ −a + ax

is a non-zero Q-endomorphism of A, and so

Aθ ' A/kerθ

is a non-zero Q-submodule of A whose additive group is divisible. Sup-
pose that Aθ 6= A. Then Aθ and A/Aθ have smaller rank than A, and so
our minimal assumption yields that H0(Q, Aθ) and H0(Q, A/Aθ) are finite.
This means that CAθ(Q) and CA/Aθ(Q) a re finite, so that CA(Q) has finite
exponent, and hence it is finite. This contradiction shows that Aθ = A, so
that the kernel of θ must be finite. As CA(Q) is contained in kerθ, it follows
that also CA(Q) is finite, and this last contradiction completes the proof. �

We are now in a position to prove second main result.

Proof of Theorem 3.2.2 Assume that the statement is false, and choose a
counterexample G = AB with minimal torsion-free rank r such that W =

〈A′, B′〉G is not locally nilpotent.
Suppose first that G has no periodic non-trivial normal subgroups, and let
M be the Hirsch-Plotkin radical of G. Then M is torsion-free and the factor
group G/M has torsion-free rank less than r, so that the statement holds for
G/M and hence WM/M is locally nilpotent. Moreover, M is nilpotent and
Q = G/M is polycyclic-by-finite (see [56] Part 2, Lemma 9.34 and Theorem
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10.33). Let x be a non-trivial element of Z(M), and consider the cyclic Q-
module U = 〈x〉G. Then U contains a free abelian subgroup V such that
U/V is periodic and the set π = π(U/V), consisting of all prime numbers
which are orders of elements of U/V, is finite (see [56] Part 2, Corollary 1 to
Lemma 9.53). Since U is torsion-free and

⋂
p/∈π

Vp = {1},

we have also ⋂
p/∈π

Up = {1}.

For each prime number p /∈ π, the factor group G/Up has torsion-free rank
less than r, so that WUp/Up is locally nilpotent and hence it is contained
in the Hirsch-Plotkin radical Lp/Up of G/Up. Then W is contained in the
intersection

L0 =
⋂

p/∈π

Lp.

On the other hand, for each p the group U/Up has order at most pr, and so
it is contained in Zr(Lp/Up). Therefore

[U, L0, . . . , L0←− r−→ ] ≤
⋂

p/∈π

Up = {1},

and hence U lies in Zr(L0). As WU/U is locally nilpotent, it follows that
W itself is locally nilpotent. This contradiction shows that the largest pe-
riodic normal subgroup T of G cannot be trivial, and that WT/T is locally
nilpotent.
Assume now that T is residually finite, so that its Sylow subgroups are fi-
nite. Clearly, the group W/Z̄(W) is not locally nilpotent, so that Z̄(W) must
be periodic and G/Z̄(W) is a counterexample with the same properties of G.
Therefore we may suppose without loss of generality that Z(W) = {1}. For
each prime number p, the group T/Op′(T) is finite, so that WOp′(T)/Op′(T)
is finite-by-(locally nilpotent) and hence even locally nilpotent by Corol-
lary 3.2.2. It follows that the normal subgroup Op(T) ∩W is hypercentrally
embedded in W, and so Op(T) ∩W = {1} for all p. As the group G is
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soluble-by-finite, it follows that T ∩W must be finite, and hence W is locally
nilpotent by Corollary 3.2.2, a contradiction. Therefore the largest periodic
normal subgroup T of the counterexample G cannot be residually finite, i.e.
its finite residual J cannot be trivial and W J/J is locally nilpotent.
The subgroup J is divisible abelian (see [56] Part 2, Theorem 9.31 and Corol-
lary 2 to Theorem 9.23), and in particular it is the direct product of its pri-
mary components. The argument introduced in the previous paragraph
shows that there is a prime number p such that W Jp′/Jp′ is not locally nilpo-
tent. Therefore it can be assumed without loss of generality that J is a p-
group. Among all counterexamples with minimal torsion-free rank choose
one G = AB such that the finite residual J of the largest periodic normal sub-
group T is a p-group of minimal rank. Also in this case, it can be assumed
that Z(W) = {1}. Let P be a minimal infinite G-invariant subgroup of J;
clearly, P coincides with its finite residual and so it is divisible. Moreover,
WP/P is locally nilpotent by the minimal choice of G, and hence [P, W] = P.
Since all proper G-invariant subgroups of P are finite, G/CG(P) is isomor-
phic to an irreducible soluble-by-finite linear group, and so it is abelian-by-
finite (see [2], Lemma 6.6.4). Then there exists a subgroup K of G such that
G = PK and P ∩ K = {1} (see [2], Theorem 5.3.7). The centralizer CK(P)
is a normal subgroup of G, and WCK(P)/CK(P) cannot be locally nilpotent,
so that G/CK(P) is a counterexample and hence CK(P) is periodic. There-
fore replacing G by G/CK(P) we may suppose that CK(P) = {1}, so that
CG(P) = P. It follows that J = P has no infinite proper G-invariant sub-
groups and G/J is an abelian-by-finite group whose periodic subgroups are
finite. In particular, the set of primes π(G) is finite.
If N is any nilpotent normal subgroup of G, then the product NJ is nilpotent
and so [J, N] is a proper G-invariant subgroup of J. As [J, N] is divisible, it
follows that [J, N] = {1}, and hence N ≤ CG(J) = J. Therefore J is the
Fitting subgroup of G. Consider the factorizer

X = X(J) = AJ ∩ BJ

of J in G = AB. Then
X = (A ∩ X)(B ∩ X).
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Let m be a positive integer such that both indices |A : Zm(A)| and |B :
Zm(B)| are finite. As

Zm(A)J ∩ Zm(B)J = J

(see [35]), it follows that J has finite index in X. Assume that the subgroup
A ∩ J is finite. Then also A ∩ X is finite, so that B ∩ X has finite index in X
and hence B∩ J has finite index in J. This means that J = B∩ J ≤ B. Since B
is finite-by-nilpotent, the intersection Z(B) ∩ J is infinite, and so it contains
a subgroup Q of type p∞. But A and B are mutually permutable, so that
AQ = QA and Q(A ∩ J) = AQ ∩ J is a normal subgroup of AQ. Clearly Q
is the finite residual of Q(A∩ J), so that it is normalized by A and hence it is
normal in G. In this case J = Q is a group of type p∞, so that G/J is abelian
and G′ ≤ J, a contradiction. It follows that A ∩ J must be infinite, so that
also Z(A)∩ J is infinite. A similar argument proves that Z(B)∩ J is infinite.
Clearly, the group G is not metabelian, and so the famous theorem of Itô
yields that the subgroups A and B cannot be both abelian. Suppose that A
is not abelian, so that in particular A 6= J and Z(A)∩ J is a proper subgroup
of J. Since J has no infinite proper G-invariant subgroups, we obtain that

J =
(
Z(A) ∩ J

)G
=
(
Z(A) ∩ J

)[
Z(A) ∩ J, G

]
,

and so
[
Z(A) ∩ J, G

]
is infinite. Therefore

J =
[
Z(A) ∩ J, G

]
=
[
Z(A) ∩ J, B

]
≤ [J, B]

and hence [J, B] = J. It follows that H0(BJ/J, J) = {0}, and so H0(BJ/J, J) is
finite by Lemma 3.2.3. Therefore Z(B)∩ J is finite, and this last contradiction
completes the proof of the theorem. �
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