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Chapter 1 
 
 
 

1.1  Introduction 
 

Dentistry has had an increased interest in new materials and new technologies 

that goes back decades. Soon after the discovery of anesthetics, the dental drill 

was invented, which meant that filling materials such as silicates and amalgams 

became widely used. In the early 20th century Dr. William H. Taggart 

introduced the loss-wax casting process in dentistry for the construction of 

crowns and bridges, which was adapted from the method till then used in the 

jewellery business. The developments in new polymers during the 1940s and 

1950s resulted in the use of acrylic resins for dentures, acidic polymers for 

restorative cements and monomers for composite resin restorative materials. The 

lasting contributions of Michael Buonocore, Dennis Smith, Raphael Bowen, 

John McLean, Alan Wilson and many others in this respect are well known. The 

discovery by Branemark of the special properties of titanium metal did not take 

long to be translated into an explosion in dental implantology. Thus dentistry 

has shown itself to lead the medical disciplines in embracing new materials and 

new technologies and it has also proved in making use of new technologies such 

as CAD/CAM (Computer Aided Design/Computer Aided Manufacturing).  

 

 



 5 

1.2 Occlusal Bite On Implant-Supported Restorations: a Digital Dentistry 

Approach with Digital Workflow and CAD-CAM Fabrication 

Leone R, Sorrentino R, De Stefano L, Zarone F. European Journal of Oral 

Implantology, 2017 (in press). 

 

Objectives - The present case report aimed at describing the designing, digital 

workflow and CAD-CAM fabrication of an occlusal bite on implant-supported 

prosthesis.  

Materials and methods - A 54-year old dysfunctional female patient presented 

with improper implant-supported restorations in the posterior regions of both 

arches. Such restorations were unsatisfactory for both function and esthetics. 

The patient complained about the impossibility to achieve correct occlusion, 

mastication and phonetics. The objective clinical examination pointed out a 

severe alteration of the oral functions; moreover, the oral discomfort had caused 

serious psychological and behavioral problems to the patient. Temporo-

mandibular joint (TMJ) disorders were evidenced; consequently, it was decided 

to fabricate an occlusal bite plane to decondition masticatory muscles and 

recover a proper position of the mandible, so as to restore correct oral functions.  

Conventional impressions and intermaxillary relationships were recorded and 

the master casts were scanned to import all information in a virtual environment. 

Moreover, a digital facebow was used to set a digital articulator. 

The static and dynamic occlusal contacts were studied and balanced on the 
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virtual casts and the occlusal bite was entirely designed in the digital 

environment. Then, CAD-CAM procedures were used to fabricate the bite, so as 

to take advantage of the optimal mechanical properties and wear resistance of 

CAD-CAM resin materials. Similarly, long-term poly-methyl-meta-acrylate 

(PMMA) interim restorations were produced to finalize the implant-supported 

rehabilitation. 

Results - The CAD-CAM occlusal bite allowed the patient to recover correct 

oral functions in about 2 months; the TMJ disorder symptomatology disappeared 

and proper mandibular posture was restored. Due to the excellent mechanical 

resistance of the CAD-CAM materials, despite the initial severe parafunctions of 

the patient, no worn areas were evidenced on the surfaces of the bite.  

Once the occlusion was considered stable, long-term implant-supported interim 

restorations made up of PMMA were luted onto implants, in order to allow for 

occlusal adjustments over time due to the function-related adaptability of the 

stomatognathic system.  

Conclusions - The digital workflow made the registration and transfer of 

occlusal dynamics easier. Moreover, the designing of the occlusal bite in the 

virtual environment resulted in less time-consuming procedures. The CAD-

CAM materials provided the occlusal bite with excellent mechanical properties 

and wear resistance. 
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Fig. 1. Digital Workflow 
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Fig. 2. CAD/CAM resin Bite 
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Chapter 2 
 

2.1 The coronal restoration of endodontically treated teeth  

The coronal restoration of an endodontically treated tooth is a challenge for any 

dental practitioner. The traditional way to restore severely damaged 

endodontically treated teeth is to place a cast post- and-core restoration and a 

subsequent crown. An alternative method using prefabricated metal posts and 

composite resin as a core material was introduced around the 1970s. 

Along with the less time-consuming procedure, the main advantage of a 

prefabricated post compared to the cast post and core is that undercuts of the 

pulp chamber can be maintained, thus preserving tooth material. Today, the use 

of a post is questioned even with the use of adhesive buildup materials in the 

reconstruction of endodontically treated teeth. Omitting a post is the optimal 

way to preserve tooth material; neverthless, the use of fiber posts was proved to 

prevent catastrophic root fractures. For crowned teeth, it was demonstrated that 

post placement did not increase the longevity of the teeth but the issue is still 

controversial. 
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2.2 Complications of endodontically treated teeth restored with fiber posts 

and different prosthetic systems: a systematic review. 

Sorrentino R., Di Mauro M., Ferrari M., Leone R., Zarone F. Clinical Oral 

Investigations, 2016. 

 

Introduction 

One of the main functions of fiber posts is to ensure the retention of restoration 

after the loss of a large amount of dental structure, in order to secure the filling 

material to the tooth and build up a prosthetic core. It is well recognized that the 

presence of a post and core has the function to improve the retention of a 

restoration but does not improve at all the strength of dental roots [1, 2]. 

In the past decades, cast or prefabricated metal posts made up of materials with 

high moduli of elasticity (E) were used, just like gold alloys, stainless steel, or 

titanium since they were considered strong and clinically effective [3]. 

Nowadays, fiber posts are the most clinically used; they were introduced about 

20 years ago, made up of materials with lower moduli of elasticity, such as 

glass, quartz, polyethylene, and carbon-reinforced composites [4]. 

Several studies reported that root fractures occur more frequently with metal 

than fiber posts [2–4], the main reason being the difference between the 

modulus of elasticity of metal (220 GPa) and dentin (42 GPa). On the contrary, 
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the modulus of elasticity of fiber posts (25–57 GPa) is closer to that of dentine 

[5–8] and this is considered a favorable property from the biomechanical point 

of view [6–8]. Recently, a systematic review with meta-analysis reported that 

the incidence of fractures was equal using either fiber or metal posts [5], so the 

topic remains controversial. 

As to fiber posts, the most frequent complication is debonding; it is influenced 

by many factors, such as amount of residual tooth tissues, occlusal scheme and 

number of opposing teeth in function, periodontal status, signs of parafunctions, 

presence or absence of ferrule, and quality of adhesion [1, 8, 9]. 

Moreover, the characteristics of fiber posts as well as the adopted clinical 

procedures thoroughly influence the performances of the restorations, just like 

length and diameter of posts, integrity of the adhesive surface [10], and 

thickness of adhesive cements [11]. The presence of full crowns reduces the 

influence of the diameter of prefabricated posts on the occurrence of root 

fractures with either metal or fiber posts [12]. 

According to the literature, the prognosis of fiber posts is better in molars than 

in the anterior teeth. A high incidence of vertical fractures was noticed in the 

maxillary premolars, probably related to the small mesiodistal canal diameter, 

which could increase stress within the root. A higher amount of coronal 
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structure and the presence of interproximal contacts improve the survival rates 

of post restorations [13]. 

The survival rates of fiber post restorations also depend on the type of the final 

prosthesis. Endodontically treated teeth restored with single crowns (SCs) were 

reported to show higher survival rates, probably for a shielding effect of crowns, 

while in the presence of fixed dental prostheses (FDPs) or removable partial 

dentures (RPDs) the failure rates were reported to be higher, probably due to 

unfavorable bending moments of the prosthetic systems [12]. 

Several investigations pointed out that crown coverage could positively affect 

the outcome of post-endodontic restorations with fiber posts. The survival rates 

of endodontically treated teeth restored with fiber posts and crowns was six 

times higher than those of teeth restored without crowns [14], achieving a 

survival rate of 85.1 % after 10 years of function [15]. The placement of a crown 

seemed to be more significative than the type of abutment buildup for the 

survival of the teeth [14]. 

The present systematic review aimed at investigating the relationships between 

the presence of fiber posts in abutment teeth and the occurrence of endodontic 

and prosthetic complications in the presence of SCs and FDPs, in patients with 

periodontal status ad integrum. 
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Search methods 

The primary objective of the present systematic review was to analyze the 

incidence of clinical complications in SCs and FDPs using abutment teeth 

restored with fiber posts. 

The secondary objective was to compare differences in failure rates between 

subgroups regarding the following variables: 

- Presence of ferrule 

- Type (incisor, canine, premolar, molar) and location (maxilla or 

mandible) of the teeth 

The systematic review was based on a literature review of papers published 

between 1990 and 2015 and available in electronic databases (Pubmed, 

Evidence-Based Dentistry, BMJ Clinical Evidence, Embase, and Dynamed), 

since the earliest fiber-reinforced composite posts were introduced in the USA 

in the1990s; only articles written in English were considered, since it is 

considered to be the universal language of science. Gray literature was analyzed 

as well on the website www.opengrey.eu. 

The strategy of the search included the use of different keywords and boolean 

operators, as follows: 

1. Fiber post/post 

2. Fiber post and/or single crown 
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3. Fiber post and/or fixed partial denture 

4. Fiber post and/or fixed dental prosthesis 

5. Fiber post and/or prosthetic restoration 

6. Fiber post and/or prosthesis 

7. Fiber post and/or complication 

A manual search was performed as well, looking for eligible papers and 

reference lists of articles. Researchers and authors of non-published studies or of 

published studies that were not available electronically were contacted by the 

reviewers. Data extraction was carried out independently by two experienced 

reviewers; any disagreement was resolved by discussion with a third 

experienced reviewer. 

Inclusion criteria 

This systematic review was structured on the basis of the PRISMA guidelines. 

The eligibility of investigations was assessed according to the P.I.C.O. as 

follows: 

1. Participants 

- Patients with periodontal status ad integrum, endodontically treated to a 

sound state permanent teeth (absence of periodontal disease) and restored 

with SCs or FDPs 
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2. Interventions 

- Randomized clinical trials (RCTs) evaluating fiber posts and prosthetic 

complications over a minimum observational period of 36 months 

- RCTs evaluating failure rates of posts and/or final restorations in a single 

group but considering different types of teeth 

- RCTs reporting clearly defined inclusion and exclusion criteria and 

description of clinical procedures. 

3. Comparison 

- Studies comparing failure rates of fiber posts and other prosthetic systems 

(i.e., direct composite) 

4. Outcomes 

- Failure rates of fiber posts and prosthetic restorations in each group 

- Comparison of failure rates between different groups 

All the studies not fulfilling the inclusion criteria were not included in the 

systematic review. 

QUALITY ASSESSMENT 

The quality of the included studies was evaluated using the criteria reported by 

the Cochrane Handbook for Systematic Reviews of Interventions [16]. 
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Consequently, the quality assessment was carried out using the following 

criteria: 

- Was there a randomization of the participants? 

- 0: Not randomized 

- 1: Inadequate 

- 2: Unclear 

- 3: Adequate 

- Was a calculation of sample size undertaken? 

- 0: No/not mentioned 

- 1: Yes 

- Were inclusion/exclusion criteria clearly defined? 

- 0: Not defined 

- 1: Poorly defined 

- 2: Well defined 

- Was follow-up achieved? 

- 0: No/not mentioned 

- 1: Yes (<80 %) 

- 2: Yes (≥80 %) 

- Was treatment blind to patients, operators, or assessors recorded? 

- 0: No/not possible 

- 1: Unclear 
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- 2: Yes 

- Were the outcomes of the people who withdrew described by study group 

and included in the analysis (intention-to-treat or ITT analysis)? 

- 0: Not mentioned 

- 1: States numbers and reasons for withdrawal by study group but no 

analysis 

- 2: primary analysis based on all recruited cases 

- Were the control and treatment groups comparable at entry? 

- 0: Large potential for confounding or not discussed 

- 1: Confounding small–mentioned but not adjusted for 

- 2: Unconfounded–good comparability of groups or confounding 

adjusted for 

The risk of bias was assessed according to the Cochrane Handbook for 

Systematic Reviews of Interventions considering quality criteria, allocation 

concealment, blinding of outcome assessor, and follow-up [16]. 

Search results 

Database search produced 4230 records, many of which were duplicates. 

Manual research did not produce any other relevant article. After duplications 

were removed, all the selected databases produced 3670 records. 
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Analyzing titles, abstracts, and keywords, the reviewers excluded 3664 papers 

that did not meet the inclusion criteria; the main reasons for exclusion were as 

follows: not the topic of interest, in vitro studies, and studies without control. 

Four studies were not available electronically, thus the authors were contacted 

by email and the response rate was 100%. The full-texts of the remaining six 

articles were read, and the reviewers excluded two papers, as they focused on 

endodontic treatment and complications. The reasons for the exclusion of these 

articles are reported in Table 1.  

 

The two independent reviewers’ agreement rate was 97%. Any disagreement 
was discussed with a third reviewer. The workflow of the paper screening 
process is reported in Fig. 1. 
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On the basis of the reported inclusion criteria, only four studies were included in 

the present systematic review [19–22]. 

Results 

Only the following four studies met the inclusion criteria and were 

systematically reviewed: Mannocci et al. [19], Schmitter et al. [20], Ferrari et al. 

[21], and Sterzenbach et al. [22]. 
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In a RCT, Mannocci et al. [19] compared the survival rates of endodontically 

treated premolars restored with fiber posts (Composipost, RTD, St Egreve, 

France), full cast crowns or composite fillings. In the study, 117 patients were 

recruited and randomly divided into two groups by tossing a coin: 60 teeth were 

restored with direct composite restorations and 57 with porcelain-fused-to-metal 

(PFM) SCs. All the restorations were made by the same operator. All the details 

regarding root canal treatments, crowns preparations, and criteria of 

success/failure were reported in the study. At the baseline, the patients were 

healthy and received oral hygiene instructions. 

In a RCT, Schmitter et al. [20] investigated the 5-year results of two post 

systems: titanium screw posts (BKS, Brasseler, GA, USA) and glass fiber posts 

(ER dentine post, Brasseler). In this study, 100 patients requiring a SC, a FDP, 

or a RPD were recruited. At the baseline, all the patients did not show signs of 

periodontal disease. Forty-two patients were treated with metal screw posts and 

39 patients with fiber posts. Post assignment was randomized and all the posts 

were placed by undergraduate students 6 months to 1 year prior to graduation. 

The metal screw posts were cemented with a zinc phosphate cement (Harvard 

cement, Harvard dental, Hoppegarten, Germany), whereas the fiber posts were 

luted using a composite resin cement (Variolink II, Ivoclar Vivadent, Schaan, 

Liechtenstein). All the details regarding the clinical procedures were described. 

The patients were recalled after 1 year and 5 years. Both the patients and the 
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dentists were blinded about the type of post used after endodontic treatment. The 

5-year recall was performed by another blind dentist who had not been involved 

before in the study. 

In a RCT, Ferrari et al. [21] evaluated the 6-year survival of endodontically 

treated premolars restored with fiber posts and PFM SCs. In this study, a sample 

of 345 patients was recruited and 360 premolars were divided into six groups on 

the basis of coronal residual dentine (4 to 1 residual coronal walls, presence of a 

minimum of 2 mm of ferrule, absence of ferrule). Each group was randomly 

divided into three subgroups on the basis of the restorative procedures as 

follows: no posts, prefabricated fiber posts (DT Light posts, RTD), and 

customized fiber posts (EverStick fibers, Stick Tech Ltd., Turku, Finland). The 

DT posts were luted using Calibra (Dentsplay Ltd., Kostanz, Germany), whereas 

the EverStick posts were luted using BisCore (Bisco, Schaumburg, IL, USA). 

All the details about the clinical procedures were reported in the study. At the 

baseline, all the patients did not present periodontal disease. All the selected 

teeth were in occlusal function with a natural tooth and in interproximal contact 

with two natural teeth. The clinical procedures were performed by the same 

experienced operator. Two examiners evaluated independently success and 

failure rates. 

In a RCT, Sterzenbach at al. [22] evaluated the 7-year outcomes of 

endodontically treated teeth restored with glass fiber or titanium posts 
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(Fiberpoints Roots Pins Glass and Fiberpoints Root Pins Titanium, Schutz 

Dental Group, Rosbach, Germany). A sample of 91 patients was included in the 

study and randomly assigned to titanium (n = 45) or glass fiber post (n = 45) 

groups. Either the posts or PFM SCs were luted using a self-adhesive resin 

cement (RelyX Unicem, 3M ESPE, Seefeld, Germany). The clinical procedures 

were made by undergraduate students, while the 7-year follow-up was 

performed by an experienced blinded dentist. At the baseline, no signs of 

periodontal disease were observed. The incisors, canines, premolars, and molars 

were included in the study. The final prosthetic restorations were SCs, FDPs, 

SC-supported RPDs, and FPD-supported RPDs. 

Methodological quality 

The methodological quality assessment used in the present systematic review 

was reported in Table 2. Two independent reviewers evaluated the adequacy of 

records using a specific quality assessment protocol [16]. Any disagreement was 

discussed with a third experienced reviewer. 
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Mannocci et al. [19] got an adequate randomization level by tossing a coin; the 

inclusion and exclusion criteria were properly defined and the final follow-up 

interested more than 80% of study subjects; all the restorations were made by a 

single experienced operator and a good comparability between groups was 

obtained. 

In the study by Schmitter et al. [20], the randomization of the participants was 

adequate; computerized randomization was made by a professional nurse. The 

calculation of the sample size was not mentioned but the inclusion and exclusion 

criteria were properly defined: type of interventions, type of outcomes, and type 

of participants were specified. The 5-year follow-up was achieved for more than 
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80 % of the study sample. All the patients and the operators were blinded about 

the type of post used. The drop outs were adequately reported and there was a 

good comparability between groups. 

In the study by Ferrari et al. [21], there was an adequate randomization of the 

participants. The inclusion and exclusion criteria were well defined and the 

follow-up regarded more than 80 % of the patients. The adopted clinical 

protocols did not allow blinding of the operators; intention-to-treat (ITT) 

correction was not applied and the sample size was not calculated. Nonetheless, 

a good comparability between groups was obtained. 

In the study by Sterzenbach et al. [22], a satisfactory level of randomization of 

the participants was achieved by means of a computer-generated random list. 

The inclusion and exclusion criteria were clearly defined. No sample size 

calculation was performed and 80 % of the study population completed the 

follow-up period. Withdrawing was adequately described and included in the 

analysis, and there was a good comparability between the groups. 

Comparison of results 

COMPARISON BETWEEN FIBER POSTS AND PROSTHESIS FAILURE EVENTS 

In the study by Mannocci et al. [19], no failures were observed at the 1-year 

recall. Conversely, after 2 and 3 years of function in group 1 (only direct 

composite restorations), one loss of retention of a fiber post and three marginal 
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gap openings were found; in group 2 (composite buildup + SC), two 

decementation of fiber posts and one marginal gap opening were observed. The 

failure rate was 6 % and no statistically significant differences were found 

between groups. 

In the study by Schmitter et al. [20], in the fiber post group, 11 failures were 

observed: 2 losses of retention of fiber posts, 2 chipped or fractured SCs, 1 

apical alteration and 6 teeth in need to be extracted due to post-core-crown 

complex loosening; thus, the survival rate of the teeth treated using fiber posts 

was 71.8 %. In the metal screw post group, 21 failures were observed: 1 post 

and 1 crown needed recementation, 1 tooth needed a new post, 17 teeth were 

extracted due to root fractures, 1 apical alteration, and 1 crown failure occurred; 

consequently, the survival rate of the teeth restored with metal posts was 50 %. 

Cox regression was performed in order to evaluate the influence of the analyzed 

variables, and it revealed that anterior teeth, the teeth with a significant loss of 

coronal structure and the teeth restored with metal screw posts, showed higher 

risk of failure. 

In the study by Ferrari et al. [21], after 6 years, the overall survival rate was 

94.1 %. In the group without posts, the largest number of root fractures and 

crown dislodgements was observed. In the group with prefabricated posts, no 

crown dislodgement was observed but 12 post decementations and 1 root 

fracture were noticed. The teeth with four coronal residual walls were failure 
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free. In this study, root canal retention was a significant factor for survival of the 

teeth, as assessed by Cox regression. The interaction between the type of 

restoration and the residual dentin was not statistically significant. 

In the study by Sterzenbach et al. [22], over 7 years of observation, the overall 

survival rate was 89 %. In the titanium post group, the two maxillary lateral 

incisors and one mandibular molar showed endodontic failures. In the glass fiber 

post group, two root fractures, one tooth mobility (score 3), and one core 

fracture were observed. 

There were no studies reporting the incidence of complications of 

endodontically treated teeth restored with fiber posts and FDPs. 

COMPARISON BETWEEN FAILURE RATES OF SUBGROUPS 

The secondary objective of the present systematic review was not fulfilled 

because there were no studies reporting differences in failure rates between 

subgroups (i.e., fiber posts and SC or fiber posts and FDP) in relation to ferrule 

height, type, and location of the teeth. 

Discussion 

Intraradicular posts were introduced in clinical practice to ensure the retention of 

restorations to the teeth missing a significative amount of their structure [23]. 
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Several studies demonstrated that fiber posts performed better than metal posts 

due to their lower modulus of elasticity (E) compared to metal posts and similar 

to that of dentine (42 GPa) [24], with a lower incidence of root fractures in the 

long-term [25]. However, in some cases, such a modulus of elasticity was 

associated with excessive stress and strains, causing marginal gap opening and 

post debonding, which were reported to be the most frequent failures [10]. 

Different factors can influence the survival rates of post systems, just like type 

of post, luting cement, tooth position, shape of root canal, and final prosthetic 

restoration. In particular, the luting system of fiber posts significantly affected 

their clinical performances; self-adhesive resin cements proved to be most 

effective in the long-term in vitro, probably because less sensitive to the skill of 

the operator [26]. Conversely, several clinical studies suggested that the bond 

strength of self-adhesive cements is lower than the bond strength generated by 

traditional adhesive cementation techniques [27]. Moreover, it has been pointed 

out that resin cements could achieve poor adhesion to prefabricated fiber posts 

just like FRC posts due to the presence of a cross-linked polymer matrix 

between their fibers; in such cases, adhesive failures could be reduced by means 

of the interpenetrating polymer network (IPN) mechanism, as suggested by La 

Bell et al. [28]. 

According to the selected inclusion and exclusion criteria, four RCTs were 

included in this systematic review and the results were reported in the Table 3. 
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The shortest mean observational period (36 months) was reported in the study 

by Mannocci et al. [19]; differently, in the RCT by Ferrari et al. [21], 360 teeth 

were analyzed over a period of 72 months, which was the longest among the 

included studies. The lowest number of teeth (n = 91) was analyzed by 

Sterzenbach et al. [22]. Mannocci et al. [19] and Ferrari et al. [21] evaluated 

only the premolars, whereas Sterzenbach et al. [22] and Schmitter et al. [20] 

assessed both the anterior and posterior teeth. 

As to the length of posts, different approaches were used in the studies included 

in the present review. In the study by Mannocci et al. [19], the fiber post length 

was 7 mm; Schmitter et al. [20] extended fiber posts to at least 50 % of the 

length of the root canal; Ferrari et al. [21] and Sterzenbach et al. [22] left an 

apical seal of at least 4 mm of root canal filling. The results of the included 

studies pointed out an adequate resistance of fiber posts placed with 

intermediate length, which is in agreement with previous investigations [29, 30]. 
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The most frequently reported failures were fiber post debonding and crown 

dislodgements; only Schmitter et al. [20] described crack or chipping of the 

restorations and post-core-crown complex loosening. 

Both the highest and the lowest failure rates were reported by Ferrari et al. [21]: 

0 % in the group of 60 premolars with 4 residual coronal walls and 77.2 % in 

case of ferrule absence, respectively. The same authors evidenced that, in the 

teeth without residual dentine walls, there were no significant differences in the 

failure rates with or without ferrule. The preservation of at least one coronal wall 

significantly reduced the risk of failure, which is also pointed out by current 

published literature [31]; however, the relationship between residual coronal 

structure and type of prosthetic complication were not statistically significant. 

Mannocci et al. [19] reported no statistically significant differences in failure 

rates between the teeth restored with direct composite restorations and metal-

ceramic SCs. However, several studies in the literature suggested that SCs 

would be desirable to improve the survival rates of the restorations involving 

endodontically treated teeth restored with fiber posts, reducing the risk of 

fracture [12]. 

In the study by Schmitter et al. [20], the anterior teeth with a significant 

destruction of coronal structure and the teeth restored with metal screw posts 

showed higher risks of failure and these results were in agreement with previous 
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investigations [13]. However, in this study, the quality assessment reported a 

high risk of bias: neither calculation of the sample size nor intention-to-treat 

analysis was performed. 

In the studies by Schmitter et al. [20] and Sterzenbach et al. [22], the number of 

opposing teeth in occlusion, type of antagonist, and presence of malocclusions at 

the baseline were not specified. Operator blinding was not possible in the studies 

by Mannocci et al. [19] and Ferrari et al. [21], since the clinical protocols were 

different in relation to the type of post. In the research by Sterzenbach et al. [22], 

the clinical procedures were performed by operators with different experience 

and this could have affected the final results. Moreover, in the study by 

Sterzenbach et al. [22], it was not clear which type of prosthetic restoration was 

referred to a specific failure event. 

Only in the study by Sterzenbach et al. [22], FDPs were used as final 

restorations but the failure rates of fiber posts were reported without taking into 

account the differences between SCs, FDPs, and RPDs supported by SCs or 

FDPs. No study reported a calculation of the sample size, and only in the RCT 

by Sterzenbach et al. [22] the intention-to-treat (ITT) analysis was applied. If 

ITT analysis and calculation of the sample size are not performed, an effect that 

is not truly present could be wrongly detected, leading to a distortion of the 

results of the analysis (i.e., false positive) and to a difficult interpretation of the 

results of an investigation. Furthermore, only Mannocci et al. [19] reported the 
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maxillary and mandibular location of the teeth. Differences in failure rates 

between the mono and multiradicular teeth are not discussed; the biomechanical 

behavior of a maxillary incisor is highly different from that of a mandibular 

molar and, consequently, not reporting the location of the teeth represents a bias 

leading to an ambiguous interpretation of the results of an investigation. 

Furthermore, no study considered the so-called “pseudoferrules”: indeed, the 

ferrule may exist but the form of its preparation is not correctly made and this 

could affect the resistance for tilting. All these factors could have affected the 

results of the included studies. 

Recently, a systematic review and meta-analysis by Figueiredo et al. [5] showed 

that fiber and metal posts resulted in similar incidence of root fractures and 

survival rates, not supporting the indications for fiber posts based on the 

reduction of failures; however, the authors reported that the included studies 

presented high risks of bias. Similarly, the present systematic review shows 

some limitations, such as language bias, strict inclusion criteria and few 

included RCTs presenting high risk of bias. The lack of studies with high 

methodological quality was confirmed by Schmitter et al. [32], which noticed 

that the reviews with the highest R-AMSTAR scores reported lower failure rates 

for fiber posts; however, no definitive clinical conclusions can be found due to 

the limited number of available high quality studies. 
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For future research, further RCTs focused on biological, technical, and esthetical 

prosthetic complications of endodontically treated teeth restored with fiber posts 

would be desirable to better understand how different types of prosthetic 

restorations could affect the survival of fiber posts. 

Conclusions 

According to the inclusion and exclusion criteria selected in the present 

systematic review of the literature, the included studies were too heterogeneous 

and scarcely comparable to achieve clear clinical statements; furthermore, to 

date, a univocal correlation between failure rates of fiber posts and typology of 

prosthetic restorations (SC or FDP) cannot be found. 

Within the limitations of this systematic review and the lack of available clinical 

data, the majority of failure events were due to post debonding and 

dislodgements of SCs. 

Further clinical data are needed in order to establish a possible correlation 

between failures and typology of restoration, so as to postulate predictable 

guidelines in the restoration of endodontically treated teeth. 
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Chapter 3 

 

3.1 Innovative Dental Technologies: CAD/CAM 

CAD/CAM began its dental life in 1970s with the first workers to explore its 

application in dentistry being Duret and Preston [1]. This was followed by the 

work of Moermann in the 1980s, which led to the development of the CEREC® 

system. CAD/CAM has now become a well accepted technology in most 

modern dental laboratories and for some enterprising clinicians at the chairside 

[2].  

The development of CAD/CAM is based on three elements, namely: (1) data 

acquisition, (2) data processing and (3) manufacturing (Fig. 1). The exponential 

increase in power of computers has resulted in major advances in all of these 

areas. This is particularly exemplified by the recent introduction of intra-oral 

scanners. Thus it is possible to create a 3D model of the oral cavity directly with 

such a system, without the need to take an impression, pour a model and then 

digitize indirectly the model with one of the many laser scanner that are now 

available. The digital model can now be used to design the restoration and there 

are now many software packages available for the design of dental restorations 

such as crowns, bridges and partial denture frameworks. Some software 

providers are now able to claim that their partial denture software can survey, 
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design and wax a partial denture framework in less than 20 min [4].  

A further development in the CAD/CAM technologies used in dentistry is the 

transition from closed to open access systems. Whereas in the past the digitizing, 

designing and manufacturing came as a closed system (e.g. CEREC®), more 

and more the technology is being opened up and the component part of a 

CAD/CAM system can be purchased separately [5]. This creates much greater 

flexibility in that data can be acquired from a range of sources (intra-oral 

scanner, contact or laser model digitizer, Computer Tomography, Magnetic 

Risonance Imaging), appropriate design software can be matched to the object to 

be manufactured (e.g. crown and bridge frameworks, partial denture 

frameworks, customized implants and implant abutments). Another very 

important consequence of the transition from closed to open systems is that this 

opens up access to a much wider range of manufacturing techniques such that 

the most appropriate manufacturing processes and associated materials can be 

selected. Thus, it is no longer necessary to be limited by the computer 

numerically controlled machining technologies that are currently used in most 

dental CAD/CAM systems.  
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3.1.1 Subtractive manufacturing  

If we look at where we are today then CAD/CAM in dentistry is primarily based 

around the process of subtractive manufacturing. The technology most people 

will be familiar with is computer numerically controlled machining, which is 

based on processes in which power-driven machine tools, such as saws, lathes, 

milling machines, and drill presses, are used with a sharp cutting tool to 

mechanically cut the material to achieve the desired geometry with all the steps 

controlled by a computer program. Thus the process starts out with a block of 

the material and the machine cuts away the bits that are not wanted. It has been 

demonstrated that by using this method the overall production time will be 

reduced considerably and complex models, which are otherwise difficult and/or 

impossible to make by the conventional dental processes, could be built up 

rather easily. These technologies have achieved a high degree of sophistication 

with new technologies such as electrical discharge machining, electrochemical 

machining, electron beam machining, photochemical machining, and ultrasonic 

machining [6,7]. Nowadays all these processing routes come under the umbrella 

of subtractive machining. However, as one might imagine this method of 

manufacturing is very wasteful as more material is removed compared to what is 

used in the final product.  

In the aerospace industry there is currently much talk about the weight to flight 

ratio of an airplane. What this refers to is the weight of material that has to be 
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used in relation to the weight of material in the final product such as an airplane. 

The aerospace industry uses expensive materials and is thus concerned about 

saving cost by reducing the weight to flight ratio. For example, a 1 kg reduction 

in weight can save $3000 in fuel per annum and this means potential savings in 

the longer term of many billions of dollars [9]. Similarly this is a concern in the 

automotive industry. As a consequence of this drive for saving costs there has 

been a major transition from making parts by subtractive manufacturing to what 

is referred to as additive manufacturing. Using additive methods for 

manufacturing is more advantageous as many problems associated with milling 

can be readily overcome. The main advantage of this type of manufacturing is 

the ability of the technique to create fine detail such as undercuts, voids, and 

complex internal geometries. Another limitation of the current dental CAD–

CAM systems is that the process does not easily lend itself to mass production 

such as crowns and bridges, since only one part can be machined at any one 

time.  
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3.1.2 Additive manufacturing  

So what is additive manufacturing and what are its benefits? Additive 

manufacturing is defined by the American Society for Testing and Materials 

(ASTM) as: The process of joining materials to make objects from 3D model 

data, usually layer upon layer, as opposed to subtractive manufacturing 

methodologies.  

In principle the process works by taking a 3D computer file and creating a series 

of cross-sectional slices. Each slice is then printed one on top of the other to 

create the 3D object. One attractive feature of this process is that there is no 

waste. Traditionally additive manufacturing processes started to be used in the 

1980s to manufacture prototypes, models and casting patterns. Thus it has its 

origins in rapid prototyping (RP), which is the name given to the rapid 

production of models using additive layer manufacturing. Today additive 

manufacturing describes technologies that can be used anywhere throughout the 

product life cycle from pre-production (i.e. rapid prototyping) to full scale 

production (also known as rapid manufacturing) and even for tooling 

applications or post production customization. It is a remarkably rapidly 

changing field with a huge investment in developing enhanced manufacturing 

technologies and it is changing the way we make things. Today, additive 

manufacturing is used for a much wider range of applications and is even used 

to manufacture production-quality parts in relatively small numbers. Some 
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sculptors use the technology to produce complex shapes for fine arts exhibitions 

[10].  

Thus additive manufacturing is transitioning from rapid prototyping models to 

manufacturing real parts for use as final products. The equipment is becoming 

competitive with traditional manufacturing techniques in terms of price, speed, 

reliability, and cost of use. This, in turn, has led to the expansion of its use in 

industry and there has been explosive growth in the sales and distribution of the 

equipment. In addition a new industry is emerging to create software to enable 

more effective use of the technology. The use of the technology is likely to grow 

especially as it is now possible to purchase a 3D printer for less than $3500.00 

[11]. Consequently centers providing 3D printing services are springing up 

around the globe.  

Alongside these developments the number of materials that the industry uses has 

increased greatly and modern machines can utilize a broad array of polymers, 

metals and ceramics. As the industry makes the transition from prototypes to 

functional devices the materials available will begin to play a much bigger role. 

When producing a prototype it is enough for it to look good, but as we move to 

functional objects such as customized implants and oral prostheses the materials 

and their properties become much more important.  

It is worth noting that the process of additive manufacturing is in fact ideally 

suited to dentistry, which has a tradition of producing customized parts made to 
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fit the patient and not the other way around. This is a great opportunity for 

dentistry and there is already a huge array of additive manufacturing 

technologies that we can use and these include:  

• Stereolithography (SLA) 

• Fused deposition modeling (FDM) 

• Selective electron beam melting (SEBM) 

• Laser powder forming 

• Inkjet printing 

This list is by no mean exhaustive and every day something new is added. 

Below some of these technologies are described as to how they work and how 

they are or might be used in dentistry.  
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3.1.2.1 Stereolithography (SLA)  

The term “stereolithography” was first introduced in 1986 by Charles W. Hull, 

who defined it as a method for making solid objects by successively printing 

thin layers of an ultraviolet curable material one on top of the other. A 

concentrated beam of ultraviolet light is focused onto the surface of a vat filled 

with liquid photopolymer and, as the light beam draws the object onto the 

surface of the liquid, each time a layer of resin is polymerized or crosslinked. 

The item is built up layer by layer, to give a solid object [13]. The basic 

manufacturing process is as follows:  

• a 3D model of the desired object is created in a CAD program; 

• a software package slices the CAD model up into thin layers, which may be 

anything from 5 to 20 layers per millimeter and the more layers the better the 

resolution;  

• the laser scans the liquid resin in the vat and it sets, thus creating the first 

layer;   

• the platform drops down into the vat by a fraction of a millimeter and the laser 

scans the next layer;   

• this process is repeated layer by layer until your model is complete.   
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• once the run is complete, the objects is rinsed with a solvent to remove 

uncured resin and then placed in an ultraviolet oven that thoroughly cures the 

resin.   

This is not a particularly quick process and depending on the size and number of 

objects being created, the laser might take a minute or two for each layer. If the 

object is small, you can produce several of them at the same time as they sit next 

to each other on the tray. A typical run might take anything from 6 to 12 h and 

for large objects runs over several days are possible.  One of the first 

applications of additive manufacturing technologies was the production of 

physical models of the human anatomy based on CT data using SLA. SLA 

models started to be used in medicine and dentistry for the planning of surgical 

procedures and as a means of constructing customized implants such as 

cranioplasties, orbital floors and onlays [7,14–19]. In the early work the focus 

was on developing the models, which were used either as a template for swaging 

a titanium implant [18] or the implant was machined [7,16,19]. SLA is now 

routinely used to produce surgical guides for the placement of dental implants. 

Its use is gradually being extended to include the manufacture of temporary 

crowns and bridges and resin models for loss wax casting [20].   
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3.1.2.2 Fused deposition modeling (FDM)  

There are a number of techniques that come under the umbrella of fused 

deposition modeling. Generally speaking these methods rely on the materials 

being extruded from a nozzle and include Fused Filament Fabrication (FFF) 

where a wire of a thermoplastic material is fed through a heated nozzle. Another 

approach is for the material to be fed from a reservoir through a syringe such as 

in the case of the bioplotter.  

FFF is an additive manufacturing technology commonly used for modeling, 

prototyping, and production applications. The technology was developed by S. 

Scott Crump in the late 1980s and was commercialized in 1990 [21].  

FFF works on the principle of laying down material in layers. A plastic filament 

or metal wire is unwound from a coil and supplies material to an extrusion 

nozzle which can turn the flow on and off. The nozzle is heated to melt the 

material and can be moved in both horizontal and vertical directions by a 

numerically controlled mechanism, directly controlled by a software package. 

The model or part is produced by extruding small beads of a thermoplastic 

material to form layers as the material hardens immediately after extrusion from 

the nozzle [22]. Stepper motors or servo motors are typically employed to move 

the extrusion head. 

Several materials are available with a range of strength and thermal properties. 
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As well as acrylonitrile butadiene styrene (ABS) polymer, polycarbonates, 

polycaprolactone, polyphenylsulfones and waxes, a water-soluble material can 

be used for making temporary supports while manufacturing is in progress. This 

soluble support material is quickly dissolved with specialized mechanical 

agitation equipment.  

It is interesting to note that this technology has not as yet shown itself in the 

dental journals for the fabrication of dental restorations, other than as an 

intermediary to produce wax patterns for subsequent casting. This does not 

mean that it is not thought about and it is probable that research is ongoing that 

has not yet reached the stage of being published. An example is a patent 

assigned to Jeneric/Pentron Inc., which describes the use of a ceramic paste in 

the form of a filament or wire that can used to fabricate dental restorations using 

fused filament fabrication (e.g. zirconia restorations) [28].  

Whereas fused filament fabrication is based on a wire feed, the alternative is to 

use a reservoir of material that can, as with FFF, be extruded through a nozzle 

and put down in layers to create a 3D structure. The bioplotter uses this 

approach and is capable of printing in multiple materials to build up a 3D 

structure. The main application of the bioplotter is in the modeling of scaffolds 

for tissue engineering and organ printing. One attraction of the bioplotter is its 

ability to use a wide range of materials, including ceramic pastes (HAP and 

TCP) for creating porous bone scaffolds, bioresorbable polymers such 
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polycarpolactone and/or poly-l-lactide for drug delivery and agar, gelatine, 

chitosan, collagen, alginate and fibrin as carriers for cells that are used in organ 

printing. The bioplotter has a resolution of just a few micrometers, which means 

that it is able to create microstructural patterns that enhance cell invasion, 

proliferation, distribution and differentiation into the porous structure [23]. 

Human body parts being created include blood vessels [24], bone [25] and soft 

tissue [26]. By using a microsyringe the detail that can be printed can produce 

patterns fine enough to provide guidance to blood vessels growing into the 

scaffold [27].  
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3.1.2.3 Selective electron beam melting  

Selective electron beam melting (SEBM) is a type of additive manufacturing for 

producing near net shape metal parts. The technology manufactures parts by 

melting metal powder layer per layer with an electron beam in a high vacuum 

[29]. The stream of electrons is created by heating a tungsten filament and the 

beam is then directed using a magnetic field. Because it uses electrons rather 

than light, the energy in the beam is very high. Consequently, unlike some metal 

sintering techniques, the parts are fully dense, void-free, and extremely strong.  

This technology has already found wide application in orthopedics and 

maxillofacial surgery for the construction of customized implants. One of the 

main attractions is the ability to create highly porous structures in a range of 

alloys including cp-titanium, Ti-6Al-4V and Co/Cr [30,31]. The potential 

benefit of porous mesh or foam structures is that the mechanical properties can 

be adapted to conform more closely to that of bone, particularly the elastic 

modulus, which may help to prevent stress shielding. In addition, the porous 

structure permits the ingrowth of bone and provide better fixation of the implant. 

The accuracy of SEBM is in the range of 0.3–0.4 mm and the surface finish 

tends to be rough with an Ra value in the range of 25 µm. This may be adequate 

for the manufacture of larger implants such as used in orthopedic and 

maxillofacial reconstruction but would not be good enough to make crown and 

bridge frameworks.  
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3.1.2.4 Laser powder forming techniques  

Laser based additive manufacturing, such as Selective Laser Melting (SLM) and 

Selective Laser Sintering (SLS), is accomplished by directing a high power laser 

using mirrors at a substrate consisting of a fine layer of powder [32,33]. Where 

the beam hits the powder it creates a melt pool and the powder particles fuse 

together. After each cross-section is scanned, the powder bed is lowered by one 

layer thickness, a new layer of material is applied on top, and the process is 

repeated until the part is completed. This technology is in wide use around the 

world due to its ability to make very complex geometries directly from digital 

CAD data. While it began as a way to build prototype parts early in the design 

cycle, it is increasingly being used in limited-run manufacturing to produce end-

use parts. The terminology used can be somewhat confusing, especially as it is 

still evolving and there is no common agreement on how to differentiate clearly 

between the various techniques. When processing polymers and ceramic the 

industry generally refers to this as selective laser sintering whereas for metals 

the terms used are SLM or DMLS (Direct Metal Laser Sintering).  

Compared to other methods of additive manufacturing, SLS/SLM can produce 

parts from a relatively wide range of commercially available powder materials. 

These include a wide range of polymers such as polyamide to produce a facial 

prosthesis [34], ultra high molecular weight polyethylene [35], polycaprolactone 

to provide functionally graded scaffolds [36], mixtures of polymers such as 
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polycaprolactone and drugs to act as drug delivery devices [37] and composites 

such as mixtures of hydroxyapatite and polyethylene and polyamide to produce 

customized scaffolds for tissue engineering [38]. A range of metal powders can 

be used that include steel, titanium, titanium alloys, and Co/Cr alloys. The 

physical process can involve full melting, partial melting, or liquid-phase 

sintering. Depending on the material, up to 100% density can be achieved with 

material properties comparable to those from conventional manufacturing 

methods. In many cases large numbers of parts can be packed within the powder 

bed, allowing very high levels of productivity. The technology is beginning to 

find wide acceptance for the construction of implants such as bone analogs [39], 

orthopedic [40] and dental implants [41] with porous surface features for bone 

ingrowth, dental crowns and bridges [42] and partial denture frameworks [43]. 

When considering the use of selective laser sintering to produce medical and 

dental parts from pure ceramic powders there is still some way to go and many 

problems that need to be resolved. Nevertheless, there are some promising 

studies ongoing such as the production of bone scaffolds made from a porous 

apatite–wollastonite glass ceramic [44]. At the Fraunhofer Institute for Laser 

Technology in Germany they appear to have managed to produce a zirconia 

bridge framework using selective laser melting [45].  
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3.1.2.5 Inkjet printing technologies  

Inkjet printers are capable of printing at a very high resolution by ejecting 

extremely small ink drops. Inkjet printing works by propelling individual small 

droplets of “ink” toward a substrate. In this context the ink can be anything from 

an aqueous solution of coloring agents and binders to a ceramic suspension, 

such as used in some studies to produce zirconia dental restorations [46,47] or a 

cell solution to produce tissue constructs [48]. The ink is forced through a small 

orifice by a variety of means including pressure, heat, and vibration. One 

approach consists of building up the object layer by layer from depositing 

droplets to form a layer of the material and then depositing the next layer. To be 

used for additive manufacturing, the liquid droplets must change phase to solid 

upon deposition on the substrate when printing a pattern. Depending on the 

deposited material, the phase change could be by drying, heat transfer, UV light 

or chemical reaction. Another method operates in a manner similar to the 

SLS/SLM approach where a thin layer of powder is spread out, but instead of 

using a laser, an inkjet head prints a binder. The latter technology is the only one 

that allows for the printing of multicolored objects across the whole color 

spectrum.  

The polyjet range of printers from Objet is an example of a commercially 

available inkjet printing technology that builds up layer by layer by depositing 

droplets of a polymer and as each layer is formed it is cured by UV light [49]. 
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Already the company is exploring a wide range of dental applications such as 

reproduction of dental models, orthodontic bracket guides, surgical guides for 

implant placement, mouth guards, sleep apnea appliances and even try-in 

veneers. A particular feature of this technology is that it can print an object 

using two materials with quite distinctively different properties. Thus it would 

be possible to produce a mouth guard with hard and soft regions and it can make 

them with different colors.  

An example of the powder/binder approach is the Z-Corp machines [50], which 

use a colored binder in up to four inkjet heads and thus is able to produce any 

color you like. The powder is typically a fine grained silica and the binder is 

made up of an aqueous solution of coloring agents, usually magenta, cyan and 

yellow and a resin to act as the glue for the powder particles. The product once 

made is quite fragile until the porosities between the powder particles has been 

infiltrated with another resin such as a cyanoacrylate. This technology has been 

used to produce porous calcium polyphosphate (CPP) structures for tissue 

engineering [51]. The CPP particle are mixed with polyvinyl acetate and are 

bonded to each other by injection with the binder which dissolves the PVA 

producing connecting bridges between the CPP particles. The binder is burnt off 

and then the article is sintered, producing a porous scaffold. By using a different 

combination of materials, the University of Sheffield is using this technology to 

develop colored soft tissue prostheses.  
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Chapter 4 

 

 

4.1 CAD/CAM Materials in Prosthodontics 

4.1.1 Metals in Prosthodontics 

Metal-ceramic restorations are commonly provided in dental practice, primarily 

because of their acceptable biological, mechanical, and esthetic properties. The 

success of these restorations depends on the presence of a strong bond between 

the porcelain and metal substructure. Noble metal alloys are generally preferred 

for the metal frameworks, because of their biocompatibility, good mechanical 

properties, and excellent ceramic-to-metal bond; but, base metal (Ni-ti ,Ni–Cr 

and Co–Cr) casting alloys are extensively used worldwide because of economic 

considerations. 

However, casting of base metal alloys is more technique sensitive compared to 

casting of noble alloys because of the high melting range and oxidation of base 

metal alloys during casting. In addition, due to their high hardness, grinding of 

cast base metal alloys to finish castings is time consuming for dental laboratories 

and also they tend to form thicker, darker oxide layers that may present esthetic 

problems.  
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But new technologies, as CAD/CAM laser welding or spark erosion, may 

replace casting of the base metal alloys reducing time, increasing the precision 

of fit and reducing aesthetic problems. 

Among the base metals, two main categories of alloys exist: nickel based and 

cobalt based. Alloys in both systems contain chromium as their second largest 

constituent and depend upon it for corrosion resistance. 

Recent epidemiological data suggests over 65 million people in Europe have 

undergone at least one reaction to nickel (Ni) in their lifetime. Oral exposure to 

Ni has been definitively shown to induce dermatitic flares in Ni-sensitised 

persons. In addition, Ni hypersensitivity reactions from the leaching of metallic 

elemental components into the surrounding oral mucosal tissues have been 

identified to be associated with Ni-based fixed prosthodontic and orthodontic 

dental appliances. Conversely, the Co-Cr appears to be more biocompatible than 

Ni. 
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4.1.1.1 Posterior CAD/CAM cobalt-chromium alloy single crowns: 4-year 

prospective clinical study 

Leone R., Zarone F., Piombino P., Sorrentino R. Dental Materials  

 

Introduction 

Due to the increasing cost of noble metals, the use of cobalt-chromium (Co-Cr) 

alloys for dental restorations has become more and more widespread with 

various and successful clinical applications (Al Jabbari, J Adv Prosthodont 

2014).  

According to the classification proposed by the American Dental Association 

(ADA) in 1984 (ANSI/ADA Specification No. 38, J Am Dent Assoc 1984), the 

Co-Cr alloys are predominantly base metals (noble metal content < 25%); they 

are composed of 75 wt% or more of base metal elements and of 25 wt% or less 

of noble metals (Au, Ir, Os, Pt, Rh, Ru), although in clinical practice they do not 

contain noble metal elements at all (ISO 6871-1, 1994; Wataha, J Prosthet Dent 

2002; Roberts et al. J Prosthodont 2009).  

The binary Co-Cr alloy was proved to be very strong and stain resistant. It is 

characterized by high strength, heat resistance, limited fatigue damage and 

excellent biocompatibility; it is non-magnetic (so particularly indicated in 

patients undergoing magnetic resonance imaging or MRI) and demonstrated 

favorable resistance to corrosion, wear and tarnish (Viennot et al., Eur J Oral Sci 
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2005; Okazaki and Gotoh, Biomater 2005; Serra-Prat et al., J Prosthet Dent 

2014). Moreover, the Co-Cr alloy shows a high modulus of elasticity (E: 200-

220 GPa), providing reliable rigidity for intraoral use with no need for heavy 

cross-sections even in case of long span fixed dental prostheses (FDPs), so 

reducing the weight and room of metal frameworks (Svanborg et al., Int J 

Prosthodont 2013; Al Jabbari, J Adv Prosthodont 2014).  

However, casting of base metal alloys is more technique sensitive compared to 

that of noble alloys, mainly because of the high melting range and oxidation of 

base metal alloys during casting (Lucchetti et al., J Prosthet Dent 2015). 

Base metal alloys tend to form thicker and darker oxide layers that could cause 

esthetic drawbacks (Eliasson et al., J Prosthet Dent 2007). Moreover, increased 

oxidation could cause poor bond strength between Co-Cr and the veneering 

porcelain due to chromium ions diffusion (Wu et al., J Prosthet Dent 1991). 

Consequently, other metallic components, such as Ce, Ga and Nb, can be added 

in Co-Cr alloys to control thermal expansion, provide fluidity and modify the 

oxidation characteristics, so improving the metal-ceramic bond. Molybdenum 

(Mo) and tungsten (W) can be used as strengthening agents (Al Jabbari, J Adv 

Prosthodont 2014).  

The high solidus temperature of Co-Cr alloys, different from the ceramic 

sintering temperature, reduces the risk of framework distortion after sintering 

(Kelly and Rose, J Prosthet Dent 1983). Nonetheless, the high coefficient of 

thermal expansion and melting temperature could cause technical drawbacks 
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during the dental laboratory procedures (Bezzon et al., J Prosthet Dent 2004). 

The stiffness of Co-Cr alloys makes it more difficult to grind or cut the 

frameworks, making finishing more time consuming (Eliasson et al., J Prosthet 

Dent 2007; Svanborg et al., Int J Prosthodont 2013). 

As to dental applications, the Co-Cr alloys were first used in the 1930s to 

fabricate the substructures of removable partial dentures (RPDs) (Al Jabbari, J 

Adv Prosthodont 2014). Their popularity increased rapidly, since they have 

almost half the density of gold-based alloys and consequently the weight of 

dental restorations was significantly lighter (Wataha, J Prosthet Dent 2002).  

The use of the Co-Cr alloys for the fabrication of porcelain-fused-to-metal 

(PFM) FDPs began in the 1970s, due to the rapid escalation of the price of gold. 

Nowadays, Co-Cr alloys are mainly used to produce the frameworks of RPDs, 

single crowns (SCs) and FDPs as alternatives to other metals: they are cheaper 

than gold and free from the risk of Ni-related allergic responses (Vermeulen et 

al., J Prosthet Dent 1996; Leinfelder, J Am Dent Assoc 1997; Bertrand and 

Poulon-Quintin, J Prosthodont 2010; van Noort, Dent Mater 2012; Syed et al. J 

Clin Diagn Res 2015). 

Recently, different technologies alternative to conventional casting were 

proposed to produce Co-Cr frameworks and reduce handling difficulties: 

Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) and 

Selective Laser Melting (SLM), commonly known as the laser sintering 

technique or spark erosion (Beuer et al., Br Dent J 2008; van Noort, Dent Mater 
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2012). Both fabrication methods could limit the weakening due to internal 

porosities and represent viable alternatives to conventional casting (Al Jabbari, J 

Adv Prosthodont 2014). Furthermore, CAD/CAM and laser sintering were 

proved to reduce production time, improve the precision of fit and limit estethic 

problems due to oxidation of Co-Cr frameworks (Ucar et al., J Prosthet Dent 

2009; Ortorp et al., Dent Mater 2011; Keul et al., Dent Mater 2014). 

Although Co-Cr alloys have been used as an alternative to conventional noble 

metals in fixed prosthodontics, to date only a few studies investigated the 

clinical performances of Co-Cr prostheses (Eliasson et al., J Prosthet Dent 2007; 

Hjalmarsson et al., Int J Prosthodont 2011; Tara et al., Int J Prosthodont 2011; 

Svanborg et al., Int J Prosthodont 2013). No adverse reaction to Co-Cr were 

reported but some patients experienced both biological and technical problems; 

a few ceramic fractures were reported after 3 to 7 years of clinical service 

(Eliasson et al., J Prosthet Dent 2007). Conversely, no ceramic chipping was 

reported after 47 months of function in laser sintered Co-Cr SCs and the clinical 

results were comparable to those obtained with conventional metal-ceramic 

restorations (Tara et al., Int J Prosthodont 2011). Similar results were also 

achieved on implants  with Co-Cr prostheses veneered with ceramics and 

titanium-acrylic restorations after 5 years of function; veneering chipping were 

noticed in both groups (Hjalmarsson et al., Int J Prosthodont 2011). 

The present prospective clinical study aimed at evaluating the 4-year clinical 

outcomes of ceramic veneered CAD/CAM Co-Cr single crowns supported by 
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natural teeth in posterior regions. 

 

Materials and Methods 

Recruitment of patients 

Eighty-nine consecutive patients in need of single restorations in posterior areas 

of both maxilla and mandible were enrolled in the present prospective clinical 

protocol.  

Fifty-two male and 37 female patients were recruited from May to July 2012 at 

the Department of Fixed Prosthodontics of the University “Federico II” of 

Naples (Italy) and were included in the present prospective study; their ages 

ranged from 21 to 68 years (mean age 41.2±8.4). All patients were in good 

general health; none of them showed parafunctional habits and 37 were smokers.  

The requirements of the Helsinki declaration were fulfilled; before being 

included in the study, all patients underwent an informative interview and had to 

sign a written consent form. The present prospective clinical study was approved 

by the Ethical Committee of the University “Federico II” of Naples. 

 

Inclusion and exclusion criteria 

The following inclusion criteria were used to recruit patients: 

- good general health; 

- ASA I or ASA II according to the American Society of Anesthesiologists; 

- periodontal health; 
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- Angle class I occlusal relationship; 

- minimum of 10 couples of opponent teeth; 

- good oral hygiene; 

- no evident signs of parafunctions and/or temporomandibular disorders. 

Furthermore, the abutment teeth had to fulfill the following inclusion criteria: 

- periodontal health (absence of tooth mobility, absence of furcation 

involvement); 

- proper positioning in the dental arch (tooth axis adequate for a SC); 

- sufficient occlusal-cervical height of the clinical crown (≥ 4 mm) for the 

retention of a SC;  

- vital or endodontically treated to a clinically sound state; 

- opposing natural teeth.  

Conversely, in the presence of the following conditions, patients were excluded 

from the study: 

- high caries activity; 

- presence of periodontal disease on the abutment tooth; 

- occlusal-cervical height of the abutment tooth < 4 mm; 

- reduced interocclusal distance or supererupted opposing teeth; 

- unfavorable crown-to-root ratio;  

- severe were facets, clenching and/or bruxism; 

- presence of RPDs; 

- pregnancy or lactation; 
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- alcohol and/or drug addiction. 

 

Prosthodontic procedures 

A total of 120 ceramic veneered CAD/CAM Co-Cr SCs replacing either 

premolars and molars in both maxilla and mandible were fabricated; each 

patient received only 1 crown. The distribution of the restorations was reported 

in Table 1. 

All the prosthodontics procedures were performed by 2 experienced and 

calibrated prosthodontists and by 1 expert dental technician. Oral hygiene 

procedures as well as any necessary core build-up, endodontic treatment and/or 

post-and-core placement were carried out before the prosthodontics steps. 

Preliminary alginate impressions were made to get study gypsum casts, 

diagnostic wax-ups, light-cured resin customized impression trays and acrylic 

temporary restorations. Silicone indexes were fabricated from the diagnostic 

wax-ups to check a proper tooth structure reduction during the procedures of 

abutment preparation that were standardized as follows, according to the 

requirements of the CAD-CAM framework production: 

- margin design: 1 mm circumferential rounded chamfer; 

- cavo-surface angles: rounded; 

- axial reduction: 1.5 mm; 

- occlusal reduction: 1.5-2 mm; 

- total occlusal convergence angle: 10°-14°.  
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The margins of the preparations were slightly subgingival, never violating the 

biologic width. The acrylic resin temporary restorations were relined intraorally 

with self-polymerizing resin and then cemented with a eugenol-free luting agent 

(Temp Bond NE, Kerr Corporation, Orange, CA, USA); careful occlusal 

adjustment of the provisional restorations was performed.  

Two weeks were waited after tooth preparation before taking final impressions 

in order to allow the soft tissues to recover from preparation trauma. The final 

impressions were taken placing 2 non-impregnated retraction cords (Ultrapak, 

Ultradent, South Jordan, UT, USA) around the abutment teeth to displace the 

gingival tissues and taking full-arch impressions with customized light-cured 

acrylic impression trays and polyether materials (Impregum and Permadyne-L, 

3M ESPE, Seefeld, Germany). Intermaxillary registrations were taken by means 

of a self-polymerizing A-silicone. Then, the provisional restorations were 

relined and cemented again as previously described. 

The master casts were fabricated with super hard gypsum and mounted in semi-

adjustable articulators. A die spacer (thickness: 30 microns) was applied at the 

occlusal and axial surfaces of the abutment, starting 1 mm above the preparation 

margin. The master casts were digitized by means of the Sweden&Martina 

CAD-CAM system. Co-Cr single frameworks were designed according to the 

manufacturer’s instructions and providing room for an even thickness of the 

veneering ceramic. The frameworks were milled from Co-Cr blanks at the 

Sweden&Martina center. The framework thickness was checked at occlusal, 
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axial and marginal surfaces with a digital caliper with an accuracy of 0.01 mm. 

The Co-Cr structures were tried-in intraorally and evaluated for accuracy of fit 

with a silicone disclosing agent (Fit Checker, GC, Tokyo, Japan); if necessary, 

any pressure spot was transferred to the tooth surface and the adjustment made 

on the abutment tooth. The marginal precision was checked by means of 

standardized periodical radiographs. 

All the frameworks were veneered by the same experienced dental technician. A 

conventional powder build-up veneering technique was performed using a 

feldspathic ceramic specifically dedicated to Co-Cr structures.  

 

CAD/CAM Co-Cr frameworks were fabricated and veneered with ceramics. The 

restorations were cemented using a eugenol-free zinc oxide luting agent. The 

patients were recalled after 1, 6, 12, 24, 36 and 48 months. The survival and 

success of the restorations were evaluated. The technical and esthetic outcomes 

were examined using the United States Public Health Service criteria. The 

biologic outcomes were analyzed at abutment and contralateral teeth and 

descriptive statistics were performed. 

 

 Maxilla Mandible Total 
1st premolar 26 7 33 
2nd premolar 12 5 17 
1st molar 20 23 43 
2nd molar 11 16 27 
TOTAL 69 51 120 

Table 1 - Locations of the Co-Cr single crowns. 
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Results 

All of the 120 patients and, consequently, all of the 120 Co-Cr single crowns 

were examined during 4 years of clinical function. No patient was lost at follow-

up or censored. 

As to the technical problems, neither fractures of the frameworks nor losses of 

retention were observed in all of the samples. The cumulative survival rate was 

100% while the cumulative success rate was 99.1% after 4 years according to 

Kaplan–Meier, considering veneering ceramic chippings as events.(Table 2) 

During the entire observational period, one minor cohesive fracture of veneering 

ceramic was noticed: the chipping was detected, at the recall after 1 year of 

clinical service, on the occlusal surface of a mandibular molar. Such cohesive 

fracture did not impair function, neither was it noticed by the patient. 

Consequently, the chipped areas was carefully rounded and polished so that the 

SC remained in situ for further observation. 

One hundred and two abutments (85%) were vital at the beginning of the study, 

and they all remained vital during the entire observational period. No significant 

differences in the average periodontal parameters between test and control teeth 

were detected at any follow-up examination. Neither radiographic evidence nor 

signs or symptoms of proximal decay or periapical pathologies were noticed 

during the entire follow-up period. According to the patients’ VAS judgments, 

the overall function of the SCs showed a mean value of 9.1 (±1.2) while the 
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overall aesthetics scored a mean value of 9.4 (±0.4). 

The technical evaluation by means of the USPHS criteria revealed very good 

clinical performances of the Co-Cr SCs (Table 2). In terms of fracture 

resistance, all of the frameworks rated alpha. Regarding occlusal wear, two 

restorations rated bravo, and occlusal wear was detected mainly at the level of 

the opposing natural teeth. 

According to the Wilcoxon test, the periodontal parameters of the test and the 

control teeth were not significantly different. Furthermore, the SCs had no effect 

on the periodontal parameters after 4 years of clinical function. 

USPHS 
criteria Alpha (A) Bravo (B) Charlie (C) Delta (D) 

Framework 
fracture 

120(100%) 0 0 0 

Veneering 
fracture 

119(99,1%) 0 0 1(0,8%) 

Occlusal 
wear 

118(98,3%) 2(1,6%) 0 0 

Marginal 
adaptation 

119(99,1%) 1(0,8%) 0 0 

Anatomical 
form 

120(100%) 0 0 0 

Table 2 “United States Public Health Service” criteria 

USPHS 
criteria Alpha (A) Bravo (B) Charlie (C) Delta (D) 

Framework 
fracture 

No fracture of framework — — Fracture of framework 

Veneering 
fracture 

No fracture Chipping but polishing 
possible 

Chipping down to the 
framework 

New restoration 
is needed 

Occlusal 
wear 

No occlusal wear on 
restoration 

or on opposite teeth 
Occlusal wear on 

restoration 
or on opposite teeth <2 mm 

Occlusal wear on 
restoration 

or on opposite teeth >2 mm 
New restoration 

is needed 

Marginal 
adaptation 

No probe catch Slight probe catch but no 
gap 

Gap with some dentin or 
cement exposure 

New restoration 
is needed 

Anatomical 
form 

Ideal anatomical shape, 
good 

proximal contacts 
Slightly over- or 
undercontoured, 

weak proximal contacts 
Highly over- or 

undercontoured, 
open proximal contacts 

New restoration 
is needed 
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“United States Public Health Service” criteria 

Discussion 

Co-Cr made with CAD-CAM technique offers excellent flexural strength, 

fracture toughness, and good biocompatibility, together with acceptable 

marginal and internal adaptation of the restorations, all factors that undeniably 

contribute to the long-term success of SCs.(12) 

Co-CR SCs were reported to show a certain amount of both biologic 

complications, like secondary caries, and technical problems, such as chippings 

of the veneering ceramic. 

The primary requirement for the success of a metal-ceramic restoration is the 

development of reliable bonding between the veneering ceramic and the 

alloy.(13) 

Stress concentration during ceramic cooling can result in ceramic chipping, 

either immediately or in a delayed response.(15,16) 

Chipping and delaminating of veneering ceramics are critical problems in the 

fabrication of metal ceramic restorations,19 for both base metal and noble 

metal alloys. Chemical bonding is the primary mechanism of interaction 

between metal and ceramic.(17-15,18). Some studies have shown that 

satisfactory bond strength is obtained between Co-Cr and Ni-Cr alloys and 

veneering porcelain.(19,20) 

Evidence also suggests that airborne-particle abrasion of bonding surfaces 

increases the metal surface energy, improving the wettability of opaque ceramic 
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and, consequently, the bond strength, through micromechanical bonding.(21) 

All of the periodontal parameters did not significantly change over the entire 

observational period. These results agree with those of other clinical 

investigations and confirm the good biological response of the soft tissues to Co-

Cr restorations (22). A slight gingival inflammation with positive BOP was 

noticed in a few cases, but no involvement of deep periodontal structures was 

detected until the end of the examination time. 

Indubitably, a correct management of the prosthetic procedures is to be 

addressed as one of the main success factors in order to avoid possible 

biological complications like recurrent caries and periodontal problems: an 

accurate abutment preparation; a precise provisional prosthesis for an optimal 

soft tissue conditioning; a flawless impression, delayed from 10 to 14 days after 

tooth preparation for achieving stable and sound soft tissues; and a careful, 

conventional cementation are all paramount for the final results. 

 

Conclusion 

Within the limitations of the present study and its observational period, the 

excellent survival rate of single posterior Co-Cr frameworks allows to address 

this kind of restoration as a valid treatment option and a viable alternative to 

noble metal-ceramic SCs in clinical cases with favorable biomechanical 

conditions. 

The following conclusions can be drawn: 
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– No framework fractures were detected while minor chippings of veneering 

ceramic were noticed in one SC; 

– Co-Cr cores exhibited sufficient strength to ensure a predictable 

serviceability for posterior SCs in the absence of excessive or parafunctional 

loads; 

– Tooth-supported posterior Co-Cr SCs showed very good mechanical 

performances in terms of clinical fracture resistance and marginal integrity; 

– The renowned biocompatibility of Co-Cr was confirmed by the evidence of 

sound support tissues; 

– The overall aesthetics and function were very satisfactory for the patients 

(Table 3) and very promising for the clinicians in the medium term. 

Within the limitations of the present study and its observational period, the 

excellent survival rate of single posterior Co-Cr frameworks made with CAD-

CAM technique allows to address this kind of restoration as a valid treatment 

option in posterior areas and a viable alternative to noble metal-ceramic single 

crowns. 

Satisfaction  
score  

Observational 
period (mo)   

 0 < x > 12 12 < x > 24 24 < x > 36 36 < x > 48 

Nonacceptable 0 0 0 0 

Acceptable 0 0 0 0 

Good 0 2(1,6%) 3(2,5%) 3(2,5%) 

Excellent 120(100%) 118(98,3%) 117(97,5%) 117(97,5) 

Table 3 
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Fig. 1. Digital Cast 
 
 

 
Fig. 2. Framework Try-in 
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Fig. 3. Ceramic Try-in 
 

 
Fig. 4. 48-month Follow-up 
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4.1.2 Ceramics in Prosthodontics 

Dental ceramics are materials that are part of systems designed with the purpose 

of producing dental prostheses that in turn are used to replace missing or 

damaged dental structures. The literature on this topic defines ceramics as 

inorganic, non-metallic materials made by man by the heating of raw minerals at 

high temperatures.[1] 

Ceramics and glasses are brittle, which means that they display a high 

compressive strength but low tensile strength and may be fractured under very 

low strain (0.1%, 0.2%). 

As restorative materials, dental ceramics have disadvantages mostly due to their 

inability to withstand functional forces that are present in the oral cavity. Hence, 

initially, they found limited application in the premolar and molar areas, 

although further development in these materials has enabled their use as a 

posterior long-span fixed partial prosthetic restorations and structures on dental 

implants.[2] All dental ceramics display low fracture toughness when compared 

with other dental materials, such as metals.[3] 

Ceramics can be classified by their microstructure: 

- Glass-based Ceramic 

- Crystalline ceramics 

- Polycrystalline ceramics 
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4.1.2.1 Glass Ceramics 

Glass ceramics were first developed by Corning Glass Works in the late 1950s. 

According to McLean,[11] the first works on glass ceramics were performed by 

Mac Culloch, but his work did not receive much attention. Further investigations 

by Grossman and Adair[12,13] concluded with the development of a tetra silicic 

fluormica-containing ceramic system. 

In principle, an article is formed while liquid and a metastable glass results on 

cooling. During a subsequent heat treatment, controlled crystallization occurs, 

with the nucleation and growth of internal crystals. This conversion process 

from a glass to a partially crystalline glass is called ceraming. Thus, a glass 

ceramic is a multiphase solid containing a residual glass phase with a finely 

dispersed crystalline phase. The controlled crystallisation of the glass results in 

the formation of tiny crystals that are evenly distributed throughout the glass. 

The number of crystals, their growth rate and thus their size are regulated by the 

time and temperature of the creaming heat treatment. 

Its composition is as follows: 45-70% SiO2, 8-20% MgO, 8-15% MgF2, 5-35% 

R2O + RO, where R2O has a range between 5-25% and is composed of at least 

one of the following oxides: 0-20% K2O, 0-23% Rb2O and 0-25% Cs2O to 

improve translucency and RO, which has a range between 0-20%, and is 

composed of at least one of the following oxides: SrO, BaO and CdO. 
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Additional components may account for up to 10% of Sb2O5 and/or up to 5% of 

traditional glassy colorants.[12,13] 

There are two important aspects to the formation of the crystalline phase: crystal 

nucleation and crystal growth. The thermal treatment known as ceraming[14] is 

composed of two processes: glass is heated up to a temperature where nuclei 

form (750°–850°C), and this temperature is kept for a period of time ranging 

from 1 to 6 h so that crystalline nuclei form in the glass (process known as 

nucleation). Then, the temperature is increased to the crystallization point 

(1000°–1150°C) and this temperature is maintained for a period ranging from 1 

to 6 h until the desired level of glazing is obtained (process known as 

crystallization).[12,15] 
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4.1.2.1.1 Glass-based systems with fillers 

Leucite-reinforced feldspar glass ceramics  

Glass-based systems are made from materials that contain mainly silicon dioxide 

(also known as silica or quartz), which contains various amounts of alumina. 

Aluminosilicates found in nature, which contain various amounts of potassium 

and sodium, are known as feldspars. Feldspars are modified in various ways to 

create the glass used in dentistry. Synthetic forms of aluminosilicate glasses are 

also manufactured for dental ceramics.[16,17] 

Pressed glass ceramics are materials containing high amounts of leucite crystals 

(35% by volume).[14] The basic component of this ceramic is feldspathic 

porcelain, consisting of 63% SiO2, 19% Al2O3, 11% K2O, 4% Na2O and traces 

of other oxides. Leucite crystals are added to the aluminum oxide.[18,19] 

This material is manufactured using a process known as heat pressing, which is 

performed in an investment mold. This mold is filled with the plasticized 

ceramic thus avoiding the sintering process and the subsequent pore 

formation.[20] This ceramic undergoes dispersion strengthening through the 

guided crystallization of leucite. 

Dispersion strengthening is a process by which the dispersed phase of a different 

material (such as alumina, leucite, zirconia, etc.) is used to stop crack 
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propagation as these crystalline phases are more difficult to penetrate by 

cracks.[14,21] 

Leucite crystals are incorporated during ceraming and hence performing this 

process again is unnecessary when inducing crystal growth.[19] 

The construction of ceramic restorations using leucite-reinforced feldspars can 

be done either by sintering, using a modified version of the sintering process 

described earlier to construct the porcelain jacket crown, or by a process known 

as hot pressing. 
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4.1.2.1.2	Lithium Disilicate and Apatite Glass Ceramics 

In order to be able to extend the use of resin-bonded ceramic restorations and 

possibly use them for bridge construction, a glass ceramic based on a SiO2–Li2O 

system has been developed (Empress II, Ivoclar-Vivadent). To increase the 

strength, thermal expansion and contraction behavior of ceramics, manufacturers 

have added crystalline filler particles.[22] Other types of filler additions include 

particles of high-melting glasses that are stable at the firing temperature of the 

ceramic.[23] Kelly[22] refers to a ceramic as a “glass-ceramic” when the filler 

particles are added mechanically during manufacturing precipitate within the 

starting glass by special nucleation and growth-heating treatments. The 

crystalline phase that forms is a lithium disilicate (Li2Si2O5) and makes up about 

70% of the volume of the glass ceramic. Lithium disilicate has an unusual 

microstructure, in that it consists of many small interlocking plate-like crystals 

that are randomly oriented. This is ideal from the point of view of strength 

because the needle-like crystals cause cracks to deflect, branch or blunt; thus, 

the propagation of cracks through this material is arrested by the lithium 

disilicate crystals, providing a substantial increase in the flexural strength. 

A second crystalline phase, consisting of a lithium orthophosphate (Li3PO4) of a 

much lower volume is also present. The mechanical properties of this glass 

ceramic are far superior to that of the leucite glass ceramic, with a flexural 

strength in the region of 350–450 MPa and fracture toughness approximately 
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three-times that of the leucite glass ceramic. The glass ceramic is claimed to be 

highly translucent due to the optical compatibility between the glassy matrix and 

the crystalline phase, which minimizes internal scattering of the light as it passes 

through the material. 

The processing route is the same as the hot-pressing route described above, 

except that the processing temperature, at 920°C, is lower than for the leucite 

glass ceramic. The grain sizes of lithium metasilicate crystals range from 0.2 µm 

to 1 µm, rendering a flexural strength of 130 MPa to this material. This is 

comparable to the other mill-ready leucite-reinforced CAD/CAM (ProCAD, 

Ivoclar Vivadent) blocks and the feldspathic CAD/CAM blocks (Vitabloc Mark 

II).[24] 

During the crystallization cycle, there is a controlled growth of the grain size 

(0.5–5 µm). This transformation leads to a glass ceramic that is made up of 

prismatic lithium disilicate dispersed in a glassy matrix.[25] This alteration 

increases the flexural strength of the restoration to 360 MPa,[26] an increase of 

170%. A random orientation of small interlocking plate-like crystals makes up 

the lithium-disilicate restoration. The orientation and size of the crystals can 

account for crack deflection and blunting, which, in turn, accounts for the 

increase in fracture toughness over the leucite-reinforced ceramics.[27] 
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There are two basic fabrication methods. The first method is to mill the 

restoration to full anatomical contour. Before crystallization, the incisal edge is 

preserved by creating a silicone index. The incisal edge is cut back, creating 

mamelons, and is layered with the appropriate incisal porcelains back to the 

original contour using the silicone index as the guide. The restoration is then 

crystallized in the furnace using the standard firing program. A variation of this 

technique is crystallizing before the layering steps. This method allows the 

operator to see the colour of the restoration before application of the layering 

ceramics. This does require a wash coat firing of the layering ceramic before the 

build-up ceramic is applied. 

The second method is to mill the crown to full contour, then stain, glaze and 

crystallize. This method also has a variation that includes applying the stain and 

glaze after the crystallization step. This allows the operator to see the final color 

of the crown while applying the stains. It may be easier to apply the stains, but it 

involves a second 12-min firing cycle. 
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4.1.2.1.3 Crystalline-based Systems with Glass Fillers 

Glass-infiltrated high-strength ceramic core systems  

The addition of alumina to the feldspathic glass during the pre-fritting process 

limits the amount of alumina that can be incorporated to about 40–50 vol.%. An 

alternative approach has been adopted in a system called In-Ceram (Vita). This 

core material has an alumina content of 85%. A ceramic core is formed onto a 

refractory die from a fine slurry of alumina powder by a process known as slip 

casting. After the die has dried, it is sintered for 10 h at 1120°C. The melting 

temperature of alumina is too high to produce full densification of the powder 

by liquid phase sintering, and solid phase sintering alone occurs. Consequently, 

the coping thus created is only just held together at the contact points between 

the alumina particles, and a porous structure is the result. The strength of this 

porous core is only about 6–10MPa. The porous structure is then infiltrated with 

a lanthanum glass, which has a low viscosity when fired at 1100°C for 4–6 h, 

which increases the strength. The molten glass is able to penetrate into the pores, 

producing a dense ceramic. The esthetics and functional form are then achieved 

by the use of conventional feldspathic dental ceramics.[28,29] 
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4.1.2.1.4 Treatment Concept for a Patient with a High Smile Line and 

Gingival Pigmentation: A Case Report  

Zarone F., Leone R., Ferrari M., Sorrentino R. The International Journal 

of Periodontics and Restorative Dentistry. 2017 (in press) 

The importance of healthy, uninamed, light coral pink–shaded gingival tissues is 

paramount in oral esthetics. It is undeniable that beautiful teeth adjacent to 

unesthetic gingival tissues cannot fulfill the requirements for an appealing 

smile[1]. In the last decade, the importance of pink esthetics has been stressed in 

relation to various gingival parameters affecting the esthetic result, such as the 

presence of mesial and distal papillae, curvature and level of the buccal mucosa, 

root convexity, and soft tissue color and texture[2,3]. In particular, the color of 

sound gingival or peri-implant mucosae can deeply influence the harmonic 

appearance of a smile; in a natural physiologic condition it should be light pink 

with a stippled, translucent, orange peel appearance.[4,5]. Such a color depends 

on several factors: thickness and keratinization of the epithelium; quantity, 

quality, and distribution of blood vessels; and presence of intraepithelial 

pigments, such as melanin, carotene, reduced hemoglobin, and 

oxyhemoglobin.[6,7] 

The brown melanin pigment is synthesized in the epithelium at the basal and the 

suprabasal layers by melanocytes, whose number and distribution in the mucosa 

is strongly related to their presence in the skin, although their activity is 
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somewhat reduced in the mucosa.[8] Melanin granules (melanosomes) 

determine the color of hair, skin, mucosae, and eyes, providing protection from 

stresses, free radicals, and UV radiation and having the ability to sequester metal 

ions and bind specific drugs and organic molecules.[9] The color of skin and 

mucosae is genetically determined by the number, size, and distribution of 

melanosomes and by the type of melanin (ie, eumelanin or pheomelanin).[9] 

The prevalence of melanin pigmentation is genetically determined, being present 

in all ethnicities but varying between 0% and 89% as a result of genetic factors 

and smoking habits.[10] An ethnic pigmentation rate of 38% (27% smokers and 

11% non smokers) reported in a Turkish population is midway between the 

ratios reported for Asian and European populations.[11] A high level of oral 

pigmentation caused by melanin is frequently observed in Africans, East Asians, 

and Hispanics.[12] 

Aside from genetic phenotype factors, oral hyperpigmentation can be caused or 

enhanced by conditions such as tobacco use, prolonged intake of drugs 

(particularly tricyclic antidepressants and antimalarial drugs) and systemic 

pathologies (eg, Peutz-Jeghers syndrome, Addison disease, neuro bromatosis, 

malignant melanoma).[13,15] 

Although not a pathological condition, gingival hyperpigmentation is frequently 

considered a major esthetic concern, impairing the harmony of the smile 

especially in the presence of a high smile line (gummy smile), as in the 
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described clinical case.[1,14,16] 

Case Description  

The present case report is related to a 35 year-old dark-skinned Cuban woman 

who expressed dissatisfaction with the shape of her maxillary central incisors, 

both of which were fractured at the margins because of previous parafunctional 

habits that were no longer evident at the time of treatment planning (Fig 1). The 

oral examination showed an intense brownish pigmentation of the gingival 

tissues in the maxilla and mandible, the negative effect of which was increased 

by a very high smile line (Fig 2). At the time of treatment planning, the patient 

did not accept any proposal of periodontal surgery to remove the pigmentations 

due to a previous experience of panic attack during a tooth extraction.  

The analysis of periodontal tissues did not show signs of inflammation or 

significant attachment loss. After 15 days of careful oral hygiene procedures 

(scaling, root planing, and oral hygiene instructions), the patient’s periodontal 

chart showed no signs of periodontal pathology. At the level of the maxillary 

central incisors, a probing depth of 4 mm was detected in the absence of 

periodontal bleeding. This was due to hyperplastic tissues further shortening the 

appearance of the incisors and resulting in a reverse smile line. On this basis, the 

first step of the treatment was crown-lengthening surgery, performed with a 

gingivoplasty for esthetic and hygienic reasons.  
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After inducing local anesthesia in the maxillary incisors region by means of 

mepivacaine 2% with epinephrine 1:200,000, the pseudopockets were removed 

using a BP-15 scalpel to an extent of 3 mm with an external bevel incision, 

taking care not to damage the dentogingival attachment. At that time, the patient 

mustered up the courage to ask for a last-minute partial pigmentation removal, 

so the gingival tissues above the maxillary incisors were de-epithelized and the 

exposed connective tissue was covered with periodontal dressing (Coe Pack, 

GC). The patient was instructed to regularly brush the teeth that were not 

involved in the surgery and regularly use a chlorexidine mouthrinse (Curasept 

0.2%, Curaden Healthcare) for 1 minute, once per day, for 1 week. No 

antibiotics were prescribed.  

After 30 days of healing, the gingival arches of the central incisors appeared 

symmetrical and more apically and properly positioned and shaped; moreover, 

the keratinized adherent gingiva showed no inflammation and a light pink color 

with a complete absence of any visible melanic pigmentation (Fig 3). An 

alginate impression was taken (Hydrogum 5, Zhermack) and study casts were 

poured with type IV dental stone (Elite Rock, Zhermack) to get a wax-up of the 

maxillary central incisors to be reshaped and resized to their natural length. A 

mock-up was done using a silicone template (Elite Glass, Zhermack) and self-

curing acrylic resin (GC UniFast III, GC).  

After the patient accepted the new shape of the central incisors, the teeth were 
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prepared for ceramic veneers. The preparation design was minimally invasive, 

with a slight marginal chamfer (0.3 mm), a 0.5-mm reduction at the axial level, 

and an incisal butt joint, the latter allowing a natural translucency at the incisal 

margins (Fig 4). Two leucite-filled glass-ceramic veneers (Empress, Ivoclar 

Vivadent) were fabricated (Fig 5). After try-in and adjustment procedures, the 

two veneers were cemented using a dual-curing resin cement (Clear l Esthetic 

Cement, Kuraray Noritake), after choosing the proper color by means of try-in 

pastes (Fig 6).  

After 2 months, the patient was satis ed with the results (Fig 7) and asked for a 

reduction of the high smile line. An experienced esthetic medical doctor 

selectively injected botulinum toxin to reduce the activity of the lip elevator 

muscles and lower the smile line (Fig 8). After 2 weeks, the esthetic result was 

satisfactory, achieving a more harmonic lip line that was well matched to the 

incisal curve (Figs 9 and 10).  

After 3 years later, the patient asked for removal of the residua gingival 

pigmentation at both arches. The same surgical procedure was used to 

completely remove the remaining brownish gingival areas as previously 

described (Figs 11 and 12).  

At the 3-year follow-up, no major modifications were detected either at the level 

of the restorations or of the gingival color (Figs 13 and 14).  
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Discussion  

Dark gums often represent a major esthetic problem, especially in the presence 

of a high smile line. A Gingival Pigmentation Index (GPI) has been proposed to 

define the level of pigmentation.[17] In this case report, the scalpel blade 

technique was used to remove the melanin pigmentations in a young adult 

patient, exhibiting an unappealing GPI.  

The elimination of gingival pigmentations has been reported in the scientific 

literature as a viable option according to different procedures, although 

evidence-based data regarding a unique, more efficient clinical approach is not 

well recognized.[6,10,12,22] The choice of the most appropriate technique 

should take into account several factors, including patient compliance and pain 

tolerance, the physiopathologic situation, operator skill, and predictability over 

time.[14,15] 

The use of diamond burs has been widely reported in the literature.[14,15,23]  

Under local anesthesia, de-epithelization of heavily pigmented gingival areas 

can be obtained through abrasion using flame-shaped or large round diamond 

burs with high-speed handpieces under saline irrigation. However, increased 

postoperative pain was noticed in some cases.[17]  

A less invasive method for gingival depigmentation is based on the use of 

phenol 90% and alcohol 95%.[14,15,23] This technique was reported to be quite 
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simple and effective, although phenol should be used carefully to avoid tissue 

damage. Phenol penetrates the subepithelial connective tissue and produces 

necrosis or apoptosis of melanocytes; this process may be accompanied by a 

certain degree of inflammation. The procedure can be repeated until satisfactory 

depigmentation is achieved.[14,15]  

Cryosurgery, based on local application of liquid nitrogen (−190°C) or other 

cryogen substances (eg, tetrafluoroethane) by means of cotton swabs or specific 

devices, can be effective in successful elimination of melanin pigmentations. 

The rapid freezing leads to destruction of the superficial layers and calls for 

particular care to avoid damage to the deeper tissues.[13,14,17,18] In a recent 

systematic review, cryosurgery exhibited optimal predictability for gingival 

depigmentation among the examined procedures.[14]  

Electro- and radiosurgery require a higher level of expertise compared with the 

previous methods. Light, brushing strokes should be used when moving the 

electrode, which should be kept in motion throughout the procedure because its 

prolonged application could cause heat accumulation and subsequent tissue 

damage.[14,15,24]  

Laser diode at 810 nm in pulse mode also was reported to be effective in 

gingival depigmentation.[13,15,21,22] Similar to electrosurgery, it was 

recommended to move the laser tip as a brush to prevent tissue heating. A one-

step laser treatment is usually sufficient to remove pigmentation, achieving 
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tissue sterilization and efficient coagulation;[25] nonetheless, such an approach 

was reported to be highly dependent on operator skill because of the absence of 

tactile feedback while using lasers.[13] A delayed inflammatory reaction may 

occur, inducing mild postoperative discomfort lasting up to 1 to 2 weeks; 

furthermore, re-epithelialization can be delayed as compared with conventional 

surgery.[13,25]  

Carbon dioxide (CO2) and erbium:Yag (Er:Yag) lasers have also been proposed 

for the treatment of gingival pigmentation. Although both techniques proved to 

be safe and effective in achieving gingival depigmentation with optimal esthetic 

results, when pain and wound healing were assessed Er:Yag laser outscored 

CO2.[26,29] Consequently, Er:Yag laser seemed to be the laser of choice for the 

treatment of gingival hyperpigmentation.[29]  

To date, there is no unequivocal evidence for the best procedure to achieve 

gingival depigmentation, although the scalpel blade technique seems to be a 

simple and effective surgical approach with a low level of 

morbidity.[13,15,18,21,24,25] Further randomized controlled clinical trials 

would be useful to evaluate the effectiveness of the reported techniques in the 

long term.  

As to the high smile line, the dental treatment was integrated with an esthetic 

medical approach: selective injection of botulinum toxin to limit overcontraction 
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of the patient’s upper lip elevator muscles.[30,31] In the last decade, the use of 

botulinum toxin was extended to the treatment of some muscle-related disorders 

in the orofacial area, such as temporomandibular disorders, occlusal 

parafunctions, and masseter hypertrophy, and esthetic defects such as radial lip 

lines, deep nasolabial folds, and high smile line.[31-33]  

To date, long-term data about the clinical effectiveness of botulinum toxin in the 

treatment of high smile lines is missing and only a few clinical reports are 

available in the literature.[30,31,34] The use of botulinum toxin should be 

carefully planned by trained and well-experienced operators. Although high 

levels of patient acceptance and satisfaction were reported,[30,31,34] the 

efficacy of botulinum toxin in reducing muscle overcontraction is subject-

dependent and limited over time (to approximately 6 months). Consequently, 

this approach cannot be considered predictable in the long term and could 

necessitate re-entry.[30,31] However, such an approach is minimally invasive 

and without the risk of major complications compared with aggressive surgical 

treatments such as LeFort I osteotomy.[30,31,34] 

Conclusions  

The described minimally invasive multidisciplinary approach based on surgical 

gingival depigmentation, adhesive ceramic veneers, and selective botulinum 

toxin injection corrected the undesired high smile line and achieved patient 

satisfaction. The scalpel technique proved to be safe and effective for gingival 
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depigmentation. The use of botulinum toxin can be useful to temporarily reduce 

high smile lines, but it cannot be considered a long-term solution. Periodic 

follow-up and treatment re-entries could be necessary over time. Further 

controlled clinical studies would be advisable to evaluate the predictability and 

maintainability of such esthetic treatments in the long term.  
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4.1.2.1.5 “Digitally Oriented Materials”: Focus on Lithium Disilicate 
Ceramics 

Zarone F., Ferrari M., Mangano F., Leone R., Sorrentino R. International 

Journal of Dentistry Volume 2016 (2016) 

 

 Introduction 

In the last decade, the development of new technologies has moved in parallel 

with a rapid evolution of restorative materials on the rails of Digital Dentistry, 

opening new horizons in the field of Prosthodontics. The implementation in the 

daily practice of the most advanced technologies, like CAD/CAM, laser-

sintering/melting, and 3D-printing, has got a synergic impulse from the 

enhanced mechanical and manufacturing properties of the new generation of 

dental materials: high strength ceramics, hybrid composites and technopolymers, 

high precision alloys, and so forth. Among these, metal-free ceramics offer 

unchallenged advantages like high esthetic potential, astounding optical 

characteristics, reliable mechanical properties, excellent consistency in terms of 

precision and accuracy due to the manufacturing technologies, lower costs, and 

more convenient production timing. In particular, lithium disilicate in the last 

years has gained maximum popularity in the dental scientific community, 

offering undeniable advantages. 

 

Physical-Mechanical Properties and Fabrication Techniques 

Lithium disilicate (SiO2-Li2O) was introduced in the field of glass ceramics in 
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1998 as a core material, obtained by heat-pressing ingots (Empress 2, Ivoclar 

Vivadent, Lichtenstein), with a procedure similar to the lost-wax technique used 

for dental alloys (lithium disilicate heat extrusion at 920°), showing an optimal 

distribution of the elongated, small, needle-shaped crystals in a glassy matrix 

with a low number and small dimensions of pores [1]; the core is eventually 

veneered with fluorapatite-based ceramics, showing noticeable translucency 

and, at the same time, higher flexural strength (350 MPa) compared to older 

glass ceramics like the leucite-based ones [2, 3]. Such a material has been 

discontinued since 2009, replaced in the market by an upgraded typology of 

lithium disilicate, IPS e.max Press (Ivoclar Vivadent, Schaan, Liechtenstein), in 

which both the optical and mechanical properties have been enhanced by 

introducing technical improvements in the production processes [4]. The crystals 

are smaller and more uniformly distributed; at the same time, this new, more 

versatile material has introduced the possibility of producing anatomically 

shaped, monolithic restorations, with no veneering ceramic, just colored on the 

surface; this innovative indication has become more and more popular in the last 

years, highly reducing technical complications like chippings and fractures, 

mainly used for restorations in the posterior areas, where such failures have been 

shown to be more frequent [5–11]. In order to accommodate the material to the 

needs of chairside CAD/CAM production processes, another technique has been 

introduced, based on the use of partially, precrystallized blocks (IPS e.max 

CAD, Ivoclar Vivadent), containing both 40% lithium metasilicate (Li2SiO3) 
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crystals and lithium disilicate (Li2Si2O5) crystal nuclei; it is available in 

different shades and degrees of translucency, depending on the size and density 

of crystals. In the initial condition, such machineable, bluish blocks show 

moderate hardness and strength (around 130 MPa); consequently, they are easier 

to mill, reducing wear of the machining devices at the same time, with evident 

advantages during chairside procedures [12]. After milling, heat treatment (840–

850° for 10 min) determines full crystallization of the material: lithium 

metasilicates tend to evolve to form lithium disilicates (70%) [13], increasing 

the flexure strength up to  MPa [14] with a fracture toughness of 2.5 MPa· [15]. 

Compared to the e.max CAD, hot-pressed lithium disilicate exhibits better 

mechanical properties, like higher flexure strength (440 MPa) and fracture 

toughness (2.75 MPa· - IPS e.max Press, Ivoclar Vivadent) [16]. 

 

The fabrication processes and machinability affect the restorative quality of 

monolithic lithium disilicate glass ceramics. A recent investigation analyzed the 

diamond tool wear, chip control, machining forces, and surface integrity of 

lithium disilicate after occlusal adjustments. Minimum bur wear but significant 

chip accumulation was evidenced; furthermore, machining forces were 

significantly higher than with other glass ceramics. Although the final surface 

roughness of lithium disilicate was comparable to other glass ceramics, occlusal 

adjustment caused intergranular and transgranular microcracks, resulting in 

shear-induced plastic deformations and penetration-induced brittle fractures; 
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such behavior is distinctive of lithium disilicate and very uncommon in other 

glass ceramics. Consequently, lithium disilicate should be considered the most 

difficult to machine among glass ceramics for intraoral adjustments [17]. 

Moreover, thermal processing can influence crystallization kinetics, crystalline 

microstructure and strength of lithium disilicate restorations. Particularly, 

extended temperature range (820–840°C versus 750–840°C) and protracted 

holding time (14 min versus 7 min) produced significantly higher elastic-

modulus and hardness properties but showed flexural strength and fracture 

toughness properties similar to controls (i.e., 750–840°C for 7 min). Rapid 

growth of lithium disilicates happened when the maximum formation of lithium 

metasilicates had ended [13]. 

 

Recently, innovative fabrication techniques have been proposed to improve the 

microstructure of lithium disilicate ceramics. Particularly, spark plasma sintering 

(SPS) was developed specifically for CAD-CAM dental materials. This 

fabrication process allowed refining the microstructure of lithium disilicate; its 

densification resulted in textured and fine nanocrystalline microstructures with 

major lithium disilicate/lithium metasilicate phases and minor lithium 

orthophosphate and cristobalite/quartz phases [18]. 

 

Mechanical Testing and Fracture Resistance 

Due to its intrinsic brittle behavior, lithium disilicate suffers from fatigue failure 
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during clinical service. Microcracks usually initiate in load bearing and/or stress 

concentration areas, eventually fusing under dynamic loads and creating major 

flaws that could weaken the lithium disilicate structure; when the ultimate 

mechanical strength is overcome, catastrophic failures occur [19–22]. 

 

Several laboratory studies investigated the fatigue resistance of lithium disilicate 

single crowns (SCs) and fixed dental prostheses (FDPs) to evaluate experimental 

designs and testing parameters [20–24]. Different laboratory variables were 

proved to influence the fatigue resistance of lithium disilicate restorations, such 

as magnitude of load, number of cycles, abutment and antagonist material, wet 

environment, and thermocycling; conversely, chewing frequency, lateral 

movements, and aging technique were considered not influential factors [23]. 

Single load to fracture after fatigue tests (i.e., combination of dynamic and static 

loading until fracture) reported highly variable ultimate strength values for this 

material: from 980.8 N to 4173 N for monolithic SCs and from 390 N to 1713 N 

for posterior FDPs [23, 24]. Significant comparisons between data were not 

possible because of the heterogeneity of research designs and testing modalities 

[24]. 

 

Fairly consistent agreement between in vitro and in vivo results was reported. 

As to SCs, after 2 years of simulated or real service, 100% survival rates were 

noticed in both laboratory [25] and clinical investigations [26]; in in vitro studies 
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100% survival rate was reported after 5 years of simulated function as well [20, 

27] while the percentage changed to 97.8% in in vivo clinical investigations 

[26]. Differently, as regards FDPs, the cumulative survival rates at 5 years 

ranged from 75% to 100% in vitro [28, 29] while the equivalent clinical rate was 

78.1% [26]; long-term laboratory investigations simulating more than 10 years 

of service showed 70% survival rate [30], comparable to the in vivo cumulative 

survival rate of 70.9% after 10 years of function [26]. The sound level of 

agreement between in vitro and in vivo data confirmed that laboratory 

investigations could represent a good simulation of the clinical scenario; 

nonetheless, this conclusion has to be considered only indicative, since the 

amount of data is not large enough to indicate consolidated clinical guidelines 

[24]. 

 

A recent systematic review showed significant heterogeneity leading to data 

inconsistency, because of different study setups and testing parameters. The lack 

of testing standardization made it almost impossible to perform consistent 

comparisons between laboratory studies. Consequently, to date, indicative and 

comparable data about dynamic mechanical testing of lithium disilicate 

restorations remain still controversial; further investigations with specific 

standardization criteria are needed [24]. 

 

According to in vitro results of dynamic loading, CAD-CAM lithium disilicate 
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SCs should have a thickness of at least 1.5 mm to withstand occlusal loads in 

posterior areas [22]. Being a filled glass-ceramic, lithium disilicate’s final 

performance as a dental material is strongly related to the type of adhesive 

cement and accuracy of procedure [31]. To achieve the highest microtensile 

bond strength (µ-TBS) values and best clinical performances, the restorations 

have to be adhesively luted to the substrates [32, 33]. CAD-CAM monolithic 

posterior SCs made of lithium disilicate and luted with self-adhesive resin 

cements showed significantly higher fatigue resistance than feldspathic ceramic 

restorations. Particularly, lithium disilicate SCs effectively bore the 

physiological range of masticatory loads, mainly showing repairable fractures. 

Catastrophic failures were noticed only after load-to-failure tests up to 4500 N 

[33, 34]. 

 

As to implant-supported restorations, although this material showed the highest 

ultimate strength when compared to feldspathic ceramic and resin nanoceramic 

onto implant titanium abutments in vitro, no accordance was found between the 

initial and maximum fracture resistance values of lithium disilicate after 

chewing simulation with thermocycling simulating 5 years of clinical service 

[35]. 

 

Furthermore, CAD-CAM monolithic lithium disilicate SCs showed an optimum 

in vitro stiffness and strength values when cemented onto both prefabricated 
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titanium abutments and customized zirconia abutments [36]. 

 

Machinability, Wear Mechanism, and Behavior 

Friction and wear effects of lithium disilicate on the opposing natural tooth 

enamel have been also investigated, with and without fluorapatite coating, 

showing that they were less severe in unveneered specimens [37]. The initial 

surface roughness did not influence the final wear but the topography of the 

wear pattern affected the corresponding wear loss, since a smoother final wear 

aspect was associated with lower wear. Moreover, superficial wear of lithium 

disilicate was reported to be sensitive to environmental pH, showing higher 

friction and wear behavior in basic pH conditions; this was due to the fact that 

wettability, surface charge, and dissolution trend of lithium disilicate are pH-

dependent. The presence of fluorapatite veneering resulted in increased wear of 

both lithium disilicate crowns and opposing natural teeth; therefore, veneering 

of the occlusal surface should be avoided. 

 

These results are in agreement with another recent in vitro investigation 

reporting that zirconia showed less wear than lithium disilicate; in any case, the 

latter showed occlusal wear equivalent to sound enamel. Enamel wear was 

reduced after ceramic surface polishing and this supports that this procedure is 

advisable after performing occlusal adjustments of both lithium disilicate and 

zirconia restorations. Veneering porcelain significantly increased enamel 
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abrasion; consequently, the use of monolithic zirconia and lithium disilicate 

should be preferred in areas of strong occlusal contact, in order to limit enamel 

damage of the opposing teeth over time [38]. 

 

After friction against dental enamel, lithium disilicate and monolithic zirconia 

specimens did not become as rough as feldspathic ceramics. Particularly, when 

comparing wear effects onto rough, smooth, and glazed surface finishing, 

eventually rough lithium disilicate became significantly smoother than fine 

feldspathic porcelain [39]. 

 

However, when compared to type III gold, lithium disilicate was more abrasive 

against human enamel. Enamel opposing lithium disilicate in vitro showed 

cracks, plow furrows, and surface loss typical of abrasive wear mechanism, 

resulting in worse wear resistance and friction coefficient than in the presence of 

antagonist gold [40]. 

 

Opposing steatite in chewing simulations, monolithic lithium disilicate yielded 

higher antagonistic wear and worse wear behavior than monolithic translucent 

and shaded zirconia, but about half as high as the enamel reference (274.14 µm); 

particularly, more severe wear patterns on both ceramics and opponents were 

observed after grinding and glazing [41]. 
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Initial surface finishing and occlusal loads significantly affected the surface 

roughness, friction, and wear mechanisms of lithium disilicate: as the load 

increased, surface roughness became more severe and friction coefficient and 

wear volumes increased in turn. The abrasive wear process can be divided into 2 

typologies: 2-body and 3-body abrasive wear. Particularly, in 2-body abrasion 

wear is caused by hard protuberances on one surface sliding over another while 

in 3-body abrasion particles are trapped between 2 surfaces but are free to roll 

and slide. In the presence of smooth lithium disilicate surfaces, 2-body abrasion 

was dominant while, in case of rough surfaces, 3-body abrasive wear was more 

significative. Worn lithium disilicate surfaces demonstrated higher sensitivity to 

delaminations, plastic deformations, and brittle fractures [42]. 

 

Two-body wear of lithium disilicate ceramic was found to be comparable to that 

of human enamel. Furthermore, abrasive toothbrushing significantly reduced 

gloss and increased roughness of all materials except zirconia [43]. When 

evaluating mechanical and optical properties, CAD-CAM lithium disilicate 

glass-ceramic (IPS e.max CAD) demonstrated the most favourable discoloration 

rate and the lowest 2-body wear on the material side when compared to CAD-

CAM composites, hybrid materials, and leucite ceramic; in this study, the wear 

rate was analyzed in a chewing simulator using human teeth as antagonists [44]. 

 

Similarly to other glass ceramics, lithium disilicate can be intraorally repaired in 
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case of chipping. In vitro results using resin composites as restorative materials 

demonstrated that lithium disilicate can be effectively repaired with hydrofluoric 

acid etching followed by silanization and adhesive bonding [7, 8, 45]. 

 

 Impression Techniques and Accuracy of Fit 

Both conventional and digital impression techniques allow for the fabrication of 

lithium disilicate restorations but the results in terms of marginal accuracy are 

still controversial [46–51]. 

An in vitro study reported similar marginal accuracy between conventional and 

digital impression techniques (112.3 ± 35.3 !m and 89.8 ± 25.4 !m, resp.) and no 

statistically significant differences were noticed among the different approaches 

[51]. Differently, the results of a recent in vitro study suggested that pressed and 

milled lithium disilicate SCs from digital impressions had a better internal fit to 

the abutment tooth than pressed SCs from polyvinylsiloxane impressions in 

terms of total volume of internal space, average thickness of internal space, and 

percentage of internal space at or below 120 µm [50]. Similarly, another in vitro 

investigation proved that the fully digital workflow provided better margin fit 

than the conventional fabrication [48]. These results were not in agreement with 

other investigations demonstrating that the combination of polyvinylsiloxane 

impressions and Press fabrication techniques for lithium disilicate SCs produced 

the most accurate 2D and 3D marginal fits [46] and that the combination of 

digital impressions and pressed lithium disilicate SCs produced the least 
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accurate internal fit [49]. 

 

To date, in general, marginal and internal fit of lithium disilicate restorations is 

significantly influenced by the employed digital impression technique. Although 

almost all actual digital impression systems show accuracy values within the 

thresholds of clinical acceptability, significant fit discrepancies are still evident 

among different digital systems [52]. 

 

In vitro microscopical analyses demonstrated that CAD-CAM lithium disilicate 

SCs had significantly smaller marginal gaps than CAD-CAM anatomic contour 

zirconia restorations. As to the absolute marginal discrepancy, lithium disilicate 

SCs showed some overextended margins. Both finish line geometry and 

fabrication systems significantly influenced the absolute marginal discrepancy 

[53]. 

 

In vivo results by means of the replica technique showed that CAD-CAM 

lithium disilicate SCs had significantly larger internal axial and occlusal gaps 

than porcelain-fused-to-metal (PFM) SCs; conversely, marginal gaps were not 

significantly different. Nevertheless, both PFM and lithium disilicate SCs 

showed clinically acceptable marginal fit [54]. As regards the restoration 

adaptation (i.e., marginal and internal fit) of the different manufacturing 
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techniques, evidence is growing that these parameters are more favourable with 

the hot-pressing technique than with the precrystallized, CAD/CAM milled 

blocks [46, 55, 56]. 

 

 Biocompatibility 

Biologic safety of dental ceramics is another main topic on which dental 

research has been focusing in the last years; such a property can be different 

even within the same class of materials. Lithium disilicate exhibited more severe 

in vitro cytotoxicity than dental alloys and composites and became more 

cytotoxic after polishing [57]. 

 

In vitro, human gingival fibroblasts cellular response may reflect variability in 

soft tissue reaction to different surface materials for prosthetic restorations. In a 

study by Tetè et al., polished zirconia showed a better integration in respect to 

the other materials [58]. Analysis on human epithelial tissue cultures, on the 

other side, demonstrated that lithium disilicate showed the best biocompatibility 

when compared to zirconia and cobalt-chromium alloys. Consequently, lithium 

disilicate can be considered a suitable material even for subgingival restorations 

directly contacting the sulcular epithelial tissues [59]. As to in vivo evidences, 

the presence of all-ceramic restorations did not induce inflammatory reactions in 

periodontally healthy patients; no differences between gingival reactions to 

lithium disilicate and zirconia restorations could be shown [60, 61]. 
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Clinical Indications and Outcomes 

For its outstanding optical properties, mechanical characteristics, ease of 

processing, and possibility of etching/adhesive bonding, ensuring a minimally 

invasive approach, lithium disilicate glass ceramics have rapidly become some 

of the most popular restorative materials in almost all the indications of fixed 

Prosthodontics [8]. 

 

Their primary use was addressed for single crowns (SCs). The first clinical 

studies were conducted on the early typology of lithium disilicate (IPS Empress, 

Ivoclar Vivadent) and reported quite promising short-term results for the 

veneered crowns [62, 63]; in particular, Marquardt and Strub, in their 

prospective clinical trial on both crowns and anterior FDPs, showed for the SCs 

a survival rate of 100% after 5 years of clinical service [63]. Gehrt et al. [6] 

analyzed the medium-long term clinical performance of 74 lithium disilicate 

full-coverage, anterior and posterior crowns after a service time of at least 5 

years; all the frameworks, made with the hot-pressing technique from ceramic 

ingots (IPS e.max Press), were at least 0.8 mm thick and were eventually 

veneered with a fluorapatite ceramic. The survival rate was 97.4% after 5 years 

and 94.8% after 8 years of clinical service; among the technical complications, 3 

crowns resulted affected by minor chipping. The study revealed that the survival 

rate was not influenced by cementation type (conventional versus adhesive) or 
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by crown location (anterior versus posterior); on the other hand, in vitro 

researches have clearly demonstrated that lithium disilicate can bear high stress 

conditions, like in posterior crowns [64, 65]. Esquivel-Upshaw et al. [66] 

conducted a 3-year clinical study comparing the performance of veneered 

lithium disilicate (Empress 2), monolithic lithium disilicate (e-Max Press, 

glazed), and metal-ceramic crowns (IPS d.SIGN veneer); they observed similar, 

highly positive results, although a higher degree of surface roughening was 

detected in the veneered lithium disilicate-based crowns, compared to metal-

ceramics, between years 2 and 3. This problem was probably due to 

degradation/water corrosion of glaze ceramic. Another retrospective, 

multicentric study on 860 lithium disilicate restorations, both tooth- and 

implant-supported, including full crowns, laminate veneers, and onlays, reported 

cumulative survival and success rates beyond 95% for an observational period 

ranging from 12 to 72 months [8]. The analyzed restorations were both bilayered 

and monolithic type. More recently, other retrospective studies, with longer 

observational times, have confirmed low failure rates and very favourable 

cumulative survival rates with lithium disilicate crowns [65, 67, 68]. Positive 

clinical outcomes of lithium disilicate reinforced glass ceramics have been 

confirmed by a recent systematic review [11], showing that 5-year survival rates 

of all-ceramic SCs made out of lithium disilicate or oxide ceramics (i.e., alumina 

and zirconia) were similar to the gold standard, metal-ceramic crowns. The 

widespread diffusion in the daily practice of full-anatomic, monolithic lithium 
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disilicate restorations, characterized by favourable mechanical properties, 

together with the possibility of manufacturing low thickness restorations 

adhesively bonded to the dental substrate, has introduced the use of inlays, 

onlays, and “tabletops” made of this material in the posterior sites, taking 

advantage of a minimally invasive approach and of a resistant, biocompatible 

ceramic (Figures 1–4). In that research, low fracture rates were reported: 0.91% 

for monolithic and 1.83% for bilayered single crowns (twice the rate of the 

monolithic); 4.55% for monolithic FDPs; 1.3% for monolithic; and 1.53% for 

bilayered veneers (Figures 5–9). Guess et al. [69] conducted a 7-year 

prospective “split-mouth” study on both pressed lithium disilicate (IPS e.max 

Press, Ivoclar Vivadent) and CAD/CAM leucite-reinforced glass-ceramic 

(ProCAD, Ivoclar Vivadent) partial-coverage restorations. The preparation was 

performed reducing the entire occlusal surface for a 2 mm thickness, creating a 

butt joint design at level of the nonsupporting cusps and a rounded shoulder for 

the supporting cusps. The authors reported high survival rates with both types of 

restorations, recommending them for a minimally aggressive treatment of 

extended lesions in posterior teeth. In a recent in vitro research, Sasse et al. [70] 

advised the need of a lithium disilicate minimum thickness of 0.7–1.0 mm when 

nonretentive, full-coverage adhesively retained occlusal veneers are used. As 

regards 3-unit FDPs, according to the manufacturer’s recommendations, the use 

of lithium disilicate should be limited to the replacement of anterior teeth or 

premolars. Clinical data on this topic is quite controversial. The early, 
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short/medium-term studies, mainly conducted on Empress 2 bilayered lithium 

disilicate bridges, suggested a certain cautiousness for such an indication: 

Taskonak and Sertgöz [71] reported a 50% survival rate at 2 years; a prospective 

clinical trial by Marquardt and Strub showed a fracture rate of 30% after 5 years 

of clinical service [63]. Makarouna et al. [72], in a randomized controlled trial, 

after 6 years observed a survival rate of 63% for lithium disilicate FDPs, 

compared to a much more favourable 95% in the control group (metal-ceramic 

FDPs). 

In a 10-year prospective study conducted by Solá-Ruiz et al. on Empress 2 

FDPs, a survival rate of 71.4% was detected, the most frequent complications 

being postoperative sensitivity, recessions, and marginal discolorations [73]. 

The introduction of the monolithic, anatomically shaped lithium disilicate FDPs 

has recently made achieving more favourable outcomes possible. 

 

Some in vitro studies [29, 74, 75] have pointed out that lithium disilicate 

monolithic crowns and FDPs, both CAD/CAM and hot-pressed, are more 

resistant to fatigue fracture compared to bilayered, hand veneered ones, showing 

higher fracture loads (1900 N), that are comparable to the metal-ceramic 

standard. The lack of the esthetic, weaker veneering material allows a thicker 

bulk of high strength disilicate; in any case, as regards FDPs, it has to be pointed 

out that their mechanical performance is multifactorial, being strongly related to 

many factors, like shape of the structure and size and radius of the connectors 
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among others. 

 

In a long-term prospective study, Kern et al. [5] evaluated the clinical 

performance of 3-unit, monolithic lithium disilicate FDPs (IPS e.max Press, 

Ivoclar Vivadent). In this research, the bridges were used not only for the 

replacement of anterior teeth or premolars (as suggested) but also for missing 

molars. After 5 years, the survival and success rates were 100% and 91.1%, 

respectively; after 10 years, they were reduced to 87.9% and 69.8%. 

Considering that 10-year survival rates of 87.0 to 89.2% have been reported for 

the “reference” metal-ceramic FDPs by some systematic reviews [11, 76] and 

that the major, catastrophic failures occurred lately in FDPs replacing missed 

molars (beyond the manufacturer’s recommendations), these evidences advise 

that the monolithic lithium disilicate can be regarded as a promising candidate to 

replace metal-ceramics for short-span freestanding bridges. 

 

In the last years, in the light of the concepts of minimal invasivity, economy, 

and long-term durability, alternative treatment strategies for the anterior single 

tooth replacement have become more and more popular, taking advantage of the 

materials’ high strength and of the possibility of a reliable adhesive bonding to 

dental substrates. In particular, cantilevered, all-ceramic, resin-bonded, fixed 

partial dentures (RBFPD) have been increasingly gaining approval from the 

dental community, offering a feasible alternative to implant therapy in many 
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cases, particularly when indications for implant therapy are not present, due to 

general, anatomic, economic, or patient’s compliance factors. In such cases, 

instead of a complete crown, a single veneer adhesively bonded to the lingual 

side of the support tooth can be used; a careful occlusal check is mandatory, in 

order to get a proper distribution of stress and a stress limitation on the 

cantilevered tooth, avoiding lateral and protrusive contacts on the pontic. Also, 

for this kind of restoration, clinical outcomes are highly encouraging, although 

data is quite limited to medium-term studies and case series [77–80]. 

 

In the last years, the chairside production workflow is gaining more and more 

interest in the prosthodontic realm, for the speed of delivery and cost reduction 

of SCs and inlays. The first clinical trials report encouraging results. In the study 

by Reich and Schierz, besides a survival rate of 96.3% after 4 years, a few 

biological complications (secondary caries below the crown margin, changing of 

sensibility perception) and technical complications (need of cervical composite 

filling) were observed [81]. 

Recently, Sulaiman et al. [82] have analyzed the clinical outcomes of different 

IPS e.max lithium disilicate prostheses (SCs, FDPs, veneers, inlays, and onlays), 

both in the bilayered and monolithic forms, in a 4-year retrospective study on a 

total of 21.340 restorations. In that research, low fracture rates were reported: 

0.91% for monolithic and 1.83% for bilayered single crowns (twice the rate of 

the monolithic); 4.55% for monolithic FDPs; 1.3% for monolithic and 1.53% for 
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bilayered veneers; and 1.01% for monolithic inlays/onlays. Finally, in the last 

years, the use of lithium disilicate single crowns bonded onto CAD/CAM 

zirconia abutments has become increasingly widespread, taking advantage of the 

high strength and biocompatibility of zirconia, in contact with the peri-implant 

soft tissues, together with the prosthetic versatility and optical characteristics of 

lithium disilicate. In vitro studies have demonstrated that these prosthetic 

solutions exhibit high fracture loads [27, 83] and, at the same time, short-term 

clinical studies have shown fairly positive outcomes [84], also onto one-piece 

zirconia implants (Spies). Another clinical approach, also supported by 

favourable short-term outcomes, makes use of zirconia implant-supported full-

arch frameworks (“implant bridges”) on which monolithic lithium disilicate 

crowns are adhesively bonded [7, 85]. 

 

Conclusions 

It is a far from indisputable fact that all of the innovative solutions offered by 

lithium disilicate are widening the restorative scenario more and more; thanks to 

the excellent optical properties, the high mechanical resistance, the unique 

restorative versatility, and the different manufacturing techniques, it is no doubt 

one of the most promising dental materials in the realm of Digital Dentistry, 

although more light is still to be shed on some clinical and technical aspects. 
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Figure 1: Case  1 (Monolithic Lithium Disilicate Onlays). Maxillary posterior 
teeth in a 25-year-old female patient affected by severe food behavior disorder 
(bulimia). One year before the dental treatment, she was considered healed by a 
psychotherapist and declared recovered. The teeth were not prepared; only 
minimal smoothing of some sharp edges was performed. 
 

 
Figure 2: Case  1 (Monolithic Lithium Disilicate Onlays). After conventional 
impressions, the casts were scanned by a 3-Shape D700 (3 Shape, Copenhagen, 
Denmark) digital scanner and analyzed by means of a Dental System  15.5.0 
software (3 Shape) and the restorative finish lines were detected. Then, occlusal 
shape design and contacts were defined. 
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Figure 3: Case  1 (Monolithic Lithium Disilicate Onlays). The wax patterns of 
the posterior onlays were milled out of a wax disk (Cera SDD98A18RWC, 
Sintesi Sud, Avellino, Italy) using a Roland DWX-50 Dental Milling Machine 
(Whip Mix GmbH, Louisville, KY, USA) and then repositioned on the cast. 
After careful checking, the lithium disilicate heat pressed onlays (IPS e.max 
Press MT, Ivoclar Vivadent) were made and eventually polished. 
 

 
Figure 4: Case  1 (Monolithic Lithium Disilicate Onlays). The onlays after 
adhesive cementation. 
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Figure 5: Case  2 (Bilayered Lithium Disilicate Veneer Replacement). A female 
patient asked for the replacement of 6 porcelain laminate veneers with 
discolored and fractured margins. After the study of the case, done with the aid 
of digital software programs, a crown lengthening procedure was performed. 
 

Figure 6: Case  2 (Bilayered Lithium Disilicate Veneer Replacement). The old 
veneers were carefully removed under stereomicroscopic control; after the new 
supragingival preparations, an intraoral scanning device (3-Shape D700) was 
used to take digital impressions of both dental arches. 
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Figure 7: Case  2 (Bilayered Lithium Disilicate Veneer Replacement). The new 
smile design was cut away and inserted in the patient’s physiognomic image. 
After designing the new veneers, they were pressed with lithium disilicate (IPS 
e.max Press MT) and veneered. 
 

 
Figure 8: Case  2 (Bilayered Lithium Disilicate Veneer Replacement). The new 
veneers at the end of the treatment. 
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Figure 9: Case  2 (Bilayered Lithium Disilicate Veneer Replacement). The 
patient’s smile. 
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4.1.2.2 Cristalline Ceramics 

In-Ceram Spinell, Alumina, Zirconia 

Infiltrated ceramics are made through a process called slip-casting, which 

involves the condensation of an aqueous porcelain slip on a refractory die. This 

fired porous core is later glass infiltrated, a process by which molten glass is 

drawn into the pores by capillary action at high temperatures. Materials 

processed in this way exhibit less porosity, fewer defects from processing, 

greater strength and higher toughness than conventional feldspathic 

porcelains.[2] 

This glass-infiltrated core is later veneered with a feldspathic ceramic for final 

esthetics. These have excellent translucency and esthetic qualities, but have poor 

physical properties and require the high-strength core that the already-mentioned 

infiltrated ceramics can provide. The Vita In-Ceram slip-casting system makes 

use of three different materials to gain a good compromise between strength and 

esthics. 

In-Ceram Spinell 

Spinell (MgAl2O4) is a natural mineral that is normally found together with 

limestone and dolomite. It is of dental significance because of its extremely high 

melting point (2135°C) combined with its high strength. Spinell is also 

chemically inert and has low electrical and thermal conductivity but, most 
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importantly, it has unique optical properties. It has moderate strength of about 

350 MPa and good translucency. 

It is more than twice as translucent as In-Ceram alumina due to the refractive 

index of its crystalline phase being close to that of glass. Glass infiltrating in a 

vacuum environment results in less porosity, ensuring this high level of 

translucency. Often, however, this level of translucency can be excessive and 

can lead to an overly glassy, low-value appearance. 

In-Ceram Alumina 

Aluminum oxide (Al2O3) is most widely known under the term corundum. As a 

result of the homogeneous framework structure made of ultrafine Al2O3 

particles, whose cavities are filled with a special glass, the degree of tensile 

bending strength is significantly higher than that of all other ceramic systems.[1] 

With a weight percentage of 10–20%, aluminum oxide is a component of 

feldspar, which is the starting material for metal–ceramic veneering materials. 

The ceramic materials for substructures of jacket crowns have been enriched by 

up to 60% by weight with aluminum oxide crystals with a grain size of 10–30 

um to increase stability. Because of the large difference in the refraction index 

(feldspar n = 1.53; corundum n = 1.76), intense refraction of light occurs at the 

aluminum oxide crystals in the feldspar, which results in the opaque effect of 

such Al2O3-enriched ceramic materials. Therefore, they are only suitable for 
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fabrication of crown frames with subsequent veneering. In-Ceram alumina has a 

strength of around 500 MPa and poor translucency. 

Synthetically produced corundum with a grain size of 2–5 um is used for In-

Ceram alumina. In the solid phase, it is sintered at 1100°C, well below the 

melting point of 2040°C, and it is then infiltrated with dentine-coloured glass at 

1120°C. 

In-Ceram Zirconia 

The zirconia system uses a mixture of zirconium oxide and aluminum oxide as a 

framework to achieve a marked increase in the flexural strength in the core 

framework. Aluminum oxide makes up about two-thirds of the crystalline 

structure as seen in the scanning electron micrograph to the right. The remaining 

crystalline structure consists of tetragonal zirconium oxide (round white 

particles). The proportion of glass phase amounts to approximately 20–25% of 

the total structure. This leads to the high strength as already seen in In-Ceram 

alumina. The increase however over alumina is due to the zirconium oxide 

particles that protect the structure against crack propagation. It has a very high 

strength of around 700 MPa and very poor translucency. 
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4.1.2.3 Polycrystalline ceramics: ZIRCONIA 
 

Zirconium oxide–based materials, especially yttria-tetragonal zirconia 

polycrystals (Y-TZP), were recently introduced for prosthetic rehabilitations as a 

core material for single crowns, conventional and resin-bonded fixed partial 

dentures (FPDs) [1], and, in dental implantology, as abutments or implants [2]. 

The raw materials of the zirconia are the minerals zircon (ZrSiO4) and 

baddelyite (β-ZrO2), whose mines are located in South Africa, Australia and 

USA. Zirconia was discovery by the German chemist Martin Heinrich Klaproth 

in 1789. The term zirconium refers to the metal, while zirconia ceramic 

(“zirconia”) refers to zirconia-dioxide-ceramic (ZrO2). 

Zirconia takes up a peculiar place amongst oxide ceramics due to its excellent 

mechanical properties. This condition is due to the huge amount of the research 

that has been performed since the discovery of the transformation toughening 

capabilities of this material. The different stages of polymorph zirconia are 

temperature dependent: at ambient pressure, unalloyed zirconia can assume 

three crystallographic forms. At room temperature and upon heating up to 

1170°C, the symmetry is monoclinic (P21/c). The structure is tetragonal 

(P42/nmc) between 1170 and 2370°C and cubic (Fm 3m) above 2370°C and up 

to the melting point [3] [4]. The transformation from the tetragonal (t) phase to 

the monoclinic (m) phase upon cooling is accompanied by a substantial increase 

in volume (∼4.5%), sufficient to lead to catastrophic failure [5]. The ceramic 
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shows a hysteretic martensic t → m transformation during heating and cooling. 

This transformation is reversible and begins at ∼950 ◦C on cooling. Alloying 

pure zirconia with stabilizing oxides such as CaO,MgO,Y2O3 or CeO2 allows 

the retention of the tetragonal structure at room temperature and therefore the 

control of the stress-induced. Zirconia has a high temperature stability and 

melting point (2680°C), high hardness (1200-1350 HVN), high thermal 

expansion (>10 x 10-6 1/K), low thermal conductivity (<1 W/mK) and a good 

thermo-shock resistance (ΔT=400-500°C). 

Transformation toughening  

However, the metastability of tetragonal zirconia could increase the 

susceptibility to aging because some stress-generating surface treatments such as 

grinding or sandblasting can trigger the t→m transformation with volume 

increase and formation of compressive stresses on the surface, thereby 

modifying the phase integrity though increasing the flexural strength [7]. The 

increase of volume determines a local stop of the crack propagation. This 

process is called “transformation toughening”, with the resistance against crack 

propagation that increases with the length of the crack [8].  

Only three types of zirconia systems are used in dentistry although currently 

there are many systems of zirconia available on the market . Thee first is yttrium 

cation-doped tetragonal zirconia polycrystals (3Y-TZP), the second is 
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magnesium cation-doped partially stabilized zirconia (Mg-PSZ) and finally the 

zirconia-toughened alumina (ZTA). The partly stabilized zirconia (PSZ) is 

stabilized with magnesia and in addition to the cubic phase, a transformable 

tetragonal phase is available. Its microstructure at room temperature is mostly 

cubic with portions of monoclinic and tetragonal phases. While the Tetragonal 

Zirconia Polycrystals (TZP) have a ultra-fine, nanometre-scaled structure that 

allows the transformation during cooling from the cubic to the tetragonal phase, 

but not to the monoclinic phase. [10]  

Low temperature degradation (LTD)  

One of the aging process is well-described in the literature and is called ”low 

temperature degradation” (LTD) of the zirconia. This is a phenomenon due to 

the presence of water [10] [11] [12]. The consequences of this aging process are 

determine the degradation of the zirconia surface with the grain pullout and 

subsequently microcracking of the structure. This phenomena represent an 

strength degradation. 

Three are the hypotheses of the low temperature degradation. The first speculate 

that there is the the diffusion of water species (here OH-) into the lattice via 

oxygen vacancies and (b) resulting change of lattice parameters [13] . 

The second hypothesis claim that H2O reacts with Y2O3 to form clusters rich in 

Y(OH)3 [14].  
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The last hypothesis sustain that the water vapor attacks the Zr-O bond, breaking 

it and leading to a stress accumulation due to movement of -OH. This in turn 

generates lattice defects acting as nucleating agents for the subsequent T-M 

transformation [15]  

Mechanical Properties  

Zirconia-based materials have higher strength, fracture toughness [16] in 

comparison to the feldspathic ceramics [17]. The failure mechanism of the 

zirconia, like others ceramic materials, is due to sub-critical crack-growth. The 

metal-oxide bonds which were destroyed when the stress is present near the tip 

of the initial crack with a water-assisted mechanism [18]. Cyclic loading during 

the biting or chewing simulation can slowly cause the degradation of the 

toughening mechanisms [19] determine the fracture of the zirconia framework 

because a toughened material could be more susceptible to rupture. The cracks 

can originate inside of the zirconia framework or close to the ceramic veneer 

interface and propagate to the interface [20].  

Configuration  

The zirconia in dentistry is usually milled in pre-sintered stage. This 

configuration is a soft, chalk-like stage that is called “green” stage. During the 

sintering process, the material shrinks and reduces the volume shrinkage of 

about 20-25%. It’s very important to know the exact volume shrinkage 



 147 

information for the individual zirconia blank blocks in order to optimize the 

fitting of the restoration. The zirconia is called hipped (hot iso-static pressed) 

when the material is industrially sintered, and then is CAD-milled at its final 

high strength. Hipped zirconia has a constant grading and thus a more 

homogeneous quality. As expected, milling time and wear of the milling tools is 

higher in comparison to the pre-sintered variants. The zirconia for dental 

applications, zirconia is stabilized at room temperature with the addition of 3 

mol% yttria. This configurations reach high strength (800-1200 MPa) good 

fracture toughness (6-15 MPa x m1/2).  

Fabrication process  

The fabrication of the framework or the monolithic zirconia requires rapid 

prototyping procedures such as milling with a CAD/CAM [21]. The different 

manufacturers use milling-machines directly in the dental laboratories or 

centralized production center. The process starts with optically digitizing the 

clinical abutment with an intraoral camera or with 3D-scanning devices using 

gypsum models or wax models. Afterwards the substructure is designed on the 

computer (CAD) and the core is anatomically shaped to support the ceramic 

veneering material. In the last few years, the use of zirconia for monolithic 

restoration has increased. This approach is now possible because the burs can 

mill the anatomic occlusal design with fissures.  

The properties of the zirconia substructures could depend by the manufacturing 



 148 

process. The use of insufficient preparations, or frameworks with imprecise 

dimensions / thickness could reduce the integrity of zirconia restorations. The 

design of the core, when it is a simple cap or an occlusal supporting design, has 

a strong influence on the lifetime of the veneering [22-23]  

The zirconia framework has to support completely the veneering ceramic 

material in order to avoid chipping or delamination of the aesthetic porcelain  

The dimensions and design of FPDs, especially in the connector areas in 

posterior and in anterior fixed partial dentures, is important to increase the 

clinical life of the all-ceramic restoration. The volume of the connector area in 

anterior and posterior FPDs must be minimum of 3x3mm2 [24-25].  

For the quality of the marginal fit, besides the well-known clinical parameters, 

the CAD/CAM fabrication process may play a decisive role. Different milling 

devices, milling strategies, and software capabilities may contribute to the 

results even more than the different types of ceramic materials. Based on the 

assumption that the clinically acceptable marginal fit extends to 200µm, 

CAD/CAM fabricated restorations with values between 64-83µm and 245µm 

[26-28] are in most cases good to acceptable. The results for the marginal fit are 

in the range of porcelain- fused-to-metal (PFM) restorations or pressed-ceramics 

and vary widely depending on the abilities of the dental technician.  
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4.1.2.3.1 Hydrothermal degradation of monolithic zirconia: guidelines for 

finishing treatments. 

Sorrentino R., Leone R., Camposilvan E., Chevalier J., Ferrari M., Zarone 

F. Dental Materials, 2016. 

 

Introduction 

Polycrystalline zirconium dioxide (zirconia) became more and more popular in 

prosthodontics due to high biocompatibility, excellent mechanical properties, 

natural-looking esthetics and wear rate comparable to that of human enamel.  

Pure zirconia is chemically an oxide but technologically it can be considered a 

ceramic material. At ambient pressure, it is polymorphic and allotropic, 

presenting 3 crystallographic phases at different temperatures: monoclinic (from 

room temperature to 1170°C), tetragonal (from 1170°C to 2370°C) and cubic 

(from 2370°C to 2680°C, the melting point of the material). Upon cooling, a 

spontaneous transformation from the tetragonal shape to the more stable 

monoclinic phase occurs with 4-5% volume increase of zirconia crystals and 

consequent compressive stresses within the material. This phenomenon, called 

“phase transformation toughening (PTT)”, could be useful to improve fracture 

toughness and limit crack propagation under clinical service. 

The manufacturers’ choice to use Yttria-stabilized Tetragonal Zirconia 

Polycrystals (Y-TZP) was mainly aimed at matching its optical and mechanical 

properties, particularly to take advantage of the inherent PTT mechanism of the 
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material keeping it in the tetragonal or cubic shape at room temperature in a 

thermodynamically metastable state by means of dopant oxides (just like yttria 

or ceria) used as crystal stabilizers.  

Nonetheless, both manufacturing processes as well as clinical procedures could 

cause the removal of stabilizing oxides, resulting in surface degradation and/or 

onset of microcracks. Moreover, zirconia is susceptible to a spontaneous, slow 

PTT toward the monoclinic shape at room temperature in absence of any 

mechanical stress; this phenomenon, called “Low Temperature Degradation 

(LTD)” causes the aging of zirconia with a decrease of its physical properties 

and a potential risk of spontaneous, catastrophic failures. Since LTD can be 

accelerated by mechanical stress and wetness, it can be considered a kind of 

hydrothermal degradation. Furthermore,  

 

Computer Aided Design-Computer Aided Manufacturing (CAD-CAM) 

monolithic zirconia was developed to avoid the occurrence of fracture of the 

veneering ceramic (i.e. chipping). 

 

The present in vitro study aimed at investigating the influence of surface 

polishing, regeneration and aging on the phase transformation of monolithic 

zirconia by means of XRD analysis. 

The null hypothesis stated that there was no association between surface 

polishing, regeneration procedures and aging on the monoclinic phase content of 
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3Y-TZP.   

 

Materials and Methods 

Thirty CAD-CAM monolithic zirconia copings were used in the study. The 

copings were designed as circular truncated cones according to the average 

dimensions of maxillary premolars (height: 7 mm, diameter: 8 mm); they were 

milled with a thickness of 0.5 mm flat occlusal surfaces and a total occlusal 

convergence of 10°.  

The specimens were divided into 3 experimental groups of 10 copings each 

according to the constitutive 3Y-TZP material and manufacturing system, as 

follows: 

- Group 1 (n=10): Nobel Procera Zirconia (Nobel Biocare Management AG, 

Zurich-Flughafen, Switzerland); 

- Group 2 (n=10): Lava Classic (3M ESPE, Seefeld, Germany); 

- Group 3 (n=10): Lava Plus (3M ESPE). 

The occlusal surface of each coping was ideally divided in half and 2 different 

test areas, one per half, were univocally identified by means of an arbitrary 

coordinate reference system used in all the subsequent experimental analyses; 

similarly, a control area was identified on the axial wall of each specimen. The 

copings were spatially oriented by means of aluminium holders provided with a 

notch, used to reposition the samples in both the SEM and the XRD analyzer. 

Before performing the experimental analyses, the test and control areas of all the 
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samples were subjected to light microscopy inspections, in order to record the 

morphological surface characteristics and identify any dishomogeneous area due 

to the CAM fabrication procedures. Moreover, an environmental SEM was used 

to analyze the microstructure and grain size of each specimen. Finally, each 

coping was subjected to XRD analysis, in order to assess the monoclinic phase 

content (vol%). 

Then, the occlusal surfaces of all the specimens were ground by an experienced 

prosthodontist under stereomicroscope (10x) with medium grit diamond burs 

mounted on a high speed handpiece under constant water cooling; grinding was 

performed with minimal hand pressure for 5 seconds. Subsequently, half of the 

occlusal surface of each coping was polished with coarse, medium and fine grit 

diamond impregnated rubber polishers according to the manufacturer’s 

instructions; the polishing was considered completed when high luster was 

achieved. 

All the samples were thoroughly cleaned in an ultrasonic bath with ethanol for 

10 minutes and dried in a vacuum desiccator. 

At this time, each experimental group was divided into 2 subgroups and half of 

the specimens were subjected to a regeneration process, as follows: 

- Subgroup 1A (n=5): Nobel Procera Zirconia regenerated; 

- Subgroup 1B (n=5): Nobel Procera Zirconia not regenerated;  

- Subgroup 2A (n=5): Lava Classic regenerated; 

- Subgroup 2B (n=5): Lava Classic not regenerated; 
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- Subgroup 3A (n=5): Lava Plus regenerated; 

- Subgroup 3B (n=5): Lava Plus not regenerated. 

The regeneration firing at 1200°C for 1h was intended to restore the tetragonal 

phase of zirconia before artificial aging; the not regenerated and the regenerated 

samples were used as tests and controls respectively. 

At this time (T0), the test (i.e. ground vs polished) and control areas of all the 

copings were subjected to XRD analyses to quantify the monoclinic phase 

content (vol%) as previously described. 

Then, the samples underwent accelerated artificial aging in autoclave at 134°C 

for 2h (T1), 6h (T2), 18h (T3) and 54h (T4) to roughly simulate a reasonable 

lifespan of dental restorations. After each cycle of hydrothermal degradation, the 

test (i.e. ground vs polished) and control areas of all the copings were subjected 

to light microscopy and XRD analyses as previously described. The optical 

inspections allowed for a qualitative, morphological classification of the 

specimens on the basis of the presence or absence of detectable surface 

degradation. Differently, the XRD analyses allowed for a quantitative evaluation 

of tetragonal-to-monoclinic phase transformation of zirconia (vol%) after 

accelerated artificial aging. 

The recorded data were statistically analyzed with a dedicated software (IBM 

SPSS Statistics 24, IBM, Armonk, NY, USA). The Kolmogorov-Smirnov test 

was used to verify the normality of data distribution and the Levene’s test was 

performed to analyze group variances. The two-way ANOVA and the Tukey’s 
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post-hoc test for multiple comparisons were applied to strength data from the 

experimental groups in order to assess the significance of the effect of the 

factors “material”, “polishing” and “regeneration”, as well as of the interactions 

between these factors. In all the analyses, the level of significance was set at 

p<0.05.  

 

Fig. 1. SEM images showing the microstructure of Group1 
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Fig. 2. SEM images showing the microstructure of Group2 

 

 

Fig. 3. SEM images showing the microstructure of Group 3 
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Fig. 4. Sample analyzed surfaces 

 

Fig. 5. X-Ray diffraction  
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Results 

SAMPLE DESCRIPTION 
ARTIFICIAL AGING TIME 

T0 T1 (2h) T2 (6h) T3 (18h) T4 (54h) 

PROCERA 
ZIRCONIA 

Regenerated 0 0 0 0 0 

Not 
regenerated 0 0 0 0 20 

LAVA 
CLASSIC 

Regenerated 0 0 0 0 0 

Not 
regenerated 0 0 0 0 0 

LAVA PLUS 
Regenerated 0 0 0 0 0 

Not 
regenerated 0 0 0 0 0 

Table 1. Percentage of samples showing surface degradation 
 
 
 

SAMPLE DESCRIPTION 
ARTIFICIAL AGING TIME 

T0 T1 (2h) T2 (6h) T3 (18h) T4 (54h) 

PROCERA 
ZIRCONIA 

Ground 
Regenereted 0 0 2.65 13.91 38.09 

Not regenereted 0 8.33 13.51 15.8 33.62 

Polished 
Regenereted 0 0 4.74 14.3 35.35 

Not regenereted 0 3.74 4.23 9.61 21.03 

Control 
Regenereted 0 0.69 11.37 22.31 41.15 

Not regenereted 0 9.63 21.38 33.51 42.1 

 

LAVA 
CLASSIC 

Ground 
Regenereted 0 0 0 7.44 28.49 

Not regenereted 0 5.58 10.68 19.22 35.56 

Polished 
Regenereted 0 0 1.65 12.45 31.72 

Not regenereted 0 1.12 4.65 12.18 24.12 

Control 
Regenereted 0 0 12.69 26.44 38.89 

Not regenereted 0 9.38 17.78 29.93 41.55 

 

LAVA 
PLUS 

Ground 
Regenereted 0 0 0 0 8.57 

Not regenereted 0 3.52 5.53 13.4 29.95 

Polished 
Regenereted 0 0 0 1.05 13.01 

Not regenereted 0 0 0.86 6.51 17.1 

Control 
Regenereted 0 0 0 3.16 30.02 

Not regenereted 0 0 1.72 18.6 41.91 

Table 2.vol% tetragonal-to-monoclinic phase transformation of zirconia samples 
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 Fig. 6. Evolution of the monoclinic content (vol%) measured by XRD after 
artificial aging on Control surfaces 
 
 
 
 
 
 

Fig. 7. Evolution of the monoclinic content (vol%) measured by XRD after 
artificial aging on Ground surfaces 
 

T1	 T2	
T3	

T4	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

 T0 

1A 
1B 
2A 
2B 
3A 
3B 

T1	 T2	 T3	

T4	

0	

5	

10	

15	

20	

25	

30	

35	

40	

 T0	

1A 
1B 
2A 
2B 
3A 
3B 



 162 

 

Fig. 8. Evolution of the monoclinic content (vol%) measured by XRD after 
artificial aging on Polish surfaces 
 
 
 
 

 
Fig. 9. Differential interference contrast illumination (DIC) microscopy 
(Nomarsky contrast) images showing the distribution of degradation and its 
relation with the presence of scratches and polished areas after artificial aging 
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Discussion 

The literature indicate that procedures to adjust the zirconia surface, such as 

grinding or polishing, can induce superficial modifications, damage, and phase 

transformation from the tetragonal (t) to the monoclinic (m) phase (Karakoca 

and Yilmaz, 2009, Maerten et al., 2013 and Pereira et al., 2016a). 

 

Conclusion  

Commercial zirconia with small grain size can be recommended to hinder the 

hydrothermal degradation, as well as a regeneration process after the last 

superficial treatment. Control, ground and polished surfaces showed similar 

phase characteristics and behavior. 
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4.1.2.3.2 In vitro aging and mechanical properties of translucent monolithic 

zirconia.  

Leone R., Sorrentino R., Camposilvan E., Chevalier J., Zarone F., Ferrari 

M. Dental Materials, 2016. 

 

Introduction 

Restorative dentristry has been experiencing in the recent years a progressive 

shift from the use of metal-ceramic solutions to fully ceramic dental crowns, 

bridges and fixed-partial dentures. Among ceramic materials, zirconia has 

become the state-of-the-art, due to its excellent mechanical properties and good 

aesthetics thanks to the white color. Especially in terms of strength, zirconia is 

the only single-oxide ceramic that guarantees values above 1GPa in flexure, 

allowing the design of thin walled restorations. These restorations are normally 

shaped from pre-sintered milling blocks by CAD-CAM technology, which gives 

good results in terms of dimensional accuracy and absence of defects of the final 

piece. 

Nonetheless, when zirconia was introduced in the market, its opacity obliged 

dental technicians to apply several layers of veneering ceramics in order to 

increase the superficial translucency and so improve the aesthetics. Other more 

translucent full-ceramic materials, based on the glass-ceramic systems Lithium 

Disilicate or Leucite (revise) became therefore a competitive alternative to 

zirconia especially for front teeth. Even if these materials have a strength much 
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lower than zirconia (approximately 400 MPa), they can be placed without 

veneering, so offering a comparable performance for the same wall thickness. 

Finally, novel zirconia grades have been developed in the last years, offering 

better resistance to hydrothermal degradation, improved sinterability and higher 

translucency. Moreover, some of the pre-sintered blocks are pre-shaded in 

several tonalities and even multilayered with a gradient of chroma or 

translucency. The restorations made with such materials can be placed either 

without coating or with a thin glaze layer also in visible regions, allowing 

reducing the wall thickness.  

Tetragonal zirconia exhibit moderate translucency due to residual porosity and 

to the effect of birefringence: since the refractive index n is different along the 

main crystal axes, both reflection and refraction occur at grain boundaries, so the 

light loses coherence leading to a reduction of the light transmittance [1], [2]. 

 

High translucency in zirconia can be pursued with several strategies: a) reducing 

the residual porosity, for example when adding a glassy phase or some sintering 

additives, b) refining the microstructure so that grain boundaries do not interfere 

with light, c) increasing considerably the grain size so to have less grain 

boundaries, and d) introducing significant amounts of cubic phase, which is 

optically isotropic and do not induce birefringence [1]. Indeed, these variations 

imply substantial changes in the performance of zirconia. To understand how the 

translucency challenge is tackled in actual materials, the microstructural 
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characteristics and phase composition of monolithic crowns with different 

degrees of translucency are explored in this work. 

 

The zirconia grade with 3 mol% of yttria (3Y-TZP) is known to be susceptible 

to hydrothermal degradation, a superficial aging phenomenon that may take 

place, depending on microstructure, composition and stress state, when the 

surface is exposed to humid environment and moderate temperatures, including 

those found in the human body [3]. This slow process is triggered by the 

diffusion into the zirconia lattice of water species, which destabilize the 

tetragonal phase, allowing the formation of monoclinic (Laths-twins) on the 

surface through a nucleation-and-growth mechanism. After the degradation has 

progressed on the whole surface, it starts slowly to propagate into subsuperficial 

regions towards the bulk of the piece [4]. 

The result is a microcracked layer, with the formation of uplifts on the surface 

and eventually grain pull out, with a progressive loss in contact mechanical 

properties such as hardness, wear and scratch resistance [5]–[7]. It should be 

underlined here that hydrothermal degradation only interests a thin layer of few 

micrometers in well densified bodies, leading to a very slight change in the 

mechanical strength [8]. The situation might be different in presence of cyclic 

contact loading, for example associated to mastication, where the effects of 

concentrated stresses and aging overlap. 

In non-glazed monolithic crowns the surface is exposed to saliva, food and 
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moderate temperatures, so there is the potential risk for hydrothermal 

degradation. One open question is whether materials that are currently employed 

are still suffering from this phenomenon and, if so, whether it may lead to a 

substantial reduction of the reliability or surface state in dental restorations. 

These subjects are treated in our work, which compares both the aging behavior 

and the mechanical properties of zirconia materials of different translucency 

currently employed in the elaboration of monolithic dental crowns. Special 

emphasis is given to novel “cubic” highly-translucent dental crowns, which have 

a short clinical history and for which the aging behavior has not been assessed 

yet. Moreover, their transformability must be substantially different than in 

conventional 3Y-TZP. Results are interpreted taking into account the observed 

differences in microstructure and phase composition. 

In the case of glazed monolithic crowns, the role of glazes with respect to 

hydrothermal degradation is still unknown to our knowledge, so this will be 

another topic of our study. Nonetheless, even if the surface is coated, some 

regions can be accidentally left unglazed during the procedure (which is 

manually performed), or may become exposed after chipping or grinding due to 

chairside manual adjustments. This is especially true in the marginal area, which 

is the most delicate region in the dental crown, as it is shown in Fig. 1., where 

some chipping is observed, as well as unglazed spots that have been studied in 

detail by FIB observations. 
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Fig. 1. SEM image and FIB study of marginal region of a dental crown retrieved 
after in-vivo fracture. Some chipping can be observed in the marginal region, as 
well as unglazed zones, as confirmed by the FIB trench in A). In B), a detail of 
the subsuperficial microstructure is shown, observing the presence of defects 
and debris induced by the roughening process and a ~1.5 um thick recrystallized 
layer. 

 

Experimental 

Four different zirconia materials were studied: one conventional grade “Aadva 

ST” (Standard Translucency – ST group), one with improved translucency 

“Aadva EI” (Enamel Intensive – EI group), one highly translucent and partially 

cubic “Aadva NT” (Natural Translucent – NT group) (Aadva, GC Tech, Leuven, 

Belgium) and one higly translucent, partially cubic and multi-layered in chroma 

“Katana UTML” (Ultra Translucent Multi Layered – ML group, Kuraray 
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Noritake Dental Inc., Aichi, Japan). 2 full-contour molar crowns preforms were 

milled by CAD-CAM technology from the pre-sintered 98.5 mm disks of each 

material. The preforms were sintered according to the manufacturer’s 

specification, as summarized in Table 1. The outer surface was split into 2 

halves, each comprising 1 supporting and 1 chewing cusp; one half was glazed 

(~10-100 µm), while the other half was left uncoated. Two different glazes were 

used: CeraFusion, based on Lithium disilicate (Komet) which was fired at 

1005°C during 15’, and the Magic Glaze Flu(Wieland Zenostar, Ivoclar 

Vivadent) which was fired at 1005°C during 15’. Similarly, 20 disks 1.5 mm in 

thickness and 12 mm in diameter were prepared from each material and mirror 

polished with conventional ceramic procedures. 

Table1. Summary of specimens’ preparation procedures. 

Label Commercial 
name Cathegory 

Y2O3 
content 
(mol%) 

Al2O3 
content 
(wt%) 

Heating Hold Cooling 

ST Aadva ST Full-strength 3 0.2 8°C/min to 
1000°C + 1.9 

°C/min to 
1450°C 

2 h 8°/min to 
Tamb EI Aadva EI Enhanced 

translucency 3 0.05 

NT Aadva NT High 
translucency 5.5 traces ? ? ? 

ML Katana 
UTML 

High 
translucency 
multy-layered 

5.5 traces 10°C/min to 
1550°C 2 h 10°C/min 

to Tamb 

 
The microstructure was analyzed by scanning electron microscopy (SEM) after 

thermal etching at 1200°C, 1h. 10°-75° 2theta X-ray diffraction (XRD) patterns 

were collected from polished disks to quantify the phase composition by 
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Rietvield analysis employing the software Topaz. 26°-33° and 53°-65° 2theta 

XRD scans were performed at level of the outer surface of crowns (both glazed 

and non-glazed) at time 0 and after 2, 6, 18, 54 hours of artificial aging in 

autoclave (134°C at 2 bars steam pressure). The surface monoclinic content was 

quantified by measuring the intensity of selected peaks and applying the formula 

of Toraya et al. [9]  

Total transmittance (Tt%) and Contrast Ratio (CR) were measured by a 

spectrophotometer (Jasco Y-670, France) as measures of the optical properties. 

The CR gives an indication of the opacity and is the ratio between the luminous 

reflectance of a specimen over a black background to that over a white 

background of a known reflectance. CR ranges 

from 0 (total translucency) to 1 (total opacity) [10]. The values measured at 555 

nm wavelength were chosen to compare the different materials, according to the 

definition of the International Commission on Illumination [11]. 

Half of the disks were subjected to artificial degradation for 18 hours, in order to 

reproduce a reasonable lifespan of a dental crown. We remind that, according to 

the activation energy of the hydrothermal degradation process measured on 

typical zirconia materials, 1 hour in autoclave at 134 °C corresponds roughly to 

1 to 3 years at the human body temperature [4]. 

Biaxial strength was measured by means of piston-on-three-balls strength tests, 

using 10 disks per group. Indentation fracture (IF) toughness and hardness tests 

were performed on polished disk surfaces by using a Vickers indenter and a load 
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of 10 Kg, applied. The IF toughness values were calculated from the surface 

length of the cracks developing at the corners of Vickers indent using the 

Niihara formula [12].  

The results were treated statistically with one-way analysis of variance 

(ANOVA) with a Tukey post-hoc test, employing the software Minitab. p-value 

was set at 0.05. Mean values plus standard deviations are presented in the 

results, while letters on the carts charts indicate the statistically significant 

differences. 

Focused Ion Beam (nVision40 dual beam station - Carl Zeiss AG, Germany) 

was employed to cut and polish a trench in the border between a glazed area and 

a non-glazed spot of selected aged samples, after depositing a strip of protective 

Carbon. The subsurface microstructure was then observed by SEM, obtaining 

secondary electron (SE) and backscattered images. 

 

Results 

 

SEM images of the samples microstructure after sintering are shown in Fig. 2. 

The grain size, measured by the intercept method, is reported in Table 2. ST 

shows a classical grain 3Y-TZP grain size of 0.5 µm, while this value is slightly 

reduced in EI. Both microstructures are quite homogenous, while a bimodal 

appearance is found in the highly translucent materials, especially for NT. 

Moreover, the grain size is much bigger, especially in ML. 
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Fig. 2. SEM images showing the microstructure of the 4 materials studied. From 
a) to d): ST, EI, NT, ML.  
 
 

 

Table 1 : Grain size, phase analysis after Rietvield refinement and Optical 
properties (CR and Tt%) for the four materials 

Grade Grain	Size	(µm) Group Tetrag.	(%) Cubic	(%) CR Tt% 

ST 500±35 a 76.8 23.2 0.74±0.01 36.9±0.15 

EI 400±20 b 80.3 19.7 0.70±0.01 38.4±0.07 

NT 980±40 c 67.8 32.2 0.62±0.01 43.4±0.13 

ML 1800±580 d 68.9 31.1 0.69±0.01 36.0±0.07 
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Fig. 3. XRD representative patterns of the materials studied 
 

 
Fig. 4. Biaxial strength before and after 18 h artificial aging for the four 
materials studied are reported in a), where the suffix “–A” indicates aged 
materials. Hardness and IF toughness values are shown in b) and c), 
respectively. Letters indicate statistically significant differences. 
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The biaxial strength of cubic crowns were definitely lower than for tetragonal 

ones, as shown in Fig. 4. ST exhibit strength values well above 1000 MPa, while 

EI shows slightly lower values. For NT and EI the strength is similar, around 

450 MPa. 

Hardness was similar for the four materials tested, observing minor differences 

of less than 0.5 GPa. In order of increasing hardness we find ST, EI, ML, NT. IF 

toughness was similar between ST and EI (~4.7 MPa√m) and between NT and 

ML (~3.8 MPa√m) 

The results of aging tests are reported in Fig. 5. 

Indeed, NT and ML are fully resistant to hydrothermal degradation for the aging 

times applied here. One second observation is that tetragonal materials suffer 

from the aging phenomenon, starting also from very short aging times (2h). EI is 

aging faster than ST until 18h of exposure, while they reach similar values at 

54h. 

The biaxial strength did not show any variation after 18 h of artificial aging for 

ST, NT and ML materials. Results suggest a slight increase (even if not 

statistically significant) for EI samples. 
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Fig. 5. Evolution of the monoclinic content measured by XRD after artificial 
aging. 

 

Diffraction patterns taken from the glazed side of dental crowns were readable 

and allowed to measure the amount of monoclinic phase, since X-rays could 

penetrate through the glaze layer and reach zirconia surface. No monoclinic 

phase was found both for CeraFusion and MagicGlaze Flu types, except for 

some isolated cases. Optical observations revealed that in these cases a 

significant portion of the surface was left unglazed, as it is shown in Fig. 6. The 

subsurface around some unglazed spots was therefore studied by FIB as shown 

in Fig. 7, where SEM analysis revealed that aging progressed from the exposed 

spot both towards the bulk and the sides, in a hemispherical volume of radius 

~16 µm. 
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Fig. 6. Optical images of monolithic dental crowns, showing the presence of partially-glazed 
regions 
 
 

 
Fig. 7. FIB study of an unglazed spot in the area close to the margin of an EI monolithic 
crown. The spot is visible to the left of the trench in C), where the presence of glaze is also 
recognizable by the darker color with respect to the zirconia surface. By imaging the FIB 
trench with backscattered electrons, the transformed volume around the spot becomes clearly 
visible in D). Unaffected microstructure is observable on the right of the trench, well below 
the glazed region. Arrows indicate the direction of spreading of the degradation from the spot. 
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Discussion 

 

Microstructure, composition & translucency 

Important differences are found in terms of microstructure for the materials 

studied. The first reason is indeed the yttria content, which is much higher in NT 

and ML (5.5 mol%) with respect to ST and EI (3 mol%). These additions allows 

to obtain a combined tetragonal-cubic microstructure where the translucency 

improvement is twofold: cubic grains do no exhibit birefringence since they are 

optically isotropic, and being the tetragonal grains supersaturated in yttria, their 

tetragonality is reduced and so the refractive index and the amount of 

birefringence [1]. While the addition of yttria tends normally to reduce the grain 

size with respect to pure zirconia, once cubic phase is nucleated, grain growth is 

boosted as shown by the micrographs of FIG 2.  

 

Moreover, there is a difference in grain size and distribution between ML and 

NT, which can be attributed to the different sintering protocols. Their CR and 

Tt% is significantly different, probably in relation to the presence of a chroma 

gradient in ML, as it was shown for colored and non-colored 3Y-TZP [13]. 

Having ST and EI similar amount of yttria, there is only a slight difference in 

grain size, which is smaller for EI, and in composition. Therefore, the observed 

substantial difference in CR and Tt% is justified by the absence of second 
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phases (Al2O3) and smaller grains for EI. Alumina grains are randomly present 

in ST, like in standard 3Y-TZP, due to the fact that tetragonal zirconia is 

supersaturated in alumina to improve its aging behavior [14]. A reduction of the 

residual porosity might also justify the better optical properties for EI. In fact, 

light scattering is greatly affected by the residual porosity, where only some 

fractions % can lead to an opaque material, if the pores are bigger than approx. 

50 nm[15]. 

 

Indeed, the translucency of all the materials studied here is still below the one of 

enamel (CR ~ 0.45) and only comparable to the one of dentine (CR ~ 0.65) for 

the highly translucent ones. According to the classification introduced by Vichi 

et al. [16], these materials can be classified as “low-translucent” (ST) and 

“medium-translucent” (EI, NT, ML), and their application as monolithic crowns 

in aesthetic frontal areas may find some limitations also for the NT and ML. 

 

XRD patterns in Fig. 3 show substantial differences between ST, EI and NT, 

ML. For the first two materials, the spectra are quite similar, with a strong 

tetragonal component, as indicated by the presence of several tetragonal 

doublets. Similar spectra are found also among NT and ML, this time with a 

strong cubic component. After Rietveld refinement, it was shown that all the 

materials are composed by a mixture of cubic and tetragonal phases, where 

approximately 50% of cubic phase is found in highly translucent crowns, and 
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about 30% is found both in ST and EI materials. 

 

Aging behavior 

The first striking evidence is that highly translucent zirconia with mixed 

tetragonal, cubic composition and 5.5 mol% yttria do not suffer from 

hydrothermal degradation even after 54 h of artificial aging. It can therefore be 

stated that these materials are fully resistant to aging in in vitro conditions and 

no external load applied. This imply that the tetragonal phase must be 

supersaturated in yttria with respect to 3Y-TZP, and so less transformable. The 

presence of an intrinsically non-transformable cubic matrix may also help in 

hindering the aging process. This is true for the thermal treatments applied here, 

while a similar behavior cannot be assured for longer sintering times or higher 

temperatures. In fact, the enhanced diffusion process in the latter case would 

promote a more complete separation of tetragonal and cubic phases, the cubic 

volume fraction would increase, absorbing yttium from the tetragonal phase, 

which would become less stable, and, eventually, transformable [17]–[19]. 

Another important point to underline is that hydrothermal degradation was 

observed in ST and EI starting from very short aging times (2h). Indeed, 3Y-

TZP used nowadays in dentistry are still susceptible to aging when prepared in 

clinical conditions and cannot offer high aging resistance. Having EI smaller 

grain size than ST, a slower aging process is expected. [20] Nonetheless, the 

observed kinetics is faster for EI, which imply that the effect of alumina addition 
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is more important than the difference in grain size, as shown in Refs. [14], [21]. 

Very little dispersion was observed in terms of Vm% among different samples of 

the same group, indicating that CAD-CAM processing induce a highly 

comparable surface state for what concerns hydrothermal degradation. 

It was proven that glazing 3Y-TZP effectively protects it against aging for both 

the glazes examined here and even for glazing thicknesses of few micrometers 

and 54h of exposure. On the other hand, it was observed that a perfect glazing, 

coating 100 % of the surface, is practically impossible to obtain. This can be the 

result of: a) insufficient coverage during the glaze precursor application, 

especially for glazes that are applied by spray, which tend to leave some 

unglazed spots; b) impossibility of glaze application on the marginal edge; c) 

chipping of the glaze in the marginal area; d) chairside adjustments made by the 

dentist before placing the crown. Therefore, if the material is susceptible to 

hydrothermal degradation, after glazing it will inevitably undergo the aging 

process in some localize areas, as it has been demonstrated by the FIB-SEM 

study summarized in Fig. 7. Aging will spread from the non-glazed spot in 

radial direction, both towards the bulk and adjacent surface regions, so also 

below the glazed areas. The study was performed on an EI sample at 54 h 

exposure, so the one aging faster after the more severe aging treatment, but we 

can expect qualitatively similar results for other 3Y-TZP grades. The first 

implication of this process is that we can expect to create subsurface 

microcracking and damage under the glaze, which may result in a proneness to 
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chipping due to the poor strength of degraded zirconia especially when a tensile 

load is applied perpendicularly to the surface (separation load) [22]. This would, 

in turn, extend the unglazed spot, exposing neighboring areas to a similar 

phenomenon. A second implication is that this process creates damaged 

localized spots instead of a uniform degraded layer. While in the case of 

polished-and-aged zirconia the mechanical strength of 3Y-TZP is only slightly 

reduced after long and severe hydrothermal exposure [8], the presence of these 

microcracked spots could lead to stress concentrations, which might have 

critical consequences especially in the marginal area. Therefore, even if it was 

shown that the glaze serves as a protection for the surface beneath, its 

application cannot improve the crown aging resistance if considered as a whole. 

 

Mechanical properties 

The observed slight variations of hardness can be attributed to variations of 

microstructure and phase composition. It is well known from the Hall-Petch 

relation that, for the same composition, the smaller the grain size, the harder the 

material, as it happens for EI with respect to ST. NT is even harder due to the 

high amount of cubic phase, which is harder than the tetragonal [23]. ML has a 

lower hardness with respect to NT due to the bigger grain size, being the cubic 

phase content approximately equal for both. 

Important differences were registered in terms of biaxial strength, showing that 

ST and EI are at least twice as strong as NT and ML, implicating a dramatic 
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difference between full-strength and last generation highly-translucent zirconias. 

This proves that the tetragonal phase in NT and ML is overstabilized, having 

insufficient transformability for inducing the beneficial effects of the 

transformation toughening process. Therefore, in these materials the final 

strength is determined mainly by the size of defects present in the microstructure 

and the intrinsic fracture toughness of zirconia. Anyhow, it is surprising that 

both NT and ML have practically the same strength values. Given that the grain 

size is quite different, one should expect lower strength for bigger grains since 

grain size and defect size are normally associated. On the other hand, the 

decrease of strength might be compensated in ML as a consequence of a 

toughening mechanism mediated by crack deflection, which is also more 

important for bigger grains. The main conclusion is that, with these novel 

materials, the flexural strength and the transformation toughening unique to 

zirconia have been sacrificed in name of aesthetics. The biaxial strength for 

highly translucent zirconias is just little better than for the best glass-ceramics 

available on the market, which are indeed more translucent [REF], so the choice 

of these materials for producing dental crowns is not obvious. Therefore, it is 

important for the dentist to avoid expecting a similar mechanical performance 

from both opaque and translucent zirconias. On the other hand, both ST and EI 

fulfill the requirements for dental ceramics capable of supporting 4 and more 

unit, even though the biaxial strength is slightly lower for EI. This evidence 

might be explained by the fact that smaller grain size means normally lower 
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transformability. So EI is less mechanically transformable but more susceptible 

to hydrothermal degradation than EI. 

As expected, after 18h of aging exposure, NT and ML did not show any strength 

variation, since no aging took place for these materials. The situation is different 

for ST and EI: as demonstrated, they are both susceptible to aging, with ~37 

Vm% and ~46 Vm%, respectively, recorded at 18h exposure. Anyway, no 

strength variation was recorded for ST after aging, while a slight strength 

increase was measured for EI. This variation can have two possible 

justifications: a) the aged layer induces some degree of “tip blunting” for the 

biggest defects/cracks naturally present in the material: in this case, either the 

defects of EI are different in nature than the ones of ST and so more responsive 

to the blunting effect (bigger, sharper), or the higher amount of monoclinic 

phase in EI induces a deeper blunting effect; b) since aging has progressed 

deeper in EI, the compressive layer which normally accompanies the 

degradation process in the transition zone between degraded and non-degraded 

material is placed close to the critical defects tip, inducing a reduction in their 

stress-intensity factor. This thickness can be estimated in approximately 10-15 

µm by considering standard fracture mechanics solutions for surface cracks and 

a failure stress of 1000-1200 MPa. We can expect therefore to not observe the 

strength increase for longer and shorter aging exposures, since the compressive 

layer would be placed deeper or less deep, respectively, than the defects tip. 

In both cases, the degraded layer after 18h artificial aging is not thicker than the 
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critical defects, since there no strength decrease was recorded. 

IF toughness results support the above discussion, indicating sensibly lower 

values for NT and ML with respect to ST and EI. This difference can be 

interpreted as lower transformability for the highly translucent materials. On the 

other hand, similar results were found for ST and EI, so the difference in biaxial 

strength among the two groups may be not imputable to a different 

transformability. Nonetheless, we prefer not to speculate further on this aspect 

due to the intrinsic limitations of the IF toughness test and its precision. 

 

Clinical implications 

Some concerns surround the application of zirconia in dentistry due to the 

possibility for hydrothermal degradation. We have shown that hydrothermal 

degradation takes place in state-of-the-art materials prepared clinically and 

shaped as normal dental crowns. We have also shown that this phenomenon is 

not detrimental for strength even after long exposures, at least in vitro. Even if 

the possibility of a much more severe – and maybe localized – aging process 

when cyclic contact load is applied remains still an open question, these results 

should reassure dentists and patients about the use of zirconia. Future studies 

implying zirconia crowns retrieved from in vivo patients may give an answer to 

this question. 

On the other hand, the use of highly-translucent non-transformable zirconia 

materials should be done carefully. If it is true that these materials are more 
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aesthetic and do not suffer from in vivo hydrothermal degradation, their 

toughness and strength is dramatically lower than in 3Y-TZP. Therefore, 

manipulation and crown preparation should be done carefully, avoiding thin 

walls and the presence of sharp edges as much as possible. Having similar 

mechanical strength as for lithium disilicate glass-geramics, the latter may also 

be evaluated as an alternative when considering the use of these materials.  

The glaze does not represent a real protection against aging, so it should be 

considered only for aesthetical purposes. 

 

Conclusion 

In tetragonal zirconia monolithic crowns, hydrothermal degradation can be 

observed also for short aging times, while the glaze act as a protective layer 

against it. The effect of glaze is protective for the zirconia underneath, 

nonetheless this is generally not beneficial since some regions are always left 

unglazed, especially in the marginal regions. 

The presence of cubic phase in highly translucent materials entails two main 

advantages, a sensible increase in translucency and the complete absence of 

hydrothermal degradation. On the other hand, the lack of transformation 

toughening for cubic zirconia and the coarser microstructure cause a severe drop 

in mechanical properties, which can represent a limitation for their application in 

conditions where high mechanical stresses are applied. 



 186 

References 

[1] Y. Zhang, “Making yttria-stabilized tetragonal zirconia translucent,” Dent. 
Mater., vol. 30, no. 10, pp. 1195–1203, 2014. 

[2] J. Klimke, M. Trunec, and A. Krell, “Transparent tetragonal yttria-
stabilized zirconia ceramics: Influence of scattering caused by 
birefringence,” J. Am. Ceram. Soc., vol. 94, no. 6, pp. 1850–1858, 2011. 

[3] I. C. Clarke, M. Manaka, D. D. Green, P. Williams, G. Pezzotti, Y.-H. Kim, 
M. Ries, N. Sugano, L. Sedel, C. Delauney, B. Ben Nissan, T. Donaldson, 
and G. a Gustafson, “Current status of zirconia used in total hip implants.,” 
J. Bone Joint Surg. Am., vol. 85–A Suppl, pp. 73–84, Jan. 2003. 

[4] J. Chevalier, B. Cales, and J. M. Drouin, “Low-Temperature Aging of Y-
TZP Ceramics,” J. Am. Ceram. Soc., vol. 82, no. 8, pp. 2150–2154, 1999. 

[5] Y. Gaillard, E. Jiménez-Piqué, F. Soldera, F. Mücklich, and M. Anglada, 
“Quantification of hydrothermal degradation in zirconia by 
nanoindentation,” Acta Mater., vol. 56, no. 16, pp. 4206–4216, Sep. 2008. 

[6] F. G. Marro, R. K. Chintapalli, P. Hvizdoš, F. Soldera, F. Mücklich, and M. 
Anglada, “Study of near surface changes in yttria-doped tetragonal 
zirconia after low temperature degradation,” Int. J. Mat. Res., vol. 100, pp. 
92–96, 2009. 

[7] K. Haraguchi, N. Sugano, T. Nishii, H. Miki, K. Oka, and H. Yoshikawa, 
“Phase transformation of a zirconia ceramic head after total hip 
arthroplasty.,” J. Bone Joint Surg. Br., vol. 83, no. 7, pp. 996–1000, 2001. 

[8] F. G. Marro,  a. Mestra, and M. Anglada, “Weibull strength statistics of 
hydrothermally aged 3 mol% yttria-stabilised tetragonal zirconia,” Ceram. 
Int., vol. 40, no. 8 PART B, pp. 12777–12782, 2014. 

[9] H. Toraya, M. Yoshimura, and S. Somiya, “Calibration Curve for 
Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-
Ray Diffraction,” J. Am. Ceram. Soc., vol. 67, no. 6, p. C-119-C-121, 
1984. 

[10] J. M. Powers, J. Dennison, and P. Lepeak, “Parameters that affect the color 
of denture resins.,” J. Dent. Res., vol. 56, no. 11, pp. 1331–1335, 1978. 

[11] “CIE S 017/E:2011. International Lighting Vocabulary,” Vienna, 2011. 

[12] K. Niihara, “A fracture mechanics analysis of indentation-induced 
Palmqvist crack in ceramics,” J. Mater. Sci. Lett., vol. 2, no. 5, pp. 221–
223, 1983. 

[13] O. E. Pecho, R. Ghinea, A. M. Ionescu, J. C. Cardona, A. Della Bona, and 



 187 

M. Del Mar Pérez, “Optical behavior of dental zirconia and dentin 
analyzed by Kubelka-Munk theory,” Dent. Mater., vol. 31, no. 1, pp. 60–
67, 2015. 

[14] H. Tsubakino, K. Sonoda, and R. Nozato, “Martensite transformation 
behaviour during isothermal ageing in partially stabilized zirconia with 
and without alumina addition,” J. Mater. Sci. Lett., vol. 12, pp. 196–198, 
1993. 

[15] U. Anselmi-Tamburini, J. N. Woolman, and Z. A. Munir, “Transparent 
nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed 
electric current sintering,” Adv. Funct. Mater., vol. 17, no. 16, pp. 3267–
3273, 2007. 

[16] A. Vichi, M. Carrabba, R. Paravina, and M. Ferrari, “Translucency of 
ceramic materials for CEREC CAD/CAM system,” J. Esthet. Restor. 
Dent., vol. 26, no. 4, pp. 224–231, 2014. 

[17] M. Inokoshi, F. Zhang, J. De Munck, S. Minakuchi, I. Naert, J. Vleugels, 
B. Van Meerbeek, and K. Vanmeensel, “Influence of sintering conditions 
on low-temperature degradation of dental zirconia.,” Dent. Mater., vol. 30, 
no. 6, pp. 669–78, Jun. 2014. 

[18] J. Chevalier, S. Deville, E. Münch, R. Jullian, and F. Lair, “Critical effect 
of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for 
hip replacement prosthesis.,” Biomaterials, vol. 25, no. 24, pp. 5539–45, 
Nov. 2004. 

[19] K. Matsui, H. Horikoshi, N. Ohmichi, M. Ohgai, H. Yoshida, and Y. 
Ikuhara, “Cubic-Formation and Grain-Growth Mechanisms in Tetragonal 
Zirconia Polycrystal,” J. Am. Ceram. Soc., vol. 86, no. 8, pp. 1401–1408, 
Aug. 2003. 

[20] P. F. Becher and M. V. Swain, “Grain-Size-Dependent Transformation 
Behavior in Polycrystalline Tetragonal Zirconia,” J. Am. Ceram. Soc., vol. 
75, no. 3, pp. 493–502, 1992. 

[21] F. Zhang, K. Vanmeensel, M. Inokoshi, M. Batuk, J. Hadermann, B. Van 
Meerbeek, I. Naert, and J. Vleugels, “Critical influence of alumina content 
on the low temperature degradation of 2-3mol% yttria-stabilized TZP for 
dental restorations,” J. Eur. Ceram. Soc., vol. 35, no. 2, pp. 741–750, 
2015. 

[22] E. Camposilvan, O. Torrents, and M. Anglada, “Small-scale mechanical 
behavior of zirconia,” Acta Mater., vol. 80, pp. 239–249, Nov. 2014. 

[23] Y. Gaillard, M. Anglada, and E. Jiménez-Piqué, “Nanoindentation of yttria-
doped zirconia: Effect of crystallographic structure on deformation 



 188 

mechanisms,” J. Mater. Res., vol. 24, no. 3, pp. 719–727, 2009. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 189 

Conclusions 

Digital technology is advancing rapidly in dentistry. Computers are making 

what were previously manual tasks easier, faster, cheaper and more predictable. 

Layered manufacturing processes can produce complex shapes at affordable 

prices with little or no waste. The challenge for the dental materials research 

community is to mach the new technology with materials that are suitable for 

use in dentistry. This can potentially take dental materials research in a totally 

different direction.  

The new generation of ceramic materials presents interesting options, both in 

terms of material selection and in terms of fabrication techniques. A closer 

understanding of the dynamics of the materials with respect to design of the 

restoration and the intended use is required to enable these restorations to 

perform productively. 
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