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Purpose: This study aimed to improve the prediction accuracy of age at peak height velocity (APHV) from
anthropometric assessment using nonlinear models and a maturity ratio rather than a maturity offset.Methods:
The dataset used to develop the original prediction equations was used to test a new prediction model, utilizing
the maturity ratio and a polynomial prediction equation. This model was then applied to a sample of male youth
academy soccer players (n = 1330) to validate the new model in youth athletes. Results: A new equation was
developed to estimate APHV more accurately than the original model (new model: Akaike information
criterion: −6062.1, R2 = 90.82%; original model: Akaike information criterion = 3048.7, R2 = 88.88%) within
a general population of boys, particularly with relatively high/low APHVs. This study has also highlighted the
successful application of the new model to estimate APHV using anthropometric variables in youth athletes,
thereby supporting the use of this model in sports talent identification and development. Conclusion: This
study argues that this newly developed equation should become standard practice for the estimation of maturity
from anthropometric variables in boys from both a general and an athletic population.
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Youth athletes are often grouped by their chrono-
logical age (CA) for training and competition purposes
(1). However, large interindividual discrepancies be-
tween the CA (years from birth) and the biological age
(BA; years from a maturation milestone) of individuals
exist. During the period surrounding the adolescent
growth spurt (±12 y in girls and ±14 y in boys),
individuals’ BA can differ by as much as 4 years
(31). These differences are particularly apparent around
the age at peak height velocity (APHV) and reflect the

large variations in the timing and tempo of growth
among individuals (15).

It is well known that physical dimensions influence
motor performance (12) and play an important role in the
success of individuals in sport (3,34). This is particularly
prevalent during adolescence when biological matura-
tion has been shown to affect physical performance in a
range of sports. In such sports, early maturing indivi-
duals mostly outperform their later maturing counter-
parts, except in sports where the body dimensions
associated with early maturation can be a disadvantage,
such as figure skating, gymnastics, and dancing (14,15).
This confounding influence of biological maturation on
performance in youth sports is of particular interest in
talent identification (21). Consequently, Vaeyens et al
(33) reported that failing to control for maturation
significantly confounds the identification of talented
athletes, especially in sports where anthropometrical and
physical fitness variables are strongly correlated with
successful performance outcomes.

There are numerous ways to assess an individual’s
biological maturation. The traditional clinical methods
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consist of assessing skeletal age through X-ray of the
wrist or the assessment of secondary sex characteristics
(15). When assessing skeletal age using X-ray techni-
ques, an X-ray image from the left wrist is used to
compare an individual’s bone and grades of skeletal
maturity indicators are combined to estimate skeletal age
that are then compared with reference data (4,10,30).
The assessment of sexual maturation uses the onset and
development of secondary sex characteristics (breasts,
genitals, and pubic hair) compared with reference
images. Both of these methods have been used exten-
sively in youth populations to classify individuals
according to their maturity status. However, these tech-
niques involve considerable exposure to radiation or
may be considered invasive in some cultures. Therefore,
more recently dual-energy X-ray absorptiometry has
been used as an alternative to the X-ray method (25)
as it only exposes participants to one-tenth of the
radiation dose (9) or about 0.001 mSv, with the average
human dose from background radiation at sea
level typically amounting to approximately 2.5 mSv per
annum (32). Furthermore, a self-observation technique
has been used as an alternative to the assessment
of sexual maturation by a physician (7,28). Hence,
it is clear that researchers have attempted to overcome
some of the ethical, medical, and logistical limitations
of traditional methods of assessing biological
maturation.

One increasingly common method for assessing
biological maturity is a noninvasive calculation of BA
using anthropometric measures that incorporates the
known proportionality in differences in leg and trunk
length growth (19). The rationale behind this method is
the known difference in timing between height, sitting
height, and leg length. Therefore, these authors (19)
argued that the changing relationship between these
variables over time provides a good base for the predic-
tion of APHV. This equation predicts the years from
APHV and terms this BA a “maturity offset” (years from
APHV) using measures of stature, bodymass, leg length,
sitting height, and CA to predict a maturity offset. Using
this predicted BA and the CA at time of measurement,
the APHV can be estimated. In the aforementioned study
(19), sex-specific prediction equations were developed
using a Canadian sample of 228 children (113 boys and
115 girls) between 4 years prior and three 3 years post
APHV and cross-validated using Canadian and Belgian
reference samples. The researchers emphasize that the
accuracy of the prediction equation involves an error of 1
year 95% of the time. However, they suggest that the
prediction of this maturity offset is only applicable in a
sample of youths between 10 and 18 years. Malina and
Koziel (16) attempted to validate this noninvasive meth-
od of predicting APHV in an external sample of Polish
boys between 8 and 18 years, but showed that there was a
systematic discrepancy between predicted and observed
APHV, where this value was underestimated at younger
ages and overestimated in the older age groups within
the study. These findings were consistent with the

limitations of the equation discussed in the original
publication (19) and show a potential problematic appli-
cation of the prediction equation in boys younger than 11
and older than 16 years. Furthermore, even when used
within these age brackets, the prediction of APHV lacks
validity, as demonstrated by Mills et al (18) who con-
cluded that equation-based methods appear to overesti-
mate the timing of peak height velocity (PHV) when
they are applied in the year or stage immediately pre-
ceding PHV. Therefore, the original prediction equation
by Mirwald et al (19) has considerable limitations,
especially for individuals further removed from their
APHV (16,20) and therefore warrants the cautious use of
these prediction equations.

Despite these clear limitations, the use of the
APHV prediction equation has been widespread in
talent identification and talent development research
within youth sports (5,17,34). This is not surprising
given that a practical, noninvasive, and relatively accu-
rate estimation of an athlete’s maturity is of particular
interest to talent identification and development as these
processes require large numbers of youth athletes to be
assessed in limited periods of time. However, the
potential erroneous prediction of APHV embedded in
the original prediction equation limits its usability and
warrants an enhancement of the original equation.
Indeed, Moore et al (20) developed new equations
based on the original dataset (19) that would account
for the overfitting (ie, the inclusion of artificially large
coefficients or when covariance in the data is based on
spurious associations) (20) generated by the original
equations, and validated them in an external sample of
British and Canadian children. The authors succeeded
in simplifying the original equations by removing pre-
dictors and argued that these new equations should
theoretically produce better fits across a range of exter-
nal samples. However, they stated that the prediction
error from these equations likely still increases to a
greater degree the further away a child is from their
actual APHV. Although commendable, these new
equations do not produce more valid estimations for
children who are further removed from their APHV.
This increase in error in the tails of the distribution is
potentially due to the linear estimation of an inherently
nonlinear biological process, such as somatic growth
during the adolescent growth spurt (24). Therefore, this
study developed a new equation for the prediction of
APHV from anthropometric variables in boys by fitting
a nonlinear relationship between anthropometric pre-
dictors and a maturity ratio (CA/APHV) to the original
data from Mirwald et al (19). Using a maturity ratio as a
response variable might prove to be useful as adoles-
cents move into adulthood and the rate of growth
decreases. Therefore, it was hypothesized that this new
model would yield similar prediction accuracy overall
but a more valid prediction in the tails of the original
data (boys relatively far removed from APHV). More-
over, it was expected that this new equation could be
validated in an external sample of youth soccer players,
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thereby consolidating the use of the new prediction
equation in a population of youth male athletes.

Methods

Participants

Dataset 1 [Mirwald and Baxter-Jones (MBJ)]: Devel-
oping a New Equation Using the Original Dataset
(2). The University of Saskatchewan’s Pediatric Bone
Mineral Accrual Study (1991 to present) used a mixed
longitudinal study design. Between 1991 and 1993, a
total of 251 Canadian boys (n = 115) and girls (n = 136)
were recruited from 2 elementary schools in Saskatoon,
Saskatchewan (2). The study by Baxter-Jones et al (2)
was designed to assess factors associated with bone
acquisition in growing children. Participants were be-
tween 8 and 15 years of age at baseline, and ages ranged
between 8 and 21 years across the initial 7 years of the
study. Ninety-eight percent of the participants were
white. All children were healthy with no conditions
known to affect growth. Growth parameters were mea-
sured semiannually. Written informed consent was ob-
tained from parents of participating children between
1991 and 1993. The University of Saskatchewan’s
Research Ethics Board approved all procedures.

Dataset 2 [Belgian Soccer Players (BSP)]: Validating
the New Equation Using a New Dataset of BSP. This
study involved 1330 high-level male youth soccer
players who were recruited from Belgian soccer acade-
mies. Athletes were aged 8–17 years and from various
ethnic backgrounds, with the majority of players of
white descent. Due to the large number of participants,
their ethnicity was not established. The data were col-
lected longitudinally—testing was conducted during the
same month each year across a period of 6 years,
resulting in a total of 4829 observations, with each
player having between 1 and 19 observations. The
research was approved by the appropriate local univer-
sity hospital ethical review panel, and written informed
consent was received from all the participants and their
parent(s) or guardian(s) prior to inclusion in the study.

Procedures

Dataset 1: Mirwald and Baxter-Jones. Anthropomet-
ric measures included stature and body mass, following
the anthropometric standards outlined by Ross and
Marfell-Jones (26). Stature was recorded without shoes
to the nearest 0.1 cm against a wall-mounted stadiometer
(Holtain, Crosswell, United Kingdom). Body mass was
measured on a calibrated digital scale to the nearest
0.5 kg (model 1631; Tanita, Kewdale, Australia). A
decimal CA (in years) was determined by identifying
the numbers of days between an individual’s date of
birth and the date of the assessment. A measure of
somatic maturation was defined by identifying the CA
of attainment of peak linear growth during adolescence
(PHV). To determine the CA at PHV, whole-year height

velocities were calculated for each participant. A cubic
spline fitting procedure was applied to each individual’s
whole-year velocity values, and the CA at the highest
point was estimated (GraphPad Prism 5; GraphPad
Software, San Diego, CA). A BA was then calculated
by subtracting the CA at PHV from the CA at time of
measurement for each individual. For this study, only
male data were used.

Dataset 2: BSP. Stature (Harpenden portable stadi-
ometer; Holtain) and sitting height (Harpenden sitting
table; Holtain) were measured for all participants to the
nearest 0.1 cm, with leg length calculated by subtracting
sitting height from stature. Body mass was assessed to
the nearest 0.1 kg (model BC-420SMA; Tanita), and
from body mass, the ratio of body mass to stature was
derived. All assessments were conducted according to
the anthropometric standards outlined by Ross and
Marfell-Jones (26). A decimal CA was obtained by
calculating the number of days between an individual’s
date of birth and the date at the assessment occasion.

Statistical Analysis

The first phase of the analyses was to fit a variety of
different models to the data used to develop the original
equation (MBJ). The goal of these models was to predict
the maturity offset, defined as the difference between a
player’s CA and his APHV. The second part of this
analysis was to refit each of these models to predict
APHV in a dataset consisting of Belgian high-level
soccer players (BSP) (6). In the second phase of these
analyses, the same fitting procedures were used to predict
a maturity ratio (maturity ratio = CA/APHV) rather than a
maturity offset (maturity offset = CA −APHV).

Phase 1: Predicting a Maturity Offset. In reanalyzing
the data from Mirwald et al (19), several theoretically
appropriate models were compared to identify the model
with the most appropriate fit, assessed by how well the
predicted values of the model match the observed data
values. First, the linear model developed by these
authors was evaluated; the model includes interactions
between leg length and sitting height, CA and leg length,
and CA and sitting height, as well as the body mass–to–
stature ratio. Then the second model was implemented
including these variables, as well as the main effects for
leg length, sitting height, and age. However, as some
nonlinearity was apparent in the data, polynomial terms
were added to account for this. Given the presence of
some nonlinearity in the residual analysis, generalized
additive models were also considered (11). These in-
volve fitting smooth relationships between the predictive
and response variables. Because of the complexity of
these relationships, only the main effects of each factor
were considered. Cubic splines were used as the smooth-
ing function.

Phase 2: Predicting a Maturity Ratio. In the final
model, the maturity ratio rather than the maturity offset
was used as the outcome variable. Using a maturity ratio
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as the response variable is particularly useful as adoles-
cents move into adulthood and the rate of growth
decreases. Similar to the procedure used in phase 1,
linear, polynomial, and general additive models were
fitted to the maturity ratio response.

All models were compared using the coefficient of
determination (R2) as a measure of how much of the
variation in the offset could be explained by the anthro-
pometric variables. Analysis of the residuals was also
conducted to determine how well each of these models
fit, especially for the youngest and oldest players in
the dataset. All models were fitted in version 3.2.3 of
the R statistical software system (R Core Team) (23),
with plots constructed using the ggplot2 package (36)
and linear mixed models fitted using the MASS
package (35).

Results

Dataset 1: MBJ

Phase 1: Predicting aMaturity Offset. Figure 1 shows
the relationship of CA, stature, body mass, and leg
length with BA (years from PHV) for the data in
Mirwald et al (19). The maturity offset measurements
range from 4 years before APHV (BA = −4) and 3 years
after APHV (BA = +3). The relationships between these
variables and the BA were identified to be generally
positive but nonlinear in some cases. This supports the
further examination of the data using nonlinear models.
Table 1 provides the model parameters for (a) the
original model, (b) the model with main effects and
interactions, (c) the model with main effects only,
(d) the polynomial model, and (e) the generalized
additive model when the maturity ratio is estimated.
The Akaike information criterion (AIC) (27) and the
adjusted R2 values for each of the models are also
included in Table 1. Both of these measures indicate
that the polynomial model with interaction terms yields
the best fit when predicting the offset. This is indicated
by the smaller AIC and the larger adjusted R2.

Phase 2: Predicting a Maturity Ratio. One of the
issues with all of these models is that there is a small
but systematic relationship between the model residuals
and the fitted offsets. This relationship indicates that as
the offset becomes larger in absolute value, the fit of the
model to the data becomes poorer. The residual plots for
each of these models are provided (Online Supplemen-
tary Figure 1, residuals vs fitted values scatterplots for
the different models used to predict a maturity offset in
the MBJ dataset). However, when using the maturity
ratio as the outcome variable, an improved model fit was
evident (see Online Supplementary Figure 2, residuals
vs fitted values scatterplots for the different models used
to predict a maturity ratio in theMBJ dataset). Themodel
parameters, AIC and R2 for the same set of models as in
Table 1 but with a ratio response, are given in Table 2.
The main-effects-only model was omitted as there are
significant interactions. Like the maturity offset model,

the best-fitting model appeared to be the polynomial
model. Table 2 provides a thorough description of all
models fitted and the various comparative measures
related to goodness of fit. When performing a residual
analysis on the models using the maturity ratio, the
systematic pattern in the residuals observed in the predic-
tion of the maturity offset is diminished. This is particu-
larly true for the polynomial and generalized additive
models and, to a lesser degree, true for the main effects
and interaction model. This suggests that a ratio response
fit provides a better fit when the difference between the
APHV and the observed CA is large. The polynomial
prediction equation that yielded the best model fit for the
estimation of a maturity ratio can be found below:

Maturity ratio = 6.986547255416

þ ð0.115802846632 × Chronological ageÞ
þ ð0.001450825199 × Chronological age ð2ÞÞ
þ ð0.004518400406 × Body massÞ
− ð0.000034086447 × Body mass ð2ÞÞ
− ð0.151951447289 × StatureÞ
þ ð0.000932836659 × Stature ð2ÞÞ
− ð0.000001656585 × Stature ð3ÞÞ
þ ð0.032198263733 × Leg lengthÞ
− ð0.000269025264 × Leg length ð2ÞÞ
− ð0.000760897942 × ½Stature
× Chronological age�Þ:

Dataset 2: BSP

In contrast to the MBJ dataset, an assessment of APHV
based on whole-year height velocities derived from
longitudinal follow-up was not provided in the BSP
dataset, so the estimates from each model provided a
best guess of maturity. When using the model from
Mirwald et al (19), the relationships between each of the
variables and the maturity offset estimates did not seem
to be smooth (Figure 2). An improved fit is obtained
when the maturity offset is defined as a ratio rather than a
difference (Figure 3). In particular, the variation of the
fitted values across different values of each of the factors
was more uniform than when using maturity offset as the
outcome variable (Figure 4), even for leg length that
showed high variation for larger leg lengths.

Discussion

The aim of this study was to improve the accuracy of
the maturity offset and APHV prediction previously
proposed by Mirwald et al (19). These sex-specific
prediction equations have been critically reviewed,
widely accepted, and frequently applied by researchers
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(569 citations of the original study, according to Sco-
pus, January 6, 2016). However, both the original
publication and a subsequent validation study (16)
identified a systematic error when predicting APHV
from anthropometric variables whereby the prediction
of maturity offset was increasingly inaccurate at the
upper and lower classification limits. In fact, both
studies concluded that the equation for boys in particu-
lar could be used only in individuals of an average
maturity range between the ages of 12 and 16 years.
Also, the most accurate predictions were found to occur
around the APHV of the individual (13.8 ± 0.8 y in

averagely maturing boys). These findings indicate that
perhaps there is a viable alternative to the original
equations that allows for a more accurate estimation
of APHV throughout the 12- to 16-year age span.
Although Moore et al (20) proposed simplified versions
of the original equations that do not require the assess-
ment of sitting height, the same consistent errors
seemed to be apparent when using these enhanced
equations. The results of the present study, however,
have resulted in an updated equation that better ac-
counts for the systematic prediction error as individuals
are further removed from their APHV.

Figure 1— Scatterplots of measured maturity offsets against (A) chronological age, (B) stature, (C) leg length, and (D) body mass
using the data in Mirwald et al (19).
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Table 1 Fitted Models for Models With Maturity Offset Defined as the Difference Between Actual
Age and Age at Peak Velocity

Model Variable Estimate SE t P value AIC R2

(a) Original model Intercept −9.206 0.095 −97.066 .000 3048.7 88.88%

Body mass/stature ratio 0.023 0.004 5.046 .000

Leg length × sitting height 0.000 0.000 6.790 .000

Leg length × chronological age −0.002 0.000 −4.935 .000

Sitting height × chronological age 0.007 0.000 22.248 .000

(b) Main effects and interactions Intercept −21.290 1.962 −10.851 .000 3000.1 89.22%

Leg length −0.052 0.070 −.745 .456

Stature 0.127 0.039 3.286 .001

Chronological age 0.597 0.168 3.555 .000

Body mass/stature ratio 0.020 0.004 4.416 .000

Leg length × height 0.000 0.000 −.776 .438

Leg length × chronological age −0.004 0.005 −.799 .424

Stature × chronological age 0.001 0.003 .387 .699

(c) Main effects only Intercept −16.796 0.298 −56.399 .000 3006.6 89.16%

Leg length −0.130 0.009 −14.961 .000

Stature 0.122 0.006 21.726 .000

Chronological age 0.474 0.013 35.384 .000

Body mass 0.011 0.003 4.132 .000

(d) Polynomial model Intercept 82.63104 18.684 4.423 .000 2923.6 89.72%

Chronological age (1) 1.03482 0.181 5.711 .000

Chronological age (2) 0.04002 0.008 4.709 .000

Body mass (1) −0.04496 0.039 −1.143 .253

Body mass (2) −0.00101 0.000 −5.255 .000

Stature (1) −2.05143 0.364 −5.633 .000

Stature (2) 0.01329 0.002 5.898 .000

Stature (3) −0.00003 0.000 −5.44 .000

Leg length (1) 0.39035 0.110 3.56 .000

Leg length (2) −0.00404 0.001 −5.092 .000

Leg length × chronological age −0.01043 0.002 −4.836 .000

Body mass × leg length 0.00215 0.001 3.106 .002

(e) Generalized additive model Intercept −3.700 0.189 −19.531 .000 2930.7 89.71%

Chronological age (1) 1.542 0.176 8.750 .000

Chronological age (2) 1.962 0.204 9.608 .000

Chronological age (3) 2.646 0.142 18.698 .000

Chronological age (4) 3.668 0.404 9.090 .000

Chronological age (5) 3.950 0.201 19.700 .000

Leg length (1) −2.124 0.226 −9.382 .000

Leg length (2) −4.743 0.528 −8.989 .000

Leg length (3) −4.091 0.262 −15.590 .000

Body mass (1) 13.286 0.701 18.948 .000

Body mass (2) 26.359 1.508 17.482 .000

Body mass (3) 21.294 0.912 23.349 .000

Body mass/stature ratio (1) −6.161 0.591 −10.424 .000

Body mass/stature ratio (2) −10.385 0.617 −16.833 .000

Body mass/stature ratio (3) −18.780 1.169 −16.064 .000

Body mass/stature ratio (4) −17.526 0.862 −20.339 .000

Note. For eachmodel, the AIC value (smaller is better) and adjusted R2 (larger is better) are provided. (a) Model reported inMirwald et al (19). (b) Model
including effects of height, age, leg length, height/weight ratio, and interactions. (c) Main effects model containing height, weight, age, and leg length.
(d) Linear model including interactions and polynomial terms: (1) linear term; (2) quadratic term; and (3) cubic term. (e) Generalized additive model with
cubic splines. Knots were equally spaced across the range of the predictive variable, and AIC was used to determine the number of knots, that is, in the
generalized additive model the number 1–5 indicates the number of cubic splines needed to fit the data.
Abbreviation: AIC, Akaike information criterion.
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Somatic growth is not a linear process. Research
has frequently demonstrated growth peaks in early
infancy and during the adolescent growth spurt (15).
Therefore, this research modeled a nonlinear relation-
ship between anthropometric measures and a novel
response variable. Although the original prediction in-
cluded only linear predictors, the use of a polynomial
equation allows a more accurate representation of the

nonlinear relationship between the anthropometric vari-
ables and maturity offset (Figure 1). Furthermore, the
use of a maturity ratio (CA/APHV) rather than a maturity
offset (CA −APHV) seems to yield a better model fit in
both the general sample and the athletic sample, even
when the difference between the APHV and the ob-
served CA is large. Hence, the inclusion of polynomial
terms and the prediction of a ratio rather than an offset

Table 2 Fitted Models for Models With Maturity Offset Defined as the Ratio of Actual Age to Age at
Peak Velocity

Model Variable Estimate SE t P value AIC R2

(a) Original model Intercept 0.332 0.007 50.103 .000 −5888.4 89.72%

Body mass/stature ratio 0.001 0.000 4.778 .000

Leg length × sitting height 0.000 0.000 6.450 .000

Leg length × chronological age 0.000 0.000 −4.807 .000

Sitting height × chronological age 0.001 0.000 23.385 .000

(b) Main effects
and interactions

Intercept −0.333 0.051 −6.539 .000 −5964.9 90.19%

Chronological age × stature 0.035 0.001 36.735 .000

Body mass 0.003 0.001 2.933 .003

Stature 0.006 0.001 4.650 .000

Leg length −0.002 0.003 −.901 .368

Body mass × stature 0.000 0.000 2.082 .038

Body mass × leg length 0.000 0.000 −2.922 .004

(c) Polynomial
model

Intercept 6.98655 1.287 5.431 .000 −6062.1 90.82%

Chronological age (1) 0.11580 0.012 9.273 .000

Chronological age (2) 0.00145 0.001 2.477 .013

Body mass (1) 0.00452 0.001 5.027 .000

Body mass (2) −0.00003 0.000 −4.272 .000

Stature (1) −0.15195 0.025 −6.05 .000

Stature (2) 0.00093 0.000 6.004 .000

Stature (3) 0.00000 0.000 −5.191 .000

Leg length (1) 0.03220 0.007 4.449 .000

Leg length (2) −0.00027 0.000 −5.852 .000

Stature × chronological age −0.00076 0.000 −5.114 .000

(d) Generalized
additive model

Intercept 1.493 0.037 40.000 .000 −6038.6 90.64%

Chronological age (1) 0.467 0.017 28.270 .000

Chronological age (2) 0.252 0.008 30.870 .000

Leg length (1) −0.156 0.015 −10.280 .000

Leg length (2) −0.201 0.015 −13.270 .000

Leg length (3) −0.406 0.032 −12.780 .000

Leg length (4) −0.314 0.019 −16.390 .000

Body mass (1) 0.986 0.038 26.260 .000

Body mass (2) 1.997 0.081 24.780 .000

Body mass (3) 1.580 0.062 25.410 .000

Body mass/stature ratio −0.045 0.002 −23.190 .000

Note. For each model, the AIC value (smaller is better) and adjusted R2 (larger is better) are provided. (a) Model reported in Mirwald et al (19).
(b) Model including effects of height, age, leg length, height/weight ratio, and interactions. (c) Linear model including interactions and polynomial
terms: (1) linear term; (2) quadratic term; (3) cubic term. (d) Generalized additive model with cubic splines. Knots were equally spaced across the range
of the predictive variable, and AIC was used to determine the number of knots, that is, in the generalized additive model the number 1–4 indicates the
number of cubic splines needed to fit the data.
Abbreviation: AIC, Akaike information criterion.
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resulted in a superior prediction of APHV over use of
linear models in both the MBJ and the BSP datasets.
However, this is not novel information as the original
manuscript (19) already concluded that as the maturity
offset increased, the prediction error increased as well.
This was later confirmed to be the original equation’s
most significant limitation by Malina and Koziel (16).
The new prediction equation has the same explained
variance as the old equation, but there seems to be no
systematic change in the prediction error as the predicted
maturity ratio changes. This finding indicates that the

current equation provides more reliable estimations of
APHV than the original model (19), even when age is
further removed fromAPHV. This increased accuracy of
the new calculation will allow researchers and practi-
tioners to determine APHV and maturity offset from
anthropometric measures with greater confidence across
a wide range of age and maturity status. This presents
researchers with the opportunity to reliably collect ma-
turity data noninvasively and with minimal cost and time
required when compared with more traditional longitu-
dinal measurements or estimations (dual-energy X-ray

Figure 2— Scatterplots of predicted maturity offsets against (A) chronological age, (B) stature, (C) leg length, and (D) body mass
for the Belgian Soccer Players dataset when the model in Mirwald et al (19) is used. MBJ indicates Mirwald and Baxter-Jones.
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absorptiometry, X-ray, etc) of APHV. However, vali-
dating these new predictive models using longitudinal
datasets should be the scope of future research.

One of the major strengths of this study is the
successful application of the prediction equation to an
external sample of high-level youth athletes. The vali-
dation of the new maturity ratio prediction in youth
soccer players in this study is demonstrated by the fitted
plots versus the residual plots (Online Supplementary
Figures 1 and 2). Ideally, a good model fit is indicated by

residuals that “bounce randomly” around the 0 line,
forming a horizontal band around the 0 line and having
no clear outliers. These criteria all seem to be met when a
polynomial model is used to predict a maturity ratio.
Furthermore, smaller AICs indicate a better model fit. As
the AIC in the polynomial model yields ideal residual
versus fitted plots and a low AIC, this model can be
presumed to adequately fit the data. The validation of the
newly developed prediction equation using “out-of-
sample testing” is particularly important as the original

Figure 3— Scatterplots of predicted maturity offsets against (A) chronological age, (B) stature, (C) leg length, and (D) body mass
for the Belgian Soccer Player dataset when a polynomial model is used and the maturity offset is defined as the difference between age
and age at peak velocity.
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equation was frequently used in samples that were
distinctly different from the original sample (5,34). First
of all, accurately determining maturation in youth
athletes—both pre-APHV and post-APHV—is of great
importance as it allows researchers and coaches to
account for the confounding effect an advanced or
delayed maturation might have on performance.
Furthermore, accurately monitoring maturation via rela-
tively quick and noninvasive anthropometric measures
should aid in classifying youth athletes according to their
biological maturity. This may ultimately result in a

reduction in risk of physical injury (8), fairer match
play, and decreased dropout from team sports (13,29).
Finally, retrospective estimation of the APHV in athletes
older than their predicted APHV might help map career
progressions of successful athletes, a commonly used
methodology in talent identification and development
research. A second advantage of an accurate prediction
of APHV in youth athletes is that training practice can be
planned around the APHV of athletes. Philippaerts et al
(22) showed that peak growth in physical performance in
young soccer players coincides with peak growth in

Figure 4 — Scatterplots of predicted maturity ratios against (A) chronological age, (B) stature, (C) leg length, and (D) body mass
for the Belgian Soccer Players dataset when a polynomial model is used and the maturity offset is defined as the ratio between age
and age at peak velocity.
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height and weight, and that differences in maturity status
between players should therefore be taken into account
when planning individualized training interventions.

Although this study has clearly identifiable strengths,
there are also limitations to utilizing the prediction equa-
tions from this study in samples of general and athletic
populations. First of all, it is important to note that despite
the improvement in accuracy of the new maturity ratio
estimation, longitudinal measurement of PHV provides
much more accurate estimations of APHV. However,
they are rarely viable alternatives for nonelite sporting
academies or smaller sporting organizations, largely due
to budget and time constraints. In circumstances such as
these, the estimation of maturity ratio from anthropomet-
ric variables developed in this study might offer the best
alternative. However, future studies should investigate
the construct validity of these novel equations using dual-
energy X-ray absorptiometry imaging, X-ray, or sexual
maturation assessments. A second limitation is this
study’s inability to produce sex-specific prediction equa-
tions. Hence, the prediction equations derived from this
study only refer to a male population. In the future,
research should attempt to use similar models to describe
the relationship between anthropometric variables and a
maturity ratio in a sample of females.

Conclusion

This study overcomes some of the limitations of the
prediction of APHV—as suggested by Mirwald et al
(19)—by modeling a nonlinear relationship between
anthropometric variables and a maturity ratio rather than
a maturity offset. Furthermore, this study has established
the practical validity of the novel equation in an external
sample of high-level soccer players. This has significantly
improved the applicability of this prediction equation
within a population of 11- to 16-year-old boys. Hence,
this newly developedmethod of estimatingAPHV should
become standard practice for the noninvasive assessment
of maturity from anthropometric variables.
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