
RAMIRAN 2017

17th INTERNATIONAL CONFERENCE

SUSTAINABLE UTILISATIONS OF MANURES AND RESIDUE RESOURCES IN AGRICULTURE

4th- 6th September, 2017 Clayton Whites Hotel, Wexford, Ireland

179

The effect of winter crops and crop residue management on nitrate leaching during winter

Karoline D'Haene^{1,2}, Jeroen De Waele³, Joost Salomez⁴, Georges Hofman^{2,3}, Stefaan De Neve³ ¹Plant Sciences Unit - ILVO, Merelbeke, Belgium, ²Research and Extension Advisory Board on Sustainable Fertilisation, Merelbeke, Belgium, ³Department of Soil Management - Faculty of Bioscience Engineering - UGent, Gent, Belgium, ⁴Department of Environment, Nature and Energy - Flemish Government, Brussels, Belgium

Background & Objectives

Nitrate (NO₃-) leaching from farmland remains the predominant source of nitrogen (N) loads to ground- and surface waters. As residual soil mineral N (RSMN) content at harvest is often high and may increase by mineralisation from crop residues and soil organic matter, it is critical to understand which post-harvest management measures can be taken to restrict NO₃- leaching.

Materials & Methods

We simulated "worst-case" and alternative post-harvest management scenarios with the EU-rotate_N model [1]. The simulations started at a given RSMN content after applying the Flemish maximum allowed N fertilisation rates. Monte Carlo simulation were performed to assess the combined effect of variability in RSMN and weather conditions on NO₃- leaching [2]. We evaluated the different scenarios by comparing the mean NO_{3} - concentration after dividing the simulated NO_{3} - concentration at 90 cm by various values to include natural attenuation processes [3].

Results & Discussion

Monte Carlo simulations showed that RSMN and attenuated mean NO₃- concentration (ANCatt) were positively correlated for most scenarios and that the variability in ANCatt due to different weather conditions increased with higher RSMN. In the worst-case scenarios, the simulated ANCatt was lowest for cut grassland, intermediate for winter wheat, sugar beet and silage maize and highest for potatoes and lower for a silt loam than sandy soil. All of the simulated measures (catch or cash crop and crop residue management) significantly reduced the NO₃- concentration in the leaching water. For crops which are harvested late, the potential management measures are limited. Especially potatoes are a problem crop because of the high RSMN values. Undersowing grass in silage maize and removing N rich crop residues are promising options. The number of scenarios with an ANCatt complying with the Nitrates Directive depends on the local attenuation factor [2].

Conclusion

The NO₃- concentration was significantly reduced by the simulated measures. Regions with a small attenuation factor will require site specific plans with preconditions for specific crops or adaptation of crop rotations. A well-balanced crop combination on a subcatchment level is essential to achieve good groundand surface water quality.

Acknowledgement

Karoline D'Haene wishes to acknowledge VLM for funding her research for the Research and Extension Advisory Board on Sustainable Fertilisation.

References

- [1] Rahn, C.R. et al. 2010. European Journal of Horticultural Science 75S, 20-32
- [2] De Waele, J. et al. 2017. Journal of Environmental Management 187, 513-526
- [3] Van Overtveld, K. et al. 2011. Determination of process factors for surface water and groundwater to evaluate the nitrate residue standard, Heverlee