
An Ontology-enabled Context-aware Learning Record Store
Compatible with the Experience API

Keywords: Learning Analytics, Ontologies, Experience API, Linked Data, Learning Management System, Learning
Record Store, Context-aware

Abstract: In education, learners no longer perform learning activities in a well-defined and static environment like a
physical classroom. Digital learning environments promote learners anytime, anywhere and anyhow learning.
As such, the context in which learners undertake these learning activities can be very diverse. To optimize
learning and the environment in which it occurs, learning analytics measure data about learners and their
context. Unfortunately, current state of art standards and systems are limited in capturing the context of the
learner. In this paper we present a Learning Record Store (LRS), compatible with the Experience API, that
is able to captures the learners’ context, more concretely his location and used device. We use ontologies to
model the xAPI and context information. The data is stored in a RDF triple store to give access to different
services. The services will show the advantages of capturing context information. We tested our system by
sending statements from 100 learners completing 20 questions to the LRS.

1 INTRODUCTION

In education there is a shift from traditional teacher-
led learning within single classroom boundaries, to a
digital learning environment where learners can learn
anytime (during class, training, preparing examina-
tion, examination,...), anywhere (classroom, at home,
library, train & bus,...) and anyhow (PC, tablet, smart-
phone,...) (Fiedler and Väljataga, 2010). As a result,
the context in which the learners perform activities
such as exercises, assessments and examinations is no
longer well-defined and static, but happens in very di-
verse contexts. Context can be defined as any infor-
mation that can be used to characterize the situation
of an entity (Abowd et al., 1999), e.g., a combination
of time, location and used device.

For purposes of understanding and optimizing
learning and the environments in which it occurs, the
Society for Learning Analytics Research has coined
the concept of learning analytics as the measurement,
collection and analysis of data about learners and their
contexts1.

Currently, the Experience API (xAPI) specifica-
tion (Experience API Working Group, 2013), for-
merly known as Tin Can API, and the successor to
SCORM2, is the de facto standard to log learners their
learning experiences. It captures these learning expe-
riences in the form of I did this and it resulted in that
statements.

1http://www.solaresearch.org/mission/about/
2http://adlnet.gov/adl-research/scorm/

The specification already provides a context field
to add some contextual information. However, in
spite of the effort, there are no details about how in-
formation such as device and location should be cap-
tured. To add more contextual information the spec-
ification offers an extensions field allowing arbitrary
data to be attached as context. This extensions field
is merely intended to provide a natural way to extend
the context field.

In this paper we present a system that is able to
also capture the environment in which learning expe-
riences happened. Consequently, our system stores
more information about the learner than current state
of the art systems. To make sure that statements
sent to our system are still backwards compatible to
other systems that support the xAPI specification, we
extend the xAPI specification using the extensions
mechanism.

Ontologies are used extensively to model context
(Gruber, 1993). Describing the xAPI specification
as an ontology facilitates the integration with exist-
ing context ontologies describing context informa-
tion. Also, the xAPI specification is built on top of the
Activity Streams specification, which is already com-
patible with JSON-LD (J. Snell, M. Atkins, W. Nor-
ris, C. Messina, M. Wilkinson, and R. Dolin, 2015).
The object properties in JSON-LD documents map to
concepts in an ontology.

Initial research has been done to map the xAPI to
an ontology model (De Nies et al., 2015; Vidal et al.,
2015). We extend on this work by creating our own

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/153400084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


context ontology and import this with the xAPI ontol-
ogy.
The use of ontologies offers additional advantages:

• Validation: the concepts and axioms of an ontol-
ogy provide a sound foundation for the validation
of the xAPI statements.

• Reasoning: ontologies defined in OWL 2, sup-
port reasoning mechanisms provided by descrip-
tion logics.

• Query: xAPI statements defined in RDF can be
stored in a triple store and queried through a
SPARQL endpoint.

The remainder of this paper is structured as follows.
First, we motivate this research with concrete use case
scenarios in Section 2. We present the state of the art
with regard to capturing learner’s data in Section 3. In
Section 4 we present the xAPI ontology and our ex-
tended context model. In Sections 5 and 6, we show
the architecture and implementation of our system.
Finally, we give an evaluation in Section 7 and give
our conclusions and outlook to future work in Section
8.

2 MOTIVATION

Learning analytics have already been proven bene-
ficial in supporting learners and instructors in edu-
cation. While it can be sufficient to log which ac-
tivities a learner performs and use this data to dis-
cover the real learning process followed by the learn-
ers (Vzquez-Barreiros et al., 2015; Kinnebrew et al.,
2013), predict learner’s performance (Romero et al.,
2013; Fernndez-Delgado et al., 2014) and recommend
learning resources (Verbert et al., 2012).

Taking into account also contextual dimensions
such as location and device information can further
optimize the learning environment for learners and
give more insights to instructors.

• Learners can be recommended course material
based on their location and device. For exam-
ple, when accessing course material with a smart-
phone on a train during commuting where there
is limited network connectivity, it is not rec-
ommended to stream high-quality video lectures.
When making exercises in a cafeteria with high
noise levels, it is more appropriate to rehearse
content instead of introducing new content.

• Instructors can monitor students during an exam-
ination. Fraud detection services can take into ac-
count the location of where a student is sitting,
because it is more likely that students sitting next

to each other commit fraud. When a student is
struggling on an exercise, it can help the instruc-
tor to not only provide the name of the student,
but also provide information about where exactly
the student is located in the room.

To realize these use cases, it is key to capture not
only the user their activities, but also in which con-
text these activities were performed.

3 STATE OF THE ART

The first step in capturing and storing learner’s data,
is to properly model and store the interactions the
learner did with respect to the learning objects, e.g.,
completing an exercise or passing an exam.

A high-level overview of how current learning
systems work is depicted in Figure 1. A Learning
Management Systems (LMS) serves learning objects
to the learner. A learning object is a collection of
content items and assessment items that are combined
based on a single learning objective. The interactions
that the learner does with respect to the learning ob-
ject are tracked and stored in a Learning Record Store
(LRS).

Since 2001, the Shareable Content Object Refer-
ence Model (SCORM) (Bohl et al., 2002) has been
the most used learning object standard by the Ad-
vanced Distributed Learning initiative (ADL)3. Un-
fortunately, SCORM is limited to storing simple data
points such as a final score or that a course has been
started or completed. Other standards such as the
IEEE standard 1484.11.1/2 (IEEE Std, 2005), Ac-
tivity Streams (J. Snell, M. Atkins, W. Norris, C.
Messina, M. Wilkinson, and R. Dolin, 2015), the
Experience API (xAPI) (Experience API Working
Group, 2013) and the Caliper framework by IMS

3https://www.adlnet.gov/

Figure 1: Overview of how current e-learning systems cap-
ture learner’s activities (De Meester et al., 2015).



(IMS Global Learning Consortium et at., 2013), were
extensively reviewed by Corbi & Burgos (Corbi and
Burgos, 2014). We can conclude that the xAPI stan-
dard and IMS Caliper framework already have a no-
tion of context. However this context is related to the
course material, e.g., to which curriculum a course
belongs or who the instructor of the course is. It does
not capture the environment where the user performed
the learning or which device he used. The xAPI spec-
ification is open source and can be extended.

The xAPI specification, formerly known as Tin
Can API, has emerged as a successor of SCORM
and captures much richer activity data compared to
SCORM. The specification is built on top of the Ac-
tivity Streams specification, used in social networks
to capture user activity in the form of I - did - this
statements. The xAPI specification added extra func-
tionality to the statements specifically for storing and
transferring records of learning experiences. A result
object is added to better collect outcomes of learning
and a context object is added to record learning done
in context. However, the specification lacks the defi-
nition of an extensive context model and merely pro-
vides an extendable extensions field. With over 160
adopters4, such as Moodle5, Blackboard6 and Sakai7,
it is fair to say that this is now the de facto standard.

(Verbert et al., 2012) already illustrated in a re-
view paper that including context aspects in exist-
ing standards, such as SCORM and xAPI, or map
standardized representation of context, to these stan-
dards, is a challenging future line of research to en-
able data compliant to these standards and specifi-
cation to be exchanged and reused. Therefore, we
extend the xAPI specification with a formal context
model using ontologies.

Some initial research has successfully mapped the
xAPI specification to an ontology (De Nies et al.,
2015; Vidal et al., 2015). The SmartLAK architec-
ture, a big data architecture for supporting learning
analytics services (Rabelo et al., 2015) uses an ontol-
ogy, based on the xAPI specification. Their system is
however limited to the xAPI ontology model and only
uses the model for data conformance validation. The
system presented in this paper uses an extended ver-
sion of the xAPI ontology model with a context on-
tology and not only uses the ontologies for validation
purposes, but also for reasoning.

4http://experienceapi.com/adopters
5https://www.moodle.org
6http://www.blackboard.com
7https://sakaiproject.org

4 ONTOLOGY DEFINITION

At the moment of writing, the xAPI specification is
only available in a GitHub repository8. The spec-
ification is not available in a machine-interpretable
version and thus not suitable to be used as an OWL
ontology or RDF Schema. Lately, we see that the
xAPI specification is adopting Semantic Web Tech-
nologies. The xAPI Vocabulary Working Group pro-
vided IRIs for the Verb (e.g. completed, answered,...)
and Activity (assessment, course,...) terms online at
https://w3id.org/xapi/adl to improve semantic inter-
operability. This vocabulary is available as RDFa and
can also be retrieved as machine-readable JSON-LD.
In future it is expected that more vocabularies will be-
come available as the ADL working group recently
published an xAPI companion guide and vocabulary
primer (xAPI Vocabulary Working Group, 2016) for
publishing vocabulary datasets as Linked Data (xAPI
Vocabulary Working Group, 2015).

To allow us to extend the xAPI context extensions
with concepts from a context ontology. An ontology
of the xAPI specification is needed.

The statements of xAPI are a good candidate to
be described in the Resource Description Framework
(RDF). Because it is built on top of Activity Streams
and the second version of this specification even re-
quires that the statements must be serialized con-
form JSON-LD (M. Sporny, G. Kellogg, M. Lanthaler
(Eds.), and W3C RDF Working Group, 2014). There
is a JSON-LD @context definition9 and an OWL on-
tology10 of the specification available online.

Since there is no ontology available from xAPI
specification itself, we extend from an ontology of the
xAPI described by other researchers (De Nies et al.,
2015; Vidal et al., 2015). In section 4.1 we describe
this xAPI ontology. We describe how we extended
this ontology with our context ontology in section 4.2.

4.1 xAPI Ontology

The most important classes and relationships of the
xAPI ontology are shown in Figure 2. The statement
class represents the statements of the form I did this,
where I, did and this, are the Actor, Verb and Object
classes respectively. The statement can also contain
the outcome or result and the context associated with
the event by using the Result and Context classes.

8http://GitHub.com/adlnet/xAPI-Spec
9https://www.w3.org/TR/activitystreams-

core/activitystreams2-context.jsonld
10https://www.w3.org/TR/activitystreams-

vocabulary/activitystreams2.owl



Figure 2: The xAPI ontology.

The Context class has relations to concepts , such
as the instructor for an experience, if the experience
happened as part of a team activity, or how an expe-
rience fits into some broader activity. We can for ex-
ample state that a learner took some course, under the
instruction of a specific instructor, as part of a specific
curriculum, in a specific school.

To add more contextual information, the Context
class has an extensions relationship that allows rele-
vant domain-specific context. For example, in a flight
simulator altitude, airspeed, wind, GPS coordinates
might all be relevant.

4.2 Context Ontology

The context its extensions are described by our own
context ontology. Figure 3 shows some classes. As it
is depicted, our ctx:Extensions class is a subclass of
the xAPI Extensions. Two important properties of our
context are location and device. The location can be
a Library, Home and Classroom. The Device can be a
Smarthpone, PC or Tablet.

An illustrative example of how these concepts can
be used for the progress and fraud detection services
(Section 5 and Section 6) is as follows. The concept
of a Classroom, PC and relationship number which
numbers all the PC and Room individuals can be used
to filter learners by examination room and detect at

Figure 3: Part of the context ontology.

which device the slacking student is located. The PC
has a property adjecentTo to model which devices are
located next to eachother, this can help the algorithm
to detect fraud, e.g. it is more likely that students sit-
ting next to each other during an examination commit
fraud.

5 ARCHITECTURE

Once the ontology has been designed, the architecture
can be built to process data, map it to our ontology
and define different services to support learners and
instructors. Figure 4 depicts an overview of the archi-
tecture of our system.
The Learning Record Store contains 4 components:

• Data Collection & Transformation component
is responsible for capturing the xAPI JSON state-
ments that are sent to our system through the API.
The component then processes these JSON state-
ments, transforms the statements to RDF and fi-
nally forward the transformed RDF statements to
the Storage In component.

• Storage In efficiently stores the xAPI RDF state-
ments coming from the Data Collection & Trans-
formation component.

• Triple store is responsible for storing the OWL
2 ontologies and RDF data. The triple store sup-
ports reasoning to infer knowledge not explicitly
stated in the data.

• Storage Out forms the link between the triple
store and the different services. The component
facilitates access to the data by query answering.

The Services are independent components that pro-
cess the LRS data to provide valuable information to
learners and instructors. Each service has an endpoint
that allow the service to be consumed by applications
or other services. The current version of our architec-
ture contains services that are specially designed to
support instructors during class room assignments or
examinations. These services are the following:

• Progress service measures the progress from
learners during an examination or exercises. Cap-
turing the location of where the learner is sitting
in a room, aids instructors identifying where these
struggling learners are sitting and help them more
proactively.

• Fraud service detects anomalous behavior from
learners during an examination. Taking into ac-
count context information such as where learners
are located in the room can help detecting this
anomalous behavior, since it is more likely that



Figure 4: The architecture of our system.

learners sitting next to each other commit fraud
during an examination.

6 IMPLEMENTATION

Our architecture is build on top of LimeDS11, an
OSGi-based framework for building REST/JSON-
based server applications (Verstichel et al., 2015).
LimeDS allows us to adapt our architecture more effi-
ciently for future demands, e.g. adding additional ser-
vices or plug in different triple store implementations.
LimeDS also provides support for load-balancing and
data caching so that our system is scalable.

LimeDS facilitates development by leveraging on
the Data Flow abstraction. The Data Flow abstraction
defines how data flows through the different compo-
nents in the architecture. This Data Flow system re-
volves around two conceptual component types:

• Flow Functions consume an optional JSON argu-
ment and can optionally produce processed JSON
data

• Flow Processes that execute a specific set of ac-
tions when triggered (e.g. time-based).

By combining instances of these two conceptual
types, complex data-oriented services can be built. In
our current architecture implementation, only Flow
Functions were used. The different Flow Functions
are depicted in Figure 4.

6.1 Data Collection & Transformation

The data in our LRS must be in a format that maps
on the xAPI and context OWL 2 ontologies. There-
fore, we have to transform our data to RDF data.

11http://limeds.intec.ugent.be

Since xAPI statements are JSON documents, convert-
ing these document to JSON-LD is the most straight-
forward approach. Additionally, the JSON-LD docu-
ments can then in future also be stored in other data
stores, that are not aware of Linked Data, e.g., Mon-
goDB.

Converting a JSON document to JSON-LD is
done using a JSON-LD context document12, which
maps all the terms that may occur in the xAPI JSON
statement to IRIs in the ontology. This is illustrated in
Example 1. A @context entry referencing this docu-
ment is added to the root of the JSON, an @type entry
with value xapi:Statement, as well as the following
snipped to every :verb and :object property: ”@con-
text: { ”id”: ”@id”}, because the id is reserved for
the URI. Because the context document introduced in
other research (De Nies et al., 2015) does not include
any context extensions, we extended this document to
map context extensions to IRIs from our own context
ontology.

Next to some additional necessary conven-
tions to have a smooth conversion, mentioned in
(De Nies et al., 2015), the XML Schema dura-
tion (xsd:duration) datatype used in xAPI statements
is discouraged in RDF and OWL13. The XQuery
and XSLT Working Groups have proposed an al-
ternative in the form of two derived datatypes:
xdt:yearMonthDuration and xdt:dayTimeDuration.
The derived datatypes restrict the lexical represen-
tation to contain only year and month components
or days, hours, minutes and seconds components.
Since learning experiences will generally not take
longer than days, we used the xdt:dayTimeDuration
datatype.

12http://www.w3.org/TR/json-ld/#the-context
13https://www.w3.org/TR/swbp-xsch-

datatypes/#section-duration



6.2 Triple Store

The Learning Record store is composed out of two
LimeDS Flow Functions: Data Collection & Trans-
formation and Storage Out and a triple store that
stores the xAPI ontology, the context ontology and
the processed xAPI statement triples.

We choose RDFox as our triple store implementa-
tion. RDFox is a highly scalable RDF store that sup-
ports materialisation-based parallel datalog reasoning
and SPARQL query answering (Nenov et al., 2015).

6.3 Storage Out

Storage Out provides a HTTP REST API that accepts
SPARQL queries through HTTP POST. The service
returns an array of RDF triples. An example of a
JSON message is given below.

{
"query":"SELECT ?x WHERE{?x rdf:type :Result}"
}

{
"@context": "http://http://users.ugent.be

/˜joanseeu/xapi.jsonld",
"@type": "http://users.ugent.be

/˜joanseeu/Statement",
"actor": {
"name": "John Doe",
"objectType": "Agent"

},
"verb": {

"@context": { "id" : "@id" },
"id": "xapi-verbs:completed",
"display": { "en": "completed" }

},
"object": {

"@context": { "id" : "@id" },
"id": "http://example.org/exercise1",
"objectType": "Activity",
"definition": {
"name": { "en": "Example Activity" }

}
},

"result": {
"score": { scaled: 0.7 },
"duration": "PT50S"

},
"context" {
"extensions": {
"room": { "number": 209 },
"device": { "number": 5 }

}
}

}

Figure 5: An example xAPI JSON-LD document.

6.4 Services

Different services have been developed, mainly to
provide teachers added value from the data available
in the LRS. Each service is contained in a LimeDS
Flow Function. The following services are imple-
mented:

Progress service

Progress service returns a list of places in the room
where learners that take longer than average to com-
plete their exercises/assessments are, enabling teach-
ers to help students more proactively. The captured
device identifier as context can be used to locate
where the student is sitting in a room (e.g. the PC
number). An illustrative example of a query that this
service uses is shown below. This service sends the
query to the query service.
SELECT ?pcnumber
WHERE {
?result rdf:type :Result.
?statement :result ?result.
?statement :context ?context.
?context ctx:device ?pc.
?pc ctx:number ?pcnumber.
?result :duration ?d FILTER(?d > y)

}

Parameter y can be a fixed duration or a calculated
(running) average.

Fraud service

The fraud service queries on the progress learners
make and at which device they are located. This is
similar to the query that the progress service uses, but
without filtering. The service infers potential cheating
behavior when learners have similar progress and sit
at adjacent devices.

The list of adjacent devices is loaded in the Triple
store as background knowledge.

7 EVALUATION

Since our LRS transforms the xAPI statements to
Linked Data, all information in the xAPI statements
must also be present as Linked Data. This transfor-
mation went smoothly. As long as the information in
the statements is also defined in the xAPI and con-
text ontologies and the corresponding mapping, we
observed no loss in information when transforming
the xAPI statements to Linked Data.

The RDFox triple store implementation used in
our LRS supports OWL 2 RL, which is an OWL 2



0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 6: Progress service execution time as a function of
the amount of statements stored.

profile that trades expressive power for the efficiency
of reasoning by placing restrictions on the structure
of OWL ontologies. Reasoning and query answering
can then be solved in time that is polynomial with re-
spect to the size of the ontology.

The RDFox triple store we used seems to be
highly-scalable according to the evaluation of the cre-
ators (Nenov et al., 2015). The LimeDS framework
we used to implement our architecture offers is also
scalable due to its load balancing support.

We evaluated our system by sending statements
from 100 learners. These 100 learners completed 20
exercises with an average time of 30 seconds and stan-
dard deviation of 5 seconds per question. In this case
the LRS captured and stored 2000 statements. Trans-
forming the xAPI statements takes on average 10ms.
Figures 6 and 7 plot the execution time of the Progress
and Fraud services, which are both around 160ms
when the LRS stores 2000 statements.

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 7: Fraud service execution time as a function of the
amount of statements stored.

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

Figure 8: Progress service execution time as a function of
the amount of statements stored with different amounts of
learners.

We tested if the amount of learners has an influence
on the service execution time. Figure 8 compares the
progress service execution time for 10, 50, and 100
learners completing 20 exercises. The graph is limited
to 200 statements, as 10 learners only produce 200
statements.

8 CONCLUSIONS AND NEXT
STEPS

In this paper we presented a Learning Record Store
that is able to capture more context information com-
pared to current state of the art systems. We extended
the xAPI specification using its extensions mecha-
nisms so that learning activity sent to our system is
still backward compatible to other systems. We de-
scribed our extensions using an ontology and used an
ontology based on the xAPI specification.

We have implemented our system on top of
LimeDS and built services that offer learning analyt-
ics services that take advantage of context informa-
tion.

In next steps our system will be integrated with
learning software from a company in the context of a
project.

ACKNOWLEDGMENTS

REFERENCES

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith,
M., and Steggles, P. (1999). Towards a better un-
derstanding of context and context-awareness. In



Handheld and ubiquitous computing, pages 304–307.
Springer.

Bohl, O., Scheuhase, J., Sengler, R., and Winand, U.
(2002). The sharable content object reference model
(scorm) - a critical review. In Computers in Educa-
tion, 2002. Proceedings. International Conference on,
pages 950–951 vol.2.

Corbi, A. and Burgos, D. (2014). Review of Current
Student-Monitoring Techniques used in eLearning-
Focused recommender Systems and Learning analyt-
ics. The Experience API & LIME model Case Study.
International Journal of Interactive Multimedia and
Artificial Intelligence, 2(7):44–52.

De Meester, B., Ghaem Sigarchian, H., De Nies, T., Ver-
borgh, R., Salliau, F., Mannens, E., and Van de Walle,
R. (2015). SERIF: A Semantic ExeRcise Interchange
Format. In Proceedings of the 1st International Work-
shop on LINKed EDucation.

De Nies, T., Salliau, F., Verborgh, R., Mannens, E., and
Van de Walle, R. (2015). Tincan2prov: Exposing in-
teroperable provenance of learning processes through
experience api logs. In Proceedings of the 24th Inter-
national Conference on World Wide Web, WWW ’15
Companion, pages 689–694, New York, NY, USA.
ACM.

Experience API Working Group (2013). Experience API.
Version 1.0.1.

Fernndez-Delgado, M., Mucientes, M., Vzquez-Barreiros,
B., and Lama, M. (2014). Learning analytics for
the prediction of the educational objectives achieve-
ment. In 2014 IEEE Frontiers in Education Confer-
ence (FIE) Proceedings, pages 1–4.

Fiedler, S. and Väljataga, T. (2010). Personal learning en-
vironments: concept or technology?

Gruber, T. R. (1993). A translation approach to portable on-
tology specifications. Knowl. Acquis., 5(2):199–220.

IEEE Std (2005). IEEE Standard for Learning Technology
- Data Model for Content to Learning Management
System Communication. IEEE Std 1484.11.1-2004.

IMS Global Learning Consortium et at. (2013). Caliper
Learning Analytics Framework. Technical report.

J. Snell, M. Atkins, W. Norris, C. Messina, M. Wilkin-
son, and R. Dolin (2015). Activity streams 2.0
w3c working draft. W3C Working Draft, W3C.
http://www.w3.org/TR/2015/WD-activitystreams-
core/.

Kinnebrew, J. S., Loretz, K. M., and Biswas, G. (2013). A
contextualized, differential sequence mining method
to derive students’ learning behavior patterns. JEDM-
Journal of Educational Data Mining, 5(1):190–219.

M. Sporny, G. Kellogg, M. Lanthaler (Eds.), and W3C RDF
Working Group (2014). JSON-LD 1.0: A JSON-
based Serialization for Linked Data. W3C Recom-
mendation, W3C.

Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., and
Banerjee, J. (2015). Rdfox: A highly-scalable rdf
store. pages 3–20.

Rabelo, T., Lama, M., Amorim, R. R., and Vidal, J. C.
(2015). Smartlak: A big data architecture for support-
ing learning analytics services. In Frontiers in Ed-

ucation Conference (FIE), 2015. 32614 2015. IEEE,
pages 1–5.

Romero, C., López, M.-I., Luna, J.-M., and Ventura, S.
(2013). Predicting students’ final performance from
participation in on-line discussion forums. Comput.
Educ., 68:458–472.

Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M.,
Drachsler, H., Bosnic, I., and Duval, E. (2012).
Context-aware recommender systems for learning: A
survey and future challenges. IEEE Trans. Learn.
Technol., 5(4):318–335.

Verstichel, S., Kerckhove, W., Dupont, T., Volckaert, B.,
Ongenae, F., De Turck, F., and Demeester, P. (2015).
Limeds and the trapist project: a case study. In 7e In-
ternational Joint Conference on Knowledge Discov-
ery, Knowledge Engineering, and Knowledge Man-
agement, Proceedings, volume 2 KEOD, pages 501–
508.

Vidal, J. C., Rabelo, T., and Lama, M. (2015). Seman-
tic description of the experience api specification.
In 2015 IEEE 15th International Conference on Ad-
vanced Learning Technologies, pages 268–269.

Vzquez-Barreiros, B., Mucientes, M., and Lama, M.
(2015). Prodigen: Mining complete, precise and mini-
mal structure process models with a genetic algorithm.
Information Sciences, 294:315 – 333. Innovative Ap-
plications of Artificial Neural Networks in Engineer-
ing.

xAPI Vocabulary Working Group (2015). Companion Spec-
ification for xAPI Vocabularies.

xAPI Vocabulary Working Group (2016). Experience xAPI
Vocabulary Primer.


