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1.  Introduction

Accurate registration of a liquid’s free surface is important 
for numerous hydraulic research fields that study flow charac-
teristics using laboratory experiments. Non-intrusive, optical 

techniques are preferred over traditional point measurements 
because they offer instantaneous information of the entire 
surface area. Although the extensive overview given by [15] 
showed that a large number of methodologies are possible 
to reconstruct refractive and/or transparent objects, only a 
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Abstract
This paper presents a low-cost and easy-to-implement image-based reconstruction technique 
for laboratory experiments, which results in a temporal description of the water surface 
topography. The distortion due to refraction of a known pattern, located below the water 
surface, is used to fit a low parameter surface model that describes the time-dependent 
and three-dimensional surface variation. Instead of finding the optimal water depth for 
characteristic points on the surface, the deformation of the entire pattern is compared to its 
original shape. This avoids the need for feature tracking adopted in similar techniques, which 
improves the robustness to suboptimal optical conditions and small-scale, high-frequency 
surface perturbations. Experimental validation, by comparison with water depth measurements 
using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady 
surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface 
phenomena, the low-frequency and large-scale free surface oscillations can still be measured 
with a temporal and spatial resolution mostly limited by the available optical set-up. The 
technique is initially intended for periodic surface phenomena, but the results presented in 
this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, 
the presented technique is a promising tool for other research applications that require non-
intrusive, low-cost surface measurements while maintaining visual access to the water below 
the surface. The latter ensures that the suggested surface reconstruction is compatible with 
simultaneous image-based velocity measurements, enabling a detailed study of the flow.

Keywords: parametric shape fitting, shape from refractive distortion, optical water surface 
measurement
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limited set of optical techniques seem applicable to recon-
struct a specular and highly dynamic water surface. The three 
most commonly used types of optical surface measurement 
techniques are listed hereafter, while focusing on their ease of 
implementation and robustness to record shallow-water sur-
face oscillations.

A first stereo-based approach is to apply triangulation 
to characteristic points on the water surface, of which [5] 
described different implementations mentioned in literature. 
Due to the lack of distinguishable points in steady surface con-
ditions, surface seeding (e.g. [9]) or neutrally buoyant seeding 
particles in combination with interfacial particle image veloci-
metry [26] has been employed to improve the resolution in 
homogeneous regions. Nonetheless, this approach remained 
difficult in combination with water due to the latter’s specular 
nature. Although these difficulties could be mitigated by addi-
tives that change the fluid’s optical properties, clear water 
might be needed to acquire subsurface (velocity) information 
and maintain its rheological properties. Akutina quantified 
the water depth using 3D-PTV, in which the position of the 
detected particles located the furthest from the bottom was 
considered as a reliable estimate of the local water depth [1]. 
This provided detailed, simultaneous information about the 
3D-flow field and surface shape, but neglected refraction of 
the viewing rays which is only valid in case the water depth 
and surface inclination remain small. Moreover, the recent 
3D-PTV technique seemed to require a lot of experience and 
fine-tuning to achieve reliable results.

As a second alternative, reflection-based techniques have 
been developed that use the polarisation of reflected light 
(e.g. [30]) or the deformation of a reflected pattern (e.g. [24]). 
However, complications often arose when applied to water, 
such as specular reflections, occlusions, and the fact that only a 
small fraction of the light hitting the water surface is reflected. 
To overcome some of these problems, several authors used 
dye or other additives to make the water opaque and relied on 
the deformation of a regular grid [12], irregular grid [25], or 
fringe pattern (e.g. [10]) projected on the surface. Despite their 
improved performance, such solutions impeded visual access 
for subsurface velocity measurements and usually required 
multiple views of different cameras for consistency and acc
uracy. Rupnik et al presented two approaches, in which they 
treated the water as a diffuse or as a specular surface and fitted a 
sinusoidal surface function to either a set of triangulated points 
or to travelling specularities, respectively [23]. Although lim-
ited by the simplifications of the adopted model, a sinusoidal 
surface could be reconstructed with mm accuracy.

Finally, highly accurate refraction-based techniques have 
gained more and more attention because their performance 
has been reported superior in case of strong surface gradients. 
Kutulakos and Steger summarised the numerous solutions to 
resolve the ambiguity that arises when a refractive approach is 
applied, of which some of the most applicable techniques are 
discussed hereafter [17].

Several authors related the local surface slope to the 
apparent colour of the water surface, originating from a 
refracted (e.g. [31]) or reflected (e.g. [11]) two-dimensional 
colour pattern. While limited to small capillary or wind-driven 

waves, [16] determined the surface slope and surface height 
both simultaneously and independently by measuring the 
refraction of colour-coded light and the difference in absorp-
tion rate of light rays with different wave length. Recently, 
[3] have presented an adapted version of this methodology 
in which the need for a telecentric system was avoided by 
simultaneously processing visible and near-infrared digital 
images. This allowed highly accurate water depth and sur-
face slope measurements, although the accuracy decreased 
with increasing water depth. Seeding the flow with neutrally 
buoyant particles has often been combined with illumination 
of particles present at a certain depth using a horizontal, sub-
surface laser sheet. Ng et al subsequently searched the surface 
gradient iterative by comparing the views from below (without 
refraction) and from above the water surface (with refraction) 
[22]. Others applied the same methodology on an irregular, 
fixed pattern [13, 19]. Morris avoided the need for lasers and 
proposed a simple but accurate multi-view stereo approach 
that combined ‘shape from refractive distortion’ with a tra-
ditional stereo set-up [21]. Using a ‘verification camera’ to 
solve the depth-normal ambiguity related to refraction, sub-
millimetre accuracy was achieved in combination with a fixed 
pattern [20] or flow seeding [14].

The methodology of [21] seems preferential in case a 
simple but accurate technique is preferred to reconstruct 3D 
surface variations, in which problems related to specular 
reflections are avoided. Moreover, the preserved transpar-
ency of the water gives visual access to the water mass. This 
enables simultaneous (subsurface) velocity measurements 
that rely on the registration of particles dispersed in the flow. 
However, [21] tracked individual feature points, i.e. the cor-
ners of a chequerboard pattern, to determine the optimal water 
depth for each of these characteristic points on the surface. 
When such methodology would be applied in presence of 
high-frequency surface effects or seeding particles that partly 
mask the pattern located below, the risk of loosing a large part 
of these points during tracking could increase significantly. In 
the region where features would be lost, further reconstruction 
becomes less accurate due to a lack of surface information.

To solve these limitations, this paper proposes a modified 
methodology in which feature tracking is avoided to improve 
its robustness. A single-view and purely image-based tech-
nique is envisaged, without the need for lasers or an extensive 
optical set-up, to ensure ease of implementation and limit the 
cost of the equipment. Avoiding the need for feature tracking 
also ensures compatibility with simultaneous image-based 
velocity measurements, in view of future research for which 
also the flow velocity is of interest.

The proposed methodology is initially intended for 
hydraulic research in which the surface remains relatively 
smooth and is dominated by long surface gravity waves. In 
that case, a low parameter surface model can be derived, based 
on the expected surface shape, that describes the reconstructed 
surface area. By combining this surface model with the refrac-
tive approach of [21], the parametrised model can be fitted 
to describe the instantaneous surface deformation. Instead of 
determining the optimal water depth for a sparse set of surface 
points, the deformation of the entire pattern is used to fit the 
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surface model describing the global surface shape. Although 
the accuracy that can be reached depends on the choice of sur-
face model, this modified approach avoids problems related to 
feature tracking and makes reconstruction of a single image-
frame independent of previous time-steps. It also avoids the 
need for overlapping views of multiple cameras, resulting in a 
more flexible single-view experimental set-up that can cover 
a larger surface area.

If, on the other hand, the total surface area is too irregular 
to describe sufficiently accurate with a low-parameter surface 
model, subdivision of the surface area into a mesh of smaller 
surfaces is proposed. Subsequently, the same methodology 
can be applied locally for each of these smaller areas, in which 
the surface can be approximated by a more simplified surface 
model (e.g. a straight plane). The results in each of these local 
areas can then be combined to describe the entire surface 
topography. Although this increases the computational cost of 
the surface reconstruction, irregularities of the surface shape 
can as such be incorporated. Moreover, this local method-
ology allows to adjust the spatial resolution according to the 
dynamics of the phenomenon that needs to be measured. For 
the dynamic validation tests presented in this paper, applica-
tion of such a small reconstruction domain proved successful 
to obtain robust and reliable results.

In section 2, a theoretical description of the reconstruction 
methodology is presented. The methodology is then validated 
experimentally by comparing the results with alternative 
measurement techniques, both on still (section 4.1) and non-
stagnant water (section 4.2). The results on still water prove 
that in case the optimisation settings and surface model are 
adjusted to the specific test conditions, the image-based meth-
odology can achieve sub-millimetre accuracy for regular and 
simple surface shapes over a relatively large range of water 
depths. More importantly, application of the technique to 
oscillating surface shapes proves that also dynamic surface 
phenomena can robustly be reconstructed.

2.  Presentation of the image-based methodology

2.1. Theoretical description of the refractive surface  
reconstruction

The presented methodology employs the refraction of light 
rays at the air–water interface. A fixed colour pattern is posi-
tioned on a plane surface F, i.e. the bottom of the flume, and 
its projection on the surface is viewed by a camera from above 
(figure 1). Refraction causes each light ray to change direc-
tion at the corresponding surface point p. For the same point 
f on plane F, the projection in the image plane therefore shifts 
from image point q (in absence of water) to q’ (in presence 
of water). This apparent shift in the image plane is further 
denoted as the ‘image disparity shift’. These image disparity 
shifts result in a deformation of the projected pattern on the 
surface (surface points p1 − pN) and corresponding q′

1 − q′
N  

compared to the physical pattern f1 − fN  on F. The shape 
of the distorted pattern, which depends on the local surface 
position and orientation around every point p, is then used to 
quantify the local water depth.

Figure 1 depicts the change in direction of the incident 

light ray −→u =
−→
cq′, originating at the camera centre c to the 

refracted ray −→v =
−→
pf . The change in angle relatively to the 

local surface normal −→n  is different for every viewing ray 
and can for every pixel in the camera’s view be computed 
according to Snell’s law. Because the surface normal, inci-
dent and refracted light rays are located in the same plane, two 
straight lines describe the total trajectory of the viewing ray 
within this plane of refraction. This simplifies the geometric 
problem because the two remaining unknowns, i.e. the loca-
tion of surface point p and the direction of the surface normal 
−→n , must be located in the plane determined by the known 
position of f q’ and c. Nonetheless, a closed-form solution is 
impossible to derive because only a single, underconstrained 
expression (Snell’s law) in two unknowns ( p,−→n ) is available.

To relieve this indeterminacy, [21] assumed the surface 
location p to be known for a discrete set of feature points and 
verified these hypothesised locations by a complementary 
stereo-view of a ‘verification camera’. In this paper, a single-
view reconstruction is achieved by combining the observed 
image disparity shifts with a parametrised surface model that 
represents the surface topography within the reconstructed 
area. This ‘surface model’ is composed of multiple terms, 
each scaled with individual coefficients that can be fitted to 
describe the instantaneous surface shape. Although the acc
uracy depends on how well the surface can be approximated 
with only a limited amount of terms, the resulting para-
metrised surface model η(x, y) quantifies the surface height 
(z-coordinate) above plane F (z  =  0) for a given combina-
tion of coefficients at every position (x, y) within the recon-
structed area. For a chosen surface model, a hypothesised set 
of the model’s coefficients determines the surface location of 
the imaged area. Parameters that are based on a single set of 
such hypothesised coefficients will further be indicated by an 

Figure 1.  Image-based surface reconstruction using the refraction of 
the viewing rays at the air–water interface: the discrepancy between 
the actual surface (p) and hypothesised surface ( p∗) results in a 
different intersection with bottom plane F ( f∗ instead of f)  
(after [21]).
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asterisk (*). The junction between each incident ray −→u =
−→
cq′ 

and this hypothesised surface η∗(x, y) is used to determine the 
location of the corresponding surface point p∗:

{
p∗ ∈ η∗(x, y)

p∗ ∈ −→u =
−→
cq′

.� (1)

Additionally, η∗(x, y) enables the derivation of the local sur-
face normal −→n ∗ at the same point p∗:

−→n ∗ = (−∂η∗(x, y)
∂x

,−∂η∗(x, y)
∂y

, 1)

because n∗z =
∂η∗(x, y)

∂z
= 1.

� (2)

Figure 1 illustrates that the direction of the refracted ray −→v ∗ 
is subsequently computed by applying Snell’s law (equation 
(3)), a fixed refraction index of water rw (at the ambient water 
temperature) and basic trigonometric identities:

sin(θair) = rw sin (θwater) (Snell’s law)� (3)

and when applied to the hypothesised surface point p∗:

sin(θ∗air) = rw sin (θ∗water)� (4a)

θ∗water = arcsin(sin(θ∗air)/rw)� (4b)

θ∗water = arcsin{sin[arccos(−−→u · −→n ∗)]/rw}.� (4c)

The refracted ray −→v ∗, starting at position p∗ and with a direc-
tion determined by θ∗water , is then traced back to point f∗ on the 
bottom plane at z  =  0. By minimising the difference between 
f  and f∗, the optimal surface parameters can be found that 
best describe the instantaneous surface location and orienta-
tion around p.

2.2.  Optimisation of the surface model

For each point f∗, its (x,y,0) coordinates correspond to a cer-
tain colour of the fixed pattern. In this paper, F is coloured 
using a black-white chequerboard for which the reciprocal 
black and white squares can robustly be distinguished from 
each other. The expected colour, in monochrome images rep-
resented by a single pixel intensity, is then compared to the 
corresponding pixel intensity of the image ( Iq′) to verify the 
hypothesised surface coefficients. A discrepancy between 
both indicates an inappropriate estimation of the instanta-
neous surface location and/or orientation, i.e. the computed 
surface point p∗ (equation (1)) and/or surface normal 

−→
n∗ 

(equation (2)). This comparison therefore transforms the 
pixel intensity of every pixel in the image plane to an error 
value E∗

q′:

E∗
q′ =





0, if Iq′ > Imax and f∗ is white
0, if Iq′ < Imin and f∗ is black
0, if Imin < Iq′ < Imax

↪→ ambiguous pixel intensity
1, otherwise

� (5)

where Imax and Imin are user-defined intensity-thresholds 
that characterise the white and black parts of the image, 
respectively. By discarding the grey zones in the image 
( Imin < Iq′ < Imax), local areas where the distinction between 
black and white becomes ambiguous are excluded from the 
optimisation. As such, errors related to suboptimal optical 
conditions (section 3) are avoided as much as possible.

These computed error measures are subsequently com-
bined in a global error function E∗

tot that quantifies how well 
the surface model η∗(x, y) matches with the processed image:

E∗
tot =

∑
image

E∗
q′ .� (6)

The surface coefficients that minimise this single error func-
tion are finally assumed to provide the best representation of 
the instantaneous surface topography.

Compared to [21], who only computes an error measure for 
a discrete set of feature points, E∗

tot incorporates the informa-
tion of every pixel in the image plane. This alternative approach 
avoids problems related to feature detection/tracking (loss of 
feature points) and increases the accuracy, robustness, and spa-
tial resolution of the estimated surface shape. Hence, adopting 
a surface model reduces the temporal reconstruction of the 
entire surface area to a sequence of multivariate optimisations 
of the model’s time-dependent variables by processing each 
image frame separately. Additionally, the robustness and/or 
accuracy of the surface reconstruction can further be improved 
by adopting multiple (simultaneous) camera views. Although a 
single view is sufficient to fit the surface parameters, multiple 
views of the same surface area provide even more information 
about the imaged surface area. This might improve the algo-
rithm performance and minimise possible error sources (sec-
tion 3) in case of suboptimal reconstruction conditions.

2.3.  Implementation details

The reconstruction algorithm explained in the previous para-
graph is implemented in a modular C++ program, in which 
the different steps in the reconstruction procedure are sepa-
rated and called upon progressively. Image processing is per-
formed using classes and functions provided by the OpenCV 
library [6].

Firstly, calibration of the camera is needed to obtain the 
intrinsic camera parameters and distortion coefficients, the 
latter being required to correct for optical aberration. Before 
the camera is set-up, a set of calibration images is taken which 
allows to estimate the (radial and tangential) distortion coef-
ficients according to the Brown–Conrady model [7], as well as 
the intrinsic camera parameters. A reliable estimate for both 
types of parameters is found using a Levenberg–Marquardt-
based algorithm. Secondly, the transformation from pixels to 
3D coordinates requires knowledge about the position of the 
cameras with regards to a chosen reference system, which is 
characterised by the camera’s extrinsic parameters. To that 
end, an image of a reference pattern at a known position is 
adopted to compute the camera position and orientation 
during the measurements in the chosen frame of reference.

Meas. Sci. Technol. 29 (2018) 035302
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The location of the surface points p∗, i.e. the intersections of 
the viewing rays −→u  with the hypothesised surface, are the solu-
tion of a set of non-linear equations (see equation (1)). Based 
on the estimated camera parameters and hypothesised surface 
coefficients, this 3D geometric problem is solved using a non-
linear solver from the open-source library MINPACK [8].

The multivariate optimisation of the surface coefficients 
of η(x, y) is performed by application of the Levenberg–
Marquardt optimisation algorithm, implemented in the 
open-source library ALGLIB [2]. Assuming temporal 
smoothness of the surface oscillations (and corresponding 
surface coefficients), the optimisation result from the pre-
vious time step is used as start for the iterative process to 
facilitate convergence.

Finally, quantification of the surface height in the domain 
of interest is done in a post-processing stage by combining 
the fitted, time-dependent coefficients with the mathematical 
formulation of η(x, y). For a more detailed explanation about 
the use and implementation details of the C++ program, we 
refer to the user guide of the open source software4.

2.4.  Experimental set-up

The experiments are performed in the confluence flume of 
the Hydraulics Laboratory of Ghent University (figure 2), 
in which a water retaining wall is installed in the tributary 
channel to create a lateral cavity with a length and width of 
0.4 m. Both the sides and the bottom of the flume are made 

of translucent polycarbonate (figure 3), providing easy visual 
access for the application of optical measurement techniques.

The adopted colour pattern consists of a chequerboard pat-
tern with a square-size of 10  ×  10 mm. This pattern is printed 
on a transparent foil, which is glued with translucent adhesive 
to the inner side of the bottom plate. During the experiments, 
the bottom of the flume is lit from below. This avoids specular 
reflections on the surface and maximises the amount of light 
received by the camera, which views the pattern from above. 
As such, good contrast in the images is maintained while the 
aperture and opening time of the camera can be reduced to 
avoid image blur. The backlighting (figure 4) consists of an 
array of white light-emitting LED’s, made uniform by posi-
tioning two diffusive, acrylic plates between the LED array 
and the bottom of the flume. Images are acquired using one 
or multiple synchronised Basler ace GigE cameras (model 
acA1920-25gc) at a frame rate of 40 Hz and a shutter speed 
of 1/1000 s. The camera contains a CMOS digital image 
sensor (MT9P031), which is equipped with a red-green-blue 
(RGB) Bayer pattern colour filter. This Bayer pattern con-
sists of twice as many green filters compared to red and blue, 
making the green channel much more responsive. The corre
sponding higher contrast and less noise supports the choice 
of processing only the green channel of the RGB images, as 
was done for the results presented in this paper. Given that the 
sensor’s peak spectral response in the green channel equals 
520 nm, a corresponding refractive index rw of 1.336 is used 
based on an average water temperature of 20 °C during the 
experiments (4).

Figure 2.  Experimental set-up in the confluence flume of the 
Hydraulics Laboratory of Ghent University. A water retaining wall 
is used to create a lateral cavity, where a white–black chequerboard 
pattern is fixed on the bottom. The chosen reference system, as 
adopted in section 4, has an origin at the upstream corner of the 
cavity and an upward directed z-axis with z  =  0 at the bottom of the 
flume. The reconstructed surface area (yellow) and the position of 
the cameras that are used in this paper are indicated. Figure 3.  Lateral cavity with water retaining wall. The inlet of the 

pressure sensor used for the dynamic validation (section 4.2) is 
located at the upstream end of the cavity.

4 Available at: https://github.com/lengelen/OpenSRD
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3.  Possible error sources and limitations

Different aspects in the reconstruction methodology are 
affected by possible inaccuracies and/or wrong estimates of 
important parameters. These error sources may influence the 
final reconstruction accuracy and can roughly be divided into 
five main categories:

	 (a)	Camera calibration
		 The presented image-based technique requires a reli-

able camera calibration to correct for lens distortion. 
Typically, the camera is calibrated before its installation, 
so that after installation, the calibration result can directly 
be employed to undistort the images before they are used 
as input for the reconstruction algorithm. Additionally, 
the camera’s 3D position in a chosen frame of reference 
needs to be estimated by comparing a physical reference 
grid and its projection in the image plane. Combined with 
the results of the previous calibration, it defines the geom-
etry of the refractive problem that needs to be solved. 
Hence, errors related to their estimated values have a 
non-linear, detrimental influence on the reconstruction 
result.

	(b)	Suboptimal contrast in the images
		 A first prerequisite for the input images is that the black 

and white pattern can reliably be detected. Good image 
contrast between these two colours can be affected by 

suboptimal lighting conditions, image noise, and blurry 
images due to a limited depth of field or shutter speed of 
the camera. Then, the final result becomes more sensitive 
to the adopted intensity-thresholds, potentially reducing 
the robustness and reliability of the methodology.

	 (c)	Multivariate optimisation
		 The final result of a non-linear optimisation solver is 

always an approximation of the perfect solution. In this 
paper, the Levenberg–Marquardt optimisation algorithm 
is adopted to estimate the time-dependent surface param
eters for a single time step. Due to the inherent uncertainty 
about the perfect outcome of non-linear optimisation 
problems, local minima of the error function might result 
in surface coefficients that are a sub-optimal representa-
tion of the instantaneous surface shape. Especially in case 
only a small surface area is reconstructed, multiple solu-
tions with a different average water level and inclination 
might give a similar error value (see next paragraph).

	(d)	Single-view approach
		 When only a single image and a small part of the dis-

torted pattern are available to fit the surface coefficients, 
distinguishing local water depth changes from variations 
in inclination of the surface in the direction of the viewing 
rays becomes difficult. Both result in an image disparity 
shift in the direction of the viewing rays, as depicted in 
figure 5, and changes in the water depth may be errone-
ously interpreted as changes in surface inclination. To 
avoid this ambiguity, it can be useful to not incorporate a 
surface inclination in the viewing rays’ direction during 
optimisation, as was done in section 4.2.

		 On the other hand, an inclination of the surface in the 
direction perpendicular to the viewing rays is easily 
distinguished from water depth changes. It moves the 
projection of the pattern perpendicular to the direction of 
the viewing rays, which cannot be accounted for by a vari-

Figure 4.  Optical set-up, with a backlight panel consisting of a LED 
array below two diffusive plates lighting the flume from below.

Figure 5.  For the same point f on the bottom plane, the image 
disparity shift corresponding to the change in position from surface 
point p1 towards p2a or p2b is identical for a varying water depth 
(Surface 2a) or varying inclination in the direction of the viewing 
ray (Surface 2b), respectively. The movement from p1 towards p2a 
or p2b is exaggerated for clarity and ease of understanding.
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ation of the average water depth. To find a better match 
with the distorted pattern, it is advised to incorporate this 
inclination during optimisation. For clarification, figure 6 
depicts a schematic representation of the two possible, 
perpendicular directions of refractive displacement.

	 (e)	Simplification of the surface. 
		 The presented methodology uses a mathematical 

description of the surface, i.e. a parametrised surface 
model, to approximate the instantaneous surface shape. 
Depending on the irregularity of the actual surface, 
this simplification might not always be sufficiently 
accurate. As mentioned earlier, this inaccuracy can be 
minimised by subdividing the entire surface into smaller 
areas, where the surface shape can be approximated 
by a straight plane. In section  4.2, the surface height 
within the reconstructed area is quantified using a single 
parameter to obtain a straightforward comparison with 
the single-point pressure measurements. However, the 
model is extended with an extra varying inclination to 
more accurately describe the recorded refraction, as will 
be explained in section 4.2.

		 Anther solution might be to include a more extensive sur-
face model, which should be able to describe a complex 
surface shape within the reconstructed zone more accu-
rately. However, adding more parameters that need to be 
fitted complicates the optimisation problem, and could 
require multiple views or a different error function to 
obtain a reliable solution of the best-fitted surface shape.

Next to these error sources, the accuracy and applicability 
of the image-based technique suffers from three limitations 
that are the result of the optical geometry. Figure 7 illustrates 
two limitations, inherent to refraction-based techniques.

A first limitation is the maximum amplitude of the sur-
face oscillations, which needs to remain limited with respect 
to the pattern-to-surface distance to avoid crossings of light 

rays (caustics). In case of caustics, two neighbouring points 
on F (e.g. f2 and f3) are viewed on the surface in the opposite 
order ( p3 and p2). For parallel incident rays and a sinusoidal 
surface shape, [19] proposed a maximum critical distance 
between the surface and the pattern on the bottom in function 
of the surface waves’ amplitude and wavelength. In a more 
realistic situation, for which the incident light rays converge 
towards the camera centre, [14] mention that this critical dis-
tance also depends on the viewing angle and the curvature of 
the surface. Therefore, a direct guideline to avoid such caus-
tics is difficult to derive.

Secondly, the inclination of the surface must remain smaller 
than the inclination of the viewing rays in order to remain vis-
ible for the camera. Because the surface area in the invisible, 
shaded area in figure 7 does not contain any surface points 
seen by the camera, it cannot be included in the optimisation.

Finally, the maximum accuracy of the technique presented 
in this paper is linearly dependent on the camera resolution. 
To register a change in surface shape, the surface projection 
of the adopted chequerboard pattern has to move in the image 
plane of the camera. This image projection of the refractive 
pattern distortion, previously denoted as the image disparity 
shift, is determined by multiple variables:

	 •	the resolution of the camera
	 •	the distance between the camera and the imaged surface 

area
	 •	the viewing angle (θair)
	 •	the (average) water depth
	 •	the relative change in surface shape (water depth and/or 

inclination)

Appendix presents a theoretical estimate of the acc
uracy that can be reached, given a certain optical geometry. 

Figure 6.  A change in water depth or change in inclination in the 
viewing rays’ direction both shift the pattern in the direction of the 
viewing rays (green). A change in inclination in the perpendicular 
direction shifts the pattern also perpendicular (red). Figure 7.  Limitations of refractive-based techniques. (a) The 

pattern-to-surface distance must remain smaller than a critical 
distance to avoid caustics. (b) Shaded area becomes invisible for the 
camera due to the strong inclination of the surface.
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Herewith, it is assumed that the image projection of the white–
black border between two consecutive chequerboard squares 
should move at least 1 pixel in the image plane for a change 
in surface position to be detected. In section  4.1, it will be 
shown that in practice, this requirement is too stringent. By 
combining the refractive distortion of the entire pattern during 
optimisation of (a limited set of) the surface parameters, a still 
water surface could in this paper be reconstructed with a much 
higher accuracy than theoretically predicted.

4.  Validation

4.1.  Validation on still water

4.1.1.  Validation methodology.  Because the presented meth-
odology resolves the temporal reconstruction for every image-
frame separately, a validation with a still and horizontal water 
surface is only a small simplification compared to a dynamic 
case. It allows on the other hand to compare the obtained 
water level differences with accurate and reliable measure-
ments using a level gauge (measurement accuracy of the labo-
ratory’s level gauge  =  0.1 mm).

To enable a straightforward comparison with the single-
point measurements of the level gauge, only a small part of 
the cavity is reconstructed. The selected surface area, approxi-
mately 30 mm  ×  30 mm, is located around the measurement 
location of the gauging needle. For both the validation on still 
and dynamic water, a coordinate system with origin at the 
bottom of the upstream corner will be used, as depicted in 
figure 2. The adopted parameter model to quantify the water 
depth within the selected area represents a straight plane, of 
which the (x,y,z)-coordinates are determined by the following 
formula:

z ≡ η(x, y) = a0 + a1
(x − xc)

Lx
+ a2

(y − yc)

Ly� (7)
where a0, a1, a2 are the optimised surface parameters; xc and 
yc correspond to the approximate centre of the reconstructed 
surface area; and Lx and Ly are length scales chosen based 
on the dimensions of the reconstructed zone. The validation 
is done by comparing the water depth change between two 
level gauge measurements and between two optimised sur-
faces η(x, y), corresponding to two different still water levels. 
Because each test is prone to the inaccuracy related to two 
individual level gauge readings, the water depth changes mea-
sured by the level gauge are reliable within an uncertainty 
range of 0.2 mm.

Table 1 gives an overview of the three uncorrelated valida-
tion tests, each characterised by an initial (hi) and final water 

depth (hf). Two different cameras (camera 1 and 2) are used to 
acquire images of the still water surface, of which the position 
with respect to the reconstructed surface area is depicted in 
figure 2. For every camera position used in this paper, table 2 
gives the location of the camera centre in the chosen frame of 
reference (figure 2).

For each change in water level, the water level difference 
measured by the level gauge is compared with the image-
based results. In table 1, the single-view results are presented 
in columns 3–4 and columns 5–6 for camera 1 and 2, respec-
tively. Additionally, two simultaneous camera views of the 
surface (two cameras) are combined to reconstruct the over-
lapping surface area, of which the results are given by col-
umns 7–8. An error metric Em for each test is calculated as 
the mean difference between the image-based and level gauge 
measurements, within a fixed surface area located around the 
measurement location of the level gauge:

Em =
∑

(x,y)∈Agauge

|∆hgauge −∆hoptical(x, y)|
� (8)

where Agauge represents the surface area over which the dif-
ference in water depth is calculated; ∆hgauge is the change in 
water depth measured by the level gauge; and ∆hoptical(x, y) 
gives the difference in water depth at location (x,y) based 
on the optimised surface models corresponding to hi and hf. 

Table 1.  Overview of validation tests on still water between an initial (hi) and final water depth (hf), in which Em is defined as the mean 
difference in water depth variation measured by the level gauge and the image-based methodology.

Camera 1 Camera 2 2 Cameras

hi (mm) hf (mm) Em (mm) Em/hm (%) Em (mm) Em/hm (%) Em (mm) Em/hm (%)

Test 1 28.2 47.7 0.22 0.30 0.29 0.41 0.48 0.67
Test 2 55.5 74.4 0.24 0.18 0.24 0.18 0.27 0.21
Test 3 87.8 117.0 0.13 0.06 0.15 0.07 0.24 0.12

Table 3.  Summary of the theoretical maximum expected accuracy 
of the three tests on still water.

hm (mm) θair,m(
◦) ∆hmin  (mm)

Still water test 1
Camera 1 38.0 35 0.64
Camera 2 38.0 42 0.59

Still water test 2
Camera 1 65.0 35 0.50
Camera 2 65.0 42 0.48

Still water test 3
Camera 1 102.4 36 0.31
Camera 2 102.4 43 0.31

Table 2.  Position of cameras used in this paper. Camera 1 and 2 are 
employed during the validation on still water (test 1, test 2, test 3).  
For dynamic test 4, images of camera 2 are also used as input. 
Camera 3, positioned closer to the surface, has a higher pixel cm−1 
ratio and is adopted for test 5.

x (mm) y (mm) z (mm)

Camera 1 35 771 1048
Camera 2 297 764 858
Camera 3 413 22 531
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Additionally, a non-dimensional error metric is provided as a 

percentage of the mean water depth of a single test: hm =
hi+hf

2 .

4.1.2.  Validation results.  As was mentioned in section 3, the 
maximum accuracy of the presented methodology depends on 
the magnitude of the image-disparity shift corresponding to 
a certain water level difference. Appendix describes a theor
etical approach to estimate the smallest change in water level 
(∆hmin) that can be reconstructed for a specified optical set-
up, in which it is assumed that every surface point has to move 
at least 1 pixel in the image plane. Given that 1 cm of the 
reconstructed surface corresponds with approximately 30 pix-
els in the image plane of both cameras, the theoretical maxi-
mum accuracy is calculated based on the average water depth 
(hm) and average viewing angle (θair,m) with respect to the 
reconstructed surface area. For more details on this theoretical 
estimation, see appendix. The results shown in table 3 sug-
gest that the accuracy of both cameras should improve with 
increasing average water depth, as this increases the magni-
tude of the image disparity shifts for a certain water level dif-
ference. Moreover, the small difference in viewing direction 
between camera 2 and camera 3 is not expected to influence 
the measurement accuracy.

Table 1 shows that the difference between the image-
based results and those measured by the level gauge are of the 
same order of magnitude as the uncertainty of the level gauge 
measurements (0.2 mm). As expected, the small difference 
in viewing direction between camera 1 and camera 2 does 
not seem to affect the measurement accuracy significantly. 
Moreover, the experimental results confirm that the accuracy 
and robustness of the methodology improves with increasing 
(average) water depth. Especially in case the dimensionless 
errors (Em/hm) are considered, the mean error with respect to 
the level gauge measurements reduces significantly.

However, the experimentally achieved accuracy seems sig-
nificantly higher than theoretically predicted. This indicates 
that not every image point has to move in the image plane 
for the surface change to be detected, as was assumed during 
the theoretical estimation (appendix). This result proves the 
advantage of the integrated reconstruction approach, using the 
entire pattern deformation instead of a sparse set of character-
istic points. Although the image disparity shift in figure 8 is 
smaller than 1 pixel, the white–black border indicated in green 
still moves from pixel qi to pixel qi+1. Even if such a change 
in pixel position might not occur for every point of the cheq-
uerboard pattern, a small amount of ‘shifts’ seems sufficient to 
fit the surface parameters and reconstruct the surface change.

Finally, table  1 indicates that combining the views of 
two cameras does not improve the reconstruction results. 
This proves that, in case sufficient care is taken to the cor-
rect positioning and calibration of the camera, a single view 
is sufficient to reconstruct the surface accurately. The superior 
performance of a single-view approach is nonetheless not 
expected, as error sources that are related to a single camera 
(e.g. a wrong estimation of the camera position, undistortion 
of the images, unfavourable camera position with regards to 

the surface...) should be mitigated by using more than one 
camera to reconstruct the same surface area.

The diminished performance of two cameras can be 
explained by the fact that it is usually difficult to select the 
exact same surface area for two different camera views. In 
theory, this does not impose a problem when a horizontal 
(flat) water surface is reconstructed. However, the flume 
used during the experiments does not have a perfectly 
horizontal bottom; the maximum local inclination equalling 
about 1 cm m−1. Hence, a small water depth variation exists 
within the reconstructed surface area (≈0.30 mm). When 
the two cameras are adopted separately, comparison of their 
reconstructed water level differences is still valid because a 
water level change is constant over the entire surface in case 
two horizontal surfaces are compared.

However, when two simultaneous views of the surface are 
combined, the reconstructed surface areas in the images of 
both cameras do not correspond with exactly the same water 
depth. Such a small difference is usually negligible when 
applied to practical applications that do not require sub-milli-
metre accuracy. Nonetheless, this discrepancy makes that the 
optimal solution for both cameras is not longer the same and 
a compromise for both cameras has to be made. Moreover, 
the variation in water depth is of the same order of magnitude 
as the measurement accuracy that is achieved in the present 
experiments, which explains the larger errors compared to the 
single-view results.

One should note that the excellent results presented in 
table 1 are achieved by fine-tuning the optimisation settings to 
achieve the best possible correspondence. These results were 
obtained with a well chosen differentiation step and an initial 
estimate of the water depth, although equal for every camera, 
close to the water level measured by the level gauge (±3 mm). 
Additionally, still water makes the fitted surface model (a 
straight plane) exactly correspond with the actual surface 
shape. This proves the inherent capability of the image-based 
methodology. However, such accuracy is usually not possible 
when applied to more challenging experiments where the sur-
face is too irregular to describe exactly and the optimisation 
settings cannot be adjusted for every reconstructed surface. 
In the next section, the methodology will be tested in a more 
realistic experimental setting.

Figure 8.  Although the disparity shift (indicated in green) of the 
pattern due to a change in surface level is smaller than 1 pixel, the 
image position of the border line between a black and white square 
still changes from pixel qi to pixel qi+1.
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4.2.  Validation on dynamic water surfaces

4.2.1.  Validation methodology.  In this section, the same cav-
ity set-up is adopted yet with steady flow in the main channel 
next to the cavity. The resulting flow conditions are charac-
terised by a non-steady surface shape and a mixing layer that 
develops at the interface between the main channel and the 
lateral cavity. This undulating mixing or shear layer is char-
acterised by quasi-periodic, large-scale vortices that are shed 
from the upstream corner [27]. One or multiple recirculation 
cells or gyres generally form within the cavity, which interact 
with this vortex shedding. For certain combinations of geom-
etry, water depth and flow velocity, standing gravity waves are 
excited within the cavity that oscillate at the cavity’s natural 
frequency [18, 28]. Two dynamic surfaces are discussed in 
this paper (test 4 and test 5), for which the flow conditions are 
chosen to maximise these standing waves. An overview of the 
flow characteristics is given by table 4, in which the dimen-
sionless Reynolds and Froude number are defined as

Re =
Umhm

ν
and Fr =

Um√
ghm

� (9)

where Um and hm are the average velocity and water depth in 
the main channel; g is the gravitational acceleration; and ν is 
the fluid’s kinematic viscosity, equal to 1.0035 · 10−6 m2 s−1 
for water at 20 °C.

A UNIK5000 pressure sensor of GE Measurement & 
Control is used to acquire simultaneous measurements for 
validation of the surface reconstruction technique. It regis-
ters the pressure fluctuations at the bottom of the cavity with 
a sampling frequency equal to the frame rate of the camera  
(40 Hz) and a measurement accuracy of  ±0.05 mm. The inlet 
of the pressure sensor is connected with a tube to a small hole 
at the upstream side of the water retaining outer wall of the 
cavity (figure 3). At this location, the surface variations due 
to the gravity waves are significantly larger than the measure-
ment uncertainty of the pressure sensor.

Similar to section 4.1, a small region (30  ×  30 mm) at the 
upstream wall of the cavity is reconstructed, located close to 
the pressure sensor inlet. To avoid the ambiguity between a 
change in water depth and inclination as discussed in sec-
tion 3, a (straight) plane quantified by a single water depth is 
used to describe the selected region. Although this neglects a 
varying surface inclination, it is reasonable to assume that the 
local water depth in a small reconstruction area does not vary 
significantly and can be approximated with a single averaged 
value (a0). This simplification of the optimisation problem 
also facilitates the comparison with the single-point pressure 
readings, as the algorithm directly computes the best average 
water depth in the reconstructed region close to the pressure 
sensor inlet.

The first dynamic test (test 4) employs images of camera 
2, positioned at the same position as during the tests on still 
water (figure 2). Camera 2 is positioned such that 1 cm of the 
reconstructed surface area corresponds with approximately 30 
pixels in the image plane. The camera position in the second 
dynamic test (test 5) is indicated as camera 3 in figure  2. 

Because camera 3 is positioned closer to the surface, camera 3 
has a higher pixel cm−1 ratio of 53.

Table 5 presents a summary of the set-up characteristics 
that determine the theoretical magnitude of the image disparity 
shifts, in which the theoretical maximum accuracy (appendix) 
is indicated by ∆hmin . Since ∆hmin ≈ 0 mm for test 5, the 
simplified theoretical approach does not longer seem valid 
due to the simplifications and/or assumptions made during the 
derivation. However, it indicates that camera 3 is able to reg-
ister even very small water level differences.

In test 4, camera 2 is positioned so that the viewing direc-
tion approximately corresponds with the (transverse) y-direc-
tion in the chosen frame of reference. To account for a varying 
inclination of the surface in the (longitudinal) x-direction, the 
component nx of the surface normal is therefore included in 
the optimisation. This results in a better match with the dis-
parity shifts seen by the camera, which is perpendicular to 
the viewing rays’ direction, and improves the reliability of the 
reconstruction result. The other component (ny) of the sur-
face normal is only computed once, using a single, averaged 
image of the entire image sequence. This component ena-
bles to account for a non-perfectly horizontal bottom plane 
relatively to the flat water surface, but is kept constant while 
optimising each individual image frame. This constant value 
(ny = a2) during reconstruction of the entire image sequence 
avoids ambiguity between a variation in average water depth 
or inclination in the y-direction of the reconstructed surface. 
The resulting parametrised surface model therefore becomes

z =η(x, y) = a0 and
−→n =(a1, a2, 1)

� (10)

in which a2 is a constant during the optimisation of the indi-
vidual images; and a0 and a1 are the two parameters that need 
to be fitted.

In test 5, the adopted camera (camera 3) is positioned dif-
ferently, such that the viewing direction approximately cor-
responds with the (longitudinal) x-direction. Similarly to the 
first dynamic test (test 4), only the surface normal component 
perpendicular to the viewing rays is included in the optim
isation algorithm. Therefore, the same surface model (equation 
(10)) is used, but for test 5 characterised by a constant a1 and a 
variable a0 and a2 that are fitted to the refractive deformation.

Table 4.  Overview of the flow characteristics of the two dynamic 
tests.

hm (mm) Um (m s−1) Re (—) Fr (—)

Test 4 83.2 0.42 3.5 104 0.47
Test 5 97.1 0.40 3.9 104 0.41

Table 5.  Summary of the theoretical maximum expected accuracy 
of the two tests on a dynamic water surface. Test 4 is done with 
images of camera 2, while test 5 employs images of camera 3.

hm (mm) θair(
◦) ∆hmin  (mm)

Test 4 83.2 43 0.40
Test 5 97.1 38 0.01
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4.2.2.  Validation results.  Figure 9 illustrates the variation of 
the local water depth for the first dynamic test (test 4), in which 
the dotted line corresponds with the pressure measurements 
and the solid line with the image-based results. This shows 
that in general, the data measured with the pressure sensor 
and the image-based time series (the variation of a0) follow 
the same sinusoidal trend. The sub-millimetre accuracy that 
was achieved in section 4.1 is nonetheless not retained, and 
the image-based time series suggests a much more irregular 
variation of the water depth. Although both time series oscil-
late approximately in phase, the amplitude of the image-based 
surface oscillations sometimes differs from those measured by 
the pressure sensor. Plausible reasons for this discrepancy will 
be suggested in section 5.

Because the surface oscillates periodically in time, the 
spectra of the time series should reveal the most dominating 
frequencies. Figure  10 compares the (smoothed) power 

spectral density of the image-based time sequence (solid line) 
and that of the pressure readings (dotted line), both computed 
with a fast Fourier transform of the original signal. Both 
power spectra show a clear maximum at a peak frequency f1 of 
1.04 Hz, indicating that the water oscillations are dominated 
by periodic surface gravity waves oscillating at that frequency. 
Other modes of oscillation are also visible, although the 
energy corresponding to these frequencies is much smaller. 
Some of these secondary peaks even only appear in one of 
both spectra, which will further be discussed in section 5.

Although also present in test 4, a large amount of small-
amplitude surface ripples (see section 5) disturbed the water 
surface in test 5. This made it difficult to use the raw camera 
images, being heavily distorted by these high-frequency sur-
face effects. As will be explained in section 5, averaging over 
multiple images enables to deal with these disturbances and 
obtain a reliable reconstruction result. The power spectra 

Figure 9.  Dynamic test 4: Comparison between the measured water depth variation using the pressure sensor (dotted line) and the image-
based surface reconstruction (solid line).

Figure 10.  Dynamic test 4: Smoothed power spectral density of the water depth variation using the pressure sensor (dotted line) and the 
image-based surface reconstruction (solid line). Peaks in the spectral plots are indicated by a vertical line at frequency fi.
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corresponding to test 5 are not presented in this paper, but also 
showed the same peak frequencies in the pressure and image-
based time series.

5.  Discussion

The validation with still water proved sub-millimetre accuracy, 
but this level of accuracy could not be achieved in a valida-
tion with a dynamic surface. Figure 9 indicates that, although 
the image-based results show a good resemblance with the 
pressure readings, the amplitude of the image-based water 
depth oscillations sometimes differs from those measured by 
the pressure sensor. Moreover, the image-based water depth 
is characterised by a much more irregular and peaked varia-
tion in time. In the following, plausible reasons for this behav-
iour are explored and it is discussed how the results can be 
improved in further research.

A first reason is the simplified surface model adopted 
during the dynamic validation, in which the (average) water 
depth within the reconstructed zone is quantified by a single 
value a0 and the corresponding surface normal can only be 
fitted by a component in the longitudinal direction of the 
cavity. Consequently, this surface model may not be appro-
priate to describe the more complex surface shape during the 
dynamic test with sub-millimetre accuracy.

Secondly, it was visually observed that the dynamic cases 
are affected by small and high-frequency surface perturba-
tions. Generated at the downstream corner next to the main 
channel, these small surface waves are transported within the 
cavity due to the circulatory flow field. The surface ripples 
disturb the surface locally and cause a significant curvature 
of the surface shape, resulting in a heavily distorted view of 
the pattern. Figure  11 shows that the wave length of these 
small-amplitude waves, indicated in white, is of the same 
order of magnitude as the dimensions of the reconstructed 
area, indicated in red. Such distortion makes the optimisation 
problem less clearly defined and makes it more difficult to 
fit a straight surface to the complex local surface shape. The 
optimisation algorithm then sometimes stops its search close 

to the starting position of the iterative optimisation, in this 
paper being an estimate based on the coefficients found in the 
previous time-step. Although including more parameters in 
the model theoretically enables to better describe the irregular 
surface, the simplified surface model given by equation (10) 
is considered as a suitable choice considering the objectives 
of this paper. The flat surface makes an easy and straightfor-
ward comparison with the pressure readings possible, and is 
also more generally applicable because it does not require any 
prior knowledge about the expected surface shape.

Compared to the measurements using the pressure sensor, 
the image-based methodology seems much more sensitive to 
these small disturbances that are superimposed on the large-
scale surface oscillations. While having a small influence on 
the local water depth as measured with the pressure sensor, 
their strong local curvature causes a significant refraction 
which affects the image-based time sequence.

One possible solution to deal with these local surface ripples 
is to use the average intensity over multiple images as input 
for the reconstruction algorithm. This averaging filters out the 
high-frequency deformations, since it can be assumed that the 
average refractive distortion is dominated by the slower and 
large-scale gravity waves within the cavity. However, aver-
aging over too much images is also not advised because it 
reduces the temporal resolution of the time-dependent recon-
struction. Taking the median over four images gave for the 
test case presented in this paper a reliable result, in which the 
large-scale dynamics could still be distinguished. Figure 12 
provides a comparison between the image-based time series, 
using the median over four subsequent images, and the median 
pressure reading within the time span of the four images. This 
decreases the influence of the surface ripples and moderates 
the peaked behaviour of the original image-based time series 
(figure 9). On the other hand, it also attenuates the large-scale 
dynamics of the surface oscillations. This attenuation is much 
more pronounced in the time series of the image-based results, 
of which the amplitude is smaller than that of the smoothed 
pressure readings. Depending on the time-scale of the studied 
phenomenon and the presence of undesired surface ripples, 
averaging the image sequence seems useful but should be 
done with care. A compromise might thus be necessary to 
smooth out noise induced by these disturbances while mini-
mising the reduction in amplitude and temporal resolution of 
the reconstructed surface dynamics.

A second solution is to use a more extensive surface model 
to describe the surface shape in the area influenced by surface 
ripples. This is not attempted in this paper because the single-
parameter model allows a straightforward comparison with the 
single-point measurements of the level gauge. Additionally, 
the simplified optimisation problem avoids ambiguity between 
a change in water depth and a variation in inclination as dis-
cussed previously. This ensures a reliable solution while using 
only a single view to reconstruct the surface.

Finally, the spatial resolution of the camera influences the 
magnitude of the image disparity shifts, i.e. the pattern defor-
mation due to a changing surface shape. As explained in sec-
tion 3, this affects the maximum accuracy that can be achieved. 
Given the characteristics of camera 2 (table 5), the theory of 
appendix predicts a minimal water depth change of 0.40 mm 

Figure 11.  Local surface ripples cause a strong curvature and 
inclination of the surface shape and result in significant distortion 
of the adopted chequerboard pattern. The reconstructed surface 
area is indicated in red, while the approximate wave length of the 
disturbing surface ripples is indicated in white.
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for an image disparity shift of minimal 1 pixel. Moreover, 
rapid pattern deformations complicate a pixel-accurate dis-
tinction between black and white squares. In practical appli-
cations, image disparity shifts of even more than 1 pixel are 
thus preferable to improve the reliability of the results. In case 
the adopted camera has a higher pixel cm−1 ratio, the same 
movement of surface points p correspond with more pixels in 
the image plane. Hence, increasing the pixel cm−1 ratio of the 
camera should improve the performance of the methodology.

To verify this statement, camera 3 is positioned closer to 
the surface (see figure 2 and table 2). This increases the pixel 
cm−1 ratio for camera 3 (test 5) to 53, almost twice as large 
as the pixel cm−1 ratio  =  30 for camera 2 (test 4). Because 
test 5 was even more affected by small surface ripples, a sim-
ilar procedure as for the first dynamic test is followed. The 
median intensity over four images is used as input for the 

surface reconstruction, and is subsequently compared with the 
median over 4 pressure readings. Figure 13 depicts the (aver-
aged) pressure time series and image-based results for test 5. 
The more peaked behaviour of these (averaged) image-based 
results indicates that a larger pixel cm−1 ratio increases the 
sensitivity of the methodology and results in less smoothing 
compared to figure 12.

To quantitatively compare the two dynamic tests, the rms 
error is calculated for every time series (test 4: raw image 
sequence and averaged image sequence; test 5: averaged 
image sequence). For all three cases, the rms error is deter-
mined by comparison between the image-based time series 
and the corresponding simultaneous pressure time series. 
For test 4, this results in a rms error of 2.20 mm and 2.00 mm 
for the raw images and averaged image sequence, respec-
tively. For test 5, the rms error equals 1.68 mm. This better 

Figure 12.  Dynamic test 4: Comparison between the measured water depth variation using the pressure sensor (dotted line) and the image-
based surface reconstruction (solid line) using the median pressure reading over four samples or the median intensity over four images.

Figure 13.  Dynamic test 5: Comparison between the measured water depth variation using the pressure sensor (dotted line) and the image-
based surface reconstruction (solid line) using the median pressure reading over four samples or the median intensity over four images.
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agreement between the (averaged) image-based and pressure 
time series of test 5 confirms that increasing the pixel cm−1 
ratio of the camera improves the reconstruction accuracy. In 
practice, this can be achieved by using more advanced (high-
resolution) optical equipment or positioning the camera closer 
to the imaged surface.

The power spectral densities that are presented in sec-
tion  4.2 (figure 10) prove that the dominant frequency f1 
of 1.04 Hz is the same for both time series of test 4 (raw 
images). Also a second peak, indicated as f2 at 0.48 Hz, is in 
both spectral plots clearly distinguished. However, the pres
sure data shows a third peak f3 at 1.88 Hz (≈4 × 0.48 Hz), 
while the image-based results are characterised by a peak f4 
at 2.16 Hz (≈2 × 1.04 Hz). Formulas to predict the frequency 
of the (bi-directional) oscillations within a lateral cavity (see 
[29]) suggest that for test 4, the first and second harmonic 
of longitudinal standing gravity waves in the cavity occur at 
approximately f1 and f4. This indicates that the chosen sur-
face model, adapted to include inclinations of the surface 
in the longitudinal direction, is able to discern these sur-
face oscillations reliably. The transverse oscillations in the 
cavity are on the other hand expected at a frequency f2 (or 
higher harmonics at a multiple of f2). Transverse modes of a 
higher order (multiples of f2) are nonetheless less energetic 
and influential on the the surface dynamics. Moreover, they 
are more difficult to register using the image-based method-
ology because of the chosen surface model (ny constant) and 
viewing direction of the camera. Their smaller amplitude and 
the smaller refractive disparity shift caused by these standing 
waves might explain why the peak at f3 is not present in the 
image-based spectrum.

6.  Conclusion

An image-based and non-intrusive surface reconstruction 
approach is presented, compatible with (subsurface) image-
based velocity measurement techniques. It only requires a 
pattern to be visible through the water column, and a single 
camera view is sufficient due to the parametric descrip-
tion of the surface shape. This single-view approach makes 
a more flexible experimental set-up possible, and improves 
the robustness and reliability because no feature tracking is 
needed in a twofold manner. Firstly, it makes the optimisation 
of a single image less sensitive to these disturbing surface 
effects. Secondly, it ensures that surface reconstruction for a 
single image is not affected by loss of feature points in pre-
viously processed image frames. Compared to the original 
method presented by [21], this ensures that reconstruction of 
the entire surface can be maintained in case of high-frequency 
surface perturbations. Moreover, the technique remains reli-
able in presence of seeding particles that (partly) obstruct a 
clear view of the pattern below.

A validation on still water, which is valid due to the image-
based reconstruction methodology, shows that the presented 
measurement technique is able to reconstruct steady, shallow 
flows with sub-millimetre accuracy. Due to the integrated 
approach, in which the deformation of the entire pattern is 

used to fit the (limited set of) surface parameters, the exper
imentally achieved accuracy is significantly better than theor
etically predicted. Additionally, the static validation confirms 
that a larger water depth improves the reconstruction acc
uracy, as was also expected based on the simplified theoretical 
derivation.

Furthermore, the methodology is validated by two tests on 
a dynamic surface phenomenon, more specifically to surface 
oscillations in an open-channel lateral cavity driven by the 
flow past the cavity. Although the accuracy of the static vali-
dation cannot be achieved, the reconstructed time series show 
close correspondence with simultaneous local pressure meas-
urements. Additionally, a comparison of the power spectra of 
the first test indicates that the pressure and image-based time 
series are characterised by the same dominant peak frequency, 
corresponding to surface gravity waves in the longitudinal 
cavity direction.

Because the presented technique relies on the detection of 
a regular pattern, projected on the water surface, small surface 
perturbations complicate the image-based reconstruction. In 
this paper, these surface ripples are mitigated by averaging the 
image-intensity over subsequent images in order to filter out 
the high-frequency surface effects. This reduces the difference 
between the pressure and image-based time series, although 
also the large-scale dynamics of the water oscillations are 
(partly) attenuated. Finally, two tests on a dynamic surface 
are compared, in which the camera is positioned differently 
with respect to the surface. This indicates that increasing the 
pixel cm−1 ratio of the camera enhances the sensitivity to 
small changes in water depth and improves the reconstruction 
accuracy.

Although the presented validation is based on a compar-
ison of only a small reconstructed surface area with alter-
native measurement techniques, good agreement for even 
non-smooth surface conditions is achieved. Moreover, the 
proposed averaging procedure allows to cope with high-fre-
quency surface perturbations, which makes the image-based 
methodology useful for laboratory experiments of numerous 
hydraulic research fields. This methodology can easily be 
extended to a larger mesh composed of independently recon-
structed areas. Further research will combine the presented 
technique with simultaneous (PTV) velocity measurements, 
enabling detailed understanding of the cavity flow field.

Acknowledgments

The first author is PhD fellow of the Special Research Fund 
(BOF) of Ghent University.

Appendix. Theoretical estimate of the image dispar-
ity shift

In the following, a theoretical approach is presented to esti-
mate the image-disparity shifts of the depicted pattern due to a 
changing water surface. Herewith, some simplifying assump-
tions are made, although we believe that the results can still 
be used to gain more understanding in the reconstruction 
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conditions that affect the accuracy of the methodology. As 
such, we intend to provide a guideline to future users to obtain 
the best possible results.

It is assumed that the water surface is a flat, horizontal plane, 
of which the water level changes from hi to hi+1 = hi +∆h. 
Given that the presented technique is used to capture smooth 
surface phenomena, in which the inclination of the surface 
remains relatively small compared to the viewing angle, this 
simplification does not influence the general applicability of 
the results presented hereafter. For example, the dynamic tests 
presented in this paper are dominated by large-scale oscilla-
tions of the surface (not considering the disturbing surface 
ripples), of which the maximum surface slope varies between 
approximately  +35 mm m−1 and  −35 mm m−1. This inclina-
tion is of the same order of magnitude as the variability of 
the inclination angle within the small reconstruction domain, 
and is therefore considered negligible for the geometry of the 
refractive problem.

Figure A1 shows that a single viewing ray intersects the 
initial water surface, characterised by its water depth hi, with 
an angle θair,i relative to the surface normal. The direction of 
the refracted viewing ray, defined by θwater,i, is then calculated 
using Snell’s law:

θwater,i = arcsin(sin(θair,i)/rw)� (A.1)

with rw the refractive index of water, equal to 1.336 for a wave-
length of 520 nm (section 2.4) and water at 20 °C (4). The 
horizontal distance xi between the surface point pi and corre
sponding point f on the bottom plane is then calculated as

xi = tan(θwater,i) · hi.� (A.2)

In case the surface level rises to hi+1, the same point f on 
the bottom plane will be viewed at surface point pi+1 instead 
of pi. Figure A1 illustrates that a water level rise results in a 
horizontal shift from pi to pi+1, directed towards the camera 
in the plane of incidence of the viewing ray. Additionally, the 
water level rise causes an increase of the angle of incidence 
with respect to the surface normal from θair,i to θair,i+1. This 
change in viewing direction, denoted as ∆θ, depends both 
on the camera position with regards to the surface and the 
change in water level ∆h . This makes it difficult to derive a 
general rule of thumb to quantify ∆θ.

Therefore, we hypothesise that ∆θ will result in a move-
ment of 1 pixel in the image plane of the camera. The cameras 
adopted in this paper have a horizontal angle of view of 30° and 
corresponding resolution of 1920 pixels, which is representa-
tive for a typical (low-cost) optical set-up. As a consequence, 
a movement of 1 pixel in the image plane corresponds to a 
change in viewing direction of ∆θ = 30◦/1920 = 0.0156◦. As 
such, the new angle of incidence of the viewing ray becomes 
θwater,i+1 = θwater,i +∆θ. The refracted viewing direction 
θwater,i+1 is then found similarly as θwater,i:

θwater,i+1 = arcsin(sin(θair,i+1)/rw).� (A.3)

The corresponding horizontal distance xi+1 between pi+1 and 
f is measured in the same plane of incidence as xi:

xi+1 = tan(θwater,i+1) · hi+1.� (A.4)

The horizontal shift from pi towards pi+1 is then calculated as

∆ph = xi+1 − xi.� (A.5)

Finally, the distance between pi and pi+1, measured perpend
icular to the viewing rays’ direction, can be approximated by

∆p ≈ ∆ph · cos(θair,i).� (A.6)

In case the distance ∆p corresponds to more than 1 pixel in 
the image plane of the camera, the original assumption about 
∆θ is correct. As an example, figure A2 shows ∆p in function 
of the initial viewing direction θair,i, for a varying initial water 
depth hi and a given change in water depth ∆h = 0.5 mm. The 
red, green and blue lines denote the (average) viewing angle 
and mm pixel−1 ratio of camera 1, camera 2 and camera 3, 
respectively.

Table A1 gives an overview of the set-up characteristics 
that determine the image disparity shifts of the five validation 
tests presented in this paper. For each test, the direction of the 
viewing angle in the middle of the reconstructed domain is 
calculated, based on the camera position and average water 
depth hm during the test. In table  A1, ∆pmin  indicates the 
required movement of a surface point for a 1 pixel-image 
shift, based on the pixel cm−1 ratio of the adopted camera. 
The minimum water level change ∆hmin  that can theoretically 
be reconstructed is then found as the water level change for 
which ∆p (equation (A.6)) equals ∆pmin . Because camera 3 
is positioned closer to the reconstructed surface, 1 cm of the 
reconstructed surface corresponds to 53 pixels compared to 30 
pixels for camera 1 and 2. This results in a smaller required 

Figure A1.  Schematic overview of the theoretical approach to 
estimate the image disparity shift for a given change in water depth 
∆h and initial viewing direction θair,i.
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∆pmin  for a 1 pixel-image disparity shift. Based on the sim-
plified approach, a value of ∆hmin ≈ 0 mm (O(10−2 mm)) is 
found for test 5, which is considered to be the consequence of 
the simplifications made throughout the theoretical derivation. 
However, it indicates that even small surface variations can 
still be recorded by camera 3.
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