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CONTEXT 

 

This thesis is divided to two parts (Part I and Part II). Part I is focused on intracellular 

delivery by photoporation and relevant applications like cell labeling and tracking. In Part 

II, a new FRAP (fluorescence recovery after photobleaching) model is developed for 

measuring the size distribution of nanomaterials in complex biological fluids and is applied 

to the characterization of protein aggregates and diagnosis of bio-barrier permeability. Both 

parts will be introduced separately below. 

Part I INTRACELLULAR DELIVERY OF BIOPHARMACEUTICALS AND CONTRAST 

AGENTS BY VAPOR NANOBUBBLE (VNB) PHOTOPORATION  

Cytosolic delivery of foreign nanomaterials into living cells is an important step for cell 

studies as well as for therapy and bio-imaging. Delivering such nanomaterials into cells 

requires overcoming the cell membrane, which is a major biological barrier to 

macromolecules and nanoparticles. Numerous methodologies have been developed to 

deliver these membrane-impermeable exogenous materials across the cell membrane, 

which can be broadly classified into biological, chemical and physical methods. In the 

biological approach, foreign nucleic acids are introduced into cells via a viral vector. 

Although virus-mediated transfection can provide highly efficient and sustainable transgene 

expression, the major disadvantages of this method are immunogenicity and toxicity. To 

overcome these shortcomings, chemical vectors, often lipid or polymer based, are being 

developed. These nanocarriers are generally internalized by cells through endocytosis, 

which means that they will be sequestered inside endosomes in cell’s interior. In many 

cases, however, the delivered compound should rather reach the cell’s cytosol. Yet, escape 

from the endosomal compartment remains one of the major bottlenecks for non-viral 

nanocarriers.   

Physical approaches for the cytosolic delivery of nanomaterials have attracted considerable 

interest as well. They typically offer generic applicability to a variety of cell types and enable 

direct delivery of the exogenous materials across the cell membrane into the cytoplasm. 

They are primarily used for in vitro or ex vivo intracellular delivery as their in vivo 

application is typically more limited. Well-known examples of physical delivery methods are 

micro-injection, electroporation and sonoporation. Another physical delivery method that is 

receiving more and more attention in recent years is laser-assisted photoporation. 

Photoporation is based on the generation of transient pores in the cell membrane using 

laser light. In its traditional form, these pores are formed by focusing a high-energy laser 

beam on the cell membrane. More recently, however, laser irradiation is combined with 

sensitizing nanoparticles that amplify the laser effects. Nanoparticle sensitized laser 
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photoporation has the benefit that a lower laser energy can be used and that cells can be 

photoporated in higher-throughput. Nanoparticle sensitized photoporation, which is the 

topic in Part I of this thesis, is an exciting young research field that is a striking example 

of the tremendous possibilities that multidisciplinary science has to offer. It combines 

biophotonics with nanotechnology to enable new and improved biological and biomedical 

applications, of which several examples will be given in this thesis.  

Plasmonic metallic nanoparticles, such as gold nanoparticles (AuNP) are used the most as 

enhancers of the photoporation effect. Their surface plasmon resonance (SPR) can 

tremendously enhance laser absorption, leading to distinct phenomena such as heating of 

the surrounding tissue, acoustic shockwaves, and formation of water vapor nanobubbles 

(VNBs). As will be demonstrated in Chapter 2, the latter effect is of particular interest for 

photoporation. VNB can be efficiently generated with short laser pulses (< 10 ns) of 

sufficiently high intensity.  Upon absorption of such a laser pulse, the temperature of a 

nanoparticle (NP) can rapidly increase to several hundred degrees, causing the water 

surrounding the NP to evaporate. This results in the creation of a VNB around the AuNP 

surface, with a size ranging from tens to hundreds of nm depending on the laser energy. 

When the thermal energy of the NP is consumed, the VNB violently collapses and causes 

local damage by high-pressure shockwaves. Due to the extremely short lifetime of VNBs 

(<1 µs), the diffusion of heat from the AuNP into the environment is negligible so that 

almost all energy of the irradiated AuNP is converted to mechanical energy (expansion of 

the VNB) without heating of the environment. This property makes VNBs an interesting 

phenomenon to mechanically cause local damage to biological structures such as the cell 

membrane, without causing aspecific thermal damage to healthy cells or tissue, which is a 

concern in classic hyperthermia therapies. VNB mediated photoporation is, therefore, an 

interesting delivery method that deserves further exploration for its use in a variety of 

applications.  

In Part I, we first give a detailed review on the history of photoporation and its main 

principles. Then we investigate specifically VNB mediated photoporation in comparison with 

the more traditionally used thermal variant of photoporation. Having found that VNB 

photoporation is the more efficient mechanism for permeabilizing the cell membrane, we 

make use of it to deliver of imaging contract agents into cells for improved long-term in 

vivo cell tracking. Next we show that VNB photoporation can be used to deliver extrinsic 

labels into cells for microscopic visualization of subcellular structures of living cells. Finally, 

we develop a fully automated VNB photoporation platform, for  fast and flexible spatially 

resolved photoporation of selected cells with several unique applications. 
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Part II SIZING NANOMATERIALS IN BIO-FLUIDS BY FLUORESCENCE RECOVERY 

AFTER PHOTOPOBLEACHING (FRAP) 

FRAP is one of the first fluorescence microscopy based methods for the measurement of 

molecular mobility in biological tissues and biomaterials. Since its development in the 1970s, 

FRAP is widely used in the biophysical, pharmaceutical and material sciences to study 

diffusion of molecules and nanoparticles on the micrometer scale. In a FRAP experiment, 

the sample is placed on a microscope and the fluorescently labeled molecules or 

nanoparticles are photobleached in a micron sized area by a powerful excitation pulse. 

Bleached molecules will diffuse out of the bleach area and will be gradually replaced by 

intact fluorophores. The fluorescence inside the bleach area  will recover at a rate that is 

proportional to the diffusional rate of the fluorescent species. Typically it is the average 

fluorescence in the bleach area that is analyzed as a function of time. Fitting of a proper 

mathematical diffusion model to the fluorescence recovery data yields the local diffusion 

coefficient of the fluorescently labeled species.   

Previous work in our group has shown that the precision and accuracy of FRAP data analysis 

is improved when the full tempo-spatial information is considered, rather than just the time-

progression of the average fluorescence intensity. In this thesis we hypothesize that this 

extended way of doing FRAP analysis enables the interpretation of FRAP data in terms of 

continuous distributions of diffusion coefficients, rather than just one apparent average 

diffusion coefficient. If correct it would extend the capabilities of FRAP to the analysis of 

polydisperse systems, which is much closer to reality and, therefore, would open up new 

application possibilities.   

In particular our interest goes to the sizing of nanomaterials in complex biological fluids, 

which is of importance in a wide range of applications in the life sciences. For instance, even 

though nanomedicine formulations may be stable under normal storage conditions, they 

may very well aggregate after administration into a biological fluid such as blood. Similarly, 

there is a growing appreciation that the colloidal stability of therapeutic proteins needs to 

be tested in blood as protein aggregation after intravenous administration may alter their 

functionality and induce immunogenic responses. Being able to size nanomaterials in 

biofluids is of interest to medical diagnosis as well, for instance to determine intestinal or 

vascular barrier permeability which is related to several pathologies, such as sepsis, liver 

disease, inflammatory bowel disease and neurodegenerative diseases. Barrier permeability 

can be assessed by administering inert size probes, e.g. orally or intravenously, followed 

by quantification of the size and amount of probes that have leaked through the barrier. 

Despite its relevance, measuring the size of molecules and nanomaterials in complex 

biological fluids remains a major challenge and still very much needed. In the second part 

of the thesis we develop a dedicated FRAP method capable of analyzing the distribution of 
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diffusion coefficients of polydisperse systems. These distributions can be converted to size 

distributions as well since size and diffusion rate are directly linked to one another. After 

thorough validation we show that our new FRAP method can measure the size distribution 

of proteins and protein aggregates in undiluted human serum. In addition, we apply the 

new method to assess intestinal and vascular barrier permeability in vivo by measuring the 

size distribution of probes that permeated through the respective barriers.  

 

AIM 

 

Part I INTRACELLULAR DELIVERY OF BIOPHARMACEUTICALS AND CONTRAST 

AGENTS BY VAPOR NANOBUBBLE (VNB) PHOTOPORATION  

The general aim of first part is to build up a nanoparticle enhanced photoporation setup and 

optimize the cytosolic delivery efficiency and toxicity for various cell types. It is applied to 

the delivery of therapeutic biomolecules as well as contrast agents for long-term in vivo cell 

tracking or subcellular microscopic imaging. In addition, technology will be developed to 

enable high-throughput cell-selective photoporation which opens up several new 

applications. 

As discussed in the review in Chapter 1, there are two major mechanisms by which cell 

membranes can be permeabilized through photoporation. One is by local heating, the other 

is by mechanical pore formation by vapor nanobubbles. In Chapter 2 we compare both cell 

permabilization mechanisms to determine which offers the best efficiency. In addition we 

intend to show for the first time that photoporation can be used to deliver siRNA into cells 

for the downregulation of proteins.   

In Chapter 3 we hypothesize that photoporation can be used for the cytosolic delivery of 

fluorescent contrast agents for in vivo cell tracking. Long-term in vivo imaging of cells is 

crucial for the understanding of cellular fate in biological processes in cancer research, 

immunology or in cell-based therapies. Cell labeling with the desired contrast agent occurs 

ex vivo via endocytosis, which is a variable and slow process. Following endocytic uptake, 

the contrast agents mostly remain entrapped in the endolysosomal compartment, which 

leads to signal degradation, cytotoxicity and asymmetric inheritance of the labels upon cell 

division. Therefore, it is of current interest to develop methods that can circumvent 

endocytic uptake of labels and instead deliver them directly into the cytoplasm. Here we 

aim to demonstrate that photoporation is well-suited to deliver fluorescent labels into the 

cytosol of cells and mitigates the many problems associated with label endocytosis. We will 
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show that the combined advantages will enable substantially improved long-term in vivo 

cell tracking. 

Apart from in vivo cell tracking, there is great interest in the intracellular delivery of 

fluorescent labels for high-resolution microscopy of living cells. Quantum Dots (QDs) 

represent one interesting class of microscopy labels due to some of their unique properties 

like improved photostability, increased brightness and narrow emission spectra. While they 

have been used for subcellular labeling of fixed cells, their application to living cells is very 

limited so far mainly due to inefficient cytosolic delivery of QDs. Chapter 4 is aimed to 

demonstrate that VNB photoporation offers the long awaited ability to deliver functionalized 

QDs efficiently into the cytosol of cells for labeling and microscopic visualization of 

subcellular structures. 

Finally, we aim to exploit arguably the most unique feature of photoporation, which is the 

capability to deliver compounds into selected cells within a large population of cells. In 

Chapter 5 we will develop soft- and hardware to do this and will demonstrate its usefulness 

in challenging applications which benefit from high-throughput cell-selective delivery. These 

include sparse labeling of random single neurons in primary hippocampal cultures for 

automated analysis of spine density, and the labeling and sorting of polynucleic or 

mononucleic primary keratinocytes that are potentially involved in neoplasm (and tumor) 

formation. 

Part II SIZING NANOMATERIALS IN BIO-FLUIDS BY FLUORESCENCE RECOVERY 

AFTER PHOTOPOBLEACHING (FRAP) 

The second part is aimed at developing a FRAP method capable of analyzing the size 

distribution of nanomaterials in complex biological fluids in Chapter 6 and Chapter 7. 

Specifically we aim at developing a FRAP method that can make use of the full time and 

space information available from FRAP recovery images in Chapter 6. By doing so we 

hypothesize that better precision may be obtained as compared to the traditional FRAP 

methods that only make use of time information (i.e. the recovery of the average 

fluorescence intensity in the bleach area over time). We will base our ‘continuous’ FRAP 

model (cFRAP) on previous work from our group where a tempo-spatial FRAP method was 

developed to measure the diffusion of a single component. This single component FRAP 

model will be implemented in the Maximum Entropy Method (MEM) framework to enable 

interpretation of the recovery data in terms of a semi-continuous distribution of diffusion 

coefficients. If the viscosity of the solution is known, which can be measured independently, 

the distribution of diffusion coefficients can be converted to a distribution of sizes with the 

Stokes-Einstein equation. The cFRAP method will be thoroughly validated by simulations 

and biophysical experiments on model systems. Then it will be applied to challenging 

pharmaceutical and biomedical problems that would benefit from a method that can size 



Introduction 

18 

 

nanomaterials in the 1-100 nm range in complex biological fluids Chapter 7. First we will 

demonstrate that cFRAP can be used for size measurements of proteins and protein 

aggregates in serum. Next, we will investigate to which extent cFRAP could be suitable for 

a detailed assessment of the permeability of the intestinal or vascular barrier in mice. We 

propose the oral intake or IV injection of a mixture of FITC-dextrans covering a wide range 

of sizes. cFRAP can then be used to analyze the size distribution of FITC-dextrans that have 

entered into the blood circulation after permeation through the intestinal barrier or measure 

size distribution of FITC-dextrans that permeated into CSF, brain or other organs.  

 

OUTLINE 

 

The PhD thesis is divided to two independent parts as was introduced above. The first and 

largest part (Part I) deals with various unique applications of the cytosolic delivery of 

nanomaterials enabled by VNB photoporation. This part includes five chapters from 

Chapter 1 to Chapter 5. The fundamentals, technological advances and applications of 

laser-assisted photoporation are reviewed in Chapter 1. Specifically, it provides a detailed 

account on the history and current state-of-the-art of photoporation as a physical 

nanomaterial delivery technique in its various embodiments. This chapter should allow the 

reader to get a detailed understanding of the most important aspects of photoporation, 

which will be of benefit to appreciate the subsequent research chapters. In Chapter 2, the 

hypothesis is investigated that VNB photoporation offers more efficient delivery of 

nanomaterials into cells as compared to the more traditional photothermal photoporation. 

Both photoporation methods are systematically evaluated in terms of cytotoxicity, cell 

loading, and siRNA transfection efficiency. Having found that VNB photoporation does offer 

the expected benefits, it is further applied in Chapter 3 to deliver fluorescent contrast 

agents into cells to enable long-term cell tracking in vitro and in vivo. Specifically it is 

investigated if the cytosolic delivery of contrast agents by VNB photoporation offers a 

number of benefits over traditional cell labeling where uptake of the desired contrast agent 

occurs via spontaneous endocytosis. In Chapter 4, we demonstrate that VNB photoporation 

is equally suited to deliver fluorescent contrast agents into cells for subcellular labeling as 

is needed for microscopic visualization of cells. We show that antibody-functionalized QDs 

could be successfully delivered into the cytoplasm and successfully targeted the 

microtubules. Finally, in Chapter 5, we explore spatially resolved nanoparticle-enhanced 

photoporation (SNAP) as the unique possibility of photoporation to deliver nanomaterials 

into selected cells, rather than a whole population of cells. Soft- and hardware is developed 

to target the photoporation laser beam to specific cells of interest in a cell culture. Cell-

selective photoporation is finally applied to two challenging applications: labeling of single 
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neuron cells and sorting of polynucleic and mononucleic normal human epithelial 

keratinocytes. 

Sizing nanomaterials in complex biological fluids by FRAP is the topic of Part II that includes 

Chapters 6 and 7. In Chapter 6, we develop a tempo-spatial FRAP methodology to 

measure continuous distributions of diffusion coefficients.  First we present the 

mathematical derivation of the cFRAP model and examine how certain experimental 

parameters influence the accuracy and precision of cFRAP experiments. The ability of cFRAP 

to analyze the diffusion of polydisperse systems is validated by performing FRAP 

experiments on solutions of FITC-dextran of different molecular weight and mixtures. 

Thanks to including spatial information in the cFRAP model, we found that the PDI 

(polydispersity index) of the distributions was significantly less as compared to the apparent 

PDI measured by DLS or traditional FRAP methods which only take time information into 

account. Having thoroughly validated the performance of cFRAP, we demonstrate its 

strength and versatility in a number of challenging sizing applications in Chapter 7. As a 

first proof-of-concept application we demonstrate that the extent of aggregation of 

therapeutic proteins can be accurately measured in undiluted serum by cFRAP. Next, we 

show that cFRAP allows detailed investigation of the permeability of the intestinal and 

vascular barriers in vivo following the administration of fluorescent probes spanning 2 

orders of magnitude in size. As a single measurement in a microliter sample is sufficient to 

determine the full size distribution of probes that have leaked through the barrier, the 

number of animals needed to assess the barrier permeability can be substantially reduced. 

At the same time unprecedented detailed information is obtained on the size distribution of 

probes that can permeate through the barrier. 

The thesis finally finishes with a dedicated section on the broader context and future 

perspectives on photoporation and cFRAP.  
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ABSTRACT 

Laser-assisted photoporation is a promising technique that is receiving increasing attention 

for the delivery of membrane impermeable nanoscopic substances into living cells. 

Photoporation is based on the generation of localized transient pores in the cell membrane 

using continuous or pulsed laser light. Increased membrane permeability can be achieved 

directly by focused laser light or in combination with sensitizing nanoparticles for higher 

throughput. Here, we provide a detailed account on the history and current state-of-the- 

art of photoporation as a physical nanomaterial delivery technique. We first introduce with 

a detailed explanation of the mechanisms responsible for cell membrane pore formation, 

following an overview of experimental procedures for realizing direct laser photoporation. 

Next, we review the second and most recent method of photoporation that combines laser 

light with sensitizing NPs. The different mechanisms of pore formation are discussed and 

an overview is given of the various types of sensitizing nanomaterials. Typical experimental 

setups to achieve nanoparticlemediated photoporation are discussed as well. Finally, we 

discuss the biological and therapeutic applications enabled by photoporation and give our 

current view on this expanding research field and the challenges and opportunities that 

remain for the near future.  
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1. INTRODUCTION 

The incorporation of foreign materials into living cells is an important step not only for cell 

studies, but also for therapy and bio-imaging. DNA is for instance introduced into live cells 

for studying gene expression1-5, mutation analysis6, and gene therapy7. Similarly, mRNA 

incorporation into living cells helps to assess cell biological functions8, while small interfering 

RNA (siRNA) is introduced for sequence-specific gene silencing9-13. Proteins also can be 

delivered into living cells for bio-imaging and therapies14-16. In recent years, the use of 

inorganic particles as intracellular labels is being investigated, such as superparamagnetic 

iron oxide nanoparticles (SPIONs) and Gadolinium complexes for magnetic resonance 

imaging (MRI)17-19, quantum dots (QDs)20-22 and upconversion nanoparticles23 for 

fluorescence imaging and gold nanoparticles (AuNPs) for photoacoustic imaging24, 25. In 

addition, QDs and AuNPs are also delivered into cells for in vitro microscopic imaging of 

subcellular structures and intracellular biosensing, respectively26-28.    

Delivering such nanomaterials into cells requires overcoming the cell membrane, which is 

a major biological barrier to charged, noncharged, and polar molecules as well as 

nanoparticles. Numerous methodologies have been developed to allow these membrane-

impermeable exogenous materials to cross the cell membrane, which can be broadly 

classified into biological, chemical and physical methods29. In the biological approach, 

foreign DNA is introduced into cells via a viral vector. Although virus-mediated transfection 

can provide highly efficient and sustainable transgene expression, the major disadvantages 

of this method are immunogenicity and toxicity30, 31. To overcome these shortcomings of 

viral vectors, chemical vectors, often lipid or polymer based, are being explored as well32-

35. These nanocarriers are generally internalized by cells through endocytosis, although the 

required subsequent escape from the endosomal compartments remains one of the major 

bottlenecks36-38.   

Physical approaches to permeate the cell membrane have attracted considerable interest 

as well. They typically offer generic applicability to a variety of cell types and enable direct 

delivery of the exogenous materials across the cell membrane into the cytoplasm39-41. 

Microinjection is a first example where the compounds of interest are injected into single 

cells42-44. Although it has demonstrated its usefulness for cell biological applications, it is 

technically challenging and only applicable to a limited number cells. Electroporation is an 

alternative physical technique that can deliver molecules into a large batch of cells, but the 

high electric field often results in low cell viability45-50. The gene gun is another approach 

that uses micro- or nano- particles conjugated with e.g. nucleic acids which are shot into 

cells as a kind of bullets using pressurized gas51, 52. More recently, sonoporation has been 

introduced as a method to permeabilize the plasma cell membrane by making use of 

ultrasound-responsive microbubbles. The acoustic response of the microbubbles can lead 
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to the formation of micro-jets and shockwaves resulting in cell membrane poration53-55. 

However, the technique is rather developed for in vivo applications and less suited for in 

vitro work. It has also been reported that shear forces or elevated temperatures can lead 

to substantial cell damage and toxicity39, 56. The use of a microfluidics device is also reported 

for the intracellular delivery of therapeutic molecules and labels with high throughput57-60. 

The cells are forced to flow through a narrow constriction in the channel so that pores are 

created in the cell membrane by friction forces. While it is tremendously fast at one million 

cells per second, it is limited to cells in suspension and the efficiency remains relatively low.   

Photoporation has been developed as a promising alternative technique offering distinct 

advantages over other physical delivery methods. In its standard form, pores are created 

in the cell membrane by high-intensity femtosecond laser pulses that are focused precisely 

with respect to the cell membrane (Fig. 1)61-66. In the context of this review, the term ‘pore’ 

will be used to denote both water-filled holes in the membrane as well as local zones with 

increased membrane permeability for instance by localized reorganization of lipids. Just like 

in electroporation and sonoporation, exogenous nanomaterials that are present in the 

surrounding cell medium can then diffuse into the cell’s cytoplasm. Although it has proven 

to be useful for single cell studies, it requires the use of expensive femtosecond lasers and 

remains relatively slow since the laser beam needs to be focused exactly in 3-D on the cell 

membrane and pores are created one at a time. Even by parallelization of laser beams, a 

limited throughput of only a few cells per second could be achieved67. However, by using 

plasmonic nanoparticles like AuNPs, it has been demonstrated in the last couple of years 

that photoporation throughput can be immensely enhanced (Fig. 1)68-70. Most studies so 

far have used low intensity laser pulses or CW (continuous wavelength) laser light to excite 

AuNPs71-74, causing thermal membrane permeabilization by a local phase transition of the 

lipid bilayer or by denaturation of integral glycoproteins74. Instead, the use of more intense 

laser pulses have shown to cause mechanical membrane poration by the generation of 

vapor nanobubbles (VNBs)69, 75. In a comparative study of thermal vs. VNB mediated 

membrane poration it has been found that VNB mediated membrane poration actually 

allows more efficient uptake of exogenous nanomaterials with reduced cytotoxicity as 

compared to thermal poration at low laser intensity76. Although AuNPs are the most widely 

used for membrane poration, other nanomaterials like titanium nanostructures and carbon 

based nanomaterials are also currently being evaluated as alternative sensitizing 

nanoparticles77-80.  

In this review, we provide a detailed account on the history and current state-of-the-art of 

photoporation as a physical delivery technique. First the historic form of photoporation is 

introduced with a detailed explanation of the mechanisms responsible for cell membrane 

pore formation. An overview is given of the most common experimental configurations for 

realizing direct laser photoporation. Next, we review the second and most recent method 
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of photoporation that combines laser light with sensitizing NPs (NanoParticles). The different 

mechanisms of pore formation will be discussed and an overview is given of the various 

types of sensitizing nanomaterials. Typical experimental set-ups to achieve nanoparticle 

mediated photoporation will be discussed as well. Finally, the biological and therapeutic 

applications enabled by photoporation will be discussed including nucleic acid transfection, 

drug delivery and cellular imaging. Taken together it is clear that photoporation is acquiring 

immense interest and is expected to evolve substantially in the coming years, both in terms 

of technology and novel applications. Here we give our current view on this expanding 

research field and the challenges and opportunities that remain for the near future. 

 

Figure 1. Direct laser-induced photoporation and NP-mediated photoporation. In direct photoporation (I), 

the laser beam is focused precisely on or slightly above the cell membrane to achieve a locally high photon 

density. For NP sensitized photoporation (II), the NPs are first incubated with the cells to allow them to 

adhere to the cell membrane. Notes: A (low intensity) broad laser beam can then be used to photoporate 

many cells at the same time. Following laser irradiation, exogenous compounds in the cell medium can 

diffuse through the membrane pore(s) into the cell’s cytoplasm. 

 

2. DIRECT LASER-INDUCED PHOTOPORATION 

2.1 Mechanisms  

In direct laser induced photoporation, it is crucial to spatiotemporally confine the laser 

energy to the cell membrane to obtain sufficient laser energy density for the generation of 

membrane pores. To achieve this, a laser beam is focused to a very small spot size (typically 

~1 - 10 µm) through a microscope’s objective lens81.  Typically, a pulsed laser is used with 

a pulse duration from nanosecond (ns) down to femtosecond (fs) to achieve a sufficiently 

high photon density. As schematically shown in Fig. 2a, a variety of possible mechanisms 



Chapter 1 

30 

 

may contribute to pore formation, including photothermal, photomechanical and 

photochemical processes81-83. The contribution of each of these processes depends on laser 

pulse duration, laser wavelength and intensity (which in turn is determined by the laser 

energy and beam size). In order to control pore formation, it is essential to understand 

these mechanisms of laser-induced photoporation.     

 

Figure 2. Main mechanisms contributing to direct laser-induced photoporation. (a) A pore (up to hundreds 

of nm) can be formed in the cell membrane by a focused laser beam through photothermal, 

photomechanical and photochemical effects. (b) The photothermal effect refers to a temperature increase 

following absorption of photons by molecules like water, but also proteins or DNA. (c) Under pulsed laser 

irradiation, thermoelastic stress or cavitation bubbles contribute to photomechanical poration of cell 

membranes. (d) With fs laser pulses or UV laser light, pores can be formed by photodissociation or the 

generation of ROS by actively free electrons. 

2.1.1 Temporal laser energy confinement  

Absorption of light can cause a transition between electronic or vibrational energy levels of 

the absorbing molecules so that heat is generated upon relaxation to the ground state (Fig. 

2b). In order to realize a substantial temperature increase in the focal spot, short intense 

laser pulses are preferred with a duration shorter than the characteristic thermal diffusion 

time 𝑡𝑑 in the focal volume84:  

𝑡𝑑 =
0.124𝜆2

𝜅 ∙ 𝑁𝐴2
    (1) 

where λ is the laser wavelength, κ is the thermal diffusivity (in water 𝜅 = 0.143 𝑚𝑚2/𝑠) and 

NA is the numerical aperture of the objective lens. For example, for a laser operating at 

λ=1064 nm that is focused through a lens of NA = 0.8, the laser pulse duration should be 

less than 60 ns. Rapid localized heating may lead to a sudden thermal expansion of the 

medium, resulting in the generation of acoustic waves. In order to generate a substantial 
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amount of this kind of thermoelastic stress, the time scale of laser energy deposition in the 

focal volume should not be longer than the characteristic time 𝜏𝑠  for acoustic wave 

propagation out of the focal volume, which is governed by the speed of sound in the 

medium82: 

𝜏𝑠 =
0.61𝜆

𝑐𝑤 ∙ 𝑁𝐴
    (2) 

where cw is the speed of sound in water (1484 m/s at 20°C). For a typical NA in the range 

of 0.8 and a laser wavelength 1064 nm, the laser duration should be less than 550 ps for 

stress confinement.  

Finally, multi-photon absorption can occur when using focused short laser pulses in the 

femto- to picosecond range. This may cause ionization of the absorbing molecules and the 

generation of a low density plasma85. Each of these three basic phenomena (heat production, 

acoustic cavitation and plasma formation) can cause damage to cell membranes in a variety 

of ways, as will be explained in the following sections. 

2.1.2 Photothermal pore formation 

The photothermal effect refers to a temperature increase following single photon absorption 

by molecules like water, but also proteins or DNA (Fig. 2b). Absorption in the UV and visible 

range corresponds to electronic transitions of molecules, while infrared is associated with 

vibrational transitions. Non-radiative relaxation to the ground state results in heat 

production. Localized heating can increase the permeability of the cell membrane by a local 

phase transition of the lipid bilayer or by thermal denaturation of integral proteins74, 86. 

However, it was reported that photothermal heating by single photon absorption alone is 

not sufficient to effectively form pores in cell membranes82, 83, 87. This is mainly because 

water, lipids and proteins have a relatively low absorption in the 350-1100 nm wavelength 

range. For that reason dye molecules like phenol red are sometimes used to enhance light 

absorption and achieve a more efficient temperature increase88-90.  

2.1.3 Photomechanical pore formation  

Pores can be created in cell membranes by mechanical stress, which can be induced by 

acoustic waves (cfr. §2.1.1) or by a phenomenon known as cavitation bubbles. Such 

bubbles are formed by localized vaporization of water, which can happen in two ways 

depending primarily on the laser pulse duration. First, cavitation bubbles can be formed 

with femtosecond (fs) laser pulses which cause plasma formation following a multi-photon 

absorption process. Free electrons in the plasma thermalize within tens of picoseconds. As 

this is much shorter than the characteristic time 𝜏𝑠 for acoustic wave propagation out of the 

focal volume (cfr. Eq. (2)), which is in the order of 0.5 ns, the thermoelastic stress caused 
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by the temperature rise will be confined to the focal volume. Subsequent propagation of 

the pressure wave causes substantial tensile stress in the centre of the focal volume. If the 

tensile strength of the liquid (water) is exceeded, a cavitation bubble will be formed. A 

detailed description of the underlying physics can be found in the article by Vogel and 

colleagues81. The expanding bubble can lead to perforation of the cell membrane by 

hydrodynamic stress (Fig. 2c). Furthermore, when the bubble has expanded to its 

maximum size, the bubble collapses by the surrounding hydrostatic pressure, inducing 

liquid jets or shockwaves that can form pores in the cell membrane. Based on SEM imaging, 

Sankin et al. visualized these pores and found that their size ranged from ~200 nm to ~2 

µm91. A second way by which cavitation bubbles can be formed is by using nanosecond (ns) 

and picosecond (ps) laser pulses. Also here local plasma formation is involved, although the 

mechanism is somewhat different as for fs pulses. When using ns or ps laser pulses, only a 

small number of free ‘seed’ electrons can be generated following multiphoton absorption. 

These seed electrons can further absorb photons through a non-resonant process - known 

as Inverse Bremsstrahlung absorption (IBA) - until their kinetic energy is sufficiently high 

to produce other free electrons via impact ionization92. When the free electrons achieve a 

critical density, the irradiated material undergoes optical breakdown resulting in bubble 

formation as explained above. As avalanche ionization takes time to generate a sufficient 

amount of free electrons via IBA, the laser pulse duration should be typically more than 15 

ps. For a pulse duration of tens of ps or even ns, the plasma will be further heated up to 

several thousands of degrees93-95. These high plasma temperatures will cause local 

evaporation of the medium (mostly water) and expansion of the plasma, which cause the 

formation of larger and more violent cavitation bubbles as compared to fs laser pulses. Rau. 

et al. measured the bubble size as a function of time with laser fluences between 0.7× and 

3× above the threshold (~250 J/cm2) for plasma formation (tp=6 ns, λ=532 nm) and 

measured bubble sizes from ~200 to ~400 µm, which are more than 10 times bigger than 

those formed by fs laser pulses85. The entire process is visualized from plasma formation 

(bright luminescence in Fig. 3 a-b), over thermoelastic stress propagation (Fig. 3 b-c) and 

to bubble expansion and collapse (Fig. 3c-k). The violent expansion and collapse of such 

bubbles could severely damage nearby cells, similar to fs induced cavitation bubbles (Fig. 

3l). 
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Figure 3. Time-resolved images show the process from plasma formation (a, b) over shock wave 

propagation (b, c) to cavitation bubble dynamics (c–k) Nearby cells are destroyed by the bubble shear 

forces (l). Notes: A 6 ns laser pulse (at 532 nm) is used with a fluence three times above the plasma 

generation threshold (~250 J/cm2). Scale bar is 50 μm and Potorous rat kidney epithelial (PtK2) cells were 

used (see Ref. 85).       

2.1.4 Photochemical pore formation  

Photochemical reactions may also contribute to photoporation of cell membranes. When fs 

laser pulses are used below the threshold for optical breakdown or bubble formation, 

reactive free electrons can be generated by multiphoton ionization of e.g. water molecules. 

The resulting highly reactive oxygen species can locally induce cell membrane damage (Fig. 

3d)96-98. Alternatively, pulsed UV (typically ns or ps pulses) may damage the cell membrane 

by molecular fragmentation after absorption of highly energetic UV photons83, 99. Indeed, 

UV photons have sufficient energy to cause dissociation of many organic molecular bonds100, 

101. This photo-induced molecular fragmentation plays a significant role in the localized 

ablation of the cell membrane with wavelengths shorter than 250 nm83. However, due to 

the toxicity of UV light, this process is not so commonly used.  
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2.2 Experimental procedures for direct laser-induced photoporation. 

Several approaches have been developed to achieve laser-induced photoporation. One of 

the widely used laser configurations makes use of a Gaussian laser beam that is focused on 

the cell membrane through a microscope objective lens (Fig. 4a). In this procedure, pore 

formation occurs through photomechanical effects induced by thermoelastic stress or 

cavitation bubbles or photochemical reactions, depending on the laser pulse energy and 

duration. Here it is crucial to position the focal volume exactly on the cell membrane, not 

only laterally, but also axially as a miss-focus of only 3 µm could reduce the transfection 

efficiency by as much as 50%102. As careful 3-D positioning of the focal volume is required, 

the photoporation throughput in this configuration is low at only a few cells/min103, 104. It 

has been demonstrated that throughput can be increased by focusing a ns laser a few 

micrometers above the cell membrane to generate cavitation bubbles (Fig. 4b). Tens of 

cells can be perforated by a single cavitation microbubble, so that a throughput of hundreds 

of cells/min can be reached85, 105. Another way to increase throughput is the use of a Bessel 

laser beam that has a large depth of field (with a fluence of typically tens of mJ/cm2 in the 

central part of the beam) and, therefore, does not need axial positioning66, 102. With an array 

of multiple Bessel beams generated by a spatial light modulator a throughput of ~100 

cells/min could be achieved67. The downside of using a non-diffracting Bessel beam is that 

a high laser intensity is delivered throughout the cell, potentially causing membrane 

dysfunction and DNA strand breaks, thus leading to apoptosis-like cell death81, 106.   
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Figure 4. Experimental approaches for direct laser-induced photoporation. (a) A widely used approach in 

direct photoporation is to focus a Gaussian laser beam directly on the cell membrane. Pore formation in the 

cell membrane occurs through photomechanical or photochemical effects (b) A nanosecond pulsed laser 

can be used instead, which is focused a few micrometers above the cell membrane for the generation of 

micrometer sized vapor bubbles. (c) A non-diffracting Bessel laser beam can be used to enhance 

photoporation throughput as it does not require careful focusing on the cell membrane. (d) Cells can be 

photoporated in a sequential fashion by making use of a programmable x-y stage.  

Cells can be photoporated in a sequential fashion by scanning the laser beam over the cells 

with a programmable x-y stage (Fig. 4d). With image processing the location of the 

individual cells can be determined. In combination with an auto-focus system to control the 

axial position of the photoporation laser beam, this allows cells to be photoporated in an 

automated fashion107, 108. In one example it was demonstrated that ~300 cells/min can be 

photoporated that way107. Finally, a microfluidic approach has also developed in an attempt 

to increase photoporation throughput, with cells flowing one by one through the focused 

photoporation laser beam. In this case, a throughput of ~60 cells/min has been obtained109.  

     

3. NANOPARTICLE (NP) SENSITIZED PHOTOPORATION 

Nanomaterials can be used as sensitizers for the photoporation of cell membranes at lower 

laser energies, as was demonstrated first a little more than a decade ago110, 111. While since 

then gold nanoparticles (AuNP) have been used the most for this purpose, examples of 

other nanomaterials like titanium nanostructures and carbon based nanomaterials are 

currently being explored as well. NP sensitized photoporation can offer high throughput 

since less laser energy density is needed so that the laser beam can be expanded to cover 

10s to 100s of cells at the same time. Similar to direct photoporation, sensitizing 

nanoparticles can lead to pore formation in the cell membrane through thermal, mechanical 

and photochemical processes, as is discussed in detail in this section.  

3.1 Plasmonic NP sensitized photoporation 

3.1.1 Laser interaction with plasmonic NP    

For metallic nanoparticles like AuNPs, the optical absorption is enhanced by Localized 

Surface Plasmon Resonance (LSPR). As indicated in Fig. 5a, LSPR corresponds to the 

interaction between a nanostructure and an electromagnetic field, typically laser light. Free 

electrons in the nanoparticle start to oscillate in synchrony with the incident laser 

electromagnetic field. These oscillating electrons are called localized surface plasmons. This 

oscillation generates an electric field opposite to the incident wave and forces the electrons 

back to their equilibrium position. When the incident laser frequency matches the resonant 

frequency of the localized surface plasmons, the electrons will oscillate with maximum 
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amplitude, known as localized surface plasmon resonance. The resonant plasmonic 

frequency depends on the size, shape and composition of the metallic nanoparticle, as well 

as its environment112-117. Fig. 5b shows the light scattering, absorption, and extinction 

cross-section for 50 nm AuNP in water, showing a LSPR peak at ~530 nm.   

Due to oscillations of the localized surface plasmons, a series of sequential energy transfer 

processes occur (Fig. 5c). First, the oscillating electrons become thermalized within a 

hundred of fs through electron-electron interactions118, 119. After that, the thermalized 

electrons transfer their energy to the nanoparticle phonons (i.e. lattice vibrations) by 

electron-phonon coupling in ~1-5 ps, resulting in an increase of the nanoparticle 

temperature120-122. Finally, thermal equilibration is achieved in ~100 ps inside the NPs, 

which is followed by heat transfer from the particle to the environment. Furthermore, the 

plasmon oscillation can also induce an enhanced electric field in the near-field (Fig. 5d)117, 

123. In the intense nearfield photothermal multi-photon absorption effects can happen 

similar as described for focused fs laser pulses in direct photoporation. These effects will be 

explained in more detail below.   

 

Figure 5. Principle of localized plasmon resonance and mechanisms of energy absorption and dissipation 

in laser-excited plasmonic NPs. (a) The incident electric field causes displacement of the NP’s conduction 

electrons. Displacement of the electrons relative to the lattice ions creates its own restoration force. The 

interplay of the driving electric field and the dipole restoration force results in resonant behavior at certain 

light frequencies. (b) The scattering, absorption and extinction cross-section spectrum is shown for 50 nm 

NP in water. Localized plasmon resonance occurs around 530 nm. (c) Schematic overview of subsequent 

effects that happen in a NP upon absorption of incident light. (d) Electric field enhancement distribution 

around 20 nm AuNP at localized plasmon resonance of 520 nm. A maximum field enhancement of 6.6 along 

with energy absorption is apparent from the figure. Note: Fig. 5a, b and d adapted from Fig. 2, Ref. 117. 
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3.1.2 Photoporation by heating of the plasma membrane      

Cell membrane perforation can occur through direct heat transfer from the sensitizing NP 

that are adsorbed to the cell membrane111. This is typically achieved with CW (continuous 

wavelength) laser irradiation or low intensity laser pulses (Fig. 6a). A rise in local 

temperature has been reported ranging from tens to even a few hundreds of degrees113, 124. 

Perforation of the cell membrane happens by a local phase transition of the lipid bilayer or 

thermal denaturation of integral glycoproteins which leads to opening of transient 

hydrophilic pores72, 74, 125. Heat induced pore sizes have been reported ranging from tens to 

hundreds of nm depending on the NP size and laser intensity71, 74. The main advantage of 

this approach is that CW lasers are relatively inexpensive and widely available. Throughput 

is, however, limited since it can take up to tens of seconds or a few minutes to form heat-

induced pores.  

3.1.3 Nanobubble induced photoporation       

When using intense short laser pulses (<100 ps), the NP temperature can reach very high 

temperatures before heat can diffuse into the environment. In that way the NP temperature 

can rapidly increase to several hundred or even thousand degrees, leading to evaporation 

of the water surrounding the NP. The resulting water vapor nanobubble is referred to as a 

thermo-mediated nanobubble126-129. The expansion and collapse of the vapor nanobubbles 

can create pores in the cell membrane by high-pressure shockwaves or liquid jet formation 

(Fig. 6b). A particular characteristic of this phenomenon is that almost no heat is 

transferred to the environment due to the insulating effect of the vapor nanobubble130. This 

means that almost all incident laser energy is converted to mechanical energy of the 

expanding vapor nanobubble. The absence of heat transfer into cells may lead to better cell 

viability76. The size of vapor nanobubbles can be tuned from tens to several hundreds of 

nm depending on the laser intensity and size of NPs. The application of thermo-mediated 

nanobubbles for photoporation was pioneered by the Lapotko group. They mostly used 10 

ns, 500 ps or 70 ps pulsed laser light to irradiate gold nanospheres, gold nanorods or gold 

nanoshells131-133. They found that the threshold for the formation of thermo-mediated 

nanobubbles significantly depends on the laser pulse duration and the types of NPs used. 

The laser intensity threshold for 10 ns pulsed laser light is more than 10-fold higher than 

for 500 ps pulses. This is due to the fact that thermal equilibration and the onset of heat 

diffusion in the environment happen on the 100 ps time scale. A large part of nanosecond 

laser pulses, therefore, do not contribute to the sudden rise in temperature that is needed 

for nanobubble formation. They also found that gold nano-shells often require much lower 

laser energy as compared to spherical AuNPs. Although diffusion is likely the predominant 

mechanism for exogenous compounds to enter cells through the membrane pores, 

Lukianova-Hleb et al. argued that an active flow of extracellular liquid might contribute as 
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well132. The latter may be caused by transient nanojets which are formed by asymmetrical 

expansion and collapse of nanobubbles. 

Apart from heat also plasma formation can lead to nanobubbles123, 134 (Fig. 6b). As 

mentioned before, SPR causes near field enhancement the NP dipole edges. In these regions 

a plasma can be formed by multiphoton ionization of the medium.  The plasma cools down 

by collision and recombination with water molecules, hence producing a quick temperature 

and pressure increase and leading to the generation of a water vapor nanobubble around 

the irradiated nanoparticle. The use of plasma-mediated nanobubbles was first reported by 

the Meunier group, who used fs pulsed laser (45 fs) irradiation of 100 nm gold 

nanospheres123, 134, 135. Under these conditions they found that the threshold of plasma-

mediated nanobubble formation is ~100 mJ/cm2.  

3.1.4 Photochemical induced photoporation        

Photochemical processes could occur during laser interaction with nanoparticles, especially 

in the region where the near field enhancement occurs (Fig. 6c). Of special relevance is 

ionization of water molecules and the generation of Reactive Oxygen Species (ROS)73, 136, 

137. ROS and free radicals can initiate a damaging chain reaction of lipid peroxidation 

followed by decreased hydrophobicity of the lipid bilayer74, 86. Baumgart et al. made use of 

this process by irradiating 100 nm AuNPs with a fs laser (45 fs pulse,  = 810 nm) at a 

laser fluence of 60 mJ/cm2 135. The authors argue that photochemical processes are the 

predominant photoporation mechanism at these settings since heating is limited by using 

laser light at a non-resonant wavelength. Similarly, vapor nanobubbles were also thought 

not to be involved as the fluence was below the bubble threshold of 100 mJ/cm2. 

Heisterkamp group performed photoporation experiments under similar conditions (120 fs 

pulse,  = 800 nm) using 200 nm AuNPs. Also D. Heinemann and S. Kalies claimed that 

multiphoton ionization of water was the main photoporation mechanism in their 

experiments, even though they used substantially longer 850 ps laser pulses (wavelength 

at 532 nm) in combination with 200 nm AuNPs73, 138.  
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Figure 6. Mechanisms of plasmonic NP-sensitized photoporation. (a) When irradiated with CW laser light 

or low intensity pulsed laser light, plasmonic NPs become slightly heated and cause small pores in the cell 

membrane. (b) When short high-intensity laser pulses are used, water vapor nanobubbles can emerge 

around the NP whose mechanical force can form pores in the cell membrane. Notes: Vapor nanobubbles 

may be thermally induced or plasma induced. In thermo-mediated nanobubble formation, strong absorption 

of the incident electric field leads to extreme heating of the NP, which in turn causes vaporization of the 

surrounding water and the formation of vapor nanobubbles. Alternatively, near-field enhancement around 

the NP can result in plasma formation via multiphoton ionization of the surrounding water molecules. The 

plasma relaxes and transfers its energy to the water, in turn leading to nanobubble formation (Fig. 6 b 

down panel adapted from Fig. 2, see Refs. 117 and 134). (c) Photoporation of the cell membrane may also 

be caused by photochemical reactions that are triggered by multiphoton ionization of water and the 

generation of ROS.  

3.2 Carbon nanostructure sensitized photoporation 

Recently, carbon nanomaterials were reported as alternative sensitizers for photoporation. 

Carbon black (CB) NP sensitized photoporation was first reported by the group of Prausnitz77, 

78. They reported that thermal effects are not the main reason for membrane poration. 

Instead they explain that a carbon-steam reaction C(s)+H2O(l)→CO(g)+H2(g) induces 

cavitation shockwaves that can perforate the cell membrane139-141. Graphene Oxide (GO) is 
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another carbon-based nanomaterial that was demonstrated to improve cell membrane 

permeability following laser irradiation142-144. In combination with CW laser light, the group 

of Liu reported that heating was the major photoporation mechanism. Also carbon 

nanotubes have been reported as sensitizers79, 145, 146, as they are well known to absorb 

laser energy and achieve high surface temperature upon laser irradiation147, 148. The exact 

photoporation mechanism was not reported and needs further investigation. 

3.3 Experimental procedures for nanoparticle sensitized photoporation.  

The most frequently used approach to achieve nanoparticle membrane poration is by simple 

addition of the nanoparticles to the cell medium so that they can adsorb to the cell 

membrane. There are even demonstrations that nanoparticles can be actively attached to 

(or even injected through) the cell membrane by optical forces149, 150. Laser irradiation can 

either be provided with a focused beam (Fig. 7a) to photoporate single cells or with a broad 

beam that illuminates several cells at a time (Fig. 7b). In the latter case photoporation 

throughput is significantly enhanced with reported values of >103 cells/s. To photoporate 

cells in suspension, Lukianova-Hleb et al. used a broad laser beam illuminating cells flowing 

through an optically transparent cuvette. With this flow set-up a photoporation rate as high 

as 5×104 cells/s was achieved (Fig. 7c)132. In another approach, to avoid direct adsorption 

of sensitizing nanoparticles to the cell membrane, sensitizing nanostructures can be 

incorporated in the substrate onto which cells are grown80, 151 (Fig. 7d). Using AuNPs coated 

glass substrate, Wu et al. showed that gradually more compounds could be delivered into 

cells with repeated irradiation. The efficiency reached a plateau after 6 pulses probably due 

to release of the particles from the substrate. A downside of this approach is that the 

delivery efficiency was not as high as for NPs present on the cell membrane likely due to 

the fact that molecules have to diffuse through the narrow space underneath the adherent 

cells. Wu et al. tried to deliver calcein (0.6 kDa) and obtained ~58% positive HeLa cells. 

Instead, with membrane adsorbed AuNP, typically > 80% positive cells are obtained, even 

when using larger molecules like 10 kDa FITC-dextran76. Substrate mediated photoporation 

could be recently made more efficient by a ‘laser-assisted surgery tool’ was developed by 

Wu et al. to deliver large cargo in high-throughput in cells80. The platform consists of a 

silicon chip providing an array of micrometer-wide holes whose sides are asymmetrically 

coated with crescent-shaped titanium thin films (Fig. 7e). Underneath, the silicon chip was 

connected with vertical silicon channels providing pressure-driven fluid passage for cargo 

delivery. An array of bubbles is generated from the titanium nanostructures by providing 

pulsed laser irradiation onto the substrate, forming the pores in the adjacent cell 

membranes. The cargo is then gently driven into cells by pressurized flow. This platform 

has been used to deliver large cargos including bacteria, enzymes, antibodies and 

nanoparticles into various cell types with high efficiency and viability. A similar platform 

was recently presented for spatially, temporally and quantitatively controlled delivery of a 
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broad range of molecules into selected cells via plasmonic nanobtubes152. The delivery is 

achieved by a planar substrate with an array of protruding microfabricated gold nanotubes 

onto which cells are grown. By laser-irradiation of the gold nanotubes heating emerge from 

the tips that perforate the cell membrane. Compounds can then enter into the cells through 

the tubes that are directly connected to a microfluidic channel underneath.  

 

 

Figure 7. Approaches of NP-sensitized photoporation. (a) A focused laser beam can be applied to 

photoporate single cells. (b) Due to the sensitizing action of NPs, also a broad (low-energy) laser beam can 

be used to photoporate several cells at the same time so as to increase throughput. (c) A flow method was 

developed to photoporate cells in suspension. (d) Sensitizing NPs can be coated on the substrate onto which 

cells are grown. Pores are formed upon laser irradiation in the adherent part of the cell membrane. (e) Cells 

are grown on an array of micrometer-wide holes whose sides are asymmetrically coated with crescent-

shaped titanium thin films. Notes: The inset shows the microfluidic chip in more detail (Fig. 7e Zoom-in 

figure adapted from Ref. [80]). Vapor bubbles are formed from the titanium structures upon laser 

irradiation, which form pores in the cell membrane. Cargo is then delivered into the cells by a pressurized 

fluid flow.  

 

4. RESEALING OF TRANSIENT PORES AFTER PHOTOPORATION  

Following photoporation, cells reseal the membrane pores in a matter of tens of seconds to 

a few minutes, depending on the pore size. The repair mechanism is based on Ca2+ influx 

that induces exocytosis of lysosomes for ‘patching’ of the pores153, 154. Based on inflow of 

fluorescent dextran after photoporation, the group of Kalies noticed that pores in the 

membrane (with a size of ~50 nm) were resealed in 15 s136. Daisuke Yamane reported a 

sealing time of 1 or 2 minutes after vapor nanobubble pore formation by using an electrical 

impedance sensor155. R. Palankar found that transient nanopores in lipid membranes 
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generated by photothermal heating of nanorods were resealed in tens of seconds. However, 

micrometer sized pores could not be repaired 156. It is consistently observed that higher 

laser fluences (inducing large pores) or high concentration of NPs (inducing more pores) 

cause higher toxicity73, 132, 135, 138. Therefore, careful optimization of photoporation 

parameters (like laser fluence, number of NPs) is needed in order to balance delivery 

efficiency with cell toxicity.   

 

5. APPLICATIONS OF PHOTOPORATION 

5.1 Direct laser photoporation 

Photoporation has been extensively explored for transfection of cells with nucleic acids (DNA, 

mRNA or siRNA) as well as with proteins. Direct laser-induced photoporation (wavelength 

of 355 nm with 5 ns pulse duration) was already shown 30 years ago to enable efficient 

and contact-free delivery of DNA into cells157. Later on, fs-pulsed lasers were used to 

transfect cells with DNA with better efficiency and low cytotoxicity62. Spatially controlled 

introduction of mRNAs into specific regions (cell body or dendrites region) of primary rat 

neurons was reported by Barrett. et.al using fs-pulsed direct laser photoporation8. 

Interestingly, they found that delivery of mRNA in dendrites produced cell death, whereas 

mRNA introduced in cell bodies did not cause cell death, shedding light on the importance 

of the dendritic environment on protein function. Recently, Dhakal et al. reported the use 

of a fs laser for the targeted transfection of single and multiple opsin-encoding genes into 

selected retinal cells in vitro158. They found that cells transfected with multiple opsins had 

a significantly higher white-light induced photocurrent than cells expressing a single opsin, 

paving the way toward the restoration of lost vision in retinitis pigmentosa and age-related 

macular degeneration. Direct laser induced photoporation was furthermore reported for 

transfecting ions, small molecules, siRNA, plasmid DNA, and semiconductor nanocrystals 

into several cell types105. In recent years, cellular imaging by direct laser photoporation for 

delivery of dyes into live cells is being explored as a new and promising application. In 

particular, fs laser assisted direct photoporation was used to deliver actin-staining 

fluorophores into rat cortical neurons for visualizing the cytoskeleton of dendrites159. 

5.2 NP sensitized photoporation 

Nanoparticle sensitized photoporation has been used for high-throughput transfection of 

cells with DNA, siRNA and proteins110. The group of M. Meunier has explored photoporation 

of naked DNA into human cancer cells by plasma induced nanobubbles with a fs laser and 

found much higher transfection efficiency with very low toxicity compared to conventional 

lipofection135. Similarly, Lukianova-Hleb et al. used a pico-second laser for high-throughput 
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transfection of ‘hard-to-transfect’ T-cells with GFP plasmids132. More studies are needed, 

however, to fully explore the potential of delivering large macromolecules like mRNA or 

pDNA in a variety of cell types by NP sensitized photoporation. Xiong et al. compared the 

transfection efficiency of thermal induced pores versus pores created by thermo-induced 

vapor nanobubbles and found that nanobubble mediated poration allows more efficient 

entry of siRNA into cells76. Using carbon black sensitizing nanoparticles, small molecules, 

proteins and DNA can be successfully delivered into living cells77. Titanium thin films were 

used as sensitizers to deliver large cargo like bacteria, enzymes, antibodies and 

nanoparticles into diverse cell types with high efficiency, cell viability and high-throughput80. 

Anti-cancer drugs have been delivered by photoporation into cancer cells for an enhanced 

chemotherapeutic effect160. The same group showed that direct delivery of the anti-cancer 

drug into the cell’s cytoplasm by photoporation substantially enhanced the effect of 

chemoradiation in vivo161. Also GO nanoparticles were used to deliver a photosensitiser into 

cells for enhanced photodynamic therapy efficacy against the cancer cells in vitro142. While 

photoporation is mostly used to deliver compounds into cells, it has also been shown that 

it can be used to release compounds from cells, which could be an interesting concept for 

light triggered drug release74.    

 

6. PERSPECTIVES AND CONCLUSION  

Although photoporation has already been shown to be an exciting technology for efficient 

intracellular delivery of membrane-impermeable exogenous materials into living cells, there 

still lay plenty of challenges and opportunities ahead. On a fundamental level it is of interest 

to get a better insight in the loading mechanism of molecules into the cytoplasm, especially 

for large and charged molecules like pDNA or mRNA. Translocation of molecules into the 

cytoplasm is mostly thought to happen by diffusion through the membrane pores. However, 

it has also been proposed that there might be an active ‘nano-jet’ mechanism involved as 

well under certain conditions like the nanobubble induced photoporation132.  In order to be 

able to better control and predict the influx of molecules of various sizes and charges into 

the cytoplasm, the loading mechanisms need to be studied in more detail. Similarly it is of 

fundamental interest to get a better view on the pore size, lifetime and repair mechanisms 

for the various photoporation approaches. While there have been a few studies along these 

lines, the reported values are quite different (e.g. pore lifetimes ranging from tens of 

seconds to tens of minutes), which is likely caused by differences in photoporation 

conditions, different cell types and different ways how the measurements are perforated. 

Therefore, more systematic studies are needed on this which in turn will be helpful to better 

understand and predict the loading process for different types of cells and molecules. Also 

systematic and in-depth cytotoxicity studies are needed, especially for NP sensitized 
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photoporation since there is the additional concern of NP induced toxicity. Although simple 

cytotoxicity measurements are typically included in current research articles, in-depth 

understanding of the factors contributing to cytotoxicity is needed to expedite acceptance 

of photoporation as one of the standard transfection methods by the wider scientific 

community.   

For NP sensitized photoporation there clearly lay opportunities on the material size as well. 

While AuNPs have clearly been used the most till now, it is of interest to look for NPs that 

are better resistant to the illumination conditions used in photoporation, especially when 

using pulsed laser light. Indeed, due to the substantial temperature increase the AuNP 

might melt and change shape (e.g. rods becoming spheres) which alters there wavelength-

dependent absorption characteristics. Fragmentation of AuNP has been reported too, which 

renders them useless already after one laser pulse69, 76. Carbon nanomaterial sensitized 

photoporation was recently explored as a promising alternative class of sensitizing 

nanoparticles with superior thermal stability, facile synthesis, easily tunable surface 

functionalization and good biocompatibility. Further studies are needed to explore the 

potential functional benefits compared to AuNPs with cytotoxicity studies being performed 

in parallel. 

Although photoporation has proven its value for delivering compounds into cells in culture, 

exploration of its in vivo potential has only just been started. Recently, the Lapotko group 

applied for the first time AuNP sensitized photoporation of chemotherapeutics to in vivo 

cancer treatment161. The same group recently showed in vivo elimination of residual head 

and neck cancer cells by tumor targeting gold colloids162. Undoubtedly more examples of in 

vivo applications of photoporation will follow in the near future. Here it will be of interest to 

develop biocompatible sensitizing materials because of the toxicity concerns in relation to 

the in vivo usage of colloidal nanoparticles163. In a recent report it was, for instance, shown 

that vapor nanobubbles can be formed by irradiating hemozoin crystals (malaria related 

organic crystals) in the blood circulation with laser light164. This shows that there might be 

opportunities to look for organic materials that could replace inorganic nanoparticles. 

Apart from certain in vivo applications, we do see a bright future for photoporation as a 

very flexible in vitro transfection technology, especially in combination with sensitizing NPs 

which enable high-throughput treatment. After about a decade of initial developments, we 

expect that photoporation will gradually become a more mature and widely available 

intracellular delivery technology. The portable photoporation device developed by the 

Heisterkamp group is a good example of this73, as well as some first attempts to perform 

automated photoporation in a microfluidics device109, 165. As cytotoxicity is typically limited 

under optimized conditions, we believe that photoporation may complement or in some 

cases even replace standard methods like electroporation which are well-known to induce 
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substantial cell toxicity. Importantly, photoporation offers the unique possibility for spatially 

controlled delivery into cells as the laser beam can be easily tuned in size and position 152. 

The possibility to transfect selected cells in a cell culture offers unprecedented opportunities 

not possible with any other of the current transfection technologies. One can imagine that 

this unique feature will be of benefit to study, for instance, cell bystander effects or to 

transfect one cell type in a co-culture of cells as is of interest for tissue engineering.  

Taken together we can conclude that laser-assisted photoporation is a maturing promising 

technique for unprecedented flexible intracellular delivery of membrane impermeable 

substances that, thanks to its unique capabilities, will secure its place next to the more 

established intracellular delivery methods.  
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ABSTRACT 

There is a great interest in delivering macromolecular agents into living cells for therapeutic 

purposes, such as siRNA for gene silencing. Although substantial effort has gone into 

designing nonviral nanocarriers for delivering macromolecules into cells, translocation of 

the therapeutic molecules from the endosomes after endocytosis into the cytoplasm 

remains a major bottleneck. Laser-induced photoporation, especially in combination with 

gold nanoparticles,is an alternative physical method that is receiving increasing attention 

for delivering macromolecules in cells. By allowing gold nanoparticles to bind to the cell 

membrane, nanosized membrane pores can be created upon pulsed laser illumination. 

Depending on the laser energy, pores are created through either direct heating of the AuNPs 

or by vapor nanobubbles (VNBs) that can emerge around the AuNPs. Macromolecules in the 

surrounding cell medium can then diffuse through the pores directly into the cytoplasm. 

Here we present a systematic evaluation of both photoporation mechanisms in terms of 

cytotoxicity, cell loading, and siRNA transfection efficiency. We find that the delivery of 

macromolecules under conditions of VNBs is much more efficient than direct photothermal 

disturbance of the plasma membrane without any noticeable cytotoxic effect. Interestingly, 

by tuning the laser energy, the pore size could be changed, allowing control of the amount 

and size of molecules that are delivered in the cytoplasm. As only a single nanosecond laser 

pulse is required, we conclude that VNBs are an interesting photoporation mechanism that 

may prove very useful for efficient high-throughput macromolecular delivery in live cells.  
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1. INTRODUCTION 

For many therapeutic applications, macromolecules need to be delivered into living cells1. 

For example, to allow sequence-specific gene silencing on the post-transcriptional level, 

small interfering RNA (siRNA) needs to be delivered into the target cell’s cytoplasm2. This 

is typically achieved by means of formulating the siRNA into non-viral lipid or polymer 

nanocarriers. As these are generally internalized by cells through endocytosis, escape from 

the endosome and subsequent siRNA release is needed.  However, to date endosomal 

escape remains one of the major bottlenecks hampering safe and efficient delivery of 

therapeutic macromolecules into the cytosol3, 4.  

As an alternative strategy, physical approaches to permeate the cell membrane has 

attracted considerable interest, especially for in vitro applications. They typically offer 

generic applicability to a variety of cell types and grant macromolecular agents such as 

siRNA direct access into the cytoplasm5-7. A first example is microinjection, a conventional 

tool to directly inject compounds into single cells8-10. However, this technique can only be 

applied to a limited number of cells and typically requires a skilled person to perform. 

Electroporation is another common physical technique to deliver molecules into cells in vitro 

and in vivo. While it has shown to lead to good transfection efficiencies11-15, the high electric 

field often results in low cell viability16, 17. More recent, sonoporation has been introduced 

as a method to permeabilize the plasma cell membrane by making use of ultrasound-

responsive microbubbles. The acoustic response of the microbubbles can lead to the 

formation of micro-jets and shockwaves resulting in cell membrane poration18, 19. However, 

shear forces or elevated temperatures can lead to substantial cell damage and toxicity20, 21.  

Photoporation is an alternative physical approach that has received increasing attention in 

recent years. In its most straightforward form, cell membrane permeability is obtained by 

focusing high-intensity femtosecond laser pulses onto individual cells22-28. By attaching 

plasmonic nanoparticles, such as gold nanoparticles (AuNPs), to the cell membrane, the 

photoporation effect can be achieved at lower laser intensities. This means that throughput 

can be increased since non-focused laser light can be used to illuminate a large amount of 

cells29-31. This is thanks to the AuNP surface plasmon resonance (SPR), which depends on 

the size, shape and surface coating of the particles, tremendously enhances laser 

absorption30, 32, 33, leading to distinct phenomena such as heating of the surrounding tissue, 

acoustic shockwaves, and formation of water vapor nanobubbles (VNBs)30, 34. Recently, it 

has been shown that both heating and VNBs can be used to permeate the plasma membrane 

and deliver cell impermeable compounds into the cytosol35-37. For heating of the plasma 

membrane, both continuous wave (CW) and low intensity pulsed laser light have been 

employed to heat membrane-adsorbed AuNPs, resulting in pore formation by a local phase 

transition of the lipid bilayer or by thermal denaturation of integral glycoproteins35-38. 
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However, diffusion of heat throughout the cell can result in hyperthermia-induced cell stress, 

substantially decreasing cell viability35, 37. When using short laser pulses (< 10 ns) of 

sufficiently high intensity, the temperature of a AuNP can rapidly increase to several 

hundred degrees due to which the water surrounding the AuNP evaporates, resulting in a 

VNB that emerges around its surface30, 39. The size of a VNB can be tuned from ten to 

several hundreds of nanometers depending on the laser intensity32, 40. When the thermal 

energy of the AuNP is consumed, the VNB violently collapses and causes local damage by 

high-pressure shockwaves. Due to the extremely short lifetime of VNBs (<1 µs), the 

diffusion of heat from the AuNP into the environment is negligible so that almost all energy 

of the irradiated AuNP is converted to mechanical energy (expansion of the VNB) without 

heating of the environment. This property makes VNBs an interesting phenomenon to cause 

local mechanical damage, without causing thermal damage to the surrounding healthy 

tissue. It has been shown that VNBs can induce membrane pores through which compounds 

can diffuse into the cell41, 42. Thus, direct heating and VNB formation by laser irradiated 

AuNPs are two distinct photothermal effects that can be used to deliver cell impermeable 

compounds directly into the cytosol. However, to date it remains unclear which of both 

effects is preferred in terms of delivery efficiency and cytotoxicity. Neither has it been 

evaluated if VNB-induced membrane poration can be used to deliver siRNA into cells.  

Here we report on a systematic comparison of AuNP-mediated photoporation for delivering 

macromolecules in cells by direct heating and VNB generation. Despite the fact that it 

requires higher laser energies, surprisingly we find that VNBs allow more efficient cellular 

uptake of compounds with little or no cytotoxicity as compared to direct heating. 

Furthermore, we successfully show that VNB photoporation can more efficiently transfect 

cells with small interfering RNA (siRNA) compared to direct heating, resulting in enhanced 

target gene silencing. Finally, we show that pores of different sizes can be created 

depending on the laser energy, thus enabling size-selective delivery of macromolecules in 

cells. Based on these results we envisage that VNB photoporation can offer unique 

opportunities for drug delivery in live cells. 

 

2. MATERIALS AND METHODS 

2.1 Materials 

Cationic AuNPs with 70 nm were purchased from NanoPartzTM (#C2159, Nanopartz Inc., 

Loveland, USA). These AuNPs had a zeta potential of 30 mV as measured by dynamic light 

scattering (NanoSizer, Malvern, UK). FITC-dextrans with Mw of 10 kD and 500 kD were 

purchased from Sigma-Aldrich (Belgium). Calcein red-orange AM (#C34851,CellTraceTM 

Calcein Red-Orange) and Alexa Fluor 647 labeled dextran of 10 kD (#D-22914, Dextran, 
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Alexa Fluor® 647) were obtained from InvitrogenTM (Belgium). Twenty-one nucleotide 

siRNA duplexes targeting the enhanced green fluorescent protein (siEGFP) and negative 

control duplexes (siCTRL) were purchased from Eurogentec (Seraing, Belgium). siEGFP: 

sense strand = 5’-CAAGCUGACCCUGAAGUUCtt-3’; antisense strand= 5’-

GAACUUCAGGGUCAGCUUGtt-3’. siCTRL: sense strand = 5’-UGCGCUACGAUCGACGAUGtt-

3’; antisense strand = 5’-CAUCGUCGAUCGUAGCGCAtt-3’ (lower case bold letters represent 

2’-deoxyribonucleotides, capital letters are ribonucleotides). For fluorescence experiments, 

siCTRL duplex was labeled with a Cy®5 dye at the 5’ end of the sense strand (Eurogentec). 

2.2 Cell Experiments 

HeLa cells as a generally used cell model were employed in this study and H1299 cells 

stably expressing EGFP were used for siRNA knockdown experiment. Before laser treatment, 

HeLa cells (1×104 cells/well) were grown in cell medium of DMEM/F-12 with 2 mM glutamine, 

10% heat-inactivated fetal bovine serum (FBS, Hyclone) and 100 U/mL 

penicillin/streptomycine, and H1299_EGFP cells (1×104 cells/well) were cultured in 96 wells 

(#92096,TPP®, Switzerland) at 37°C in RPMI 1640, supplemented with 2 mM glutamine, 

10% heat-inactivated fetal bovine serum (FBS, Hyclone) and 100 U/mL 

penicillin/streptomycine at 37 °C in a humidified atmosphere containing 5% CO2 for 24 

hours before treatment. For laser treatment, the cells were incubated with AuNPs for 30 

min at concentrations as indicated in the text. Following incubation with AuNPs, the cells 

were washed to remove any remaining free AuNPs in solution. Just prior to the laser 

scanning treatment, the solution of extracellular agents (dextrans or siRNA) was added to 

the cells. After the laser treatment, the cells were washed and supplied with fresh cell 

medium. CellTrace® calcein red-orange AM was added to the samples for 45 min incubation 

at room temperature to stain living cells for quantifying cell viability. The prepared cell 

samples were taken images by confocal microscope (C1-si, Nikon, Japan) for quantifying 

the molecular loading efficiency and cell viability. The samples were also prepared for the 

measurement of flow cytometer. The cells were washed with PBS, trypsinized 

(trypsin / EDTA 0.25 %) and diluted with complete cell culture medium. Following 

centrifugation (7 min, 300 g), the cell pellet was resuspended in flow buffer (PBS 

supplemented with 1% BSA and 0.1% sodium azide) and placed on ice until flow cytometric 

analysis. A minimum of 104 cells was analyzed in each measurement, using a BD 

Biosciences FACSCaliburTM flow cytometer.  

2.3 Generation and Detection of AuNP Heating and VNB Formation  

A homemade setup including optical system and electric timing system was used to 

generate and detect the AuNPs heating or VNBs. As shown in Figure S2, a pulsed laser 

with pulse duration of ~7 ns was tuned at wavelength of 561 nm (OpoletteTM HE 355 LD, 

OPOTEK Inc., Faraday Ave, CA, USA) and used for illumination of AuNPs. The setup has two 
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modes for detecting AuNP heating or VNB formation, respectively. The time-response mode 

is used for detecting both of AuNP heating and VNBs. It makes use of a photo detector 

(APD110A, Thorlabs) that monitors a change in transmitted light of a CW red laser (Spectra-

Physics Excelsion-640, Santa Calara, CA, US) due to changes in refractive index upon 

heating.43 VNBs on the other hand can be very well detected by dark-field microscopy as 

they efficiently scatter light. As VNBs typically have a very short lifetime (< 1 µs), depending 

on their size, we synchronized the camera (EMCCD camera, Cascade II: 512, Photometrics, 

Tucson, USA) with the pulsed laser by an electronic pulse generator (BNC575, Berkeley 

Nucleonics Corporation, CA, USA). The pulse laser sends a Q-switch signal to trigger pulse 

generator and it will trigger  the camera at a setting delay.     

For treating large areas of cells, such as an entire well of a 96 well-plate, an electronic 

microscope stage was used to scan the laser beam (20 Hz pulse frequency) line by line 

across the entire sample. The scanning speed was 2 mm/s and the distance between 

subsequent lines was 0.1 mm (diameter of laser beam). This way each location in the 

sample receives a single laser pulse, with a total treatment time of ~3.6 min per well. The 

laser pulse energy was monitored by an energy meter (J-25MB-HE&LE, Energy Max-USB/RS 

sensors, Coherent) synchronized with the pulsed laser. The intensity of exciting pulse laser 

was calculated the average pulse energy divided by the area of the laser beam. Individual 

pulsed were observed to deviate up to 10% from the average value.     

2.4 Quantification of Cell Loading and Viability 

After laser treatment, at least 5 confocal images were acquired with a confocal laser 

scanning microscope (C1si, Nikon, Japan). Using a 10× lens (CFI Plan Apochromat, Nikon, 

Badhoevedorp, The Netherlands), each image has a field of view of 1.35 mm by 1.35 mm 

with  several hundreds to a thousand cells for each image. Each image consists of three 

channels, one for green fluorescence (505-550 nm), one for orange-red fluorescence (575-

620 nm) and one for the transmission image. A Matlab (The matworks, Natick, MA, USA) 

program was written for automated quantification of cell loading and cell viability. First, the 

average intensity per cell was measured in both fluorescence channels. Green fluorescence 

resembles cell loading, and orange-red fluorescence is used for quantifying cell viability. 

Untreated cells are used to define the threshold for positive cell loading, where the threshold 

value is defined as the 95% level of untreated cells. Similarly, cells are considered as alive 

when the orange-red fluorescence intensity is higher than the 95% level of dead cells.  

For calculating siRNA gene silencing efficiency, EGFP knockdown efficiency was quantified 

as the average fluorescence intensity of cells treated with anti-EGFP siRNA divided by the 

average intensity of cells treated with negative control siRNA under identical experimental 

conditions as flowing equation 
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𝐾𝑛𝑜𝑐𝑘𝑑𝑜𝑤𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) = 1 −
𝑀𝐹𝐼 𝑠𝑖𝐸𝐺𝐹𝑃

𝑀𝐹𝐼 𝑠𝑖𝐶𝑇𝑅𝐿
× 100% 

with MFI siEGFP indicating the mean fluorescence intensity of cells incubated with anti-EGFP 

siRNA and MFI siCTRL indicating the mean fluorescence intensity of cells incubated with 

negative control siRNA. For flow cytometry, data analysis was performed by using the BD 

CellQuest Pro analysis software.  

 

3. RESULTS AND DISCUSSION 

3.1 Cell Adsorbed AuNPs Mediate Distinct Photothermal Effects as a Function of 

Laser Fluence.  

The experimental procedure to load cells with cell impermeable molecules is shown in Fig. 

1. First, AuNPs are adsorbed onto the cell’s surface by which they can act as mediators of 

nanopore formation. In this study, positively charged AuNPs (70 nm) were used to facilitate 

interaction with the negatively charged cell membrane. Following incubation of HeLa cells 

with 3 different AuNP concentrations (4.1×107, 8.2×107 and 16.5×107 particles/ml) during 

half an hour at 37°C, the number of cell-attached AuNPs was quantified from confocal 

images in reflection mode. As shown in Figure S1a-c, more AuNPs adsorbed to the cells 

with increasing concentrations of AuNPs, ranging from 4 to approx. 15 particles per cell. In 

the second step of the procedure, the non-adherent AuNPs are removed and the cell 

impermeable molecules are added to the cells just prior to the laser treatment. A low laser 

energy will lead to heating of the cell membrane, while VNBs are formed at higher laser 

energies. The two effects can be monitored by detecting the transmitted intensity of a CW 

laser focused on the sample (Figure S2)32. Heating of a AuNP induces a local change in 

refractive index43. This ‘thermolensing’ effect can cause a refocusing of the CW laser on the 

pinhole in front of the detector (as shown in Figure S2), resulting in an increase of the 

detected transmitted CW laser light. A laser pulse with energy below the VNB threshold will 

cause heating of the AuNP, after which this heat diffuses into the environment. The 

corresponding intensity profile of the transmitted laser light is shown in Figure S3a. The 

long tail is indicative of heat diffusion and heating of the environment. At a pulse energy 

above the VNB threshold, VNBs are created with a size and lifetime that is proportional to 

the laser energy (Figure S3b and S3c). The absence of a heat diffusion tail at high pulse 

energies clearly demonstrates that VNB generation does not cause heat transfer to the 

environment. Alternatively, VNBs can be detected by dark field microscopy, as 

demonstrated in Figure S3d-f44. From these experiments we can conclude that VNBs could 

be clearly generated at a laser fluence of 1.02 J/cm2 , while 0.38 J/cm2 only resulted in 

heating of the surrounding medium. This result is in agreement with the threshold of VNB 
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generation as reported before under similar conditions32.  It is of note that the medium 

surrounding the AuNPs can affect the threshold for the generation of gas bubbles45.    

Figure 1. Schematic overview of the experimental procedure. 1. Cells are incubated with AuNPs that are 

adsorbed to the cell membrane; 2. The non-adherent AuNPs are removed in a washing step, after which 

the solution of molecular agents is added to the cells just prior to the laser treatment; 3. Laser treatment 

causes pore formation either by VNBs that mechanically puncture the cell membrane (high laser energy) or 

by heating of the cell membrane (low laser energy). The extracellular molecules are finally expected to 

diffuse into the cells via the created pores.  

3.2 Intracellular Delivery of Macromolecules and Cell Viability via Local Heating 

or VNB Generation.  

FITC-dextran with a molecular weight of 10 kDa (FD10) was used as a model macromolecule 

to compare cell loading by direct heating or VNB generation. We use the term ‘cell loading’ 

to signify delivery of macromolecules into cells across the plasma membrane by VNB-

induced membrane pores. For an AuNP concentration of 8.2×107 particles/ml (i.e. approx. 

8 AuNPs per cell; Figure S1d), two different laser fluence levels were tested, i.e. one below 

(0.38 J/cm2) and one above the VNB threshold (2.04 J/cm2). All cells in a well of a 96-well 

titer plate were treated with a single laser pulse of the indicated energy. After laser 

treatment the cells were washed immediately to remove the remaining extracellular FITC-

dextran and fresh cell medium was added to avoid the endositosis of FITC-dextran. Just as 

for other poration techniques (microinjection, electroporation, sonoporation, direct 

photoporation) the pores generated by the bubbles are also quickly repaired in a few tens 

of seconds as shown in very recently studied for vapor bubble mediated poration46. Calcein 

red- orange AM was added to the cells to quantify cell viability.  The images presented in 

Fig. 2 clearly show that FITC-dextran loading was much more efficient when mediated by 

VNBs than by direct heating of the plasma membrane. Interestingly, neither of both 

procedures caused any noticeable cytotoxicity. Next, cell loading with FITC-dextran and cell 

viability were systematically evaluated for different laser intensities (Fig. 3). No appreciable 
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cell loading occurred  by AuNP or laser treatment alone. Instead, approximately 40% of the 

treated cells were loaded with FITC-dextran at a laser fluence of 0.38 J/cm2. Increasing the 

laser fluence levels above the VNB threshold resulted in more positive cells and a much 

higher loading efficiency as can be seen from the higher FITC-dextran signal per cell. At 

2.04 J/cm2 an optimum was found with >85% positive cells and a loading efficiency that is 

~6 times higher than by AuNP heating at 0.38 J/cm2. More levels of  low laser fluence  

heating AuNP show no significant improvement of loading efficiency (Figure S4). There 

was no noticeable decrease in cell viability up to 2.04 J/cm2. Further increasing the laser 

fluence to 4.08 J/cm2 reduced the number of positive cells, likely due to the onset of 

cytotoxic effects as the VNBs are becoming rather large and damage the cells39. When 

increasing the AuNP concentration to 16.5×107 particles/ml a similar trend was found, 

although here the percentage of positive and viable cells already decreased ~1.5 times at 

a laser fluence of 2.04 J/cm2 (Figure S5). This shows that photoporation by VNBs also 

requires careful optimization of the concentration of AuNPs used. Based on these results, 

we decided to continue with 8.2×107 particles/ml, corresponding to approx. 8 AuNPs per 

cell.  These results obtained from confocal microscopy could be confirmed by flow cytometry 

analysis in a set of independent experiments (Figure S6). At 0.38 J/cm2 ~50% of positive 

cells were found, while this increased to ~90% at 2.04 J/cm2. The average intensity per 

cell again increased by a factor of ~6, while no signs of cytotoxicity could be found.  
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Figure 2. Confocal images showing the viability of HeLa cells labeled with calcein red-orange AM (a-c) and 

the intracellular delivery of FITC-dextran 10 kDa after laser treatment (d-f). The bottom row shows an 

overlay of both colors (g-i). At a laser fluence of 2.04 J/cm2, VNBs are induced that perforate the cell 

membrane and allow more efficient uptake of FITC-dextran as compared to a low laser fluence (0.38 J/cm2) 

that causes heating of the AuNPs and the plasma membrane.   

To further evaluate the effect of the number of laser pulses on the delivery efficiency, the 

cells were scanned multiple times with pulsed laser illumination. As shown in Fig. 4, no 

significant improvement of the loading efficiency was obtained both for direct heating and 

VNBs. This could be caused by melting of AuNPs and breaking up into smaller fragments47. 

Fragmentation of AuNPs has been reported at a laser fluence as low as 0.08 J/cm2 for 40 

nm particles48-50. Based on these results, we will perform further comparisons with single 

laser pulse treatment only. 
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Figure 3. Cell viability and delivery efficiency of FITC-dextran 10 kDa (FD10) as quantified by imaging 

processing of confocal images. HeLa cells were incubated with 70 nm cationic AuNPs at a concentration of 

8.25×107 particles/ml corresponding to approx. 8 AuNPs per cell. The laser fluence was adjusted to compare 

heating of the plasma membrane (0.38 J/cm2) with pore formation by VNBs (1.02, 2.04 and 4.08 J/cm2). 

Red bars are the fraction of FD10 positive cells, blue bars are the fraction of live cells and olive bars are the 

average fluorescence intensity. The average FD10 fluorescence per cell is a measure for the loading 

efficiency. The data shown are the result from 3 independent experiments.   

    

Figure 4. Positive cells, cell viability and loading of FD10 using 8.25x107 AuNP/ml in function of the number 

of laser pulses (N). Different laser fluences are compared: (a) 0.38 J/cm2 (below the VNB threshold) and 

(b) 2.04 J/cm2 (above the VNB threshold). No increase in loading efficiency is found by increasing the 

number of laser pulses for either of both conditions. 
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3.3 Evaluation of Intracellular siRNA Delivery and Gene Silencing via Local Heating 

and VNB Generation.  

Next to the delivery of FITC-dextran as a model macromolecule, the applicability of 

photoporation for delivering macromolecular therapeutic agents, such as small interfering 

RNA (siRNA), was assessed. Recently, siRNA was shown to be delivered into cells using 

AuNPs and photoporation by direct heating of the plasma membrane37.  Considering our 

finding that VNBs are more efficient for loading cells with FITC-dextrans, we continued our 

comparative study toward siRNA gene silencing.  

 

Figure 5. Photoporation of H1299 EGFP cells with varying laser intensity for siRNA gene silencing.  Following 

the adsorption of AuNPs (positively charged, 70 nm, 8.25X107 particles/ml) to the cell surface, 

photoporation was initiated in the presence of siRNA. Twenty-four hours after treatment, the cellular EGFP 

expression was visualized by confocal microscopy and quantified with flow cytometry. The left and right 

microscopy images in (a-c) represent cells that are incubated with negative control siRNA and anti-EGFP 

siRNA, respectively, at a laser fluence of 2.04 J/cm2 without incubation of AuNPs (a) and  0.38 J/cm2 (b) 

and 2.04 J/cm2 (c) with incubation of AuNPs. The corresponding flow cytometry histograms in (a-c) show 

the distributions of  the cells’ EGFP fluorescence. The cell viability and knockdown efficiency are quantified 

by flow cytometry (n=3) (d). The scale bars shown in (a-c) correspond to 200 µm. 
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First, loading of HeLa cells with Alexa Fluor 488 (AF488)-labeled siRNA was evaluated by 

adding it to the cell medium prior to laser treatment. In analogy with previous experiments, 

the cells were  incubated with a AuNP concentration of 8.25×107 particles/ml (i.e. ~8 

particles per cell). As shown in Figure S7, similar to our findings for FITC-dextran, direct 

heating of the plasma membrane (0.38 J/cm2) is less efficient in delivering siRNA to the 

cytosol than pore formation by VNBs (2.04 J/cm2). Cell viability and cellular delivery were 

again quantified by imaging processing (Figure S8). More than 90% of the cells were 

loaded with a detectable amount of siRNA with no signs of cytotoxicity at a laser fluence of 

2.04 J/cm2. Although heating of the plasma membrane also didn’t cause any cytotoxicity, 

the percentage of siRNA containing cells was much less (~40%). Furthermore, the average 

fluorescence per cell was 4-fold higher in case of VNB pore formation as compared to direct 

heating.  

In a next step the knockdown efficiency of anti-EGFP siRNA delivered via the photoporation 

approach was evaluated in a human non-small cell lung carcinoma cell line (H1299) that 

stably expresses EGFP. The knockdown efficiency and cell viability were measured by both 

confocal microscopy and flow cytometry. As shown in Fig. 5a-c, the knockdown efficiency 

was about ~40% for direct heating of the plasma membrane (0.38 J/cm2) as compared 

to >80% for VNB induced pore formation (2.04 J/cm2). No significant knockdown was 

observed in case the cells received exactly the same treatment (2.04 J/cm2) but without 

AuNPs or when the same protocol was performed (~8 AuNPs per cell) but without laser 

exposure. Quantification of cell viability did not reveal any signs of cytotoxicity for any of 

the experiments. Taken together, it can be concluded that VNB-induced pore formation 

allows much more efficient cellular uptake of siRNA and target gene silencing as compared 

to cellular delivery via heating of the plasma membrane.  

3.4 Tuning the Incident Laser Fluence Allows Size-Selective Intracellular Delivery. 

As demonstrated before, the size of a VNB is governed by the intensity of the incident laser 

beam.32 Here we evaluated the hypothesis that the cell membrane pore size is thus also 

proportional to the incident laser fluence, meaning that large molecules can only be 

delivered via the pores formed by VNBs with a high intensity laser light, while smaller 

molecules can be delivered already at lower intensities such as for direct heating. To 

investigate this, immediately prior to the laser treatment, a mixture of two fluorescent 

dextrans of different molecular weight was added to HeLa cells, being red fluorescent 10 

kD Alexa-red dextran (RD10) and green fluorescent 500 kD FITC-dextran (FD500).   The 

cells were treated either with a laser fluence of 0.38 J/cm2 or 2.04 J/cm2, after which the 

cells were washed and supplied with fresh cell medium. As can be seen from the confocal 

images in Fig. 6a-c, at the lowest laser fluence the red fluorescent dextrans with low 

molecular weight could enter the cells quite efficiently. On the other hand, only a few cells 
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had taken up the larger green fluorescent dextrans. At the highest laser fluence, clearly 

both small and large dextrans were delivered into the cells. By image analysis it was 

quantified that ~50 % of treated cells were found to have taken up 10 kDa dextran at the 

lowest laser fluence, while this increased to ~90% at the highest laser fluence. However, 

for the larger 500 kDa dextrans less than 10% of the cells showed detectable uptake, which 

increased to >80% for the highest laser fluence. The average green fluorescence per cell 

for FD500 was only ~2 fold more than the control sample in case of the lowest laser fluence, 

which increased to more than 10 fold at the highest laser fluence. Although more work is 

needed to investigate this relationship in more detail, these experiments show that the pore 

size can be easily changed by tuning the laser energy of the photoporation procedure.    

 

Figure 6. Size-selective delivery of fluorescently-labeled dextrans is demonstrated in HeLa cells. Cells are 

supplied with a mixture of red fluorescent Tex-dextran of 10 kDa (RD10) and green fluorescent FITC-

dextran of 500 kDa (FD500). (a-c) Confocal images showing the delivery of RD10 in HeLa cells that received 

laser treatment of 0.38 J/cm2 or 2.04 J/cm2. (d-f) Confocal images showing the delivery of FD500. (g-i) 

Merged confocal images of green and red fluorescence with transmission images.  
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4. CONCLUSIONS 

It was demonstrated that delivering macromolecules across the plasma membrane in cells 

is more efficient when pores are created by VNBs rather than by direct heating. This is likely 

caused by a larger pore size in case of VNBs due to which more molecules can diffuse into 

the cell. When delivering siRNA, this might result in more efficient gene knockdown as well. 

Despite the fact that VNB generation requires a higher laser energy, it did not result in 

increased toxicity. This is likely due to the fact that VNB generation is an almost purely 

mechanical effect that does not lead to heat diffusion into the surrounding tissue. 

Interestingly, by tuning the laser energy and hence the size of the VNBs, it is possible to 

tune the size of the pores that are created. This in turn allows to control the amount of 

molecules that are delivered into the cytosol, as well as the maximum size of molecules 

that are allowed to pass through. Combined with the general applicability of the approach 

and the fact that this procedure can be applied to large cell numbers by scanning of the 

laser beam, we are convinced that VNB photoporation is a promising alternative physical 

technique to efficiently deliver compounds into cells with little or no toxicity. In future 

research it will be of interest to further investigate the influence of AuNP size and cell type 

on pore size and drug delivery efficiency. 
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6. SUPPLEMENTARY INFORMATION  

 

 

Figure S1. Cationic AuNPs (70 nm) are incubated with HeLa cells at 37 °C for 30 min, after which non-

attached AuNPs are washed away. (a-b) CLSM images are obtained from AuNPs in reflection mode (depicted 

in green, some examples indicated by the arrows)) and merged with the transmission images. CLSM images 

are shown of cells incubated with (a) a AuNP concentration of 4.1 X 107 particles/ml and (b) a 4-fold higher 

concentration. (c) The intensity profile across a AuNP adsorbed onto the plasma cell membrane shows that 

they can be visualized with high contrast. (d) The average number of adsorbed AuNPs per cell is quantified 

for different AuNPs concentrations by image processing of >200 cells (n = 3).  
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Figure S2. Optical layout for photoporation  and detection of VNBs. AOTF: acousto-optic modulator for 

controlling the power of the continuous wave laser; OPO Laser: pulsed laser with ~7 ns pulses equipped 

with an Optic Parametric Oscillator that allows to tune the wavelength from 410 nm to 2200 nm; 90/10 BS: 

laser beam splitter reflecting 10% and transmitting 90% of the laser light; PBS: polarization beam splitter. 
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Figure S3. Heating of AuNPs or the formation of VNBs can be monitored with a photodiode that detects 

transmitted laser light. (a) A typical photothermal singal of AuNPs excited by a laser pulse with a fluence 

below the VNB threshold shows fast heating of AuNPs with a long tail arrising from heat diffusion into the 

surrounding medium. (b) At intermediate laser fluence, small VNBs can be generated with a lifetime < 50 

ns. (c) At a higher laser pulse fluence, larger VNBs are created with a longer lifetime (~100 ns). The VNB 

photothermal traces nicely show that there is no heat transferred into the environment. Instead, all energy 

is consumed by the VNB and is converted to mechanical energy. (d-f) VNBs can also be detected by dark 

field microscopy. HeLa cells are shown in dark field mode before laser illumination (d), during laser 

illumination, showing VNBs (bright spots) (e) and after laser illumination (f). The green circle in (e) marks 

the laser illumation area of approx. 100 µm diameter.  (g) the scattering intensity profiles along the lines 

in d-f. 



Chapter 2 

76 

 

 

Figure S4. FITC-dextran delivery efficiency is quantified by imaging processing of cells incubated with 

8.2x107 particles/ml of AuNPs and illuminated with different laser fluences from 0.13, 0.25 and 0.51 J/cm2 

(below the VNB threshold) to 1.02 and 2.04 J/cm2 (above the VNB threshold). 
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Figure S5. Cell viability and FITC-dextran delivery efficiency are quantified by imaging processing of cells 

incubated with 16.5x107 particles/ml of AuNPs and illuminated with different laser fluences from 0.38 J/cm2 

(below the VNB threshold) to 1.02, 2.04 and 4.08 J/cm2 (above the VNB threshold). Red bars indicate the 

fraction of FD10 positive cells, blue bars represent the fraction of  live cells.  
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Figure S6.  Cell loading with FITC-dextran and viability was evaluated by flow cytometry. HeLa cells were 

incubated with 70 nm cationic AuNPs at a concentration of 8.25×107 particles/ml corresponding to approx. 

8 AuNPs per cell. (a) 52.5% of positive cells are obtained when using 0.38 J/cm2 (direct heating of cell 

membrane) as compared to 92.6% at 2.04 J/cm2 (pore formation by VNBs). (b)  Cell viability is estimated 

by flow cytometer for blank cells without staining by calcein red-orange AM (left figure), control cells with 

staining calcein red-orange AM (middle figure) and the cells after laser treatment with the fluence of 2.04 

J/cm2 . The rectangles in the figures represent the percentage of living cells.    
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Figure S7. Fluorescently labeled siRNA was delivered into HeLa cells by photoporation. Also for siRNA it is 

found that cell loading is more efficient by VNB pore formation (2.04 J/cm2) as compared to direct heating 

of the plasma membrane (0.38 J/cm2).  
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Figure S8. Cell viability and siRNA delivery efficiency was quantified by confocal imaging. 

HeLa cells were incubated with a AuNP concentration of 8.25×107 particles/ml. Immediately 

prior to laser treatment, siRNA was added to the cell medium at a concentration of 1 µM. 

Black bars are the fraction of cells containing a detectable amount of siRNA, green bars 

show the average fluorescence per cell, and red bars indicate cell viability. The data shown 

are the result from 3 independent repeats.  
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ABSTRACT 

Long-term in vivo imaging of cells is crucial for the understanding of cellular fate in biological 

processes in cancer research, immunology or in cell-based therapies such as beta cell 

transplantation in type I diabetes or stem cell therapy. Traditionally, cell labeling with the 

desired contrast agent occurs ex vivo via spontaneous endocytosis, which is a variable and 

slow process that requires optimization for each particular label-cell type combination. 

Following endocytic uptake, the contrast agents mostly remain entrapped in the 

endolysosomal compartment, which leads to signal instability, cytotoxicity and asymmetric 

inheritance of the labels upon cell division. Here, we demonstrate that these disadvantages 

can be circumvented by delivering contrast agents directly into the cytoplasm via vapour 

nanobubble photoporation. Compared to classic endocytic uptake, photoporation resulted 

in 50 and 3 times higher loading of fluorescent dextrans and quantum dots, respectively, 

with improved signal stability and reduced cytotoxicity. Most interestingly, cytosolic delivery 

by photoporation prevented asymmetric inheritance of labels by daughter cells over 

subsequent cell generations. Instead, unequal inheritance of endocytosed labels resulted in 

a dramatic increase in polydispersity of the amount of labels per cell with each cell division, 

hindering accurate quantification of cell numbers in vivo over time. The combined benefits 

of cell labeling by photoporation resulted in a marked improvement in long-term cell 

visibility in vivo where an insulin producing cell line (INS-1E cell line) labeled with 

fluorescent dextrans could be tracked for up to two months in Swiss Nude mice compared 

to two weeks for cells labeled by endocytosis.     
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1. INTRODUCTION 

There is great interest in monitoring in vivo transplanted cells for research and therapeutic 

purposes. In cancer research, for instance, it is of importance to visualize cancer cells in 

real time to study their metastatic potential in animal models1. In vivo tracking of cells is 

also desired for cell therapies to follow-up on treatment efficacy2. Examples are stem cells 

in regenerative medicine3, 4, β-cells for the treatment of type I diabetes5 and immune cells 

such as T-cells in immunotherapy6.  

For in vivo cell tracking, the cells need to be labeled before transplantation, for which two 

main strategies are being explored. One is to transfect the cells with a reporter gene2, 7 and 

follow-up on their proliferation through optical imaging, positron emission tomography or 

magnetic resonance imaging8-10. This strategy, however, requires a rather time-consuming 

transfection procedure that may lead to undesired phenotypical alterations and 

abnormalities in the transplanted cells in comparison to the native cells11-13. The second 

strategy is to label the cells with exogenous contrast agents, being either organic probes or 

inorganic nanoparticles (NPs)14, 15. Examples are fluorescently labeled dextrans16, 17 and 

quantum dots (QD) for optical fluorescence imaging18-20, or superparamagnetic iron oxide 

NPs and Gadolinium complexes for magnetic resonance imaging (MRI)4, 21, 22. Traditionally, 

these contrast agents are simply incubated with the cells, in some cases in combination 

with transfecting agents, so that they are internalized primarily by endocytic uptake. 

Despite its simplicity and widespread use, several disadvantages are connected to this way 

of labeling cells. First, as endocytosis is a highly cell-type dependent process, the labeling 

procedure needs to be optimized for each particular nanomaterial-cell type combination. In 

addition, several cell types such as T-cells have difficulties in internalizing extracellular 

compounds through endocytosis23. In other cases, problems may arise for cells that have a 

limited life span in culture, such as pancreatic islets, as efficient cell labeling through 

endocytic uptake is a rather slow process24. A second problem is that entrapment of contrast 

agents in the acidic endolysosomes may lead to increased cytotoxicity, for instance by 

creating reactive groups on the NP surface or by leaching of toxic metal ions, such as Cd2+ 

in case of QDs25-27. A third disadvantage of endocytic cell labeling is that the vast majority 

of the contrast agents are trafficked to the endolysosomes where they are exposed to an 

acidic and overall degrading environment26, 28. This can lead to degradation of the contrast 

agent, lowering the signal intensity, as reported for fluorescent labels28-30 as well as MRI 

contrast agents31-33. In addition, it has been reported that nanomaterials trapped in 

endolysosomal vesicles are not distributed equally over daughter cells upon cell division30, 

34, 35. While this process has been proposed to be a protective mechanism where the 

daughter cell with the highest NP load can be sacrificed in favour of the daughter cell with 

the lowest NP content29, 36, recent findings show that asymmetric inheritance of vesicles is 

an inherent cell-biological phenomenon37. For quantitative cell tracking applications 
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asymmetric inheritance of contrast agents over daughter cells is disadvantageous as it 

hinders accurate quantification of cell numbers over time, apart from the fact that the 

brightest signals are coming from cells that are suffering from the highest cytotoxicity.  

In this work, we hypothesized that direct delivery of contrast agents into the cytosol could 

alleviate the many difficulties related to endocytic cell labeling. Evidently, this requires a 

technology that is able to deliver a broad range of contrast agents across the cell membrane 

in a fast, efficient and non-toxic manner. Vapour nanobubble (VNB) photoporation is an 

interesting and relatively new method that is receiving increasing interest in recent years 

to deliver nanomaterials into cells38-41. It is based on the usage of plasmonic nanoparticles, 

typically gold nanoparticles (AuNP), adsorbed to the plasma membrane of cells that are 

illuminated with pulsed laser light. If a short laser pulse (< 10 ns) of sufficiently high 

intensity is absorbed by an AuNP, its temperature can rapidly increase to several hundred 

degrees due to efficient heat confinement42. If the AuNP is located in hydrated tissue, like 

in cell culture, the water surrounding the AuNP will evaporate. This results in the generation 

of an expanding VNB around the AuNP surface, with a size ranging from tens to hundreds 

of nm depending on the laser pulse intensity. When the thermal energy of the AuNP is 

consumed, the VNB violently collapses causing local damage to the surrounding tissue by 

high-pressure shock waves. Due to the extremely short lifetime of VNBs (<1 µs), the 

diffusion of heat from the AuNP into the environment is negligible so that almost all energy 

of the irradiated AuNP is converted to mechanical energy (expansion of the VNB). This 

property makes VNB photoporation an interesting technology to mechanically perforate the 

cell membrane, without causing unspecific thermal damage to cells. Building forth on recent 

successes with the cytosolic delivery of therapeutic molecules43-45, here we show that 

vapour nanobubble photoporation is a well-suited technology for cytosolic cell labeling in a 

fast and non-toxic manner.  First, we demonstrate efficient and safe loading of fluorescent 

dextran and QD in different cell types by photoporation. Compared to endocytic uptake, cell 

loading with photoporation was 50 and 3 times more efficient for FITC-dextran (FD) and 

QD, respectively. Combined with reduced toxicity, this enabled extended cell visualization 

in vitro over 10 generations for FD and 3 generations for QD. This shows that old-school 

labeled dextrans are excellent inexpensive and bio-compatible labels for cell tracking when 

delivered by photoporation as compared to much more expensive and toxic QDs. We 

demonstrate for the first time that asymmetric inheritance of fluorescent labels can be 

avoided by cytosolic delivery via photoporation. As a result, the cell intensity polydispersity 

remains identical over multiple cell divisions, while it rapidly increases for endocytic loading 

(already factor 10 after 6 divisions). Finally, we show extended in vivo imaging of an insulin 

producing cell line (INS-1E cell line) labeled with Cy5.5-dextran by photoporation. Cells 

labeled by photoporation could be imaged up to two months instead of only two weeks in 

case of endocytic labeling.  
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2. MATERIALS AND METHODS  

Materials. 520 (±10) nm CdSe/ZnS quantum dots and 690 (±25) nm InP/ZnS fluorescent 

nanocrystals coated with a thiol oligomer, surface functionalized with -COOH groups (PEG-

coated QD) were purchased from Mesolight, Inc. (#CdSe/ZnS-PEG-COOH-520 and 

#InP/ZnS-PEG-COOH-690, Mesolight, Inc., Little Rock Arkansas, USA). 520 (+/-15) 

InP/ZnS nm QD, functionalized with -COOH groups, were purchased from AC Diagnostics, 

Inc. (#CAIPS-520-P-1, AC Diagnostics, Inc., Fayetteville, AR, USA). 70 nm cationic AuNPs 

were purchased from NanoPartz (#CU11-70-P30-50, Nanopartz Inc., Loveland, CO, USA). 

These AuNPs had a zeta potential of 30 mV as measured by dynamic light scattering 

(NanoSizer, Malvern, UK). FITC-dextrans (FD) with a molecular weight of 10 kDa were 

purchased from Sigma-Aldrich (Belgium). Alexa Fluor @488 labeled 10 kDa dextrans (AD) 

(#D-22910, Molecular Probes®), Propidium Iodide (#P1304MP, Molecular Probes®) and 

Hoechst (cell nuclei labeling, #H3570, Molecular Probes®) were obtained from Invitrogen 

(Belgium). Cy5.5 labeled 10 kDa dextrans (CD) were purchased from Interchim (#FP-

DZ2581, France). 

Cell culture. Three different cell lines were applied in this work, namely the HeLa, C17.2 

and INS-1E cell line. HeLa cells were obtained from ATCC (CCL-2) and cultured in complete 

cell medium which consisted of DMEM/F-12 supplemented with 10% heat-inactivated foetal 

bovine serum (FBS), 2 mM glutamine and 100 U/mL penicillin/streptomycin. The C17.2 

neural progenitor cell line was retrieved from Sigma (Belgium) and cultured in DMEM 

containing 10% FBS, 5% horse serum, 2mM L-Glutamine and 100 U/mL 

penicillin/streptomycin. Finally, the LV-transduced INS-1E cells were cultured in RPMI 

completed with 10% FBS, 2mM L-Glutamine, 100 U/mL penicillin/streptomycin, 1% 100mM 

sodium pyruvate, 0.1% 50mM 2-mercaptoethanol and 10 mM Hepes. All cells were cultured 

at 37°C in a humid atmosphere containing 5% CO2. All cell culture products were obtained 

from Invitrogen (Belgium) unless specifically stated otherwise. 

Detection of AuNPs by confocal reflectance imaging and TEM. HeLa cells were 

cultured as described above. Cells were incubated with AuNPs for 30 min at 37°C at a fixed 

concentration of ~5×107 particles/ml. Cells were washed to remove unbound AuNPs. For 

confocal imaging the plasma membrane was stained with red fluorescent CellMask 

(#C10046, ThermoFisher Scientific). Confocal images were acquired with a Nikon C1si 

confocal laser scanning microscope using a 60× oil lens with 1.4 numerical aperture. AuNP 

were detected by the reflected laser light and false-colored in green. For TEM imaging, cell 

sections were placed on carbon-coated Cu grids (200-mesh) and visualized by a JEM 

1400plus transmission electron microscope (JEOL, Tokyo, Japan) operating at 60 kV.  

Generation and detection of vapour nanobubble. A homemade setup, including an 

optical and electrical timing system, was used to generate and detect the vapour 
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nanobubble37. A pulsed laser (~7 ns) tuned at a wavelength of 561 nm (OpoletteTM HE 355 

LD, OPOTEK Inc., Faraday Ave, CA, USA) was applied to illuminate the AuNPs in order to 

generate vapour nanobubbles. Under these conditions the initial AuNP temperature will be 

in the order of 500 K upon absorption of a single laser pulse. Here we have taken into 

account that only the first 0.5 ns of the laser pulse is most efficiently absorbed since after 

that there is efflux of heat energy to form the vapour nanobubble and the emerging 

nanobubble scatters (partly) the subsequently incoming light. For a more detailed 

theoretical framework the reader is referred to the work by  Pustovalov et al.42. Finally, the 

setup has a time-response and light scattering mode to allow detection of VNB formation43.  

Cell labeling via endocytosis. HeLa and C17.2 cells were seeded in 96 well plates at a 

density of 15000 cells/well while for INS-1E cells a density of 100000 cells/well was 

respected. Cells were allowed to settle overnight prior to treatment. Typically, for 

endocytosis experiments the cells were incubated with 2 mg/ml FITC-dextrans (FD) / 

Alexa@488-dextran (AD) / Cy5.5-dextran (CD) or 400 nM QDs (CdSe/ZnS @ 520 nm, 

InP/ZnS @ 520 nm, InP/ZnS @ 690 nm) during 1 hour at 37°C. In viability experiments 

also 100 and 200 nM QD dispersions were included. Subsequently cells were washed once 

with PBS (Invitrogen, Belgium) before performing further analysis.  

Cell labeling via vapour nanobubble photoporation. For laser treatment, the cells were 

seeded at the same densities as for endocytic cell loading. Here, cells were initially 

incubated with AuNPs during 30 min at 37°C at a fixed concentration of ~5×107 

particles/mL for HeLa and C17.2 cells and ~1×108 particles/mL for the INS-1E cells. Next, 

the cells were washed to remove remaining free AuNPs and a 2 mg/ml dextran dispersion 

(FD, AD or CD), or 1 µM QD dispersion (CdSe/ZnS @ 520 nm, InP/ZnS @ 520 nm or InP/ZnS 

@ 690 nm) was added just prior to the laser scanning. After the laser treatment, the cells 

were washed once with PBS and supplied with fresh cell medium before continuing with 

further analysis.  

Measuring fluorescence intensity (FI) by fluorescence microscopy. Cells were 

imaged in a stage-top cell incubator (37°C with 5% CO2 supplied, Tokai heat) for ~ 48 

hours using a swept field confocal microscope (SFC & Eclipse Ti, Nikon, Japan). Each hour, 

cells were imaged with a 60× oil immersion lens (CFI Plan Apo VC 60×oil, Nikon, Japan) 

over a large area by stitching 25 by 25 images, thus covering ~2.15 mm by ~2.15 mm 

with ~1500 cells. The microscope’s autofocus system was used to maintain a constant focus 

position on the cells. ImageJ software was used to segment the cells and calculate the 

fluorescence of each cell. The FI of each cell was calculated as follows: 

𝐹𝐼 = (𝐹𝐼𝑐𝑒𝑙𝑙 − 𝐹𝐼𝐵𝐺) ×  𝛽 (1) 
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where 𝐹𝐼𝑐𝑒𝑙𝑙 is the total fluorescence intensity of a cell as measured by ImageJ, and 𝐹𝐼𝐵𝐺 is 

the total background fluorescence intensity within the area of one cell. β used to 

compensate for photobleaching and was defined as 𝛽 = 𝐼0̅/𝐼�̅� where 𝐼0̅ is the initial average 

fluorescence intensity and 𝐼�̅�  is the average fluorescence intensity after i times of laser 

scanning. 

Measuring mean fluorescence intensity (MFI) by flow cytometry. Following labeling 

with either fluorescently labeled dextrans or QD via endocytosis or photoporation, cells were 

detached by trypsin-EDTA (Invitrogen, Belgium) treatment and collected by centrifugation. 

Following resuspension in flow buffer (PBS supplemented with 5% FBS) the samples were 

measured by flow cytometry (FACS Calibur, BD, Belgium) and 10000 events were detected 

per sample. The cells were excited with a 488 nm laser and fluorescence was recorded in 

the 530/30 channel. For a certain time ti after labeling, the normalized 𝑀𝐹𝐼̅̅ ̅̅ ̅̅
𝑡𝑖
was obtained 

by normalizing the population MFI (𝑀𝐹𝐼𝑡𝑖
) to the MFI of cells immediately after labeling 

(𝑀𝐹𝐼𝑡0
):  

𝑀𝐹𝐼̅̅ ̅̅ ̅̅
𝑡𝑖

=
𝑀𝐹𝐼𝑡𝑖

− 𝑀𝐹𝐼𝑡𝑖

𝑐𝑡𝑟𝑙

𝑀𝐹𝐼𝑡0
− 𝑀𝐹𝐼𝑡0

𝑐𝑡𝑟𝑙  (2) 

where 𝑀𝐹𝐼𝑡𝑖

𝑐𝑡𝑟𝑙  is the MFI of untreated cells (i.e. correction for contribution by 

autofluorescence). The following mono-exponential decay model was used to obtain the cell 

division time τ: 

𝑀𝐹𝐼̅̅ ̅̅ ̅̅ = 2−(
𝑡
𝜏

) (3) 

Finally, the relative MFI of a cell population was calculated by dividing the MFI at a certain 

time after labeling by the MFI of untreated cells at the same time point.  

Evaluation of cell viability following cell labeling. Cells were seeded and loaded 

according to methods described above. Subsequently, cells were washed once with PBS, 

fresh medium was added and cells were allowed to recover two hours before performing 

the MTT assay. To this end 30 µl of a 5 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT, Sigma, Belgium) solution was added to each well. 

Following an incubation period of three hours at 37°C the MTT containing cell medium was 

removed and cells were lysed using dimethylsulfoxide (Sigma, Belgium). When the 

formazan crystals were completely dissolved, the absorbance in each well was measured at 

570 and 650 nm using an Envision Xcite multilabel reader (PerkinElmer LAS, Boston, MA). 

NP containing cell medium was included as a control to allow correction for the possible 

interaction of the NPs with the assay. Additionally, we evaluated cell viability following 

vapour nanobubble generation without contrast agent loading. In this way we could 
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differentiate to what extent effects on viability were stemming from the loading method. All 

data are expressed as the mean ± SD (n=3).  

Statistical model to describe the inheritance of contrast agents over subsequent 

cell generations. As reported previously, the redistribution of endocytosed NPs over 

daughter cells can be modelled by a convolution product of the original cell distribution with 

a binomial partitioning probability function30: 

𝑛𝑡1
(𝑁1) = ∑ 𝑛𝑡0

(𝑁) × 𝑇(𝑁, 𝑁1)

𝑁

  (4) 

𝑇(𝑁, 𝑁1) = (1 − 𝑓)𝛿(𝑁1 = 𝑁) + 𝑓[𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁, 𝑁1, 𝑝) + 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁, 𝑁 − 𝑁1, 𝑝)] (5) 

Here, T is the transfer function and includes two binomial functions, describing the 

probability of N1 endo-lysosomal vesicles containing NPs being inherited by one of the 

daughter cells upon division of the mother cell with N vesicles. Parameter p describes the 

probability of endolysosomal vesicles being allocated to a specific daughter cell during 

division. p = 0.5 signifies 50% chance that the daughter cell will receive the vesicle, while 

p = 1 means that all of the vesicles will be inherited by the daughter cell. While this model 

was developed for describing the repartitioning of a small number of NP containing 

endolysosomal vesicles (typically<100), in our work we are dealing with much higher 

numbers (typically >105 particles). When the statistical samples are large enough (typically 

N>100), the binomial distribution can be approximated by a normal distribution. This means 

that the convolution probability distribution can be approximated by a normal distribution. 

Similarly, the fluorescence intensity distributions of daughter cells can be convoluted by the 

transfer function implemented with a normal probability function:  

𝐹(𝐼1) = ∑ 𝐹𝑡0
(𝐼) × 𝑇(𝐼, 𝐼1)

𝐼

  (6) 

Here, I is the fluorescence intensity of a mother cell and I1 is the fluorescence intensity 

inherited by one of the daughter cells after cell division. The transfer function T (I, I1) can 

be expressed with two normal distribution functions which describe the probability that a 

mother cell with intensity I transfers its contrast agents over its daughter cells in a ratio 

I1/I-I1: 

𝑇(𝐼, 𝐼1) = (1 − 𝑓)𝛿(𝐼1 = 𝐼 − 𝐼1) + 𝑓[𝑁(𝐼1, 𝜇1, 𝜎) + 𝑁(𝐼1, 𝜇2, 𝜎)] (7) 

 

Here, f is the fraction of cells that have undergone mitosis and N is the normal distribution 

function. 
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𝑁(𝐼1, 𝜇𝑖, 𝜎) =
1

𝜎√2𝜋
exp [−

(𝐼1 − 𝜇𝑖)
2

2𝜎2
] (8) 

The mean µ1 and µ2, and the standard deviation σ are defined as 

𝜇1 = 𝐼 ∙ 𝑝, 𝜇2 = 𝐼 ∙ (1 − 𝑝 ), 𝜎 = √𝐼 ∙ 𝑝 ∙ (1 − 𝑝 )  (9) 

where p is the probability that a contrast agent is inherent by one particular daughter cell 

upon cell division and I is the mother cell fluorescence intensity.  

In vivo experiments long-term cell tracking post injection in mice. All animal 

experiments were executed in accordance with national and European regulations and 

approved by the local Animal Ethics Committee. Swiss Nude mice (7-9 weeks old, Charles 

River, Chatillon-sur-Chalaronne, France) received 1 million LV-transduced (fLuc expression 

for bioluminescence) INS-1E cells suspended in 100 µL cell culture medium subcutaneously 

into both the hind limbs (left side: unlabelled control cells; right side: labeled cells). During 

cell transplantation, animals were anesthetized with 2% isoflurane (Isoflurane ISP, 

Rothacher, Basel, Switzerland) in 100% oxygen, at a flow rate of 2 L/minute. For both in 

vivo bioluminescence imaging (BLI) and fluorescent imaging (FLI), the animals were 

anesthetized with 2% isoflurane in 100% oxygen, at a flow rate of 2 L/minute. All the 

images were acquired using an IVIS in vivo optical imaging system (PerkinElmer, 

Massachusetts, U.S.A). For the BLI, D-luciferin, dissolved in PBS (15 mg/mL), was injected 

intraperitoneally (126 mg/kg body weight) prior to the imaging sessions. Consecutive 

frames were acquired each minute until the maximum signal intensity was reached. For the 

FLI acquisition, the EPI mode was used with an excitation wavelength at 673 nm and an 

emission wavelength at 707 nm for Cy5.5 according to its default value set in the system 

software (Living Imaging, Perkin Elmer). All reported BLI and FLI images were 

superimposed by a grey-scale photographic image with anatomical information and a 

pseudocolor image with functional/optical information. The BLI/FLI signals were expressed 

as total photon flux (p/s/sr) from circular region of interests (ROI) using the Living Imaging 

software. The FLI signals of average radiance were also quantified in the ROI by this 

software (Perkin Elmer). No samples or animals were excluded from the analysis. The 

quantification data are expressed in average radiance of FLI or BLI with the mean ± SD 

(n=3). The data was compared by one-way ANOVA. 

 

3. RESULTS 

3.1 Photoporation enables efficient cytosolic delivery of contrast agents with 

reduced cytotoxicity.   
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The procedure of delivering contrast agents into the cytosol of cells by vapour nanobubble 

photoporation is illustrated in Fig. 1a. Cells are first incubated with plasmonic NPs, such as 

gold NPs (AuNPs), for 15-30 min. During that time the AuNP can adsorb to the cells and  

are internalized just below the plasma membrane by endocytic uptake (see TEM images in 

Figure S1). On average ~8 AuNPs are associated per cell as determined by confocal 

reflection imaging (Figure S1 and  Supporting Movie 1). After washing the cells to 

remove the unbound AuNPs, the contrast agent is added and the cells are irradiated with 

ns (nanosecond) pulsed laser light. When a laser pulse of sufficiently high intensity is 

applied, the temperature of the AuNPs increases to several hundred degrees causing the 

water surrounding the AuNPs to evaporate.46 This in turn results in the formation of vapour 

nanobubbles that expand and collapse, thereby inducing pores in the cell membrane and 

allowing the contrast agent to diffuse into the cytoplasm. In our set-up, the cells are grown 

in a 96-well plate and the laser beam covers a circular area of ~150 µm diameter. The laser 

pulses are synchronized with a programmed motorized stage to assure that each cell in the 

culture dish receives one or two laser pulse. Scanning of the entire well takes approximately 

three minutes, which is essentially limited by the laser repetition rate (20 Hz). The 

generation of vapour nanobubbles can be confirmed with dark field microscopy (Figure 

S1c), or in time-resolved transmitted light mode (Figure S1b). To confirm successful 

photoporation of the cell membrane, we in-situ recorded the cytoplasmic accumulation of 

the cell impermeable dye Propidium Iodide (PI) (Supporting Movie 2, Supporting 

Information). To assess the size of VNB induced membrane pores, we measured the 

delivery efficiency of  FITC-dextran of 10 kDa (FD10), 150 kDa (FD150) and 500 kDa 

(FD500), which have a hydrodynamic diameter of respectively 4, 17 and 31 nm. The 

photoporation procedure was carried out at 3 different laser fluence settings (1, 2 and 4 

J/cm²). It is expected that bigger VNB are formed with higher laser fluences, which should 

result in bigger membrane pores as well. The data in Figure S2a and S2b show that all 

three probes could be delivered into 80-95% of the cells although the amount per cell is 

clearly less for the bigger probes. By increasing the laser fluence a slight increase in delivery 

efficiency was observed, indicative of slightly bigger pores.  Based on FD500 delivery we 

conclude that pores created under the illumination conditions used in this study can have a 

size of at least 30 nm diameter. We also tried to estimate the pore lifetime by adding the 

FITC-dextran probes as a function of time after photoporation to the cells. The data in 

Figure S2c and S2d show that already after 1 min most of the cells have been completely 

resealed considering that only about 25% still show uptake of the smallest probe (FD10). 

And even in those cells the remaining pores must have been very small since the amount 

of FD10 taken up in those cells is about 100 fold less as when the probe is present during 

photoporation. Looking at FD500, there is no more uptake after 1 min, showing that all 

pores have become smaller than 30 nm after 1 min.  After 3 min there is no further influx 



 Chapter 3 

93 

 

of any of the probes, indicating that all pores are resealed in less than 3 min after 

photoporation. 

Since both organic probes and inorganic NPs receive much attention for long-term cell 

tracking, we selected FITC-dextran (FD) and CdSe/ZnS core/shell quantum dot (CdSe QD) 

as exemplary contrast agents. For both labels we performed a systematic comparison 

between endocytic labeling and cytosolic delivery by photoporation in HeLa cells in terms 

of uptake efficiency and cell viability. Endocytic labeling was performed by incubating the 

cells for 1 h with increasing concentrations of the contrast agent. Note that a 1 h incubation 

time was selected since QD induced toxicity became too high for longer incubation times 

(Figure S3). Photoporation was performed with a fixed concentration of contrast agents (2 

mg/ml for FD and 1 µM for CdSe QD), but with increasing laser fluence settings (all above 

the vapour nanobubble generation threshold of ~1 J/cm2)43. From the confocal images in 

Fig. 1b (END for endocytic labeling, VNB for vapour nanobubble photoporation labeling) 

the difference in intracellular labeling pattern is immediately clear. As expected, endocytic 

labeling results in a punctuate pattern due to endosomal sequestration of the contrast agent, 

while a uniform cytosolic labeling is obtained by photoporation. Image quantification (upper 

panels in Fig. 1c, d) shows that endocytic labeling results in nearly 100% of the cells with 

a detectable signal. For photoporation approximately 80% of the cells have a detectable 

signal at the lowest laser fluence of 1 J/cm2, which becomes >90% for higher fluences. The 

difference in efficiency between both labeling methods, however, becomes apparent when 

looking at the total signal per cell, expressed as the relative mean fluorescence intensity 

rMFI (rMFI = MFI labeled cells / MFI control cells) (middle panel in Fig. 1c, d). For instance, 

at a laser fluence of 4 J/cm2
, cells labeled with FD by photoporation are as much as 50 times 

brighter as compared to endocytic labeling at the highest concentration tested. While the 

difference was less pronounced in case of CdSe QD, still a 3 times higher labeling intensity 

was found in case of photoporation. In terms of cytotoxicity (lower panels in Fig. 1c, d), 

endocytic uptake of FD did not have any effect on the cells. For photoporation the cell 

viability was close to 90% regardless of the laser fluence used. Endocytic uptake of CdSe 

QD resulted in a concentration dependent cytotoxicity. Only for the lowest concentration 

(100 nM) >80% cell viability was obtained. A similar concentration dependent toxicity was 

found for VNB photoporation with CdSe QD. 80% cell viability was obtained at an 

intermediate laser fluence of 2 J/cm2. Notably, the signal per cell for this condition is 5 

times higher as compared to endocytic labeling at the non-toxic concentration of 100 nM. 

Similar experiments were carried out for INS-1E cells, which is a type insulin producing cell 

under investigation for the treatment of type I diabetes5. As can be seen from the results 

in Figure S4, the findings on HeLa cells could be confirmed for INS-1E cells, indicating that 

the results are independent of the cell type.  
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Figure 1. Cell labeling by photoporation vs. endocytic uptake of contrast agents. a, Schematic overview of 

the experimental procedure to label cells by photoporation. b, Confocal images show successful cell labeling 

with FD and CdSe QD by endocytic uptake (END) and photoporation (VNB). Control images are shown for 

cells incubated with FD and CdSe QD, which received laser treatment without AuNPs and VNB formation. 

This shows that photoporation is not induced by the laser irradiation alone. c-d, Quantification of the 

percentage of positive cells (yellow), the labeling intensity per cell (cyan) and cell viability (magenta) as a 

function of label concentration in case of endocytic labeling and as a function of laser fluence from 1 to 4 

J/cm2 for photoporation. The cell viability is also shown for cells treated with photoporation but without 

addition of contrast agents, showing that the photoporation procedure in itself induces very little toxicity. 

(n=3) 
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3.2 Cell labeling by photoporation enables extended cell tracking in vitro.  

So far we have shown that photoporation allows a much higher amount of label to be 

delivered into (the cytoplasm of) cells. Combined with the fact that endolysosomal 

degradation or quenching of the label is avoided when contrast agents are directly delivered 

to the cytoplasm, we hypothesized that those cells can be imaged over an extended number 

of cell generations as compared to cells labeled by endocytosis. In the following experiments, 

a laser fluence of 2 J/cm2 was used, for which the cell viability remains above 80% for both 

FD and CdSe QD (cfr. Fig. 1c, d). Following photoporation with the FD or CdSe QD, we 

monitored the mean fluorescence intensity (MFI) of the labeled cells over multiple 

generations by flow cytometry. The data in Fig. 2a and b show the decrease in cell intensity 

over time relative to the MFI at t = 0 (i.e. immediately after labeling). The signal decrease 

for the photoporated cells (Fig. 2a, b) is solely due to dilution of the contrast agent upon 

subsequent cell divisions. Indeed, with a mono-exponential fit we obtained a cell division 

time of ~25 h for HeLa cells, which is in perfect agreement with reported values47. To 

corroborate this finding, a similar test was performed on faster (C17.2 cells) and slower 

(INS-1E cells) dividing cell lines, resulting in the expected doubling times of ~17 and ~39 

h, respectively (Figure S5). Importantly, a signal decrease that is only attributed to dilution 

by cell division is the best one can achieve for extrinsic contrast agents. Instead, cells 

labeled by endocytosis exhibited a much more rapid decrease of the cell signal (Fig. 2a, 

b), due to other processes than cell division alone, most importantly label degradation 

(CdSe QD) or fluorescence quenching (FD) in the acidic endolysosomes26, 28.  

To more precisely quantify the gain in long-term cell visibility of photoporated cells, we 

determined the percentage of detectable cells, i.e. cell with an intensity higher than 

unlabelled control cells, over multiple cell generations by flow cytometry (Fig. 2c, d). 

Although both delivery methods resulted in more than 90% positive cells immediately after 

cell loading, the number of detectable cells quickly decreased in case of endocytic labeling 

for both FD and CdSe QD. Already after one cell division 20% of FD labeled cells became 

undetectable, and after 5 cell divisions the cells could no longer be detected. Instead, when 

cells were loaded with FD by photoporation, nearly 100% of the cells remained visible for 5 

generations. Even after 7 divisions more than 80% of these cells were still detectable. 

Similar results were found for CdSe QD loaded cells. After one cell division only ~30% of 

cells labeled by endocytosis could be detected, while this was still >90% for photoporated 

cells. After three cell divisions >70% of photoporated cells could still be detected, while this 

was <10% for endocytic labeling. The main reason why FD labeled cells can be detected 

for much longer time as compared to CdSe QD labeled cells is due to a higher loading 

efficiency of FD by photoporation (cfr. Fig. 1c, d).  
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Figure 2. Long-term visibility of HeLa cells labeled by photoporation vs. endocytic labeling. a-b, The 

normalized MFI is shown in function of time after labeling for cells loaded with FD (a) and CdSe QD (b) via 

both photoporation (VNB, orange squares in a and b) and endocytic labeling (END, black circles in a and 

b). Each data point belongs to one of three independent biological repeats; each data point is the average 

of three technical repeats. A mono-exponential decay function was fitted to the photoporation data to 

calculate the mean cell division time (orange lines in a and b).  c-d, The percentage of detectable cells is 

shown over several cell generations for respectively FD (c) and CdSe QD (d) labeled cells. Endocytic labeling 

(END, grey bars in c and d) is compared with cell labeling via photoporation (VNB, orange bars in c and d). 

(n=3) 

Similar experiments were performed with the INS-1E cell line (Figure S6). For FD labeled 

cells the results were identical to those obtained in HeLa cells. For CdSe QD labeled cells 

the difference between labeling by endocytosis and photoporation were even more 

pronounced. Almost no cells could be detected after one generation in case of endocytic 

loading, likely due to the long residence time in the degradative endolysosomes of the slow 

division rate. Instead, when CdSe QDs were delivered into the cytosol by photoporation, it 

was only after eight cell divisions that the signal was lost. Taken together, we conclude that 

delivering labels into the cytosol by photoporation significantly enhances the long-term cell 

visibility, with a signal decay that is solely determined by cell division. Due to the high 

loading capacity we find that old-school FDs clearly outperform CdSe QDs for this purpose.  
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3.3 Cytosolic delivery of contrast agents avoids asymmetric inheritance over 

daughter cells and the concomitant increase in cell labeling polydispersity. 

It is known that contrast agents residing in endocytic vesicles are partitioned unequally 

between daughter cells during cell division30, 37. This results in an increasingly 

heterogeneous population of labeled cells with each cell division, which confounds 

quantification of cell numbers in in vivo applications. We hypothesized that this drawback 

can be countered by directly delivering contrast agents into the cell cytoplasm. For a 

quantitative comparison between endocytosis and photoporation, we selected Alexa 

fluro@488 labeled dextran (AD) and InP/ZnS core/shell quantum dots (InP QD) which 

should be less affected by the acidic and degradative environment of the endolysosomes. 

This is confirmed by Figure S7 showing that the signal decay over cell generations is only 

due to cell division after endocytic uptake. Hence, changes in cell intensity are only due to 

cell division, as is required for these experiments.  

In first instance, the mitotic partitioning of the intracellular fluorescent labels in individual 

HeLa cells was imaged by fluorescence microscopy for two subsequent cell divisions, with 

pictures being taken every hour. Representative images in Fig. 3a, b (also see Supporting 

Movie 3-6) show that the fluorescent labels are diluted upon each imaged cell division. The 

punctate pattern observed in the cells labeled by endocytosis (END, left panels in Fig. 3a, 

b) is in stark contrast with the homogenous labeling of the entire cell cytoplasm in 

photoporated cells (VNB, right panels in Fig. 3a, b). However, one can still notice a slight 

punctuate pattern on top of the homogeneous cytosolic labeling after photoporation (see 

Supporting Movie 4 and 6). This is due to a small amount of label endocytosed during 

the three minutes laser treatment, as confirmed by control experiments where cells were 

incubated for the three minute with AD and InP QD (Figure S8). After two cell divisions 

the asymmetric partitioning of endocytosed contrast agents over daughter cells can already 

be noticed on sight (compare for instance D11 with D12 in Fig. 3b).  
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Figure 3. Inheritance of contrast agents in cells labeled by endocytosis or photoporation. a-b, 

Representative confocal time-lapse images show the redistribution of contrast agents (AD and InP QD) over 

daughter cells after two subsequent cell divisions. Endocytosed contrast agents are located inside 

endosomes (punctuate pattern) and are unequally partitioned over daughter cells, e.g. compare D11 and 

D12 of InP QD labeled cells (END, left panels in a and b). Photoporation results in uniform cytoplasmic 

labeling and equal distribution of the contrast agents over daughter cells (VNB, right panels in a and b). c-

d, Based on image quantification of confocal time lapse images, the fluorescence intensity (FI) of mother 

cells (n=210 for AD-END, n=205 for AD-VNB, n=172 for InP QD-END, n=155 for InP QD-VNB) is plotted 

against the FI of their brightest daughter cell. Linear regression shows a slope of ~0.5 for photoporated 

cells (equal redistribution) and ~0.6 for cells labeled by endocytosis (unequal redistribution). e-f, Flow 

cytometry was used to quantify the FI of cells immediately after labeling (grey line) and after one cell 

division (black line). A statistical inheritance model was fitted to the data (orange line) confirming equal 

inheritance (p = 0.50-0.51) in case of photoporated cells (VNB, right panels in e and f) as opposed to cells 

labeled by endocytosis (p = 0.63-0.66) (END, left panels in e and f).  
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To more precisely quantify and characterize the mitotic inheritance of contrast agents in 

daughter cells, we calculated the fluorescence intensity (FI) for 155-210 mother cells and 

their respective daughter cells. The FI of the brightest daughter cell is plotted in Fig. 3c 

and d against the FI of the mother cell. In case of symmetric division, one expects each 

daughter cell to contain 50% of the original fluorescence. This is exactly what is observed 

for the photoporated cells, whose data show a slope of 0.515 for AD and 0.509 for InP QD 

respectively. In contrast, for cells labeled by endocytosis, the slope is 0.619 for AD and 

0.605 for InP QD, implying that one of the daughter cells receives ~60% of the contrast 

agents (while the other receives ~40%).  

To confirm these results, we went on to investigate statistically the inheritance of contrast 

agents by daughter cells using flow cytometry. The FI was measured immediately after 

labeling and after one cell division (respectively the grey and black lines in Fig. 3e-f). To 

interpret these results, we developed a statistical model describing the inheritance of 

materials over daughter cells. The model was applied to the experimental data to obtain 

the distribution that best matches the observed daughter distribution starting from the 

mother distribution. The result of the fitting is a parameter p that expresses the extent of 

asymmetry, with 0.5 indicating perfect symmetry. As expected from the microscopy data 

and in accordance with our hypothesis, for photoporated cells a p value of 0.50 and 0.51 

was found for AD and InP QD, respectively. This result is independent of the cell type as 

the same observation was made in a second cell line (C17.2 cells, Figure S9). On the 

contrary, an unequal distribution of endocytosed contrast agents could be confirmed with p 

values of 0.66 for AD and 0.63 for the InP QD. 

 While an asymmetric division of 40/60 may not seem substantial in the first generation, it 

does introduce tremendous polydispersity in cell intensity over multiple cell divisions. This 

can be seen in Fig. 4 where the FI distributions are shown over multiple generations for 

endocytic labeling (Fig. 4a) and labeling by photoporation (Fig. 4b). The polydispersity is 

plotted as a function of cell generation in Fig. 4c, clearly showing that it remains unchanged 

for cytosolic delivery but increases rapidly for endocytic uptake. Additionally, we applied 

the statistical inheritance model to the mother distributions (p = 0.51 for photoporation 

and p = 0.64 for endocytosis) and found that it accurately predicts the observed 

polydispersity trend.  
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Figure 4. Asymmetric inheritance, leading to highly heterogeneous cell labeling over multiple generations, 

can be avoided by photoporation. a-b, Distributions of the cell fluorescence intensity (FI) is shown over 

multiple cell generations (G0-G7) for cells labeled with AD by endocytosis (END) (a) and photoporation 

(VNB) (b). As for endocytosis the intensity is close to the background after 3 divisions, the statistical 

inheritance model was applied (p = 0.64) to the mother distribution (G0) to simulate the distributions for 

G4 and G7 (dashed lines). c, The polydispersity 𝑃𝐷𝐼 = (𝜎/𝐼)̅2 of the distributions remains the same in case 

of cells labeled by photoporation, while it rapidly increases in case of endocytic labeling. The data is well 

predicted by the statistical inheritance model with p = 0.64 for endocytosis and p = 0.51 for photoporation. 
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3.3 Cell labeling by photoporation enables prolonged in vivo cell imaging.  

Cell transplantation has been proposed as an attractive therapy in a multitude of 

pathologies. One example is type I diabetes, where insulin producing cells transplantation 

is a promising strategy to replenish insulin production48. In order to visualize whether the 

transplanted cells reach and remain at their target site, appropriate labeling techniques are 

required that enable long-term cell tracking. To confirm if the in vitro benefits of cell labeling 

by photoporation are valid in vivo, we labeled INS-1E cells with Cy5.5-dextrans and InP/ZnS 

QD (@690nm) by photoporation and endocytosis. 1 million INS-1E cells were 

subcutaneously injected in the hind limbs of seven to nine weeks old Swiss Nude mice (left 

side: unlabelled control cells, right side: labeled cells). Fluorescence and bioluminescence 

images of the mice were recorded up to 55 days post injection. The fluorescent signal from 

InP QD labeled cells could not be distinguished from the background for either labeling 

methods (Figure S10) due to the limited loading as compared to fluorescent dextrans (vide 

supra). In contrast, the fluorescent signal of Cy5.5-dextran labeled INS-1E cells could be 

detected immediately post transplantation (day 0) for cells labeled by both methods (Fig. 

5). Over time, the fluorescent signal gradually decreased, which resulted in complete signal 

loss for the cells labeled by endocytosis at day ~15 post injection (Fig. 5a). Strikingly, even 

after 55 days post injection, vapour nanobubble photoporated cells remained clearly 

detectable (Fig. 5b). In addition, the bioluminescent signal remained present at the 

injection site, which shows that the cells remained alive during the experiment (Figure 

S11). No detectable bioluminescent signal was found in other parts of the mouse bodies, 

indicating that no substantial amounts of viable cells (> 100) migrated away from the 

injection site. Note that a gradually increasing signal intensity is visible in the 'upper left 

part' of the mouse, which is most likely coming from the spleen and may be due to Cy5.5-

dextrans that have been cleared from dead or dying cells over the time course of the 

experiment (two months). Overall, we can conclude that cytosolic cell labeling by 

photoporation clearly outperforms the classical endocytosis method for long-term in vivo 

cell tracking. Due to its higher loading capacity, we furthermore find that old-school labeled 

dextrans are better suited for long-term cell imaging than the newer class of more 

expensive and often cytotoxic QDs. 
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Figure 5. Long term in vivo imaging of transplanted INS-1E cells labeled by either photoporation or 

endocytosis. INS-1E cells were labeled with Cy5.5-dextran (CD) by (a) endocytic uptake (END) or (b) 

photoporation (VNB). labeled cells were subcutaneously injected right hind limb of Swiss Nude mice. 

Unlabelled control cells were injected at left side. For three independent repeats, the fluorescence was 

quantified over time of labeled (orange) and unlabelled (green) cells in the indicated regions of interest 

(ROI). Photoporated cells were still clearly visible after 55 days, as opposed to cells labeled by endocytosis 

which disappeared already after 15 days. 
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4. DISCUSSION 

For in vivo imaging of transplanted cells, labeling with the desired contrast agents is 

classically performed via simple incubation and subsequent internalization by endocytosis. 

This means that the contrast agent will typically be sequestered in endolysosomes, which 

is associated with a number of potential drawbacks. Endocytic uptake is typically time-

consuming, has limited loading capacity, may lead to quenching or degradation of labels 

with concomitant increased cytotoxicity, and results in asymmetric division over daughter 

cells. In this work we hypothesized that these shortcomings could be largely alleviated by 

delivering contrast agents directly into the cytosol. Photoporation was chosen to this end, 

as it was recently shown by our group and others to be a fast, efficient and non-toxic 

method to deliver therapeutic agents into the cytosol of cells, independent of cell type40, 43, 

45. Following adsorption of a small number of gold nanoparticles to the cell membrane (~8 

per cell), cells receive a single ns laser pulse so as to induce transient membrane pores by 

the mechanical force of vapour nanobubbles. Exogenous labels that are supplied in the cell 

medium can then diffuse through the pores into the cytoplasm. A particular benefit of 

photoporation by vapour nanobubbles is that there is no net heat transfer to the cellular 

environment. This means that cells experience less cytotoxicity as compared to the more 

traditional photothermal treatment at lower laser intensities in which case small pores are 

induced by heating of the cell membrane43, 49.  

As a single ns pulse per cell is sufficient, the photoporation procedure is essentially limited 

by the laser repetition rate. The laser used in this work had a (limited) repetition rate of 20 

Hz which resulted in a treatment time of 3 min for a single well of a 96 well plate. While 

this is already much faster than endocytic labeling, we expect that speed can be increased 

further in the future by at least one order of magnitude by switching to a picosecond laser 

with higher repetition rate40. 

As contrast agents can be distributed throughout the entire cytoplasm, photoporation allows 

much higher cell labeling efficiency as compared to endocytic uptake, where contrast agents 

are restrained to the endolysosomal compartments. For 10 kDa FITC-dextran we observed 

a 50-fold increase in cell loading compared to endocytosis independent of cell type. As QDs 

are larger (slower diffusion) and can only be supplied in a lower molar concentration (due 

to cost and toxicity), the difference in loading capacity was less pronounced, but 

photoporation was still 3 times more efficient than endocytic uptake of CdSe QD.  

When analysing the fluorescence intensity of cells labeled by endocytosis over multiple 

generations, we noticed that the signal intensity rapidly decreased for both FITC-dextran 

and CdSe QD labeled cells. Sequestration in the acidic and degradative endolysosomes 

results in quenching of the fluorescein label (which is strongly pH dependent) and 

degradation of the CdSe QD29. Instead, when the same labels were delivered into the 



Chapter 3 

104 

 

cytosol by photoporation, the signal decrease over multiple cell generations was only due 

to dilution in the daughter cells. Again these results were cell-independent since the same 

observations were made for three different cell types, including therapeutically relevant 

insulin producing INS-1E cells. In addition, endosomal sequestration of CdSe QD resulted 

in noticeable concentration-dependent toxicity, which could be largely avoided when 

delivered in the cytosol by photoporation. This is in agreement with a recent publication 

where metallic NPs were found to cause cell injury when sequestered in endosomes, but 

not when delivered straight into the cytoplasm50.  

Nanomaterials, like QDs, present in the endolysosomes are known to be distributed 

unevenly over daughter cells upon cell division30. Here we could confirm this observation 

and report for the first time that it is equally true for endocytosed molecular agents like 

Alexa Fluor dextran. This is perhaps not so surprising in light of the recent finding that 

asymmetric inheritance of vesicles is a naturally occurring cellular process37. Indeed, 

asymmetric cell division appears to be a crucial biological feature that does not only provide 

protection against exogenous materials, but is also involved in differentiation towards 

various lineages51, 52. Here, we hypothesized that asymmetric inheritance of contrast agents 

could be avoided by delivering the labels directly into the cell cytoplasm. In that case the 

labels are homogeneously distributed throughout the cytoplasm and there is no active 

mechanism that the cell can use anymore (such as motor proteins in case of endosomes) 

to shuttle the nanomaterials preferentially to one of the daughter cells. This was confirmed 

with labeling by photoporation independent of label and cell type. In contrast, in case of 

endocytosis, labels were divided over daughter cells in a 40/60 ratio. While this may not 

seem like a major problem on first sight, it does pose problems for accurate quantification 

of cell numbers in in vivo imaging after multiple cell divisions. Indeed, already after 6 

generations the label polydispersity will have increased 10-fold so that it becomes 

increasingly difficult to accurately relate the detected signal to cell numbers. Instead, equal 

inheritance after cytosolic loading by photoporation ensures that the polydispersity does 

not increase over cell generations. This means that signal quantification remains equally 

accurate over time in long-term cell tracking studies, which is of major importance for 

instance for following-up on cell therapies. To our knowledge, this is the first time that it is 

shown that asymmetric inheritance of exogenous materials can be avoided by delivering 

labels directly into the cytosol. 

Finally, we imaged INS-1E cells in vivo labeled by photoporation or endocytosis. Following 

the injection of labeled cells in seven to nine weeks old Swiss Nude mice, we found that 

cells labeled with Cy5.5-dextran by photoporation can be imaged up to two months. Instead, 

cells labeled by endocytosis completely lost their fluorescent signal after two weeks. Due to 

less efficient loading with InP QD, the fluorescent signal from InP QD labeled cells could not 

be distinguished from the background for neither labeling method. This shows that old-
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school fluorescent dextrans are excellent labels for cell tracking in vivo, especially in 

combination with photoporation. Taken together, we can state that we developed a highly 

efficient and safe method to label cells that enables straightforward long term cell tracking.  

Here, photoporation was selected for the cytosolic delivery of contrast agents into live cells 

since it has been shown to enable efficient loading at high throughput and with low toxicity. 

Although it needs to be demonstrated in future research, it could be expected that similar 

findings on long-term visibility and symmetric inheritance in daughter cells may be obtained 

with other methods that enable cytosolic delivery of contrast agents. For instance, 

electroporation could be explored to this end, although it is typically associated with high 

cell death53 and for QD it was reported to result in marked aggregation54. Also molecular 

approaches are developed to this end where contrast agents are conjugated to ligands that 

– hopefully – can translocate the contrast agents into the cytoplasm, either directly across 

the cell membrane or across endosomal membranes after endocytic uptake. Examples are 

CFSE (Carboxyfluorescein succinimidyl ester)55, but also CPP (cell-penetrating peptide) 

conjugates56. Yet it is clear that such strategies require special development of conjugates 

for each type of label, apart from the fact that the efficiency may be very much cell-

dependent. Instead, a fast and efficient method like photoporation is entirely independent 

of the type of label or cell type used, and we expect that this method will see quickly 

increasing applications for intracellular delivery in general.  

 

5. CONCLUSIONS 

Direct cytosolic delivery of nano-sized contrast agents by photoporation opens up exciting 

avenues for improved long-term quantitative in vivo cell tracking. Apart from much more 

efficient cell loading and prolonged cell visibility in vitro and in vivo as compared to 

endocytic labeling, we show for the first time that asymmetric inheritance of labels can be 

avoided by delivering the labels directly into the cytosol through photoporation. As 

photoporation is independent of the cell type and contrast agent used, we expect that it will 

be a major benefit for improved long-term cell tracking studies. While this study focused 

on fluorescence labels, it will be of interest to evaluate in the future cell labeling with e.g. 

superparamagnetic iron oxide nanoparticles or Gd-complexes for magnetic resonance 

imaging.  
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7. SUPPLEMENTARY INFORMATION  

Supporting Figures 

 

Figure S1. Detection of cell associated AuNPs and laser-induced VNB (vapour nanobubble). a, Cell 

associated AuNPs are visualized by confocal microscopy. HeLa cells are labeled with red fluorescent 

CellMask, which stains lipid membranes. AuNP are detected in confocal reflectance mode, false-colored in 

green and indicated by white arrow heads. The confocal section at the top shows that AuNP are located 

close to the plasma membrane. The bottom image is a z-projection of an entire cell showing all cell-

associated AuNP. Scale bar is 5 µm. b, By analyzing confocal z-projections of 330 cells, the number of AuNP 

per cell was determined for cells incubated with 5×107 particles/ml. c, The average number of cell 

associated AuNP can be controlled by changing the concentration of AuNP in the cell medium (n = 3). d, 

TEM images show that AuNP are internalized just below the plasma membrane (indicated by the yellow 

dashed line). Scale bars are 200 nm. e, Laser-induced VNB formation can be detected with a photodiode 

that detects transmitted laser light. A change in transmitted light occurs due to changes in refractive index 

upon VNB formation. This method allows to monitor the lifetime of the laser-induced VNBs, which was ~40 

ns in the example shown. f, VNBs can be also be detected by dark-field microscopy as the bubbles efficiently 

scatter light. The green circle indicates the area in which the laser pulse is applied and the white arrows 

indicate VNBs (Scale bar is 20 µm). The right image shows the same cells when the VNBs have disappeared. 
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Figure S2. Investigation of the size and lifetime of VNB induced membrane pores. a-b, FD10, FD150 and 

FD500 was delivered by VNB mediated photoporation using three different laser fluences and quantified in 

terms of the percentage of positive cells and the relative mean fluorescence intensity per cell (rMFI). While 

>80% of the cells become positively loaded with any of the probes for all laser fluence conditions, the rMFI 

clearly shows that the delivery efficiency decreases substantially as the probes increase in size. The rMFI 

increases slightly with increasing laser fluence, likely due to bigger pores being formed when larger VNBs 

are generated. c-d, To assess the lifetime of the transient membrane pores, photoporation was performed 

at a laser fluence of 2 J/cm2 in the presence of the probes, or with probes added 1 or 3 min after the 

photoporation procedure. To keep the photoporation time to a minimum, an area of 1.5 by 1.5 mm in a 96-

well plate was treated, taking only ~7 s in total. The green dashed line shows the percentage of negative 

control cells (i.e. same treatment but without AuNPs added to cells). These data show that pores are quickly 

closing in a matter of 1-2 min and that bigger probes are, consequently, excluded faster from entry than 

smaller ones. (n=3)   
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Figure S3. a, Both FD10 and QDs are increasingly internalized over longer incubation times. b, Cell viability 

measurements show that QD toxicity becomes too high for incubation times exceeding 1h.  
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Figure S4. Loading of contrast agent into INS-1E cells by photoporation and endocytosis.  Quantification 

of FD (a) or CdSe QD (b) positive cells as a function of incubation concentration for endocytic labeling (END, 

light yellow bars of top left panels in a and b) and laser fluence from 1 to 4 J/cm2 for photoporation (VNB, 

yellow bars in top right panels in a and b), respectively. The loading amount labels of FD and CdSe QD by 

photoporation as a function of laser fluence ranged from 1 to 4 J/cm2 (cyan of middle right panels in a and 

b) compared with the endocytic uptake with function of labels concentration (light cyan bars of middle left 

panels in a and b). The effect of VNB loading FD and CdSe QD in conjunct with both labels present in cytosol 

on the cell viability (magenta of bottom right panels in a and b), in comparison with the cell viability induced 

by classically labeling method of endocytosis as a function of the labels of FD and CdSe QD incubation 

concentration (light magenta bars of bottom right panels in a and b). The data were shown as mean of 

three times of measurements with SD.   
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Figure S5. Long-term visibility of C17.2 and INS-1E cells labeled with FD by photoporation.  A cell line 

C17.2 with fast cell division time (a) and INS-1E with slow cell division time (b) were used to further validate 

that the fluorescence intensity decay is mainly caused by partitioning of the fluorescent nanomaterials 

present in cytosol. MFI for each type of cell was measurement by flow cytometer with 10000 cells at each 

time points indicated in figure. The data point was shown as the average of three times measurement. The 

formula (2) was used to normalized the MFI to obtain the y-axis normalized MFI. Finally, the data points 

were fitted by mono-exponential (formula (3), 𝑀𝐹𝐼̅̅ ̅̅ ̅̅ = 2−(
𝑡

𝜏
)) to calculate the average of cell division time and 

yielded τ=17.2 h ± 1.8 for C17.2 and τ=39.0 h ± 4.2. 
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Figure S6. INS-1E cell visibility over multiple cell generations in vitro. The INS-1E cells were labeled with 

FD (a) and CdSe QD (b) by photoporation (VNB) and endocytosis (END). The percentage of detectable cells 

was quantified by flow cytometry. The data are shown as the mean of three independent repeats. The error 

bars indicate the corresponding standard deviation.      
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Figure S7. Long-term visibility of HeLa cells labeled with AD (Alexa Fluor dextran) and InP/ZnS QD by 

endocytosis. The mean fluorescence was determined by flow cytometry over multiple cell generations. A 

mono-exponential model with a mean cell division time of τ=25 h describe the data well, as expected for 

HeLa cells. This demonstrates that these labels are not affected by the degradative environment of the 

endo-lysosomes and that the decrease in contrast is due to dilution of daughter cells only.  
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Figure S8. Endocytosis of AD and InP QD during laser treatment. To check the amount of labels that are 

internalized through endocytosis during the laser treatment for photoporation, cells were incubated with AD 

(2 mg/ml) and InP QD (1 µM) for 3 min at room temperature. This is the time needed to photoporate a 

whole well of cells in a 96-well plate. A small amount of labels is internalized during that time, which explains 

the slight punctuate pattern that can be seen in Supporting Movie 4, 6 after photoporation.  
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Figure S9. Symmetric or equal redistribution of nanomaterials directly delivered into cytosol over cell 

division was again validated by C17.2 cell line. FI (fluorescence intensity) distribution of mother cells 

measured by flow cytometry after photoporation labeling cells (grey line) and FI distributions of first 

generation of daughter cell populations by experimental measurement (black line). The orange line in the 

figure show FI distributions of the daughter cells by the best fitting binomial probability of 0.51 with 

experimentally measured FI distributions.  
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Figure S10. In vivo tracking of INS-1E cells labeled by InP QD with either photoporation or endocytosis. 

a-b, In vivo fluorescence (a) and bioluminescence images (b) of the cells labeled by InP QD via 

photoporation (VNB) and endocytosis (END) at immediately post transplantation. c,The quantified 

fluorescence signals in region of interest (ROI) transplanted site indicated by cycles in a (n=3). No 

significant differences were found between control and labeling samples. The data was compared by one-

way ANOVA.  
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Figure S11. Bioluminescence of INS-1E cells over time. Representative in vivo bioluminescence images of 

the cells labeled by Cy5.5-dextran via endocytosis (END, a) or photoporation (VNB, b) at the indicated post 

transplantation days. 
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Supporting Movies 

Supporting Movie 1. Cell associated AuNPs are visualized by confocal microscopy. HeLa cells are labeled 

with red fluorescent CellMask, which stains lipid membranes. AuNP are detected in confocal reflectance 

mode, false-colored in green. (https://figshare.com/s/f7109f56fe250a430d10) 

Supporting Movie 2. To validate cytosolic delivery by photoporation, the cytoplasmic accumulation of cell 

impermeable dye of Propidium Iodide (PI) was in situ recorded by fluorescence microscopy before and after 

photoporation. A laser fluence of 2 J/cm2 was used and the laser irradiation region was indicated with a 

white circle in the movie. Images were recorded at a rate of 1 s/frame. A single laser pulse was applied 

between t = 12 s and 13 s, after which PI influx can be clearly seen at distinct locations in the irradiated 

cells. The view of movie is ~120 µm by ~120 µm. (https://figshare.com/s/f86b0aad38c2ac61fddc) 

Supporting Movie 3. Redistribution of endocytosed AD in HeLa cells over two cell divisions. The cells were 

incubated with 2 mg/ml AD for one hour at 37 °C. After washing, cells were imaged in a stage-top cell 

incubator (37 °C) with confocal microscopy for 28 hours. (https://figshare.com/s/a2176d03678ab60f8583)   

Supporting Movie 4. Redistribution of AD in HeLa cells labeled by photoporation over two cell divisions. 

Cells were labeled with AD by photoporation. After washing the AD, cells were imaged in a stage-top cell 

incubator (37 °C) with confocal microscopy for 41 hours. (https://figshare.com/s/5fc2713e1ea74771886b)   

Supporting Movie 5. Redistribution of endocytosed InP QD in HeLa cells over two cell divisions. The cells 

were incubated with 400 nM InP QD for one hour at 37 °C. After washing, cells were imaged in a stage-top 

cell incubator (37 °C) with confocal microscopy for 33 hours. 

(https://figshare.com/s/5bcfb8c8abc52864e34f)  

Supporting Movie 6. Redistribution of InP QD in HeLa cells labeled by photoporation over two cell divisions. 

Cells were labeled with InP QD by photoporation. After washing the QD, cells were imaged in a stage-top 

cell incubator (37 °C) with confocal microscopy for 43 hours. 

(https://figshare.com/s/7a5db6309df4ee0888e9)  

https://figshare.com/s/f7109f56fe250a430d10
https://figshare.com/s/f86b0aad38c2ac61fddc
https://figshare.com/s/a2176d03678ab60f8583
https://figshare.com/s/5fc2713e1ea74771886b
https://figshare.com/s/5bcfb8c8abc52864e34f
https://figshare.com/s/7a5db6309df4ee0888e9
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ABSTRACT 

There is considerable interest in using Quantum Dots (QDs) as fluorescent probes for 

cellular imaging due to some of their unique properties. In comparison with conventional 

molecular dyes they offer improved photostability, increased brightness and narrow 

emission peaks. While they have been used for subcellular labeling of fixed cells, their 

application to living cells is very limited so far mainly due to inefficient cytosolic delivery of 

QDs. Here, we demonstrate that VNB photoporation offers the long awaited ability to deliver 

functionalized QDs efficiently into the cytosol of cells for labeling of subcellular structures. 

First we confirm highly efficient delivery of PEG-coated QDs into living cells. We obtain >80% 

positive cells, while the cell viability remains as high as ~85%. Next, we show that antibody 

functionalized QDs targeted to the microtubules can be delivered into the cytoplasm of living 

cells. While the final contrast is limited due to the presence of unbound QDs, microtubules 

can be visualized by confocal microscopy. Although clearly further work is needed to better 

control the amount of QDs that are delivered into the cells, it does show the potential of 

VNB photoporation to become a versatile tool for the delivery of exogenous labels for 

subcellular microscopic visualization.  
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1. INTRODUCTION 

Quantum Dots (QDs) have attracted considerable interest as fluorescent probes in many 

biological and biomedical applications, especially for cellular imaging1-10. In comparison with 

conventional organic dyes, QDs have several unique advantages such as broad absorption 

with narrow emission spectra, high resistance to photobleaching, and size-tunable 

fluorescent emission spectra11-14. Although QDs have been already been applied to 

subcellular labeling of fixed cells, their application to live cell imaging is virtually non-

existent. Their use for live cell imaging has remained limited to labeling of membrane 

proteins which can be easily reached from the outside10, 13, 15, 16.  In order to be used as 

general intracellular labels, a method is needed to deliver QDs unambiguously into the 

cytosol of cells5, 8. Extensive efforts have gone into developing such intracellular delivery 

methods for QDs. These include modification of QDs with cell penetrating peptides (CPP)17, 

18, or usage of transfection reagents19-22. However, all of these methods suffer from the 

same problem, which is that only a part of the QDs actually reaches the cytosol, while the 

majority remains entrapped in endosomes. Indeed, endosomal entrapment is considered 

as one of the major bottlenecks for the cytosolic delivery of exogenous nanomaterials by 

means of chemical transfection agents23. For that reason more generic physical delivery 

approaches have been explored, such as electroporation and microinjection. However, a 

typical problem of electroporation is that it causes high toxicity to the cells or even 

aggregation of the QDs24. While microinjection can be used for the cytosolic  delivery of 

QDs24-27, it is a slow and demanding technique which is not suited to label a large number 

of cells. Recently, a new microfluidic device was introduced where friction forces are used 

for cell membrane permeabilization. It was demonstrated that it could be used to deliver 

QDs into live cells with limited cytotoxicity, although the efficiency was limited to about 50% 

positive cells28. In any case it was not used for subcellular labeling with functionalized QDs. 

In addition, this method can only be applied to cells in suspension, while for microscopy 

cells are typically adherent. Therefore, it is clear that there still is the need to develop a 

generic technology for the cytosolic delivery of QDs into live adherent cells with high 

efficiency, high throughput, low toxicity.  

Since in chapter 3 we demonstrated efficient delivery of QDs in living cells for in vivo cell 

tracking, here we explored if VNB photoporation allows to deliver antibody functionalized 

QDs into living cells for subcellular labeling. First we confirm that  PEG-coated QDs can be 

delivered efficiently and with low toxicity in living HeLa cells by VNB photoporation. Next 

we repeat this for antibody functionalized QDs targeted to microtubules and show successful 

confocal visualization of those structures. While further optimization is certainly needed, it 

does demonstrate that VNB photoporation is a promising method for that purpose. 
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2. MATERIALS AND METHODS  

Materials. 530 (+/-10) nm CdSe/ZnS Fluorescent nanocrystals coated with thiol oligomer 

and surface functionalized with -COOH groups (PEG-coated QDs) was purchased from AC 

Diagnostics, Inc. (#CAQD-530-P-1, AC Diagnostics, Inc., Fayetteville, AR, USA). The 

SiteClick™ Qdot® 525 Antibody Labeling Kit was purchased from Invitrogen (#S10449, 

Molecular Probes®, Belgium). SiteClick™ labeling specifically attaches the heavy chains of 

an IgG antibody to the QDs ensuring that the antigen binding domains remain available for 

binding to the antigen target. This is achieved by targeting the carbohydrate domains 

present on essentially all IgG antibodies regardless of isotype and host species. The primary 

mouse anti-α-Tubulin antibody (#32-2500, Novex®, Belgium) and the secondary Alexa 

Fluor® 546 goat anti-mouse IgG antibody (#A11003, Belgium) were also purchased from 

Invitrogen. Cationic AuNPs of 70 nm were purchased from NanoPartz (#C2159, Nanopartz 

Inc., Loveland, CO, USA). These AuNPs had a zeta potential of 30 mV as measured by 

dynamic light scattering (NanoSizer, Malvern, UK). FITC-dextrans with molecular weight of 

500 kDa were purchased from Sigma-Aldrich (Belgium). Calcein red AM (#C34851, 

CellTrace, Belgium) was obtained from Invitrogen.  

Cell experiments. The proof-of-concept study in this chapter was performed on HeLa cells. 

Before laser treatment, HeLa cells (1.5×104 cells/well) were grown in DMEM/F-12 cell 

medium with 2 mM glutamine, 10% heat-inactivated fetal bovine serum (FBS, Hyclone) and 

100 U/mL penicillin/streptomycine. Cells were cultured in 96 well plates (#655892, Greiner 

Bio-One, Germany) at 37° in a humidified atmosphere containing 5% CO2 for 24 hours 

before photoporation. For photoporation, the cells were incubated with AuNPs for 30 min at 

a fixed concentration of 5.0×108 nps/mL (corresponding to ~8 nps/cell). The cells were 

subsequently washed to remove any remaining free AuNPs in solution. Just prior to starting 

the laser irradiation, the solution of extracellular agents was added to the cells. After laser 

treatment, the cells were washed and supplied with fresh cell medium. CellTrace® Calcein 

red AM was added to the samples for 45 min at room temperature to stain living cells for 

quantifying cell viability.  

For validation of the live cell labeling experiments, immunolabeling of fixed cells was 

performed as well. First, cells were seeded for one day in an 8-well chamber at a density of 

40000 cells/well. Next, cells were washed two times with PBS and fixed by 4% 

paraformaldehyde for 10 min at room temperature. Afterwards, cells were washed two 

times again and permeabilized with 0.1% Triton for 5 min at room temperature. Blocking 

solution of 3% BSA in PBS was added for 1h at room temperature to reduce non-specific 

binding of antibodies followed by two times washing. Then, anti-α-Tubulin antibody 

functionalized QDs were added at a concentration of 10 µg/ml for 2 hours at room 

temperature. Next, the secondary antibody was added at 50 µg/ml in PBS during 1h at 
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room temperature. Finally, confocal images were recorded of the stained cells with 60× 

water-immersion lens (Plan Apo VC 60× WI, Nikon, Badhoevedorp, The Netherlands).  

Generation and detection of VNBs. A homemade setup including optical system and 

electronic timing system was used to generate and detect the generation of VNBs29. 

Imaging of the samples after photoporation. After photoporation, to estimate the 

delivery efficiency and cell viability, at least 5 confocal images were acquired with a confocal 

laser scanning microscope (C1si, Nikon, Japan). Using a 10× lens (CFI Plan Apochromat, 

Nikon, Badhoevedorp, The Netherlands), each image has a field of view of 1.27 mm by 1.27 

mm with several hundreds to more than a thousand cells per image. Imaging was 

performed in three channels, one for green fluorescence (505/520 nm) for label detection 

(dextrans or QDs), one for red fluorescence (575/620 nm) for imaging of the cell viability 

probe, and one for the transmission image. A Matlab (#R2007b, The MathWorks, Natick, 

MA, USA) program was written for automated quantification of cell fluorescence and viability 

(Calcein Red AM). First, the mean fluorescence intensity of each cell was measured in both 

fluorescence channels. Green fluorescence resembles cell loading of extracellular agents, 

and red fluorescence is used for quantifying cell viability. Untreated cells are used to define 

the threshold for positive cells, where the threshold value is defined as the 95% level of 

untreated cells. Similarly, cells are considered to be alive when the red fluorescence 

intensity is higher than the 95% level of dead cells. A 60× water-immersion lens was used 

for high-resolution imaging of microtubules stained with QD. 

 

3. RESULTS AND DISCUSSION 

3.1 Intracellular delivery of PEG-QDs into live cells.  

First we evaluated the delivery of PEG-coated QDs into live cells. Four laser irradiation 

conditions were evaluated: 026, 0.52, 1.04 and 2.08 J/cm2. In line with the findings from 

Chapter 2, the results in Fig. 1 show that VNB photoporation is more efficient than 

photothermal treatment with lower laser intensity. By repeating the VNB photoporation 

procedure two times, even more QDs could be loaded into the cells. No obvious toxicity was 

observed based on the fluorescence of the cell viability probe Calcein AM. Quantification 

shows that ~60% positive cells were obtained with one round of VNB photoporation, which 

increased to more than 80% after the second photoporation treatment (Fig. 1). At the 

same time the mean fluorescence intensity (MFI) was more than three times higher for VNB 

photoporation as compared to photothermal treatment. The MFI increased by another factor 

of 2-3 when VNB photoporation was carried out two times. From quantification of the 

Calcein AM signal, it was found that cell viability was as high as ~85% for 2x VNB 
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photoporation. The results can further confirmed by the confocal imaging results (Fig. 1). 

From these results we can conclude that PEG-coated QDs can be efficiently delivered into 

live cells with limited toxicity by a double VNB photoporation treatment.  

 

Figure 1. Delivery efficiency of QDs and cell viability for different photoporation conditions. Black bars are 

the percentage of positive cells, gray bars are the percentage of live cells and green bars are the mean 

fluorescence intensity (MFI) per cell. The MFI is a measure for the amount of QDs that are delivered per 

cell. The data shown are the results from three independent experiments.  
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Figure 2. Confocal images showing the delivery of PEG-coated QDs in the green channel and the viability 

of HeLa cells labeled with calcein red AM in the red channel. Cells were treated with different photoporation 

conditions as indicated in the figure. The control cells underwent exactly the same procedure as for 1x 

treatment at a fluence of 2.08 J/cm2, but in the absence of AuNPs. The field of view of these images is 410 

µm by 410 µm.   

3.2 Delivery of QDs targeted to microtubules in living cells.  

First, green-fluorescent QDs were conjugated to IgG antibody (mouse anti-α-Tubulin) by 

the SiteClickTM method as explained in the methods section. To confirm successful 

functionalization, a control experiment was performed where fixed cells were 

immunolabeled with both the functionalized QDs and red-fluorescent antibodies. Cells were 

at first fixed and permeabilzed, and subsequently incubated with a primary antibody against 

the microtubules (mouse anti-α-Tubulin). Next, the orange-red fluorescent secondary 

antibody (goat anti-mouse IgG antibody) was added which binds to the primary antibody. 

Finally, the cells were incubated with the functionalized QDs. Confocal images confirmed 

good colocalization of the functionalized QDs with the labeled antibodies (Fig. 3). 

Filamentous structures could be clearly seen as expected for microtubules, thus confirming 

successful functionalization of QDs with the primary antibody.  

Next, the antibody functionalized QDs were delivered into live cells by VNB photoporation 

(double photoporation with laser fluence of 2.08 J/cm2). As shown in Fig. 4, filamentous 

microtubule structures can be clearly observed indicating successful delivery and binding of 
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the QDs to their target. Contrast is rather limited, though, likely due to the presence of 

unbound QDs in the cytosol. Judging from the Calcein Red AM signal the cells are still alive 

after the photoporation procedure (inset Fig. 4A). As a negative control, non-functionalized 

PEG-coated QDs were delivered into HeLa cells as well, showing not any subcellular 

structures (Fig. 5). This proof-of-concept experiment shows that  antibody functionalized 

QDs can be very well targeted to subcellular structures in living cells. 

 

Figure 3. Confocal images showing microtubules in fixed and permeabilized HeLa cells. A comparison is 

made between QDs functionalized with a primary antibody against α-Tubulin and  standard immuno-labeling 

with a primary and secondary (labeled) antibody. A. Confocal image in green channel showing the green 

fluorescence of the QDs functionalized with the primary antibody. B. Confocal image of red-labelled 

microtubules with primary and secondary antibody.. The overlay of green and red channel is shown in C. 

D-F. Zoomed-in images corresponding to the rectangular regions in A, B and C, respectively. Scale bars are 

20 µm(A) and 5 µm(D), respectively.  
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Figure 4. Green fluorescent QDs functionalized with anti-α-Tubulin antibodies are delivered into live HeLa 

cells by VNB photoporation. A. Confocal image showing filamentous structures as expected for microtubules. 

The top-left insert is the overlay of the transmission image with the confocal image in red channel showing 

the viability of the cell (Calcein red AM). B. Zoom-in of the rectangular region in A. C. Green fluorescent 

PEG-QDs were delivered into live HeLa cells by VNB photoporation. The top-left insert is the overlay of the 

transmission image with the confocal image in the red channel showing the viability of the cell (Calcein red 

AM).      

 

4. CONCLUSIONS 

In summary, the proof-of-concept study in this chapter demonstrates that VNB 

photoporation holds promise to become a generic platform for the intracellular delivery of 

QDs for live cell microscopic imaging. By extension one can imagine that VNB photoporation 

could be equally used to deliver other types of exogenous labels which were limited to fixed 

cells until now. Future research in our group will focus on further exploration of this concept.   
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ABSTRACT 

We have developed an integrated platform for spatially resolved nanoparticle-sensitized 

photoporation (SNAP) of cells. SNAP enables high-throughput intracellular delivery of 

exogenous nanomaterials in selected subpopulations of cells, even down to the single cell 

level. The versatility of SNAP is demonstrated in two applications, being sparse labeling of 

neurons for the quantification of dendritic spine density, and the selective labeling and 

isolation of polynucleic keratinocytes which are potentially involved in neoplasm formation.  
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1. INTRODUCTION 

Intracellular delivery of functional compounds into living cells is of great importance for e.g. 

cellular imaging1, 2, therapy3 and fundamental cell-biology research4, 5. For many 

applications it is sufficient that the compound of interest (being a molecule or nanoparticle) 

is delivered to the cell population as a whole. In such a case one can choose from a variety 

of delivery methods, such as lipofection or electroporation6. However, there are other 

applications that would benefit considerably from the possibility of delivering a compound 

to a certain subpopulation of cells, or even in single cells. For example, delivery of nucleic 

acids into single cell results in single-cell resolution of gene expression which is beneficial 

to elucidate gene functions7. Cell-selective delivery is also of interest when working with 

heterogeneous cell cultures. Phenotypic and genomic heterogeneity in a cell population 

leads to inaccuracy and obscuration of cell differentiation when the population is analyzed 

as a whole. Delivering inhibitors into individual target cells and analyzing the outcome at 

the single-cell level allows to accurately regulate and resolve changes in differentiation at 

the single-cell level8. 

Methods which allow fast and flexible cell-selective intracellular delivery of molecules or 

nanoparticles are, however, scarce. Microinjection could serve this purpose, but is 

technically demanding and not amenable to upscaling9. Spatially resolved electroporation 

has been explored as well10, 11, demonstrating that cells could be selectively transfected by 

an array of microelectrodes. This method is, however, limited by the fact that transfections 

are only possible according to the pre-defined layout and size of the electrodes, which, for 

instance, would not allow transfecting one single cell in a (co-) culture. Photoporation offers 

a valuable alternative approach to deliver compounds to cells in a targeted manner. Here, 

selected cells are transiently permeabilized at a particular location of the cell membrane 

with a precisely focused laser beam12, 13. Particular benefits of this approach are that it is a 

contact free method (as opposed to microinjection) and that the laser beam can be precisely 

controlled to essentially target any cell12-14. While this method was successfully applied to 

single cell transfections with DNA, or mRNA12, 13, it is limited in throughput. In a fully 

automated device with a specially engineered laser beam only a few cells per second could 

be photoporated14. Photoporation throughput can be tremendously sensitized by making 

use of plasmonic nanoparticles (NPs), like gold nanoparticles (AuNPs), that have a large 

absorption cross section15, and are known to raise temperature upon suitable laser 

irradiation16. When adsorbed to the cell membranes they can permeabilize the cell 

membrane upon laser irradiation through distinct thermally induced phenomena such as 

local heating, acoustic shockwaves, or the formation of disruptive water vapour 

nanobubbles (VNB)17. NP sensitized photoporation can offer high throughput since less laser 

energy density is needed so that the laser beam can be expanded to cover tens or even 

hundreds of cells at the same time. NP sensitized photoporation has proven to be fast 
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(>1000 cells/s)18 and efficient at delivering a broad variety of  molecules into cells, such as 

siRNA, pDNA, and proteins4, 17, 18. 

Based on these distinct advantages, here we aimed to explore the unexploited potential of 

nanoparticle-sensitized photoporation to safely (i.e., in a non-cytotoxic manner) deliver 

compounds into precisely selected subpopulations of cells, in high-throughput and with 

great flexibility. Therefore, we developed Spatially-resolved NAnoparticle-sensitized 

Photoporation (SNAP) according to two different operational modes. In the first mode, cells 

are selectively photoporated according to a pre-defined pattern. This mode is aimed at 

experiments where the location rather than the cell type is of importance (Fig. 1b, c). In 

the second mode, cells are photoporated in an image-guided interactive way, where 

microscopy images are used to (automatically) select the cells of interest (Fig. 1d, e). This 

addresses applications where distinct subtypes of cells need to be transfected which do not 

have a fixed location in the culture. Each mode has two variants which together should 

cover most experimental needs (Fig. 1). Following detailed characterization of the various 

SNAP modes, we aimed to apply this new enabling technology to two challenging example 

applications. First, we show that SNAP can be used to deliver a fluorescent label to a sparse 

subset of neuronal cells in a dense culture of primary hippocampal neurons so as to enable 

fast and automated morphological cell analysis. These cells are frequently used readouts 

for neuronal network connectivity and have been described in numerous neurological 

disorders, including Alzheimer’s disease, schizophrenia, intellectual disabilities and autism 

spectrum disorders. However, automated image analysis of spines is virtually impossible 

with current labeling strategies as they stain all cells in the very dense cell culture. Second, 

we explored SNAP to deliver a non-toxic fluorescent marker into morphologically distinct 

primary normal human epidermal keratinocytes (NHEKs). In particular, polynucleated or 

mononucleated NHEKs are separately targeted so that they can be isolated for further 

downstream molecular and functional analysis in relation to cancer research.  

 

2. MATERIALS AND METHODS  

Materials. Cationic AuNPs of 70 nm were purchased from NanoPartz (#CU11-70-P30-50, 

Nanopartz Inc., Loveland, CO, USA). These AuNPs had a zeta potential of 30 mV as 

measured by dynamic light scattering (NanoSizer, Malvern, UK). 520 (±10) nm CdSe/ZnS 

QD coated with a thiol oligomer and surface functionalized with -COOH groups (PEG-coated 

QDs) were purchased from Mesolight, Inc. (#CdSe/ZnS-PEG-COOH-520, Mesolight, Inc., 

Little Rock Arkansas, USA). FITC-dextrans with a molecular weight of 10 kDa were 

purchased from Sigma-Aldrich (Belgium). Cascade Blue dextran (#D-1976, Molecular 

ProbesTM), Alexa@647 labelled dextran 10 kDa (#D-22914, Molecular ProbesTM), and 
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Propidium Iodide (#P1304MP, Molecular ProbesTM) were purchased from Invitrogen 

(Belgium). 

Platform for SNAP. The photoporation platform consists of a custom developed setup that 

includes optical and electrical components to generate and detect vapour nanobubbles 

(VNB)17. The set-up is built around a motorized epi-fluorescence microscope (Nikon Ti) 

equipped with programmable motorized microscope stage (#H117, Prior Scientific) (Figure 

S2). A pulsed laser (~7 ns pulses @ max. 20 Hz) tuned at a wavelength of 561 nm 

(OpoletteTM HE 355 LD, OPOTEK Inc., Faraday Ave, CA, USA) was applied to illuminate the 

AuNPs in order to generate VNB. A beam expander (#GBE05-A, Thorlabs) combined with 

iris diaphragm (#D37SZ, Thorlabs) is used to adjust the laser beam from tens of 

micrometers to hundreds of micrometers. The setup has time-response and light scattering 

modes to allow detection of VNB formation as detailed elsewhere17 (Figure S1c). In order 

to apply a single laser pulse to a selected region in the cell culture, the stage was 

synchronized with the pulsed laser by a pulse generator (BNC575, Berkeley Nucleonics 

Corporation, CA, USA). The microscope xy-translation stage is used to move the sample at 

the desired location into the photoporation laser beam. In this work we used laser fluence 

level of 2 J/cm2 (unless specified otherwise) above the vapour nanobubble threshold (~0.5 

J/cm² @ 561 nm & 7 ns pulse duration) of the 70 nm AuNP used here. This laser fluence 

was optimized in previous work of ours17, 19. 

Pre-defined pattern SNAP. Photoporation of pre-defined patterns was implemented 

according to a line-scanning procedure and a pixel-based mode. In the line-scanning mode, 

the xy-translation stage is moved linearly with constant speed between start and end points 

of subsequent lines (Figure S3a). The laser pulse frequency, laser beam diameter and 

scanning speed are adjusted so that each location along the line receives a single laser 

pulse. For example, for a laser beam of 150 µm the pulse frequency is set at 20 Hz with a 

stage speed of 3 mm/s.  

In the pixel-based mode the sample is moved into the photoporation beam according to the 

pixels of a binary image (Figure S3c). The sample receives a single laser pulse for each 

indicated pixel location. The image pixel coordinates are transformed to global coordinates 

by: 

𝑋𝑖 = (𝑥𝑖 − 𝑥0) ∙ ∆𝑙 + 𝑋0  (1)         𝑌𝑖 = (𝑦𝑖 − 𝑦0) ∙ ∆𝑙 + 𝑌0 (2) 

where xi, yi are the coordinates of pixels in the picture, x0, y0 are the coordinates of the 

origin in the image (typically with the top left pixel is chosen as x0=0, y0=0), ∆𝑙 is the image 

pixel size which is set as 80% diameter of the photoporation laser beam, X0, Y0 are the 

global coordinates of the origin of the microscope stage (i.e. where the top left pixel from 

the image corresponds to the desired location in the sample).  
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Image-guided SNAP. Image-guided photoporation was implemented according to a 

manual and automated mode. In the manual mode, the cells of interest are manually 

positioned at the center of the microscope’s field of view and receive a single laser pulse. 

Alternatively, the coordinates of the cells of interest can be determined first manually and 

used as input for subsequent automated photoporation.  

In the automated mode, cells in the culture well are first imaged, typically using a low 

magnification 10× objective (CFI Plan Apochromat, Nikon, Badhoevedorp, The Netherlands). 

In case the cells cover a large area, multiple adjacent images can be acquired (Figure S6). 

Dedicated image processing routines can be used to subsequently localize the cells of 

interest in the recorded images based on morphological features or the presence of a certain 

(fluorescent) cell marker. The local coordinates of the cells in the images are then 

transformed to global coordinates of the microscope stage by:  

𝑋𝑖
𝑘 = (𝑥𝑖 − 𝑥𝐿𝑎𝑠𝑒𝑟) ∙ ∆𝑙 + 𝑋𝑘 (3)         𝑌𝑖

𝑘 = (𝑦𝑖 − 𝑦𝐿𝑎𝑠𝑒𝑟) ∙ ∆𝑙 + 𝑌𝑘 (4) 

where 𝑋𝑖
𝑘, 𝑌𝑖

𝑘 are the global coordinates of ith cell in kth image, 𝑥𝑖 , 𝑦𝑖 (in pixel units) are the 

local coordinates of that cell,  𝑥𝐿𝑎𝑠𝑒𝑟,  𝑦𝐿𝑎𝑠𝑒𝑟 (pixel units) are the local coordinates of where 

the laser beam is centered in the image, ∆𝑙 is the image pixel size. In this work we used 

local maxima or minima of the selected cells to define the cell coordinate.  

SNAP validation experiments. Pre-defined pattern phtotoporation was validated by SNAP 

delivery of QDs or fluorescent labeled dextran into HeLa cells cultured in 6-wells plate 

(~5.0×105 cells/well). HeLa cells were obtained from ATCC (CCL-2) and cultured in 

complete cell medium which consisted of DMEM/F-12 (FBS, Gibco, Invitrogen, Belgium) 

supplemented with 10% heat-inactivated foetal bovine serum (FBS), 2 mM glutamine and 

100 U/mL penicillin/streptomycin (Gibco, Invitrogen, Belgium). Cells were cultured at 37°C 

in a humid atmosphere containing 5% CO2. HeLa cells were cultured for 24 hours before 

laser treatment. 

After incubation with AuNPs for 0.5 h, photoporation was performed as described in the 

main text. Following laser irradiation, the samples were washed a few times with PBS after 

which new cell medium was added. Next, the cells are put back in the cell incubator for 

recovery (37°C in humidified atmosphere at 5% CO2). The cells are finally imaged by 

confocal microscopy to evaluate the photoporation results. 

Preparation of primary neuron cell cultures. Hippocampi were dissected from wild-type 

E18 Black6 mouse embryos in HEPES (7 mM) buffered Hanks Balanced Salt Solution (HBSS), 

followed by trypsin digestion (0.05%; 10 min; 37°C) and mechanical dissociation by 

trituration through 2 fire-polished glass pipettes with decreasing diameter. After 

centrifugation (5 min at 200 g), the cell pellet was resuspended in Minimal Essential Medium 
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(MEM) supplemented with 10% heat-inactivated normal horse serum (Innovative Research, 

Michigan, USA) and 30 mM glucose (MEM-horse medium). Cells were plated in Poly-D-

Lysin-coated 96-well plates (Greiner Cell coat, µClear, Wemmel, Belgium), at 45 000 cells 

per cm², and kept in a humidified CO2 incubator (37°C; 5% CO2). After 4 hours, the medium 

was replaced with B27 supplemented Neurobasal medium, containing Sodium Pyruvate (1 

mM), Glutamax (2 mM) and glucose (30 mM). To suppress proliferation of non-neuronal 

cells, arabinosylcytosine (AraC; 2 µM; Sigma-Aldrich, Bornem, Belgium) was added at the 

fourth day after plating. The cultures were further grown under control conditions without 

any further medium replacement until the time of analysis. 

Labeling of selected neuronal cells. Primary rat hippocampal cultures were grown in 96-

well plates at 37°C in a humidified atmosphere containing 5% CO2. After the indicated DIV 

(days in vitro), selected neuronal cells were labelled by spatially resolved VNB 

photoporation with phalloidin (#A12379, Alexa Fluor®, Invitrogen). First, ~100 µl culture 

medium was removed from the culture well (~50 µl left) and 25 µl of AuNPs with a 

concentration of ~1.8×108 particles/ml was added to the cells. After 30 min incubation, the 

nuclear label Hoechst (#H3570, Molecular Probes™) was added to the cells and incubated 

for another 15 min at room temperature. Next, the cell culture was imaged by confocal 

laser scanning microscopy (Ex/Em, 405/440). A large field of view image of 1.27 by 1.27 

mm was obtained using the microscope’s image stitching feature. Nuclei were identified in 

the image and a sparse selection of distant cells (at least 200 µm apart) was made with a 

custom written Matlab program. Before starting SNAP treatment, Alexa 488 Phalloidin 

dissolved in Methanol was added to the cells with final concentration of ~500 nM. After 

photoporation of the selected cells, the sample was put back in the incubator at least 1 h 

to allow the cells to recover and the phalloidin to distribute throughout the cells. Imaging 

of labeled cells was done with confocal laser scanning microscopy using both low (×10) and 

high (×60 water) magnification lenses. Quantification of dendritic spine density was done 

with ImageJ software. Dendritic spine density was evaluated from 7 to 21 DIV in primary 

hippocampal cultures. Three different isolations were used for quantification. For each 

isolation, ~1000 µm of dendrites was analyzed on 10 selected neurons for each DIV.  

Quantifying the delivery efficiency in neurons was performed as following. First, cells in the 

well are selectively labeled with Phalloidin by SNAP. Next, a series of confocal images is 

acquired (10x objective lens). The delivery efficiency is quantified as the percentage of cells 

that show a positive Phalloidin signal in total selected cells. The viability of neuronal cells 

after SNAP treatment was assessed by Propidium Iodide after ~2 h recovery at 37°C. 

It can be noted that it was necessary to make a small change in the photoporation protocol, 

as the hippocampal cells are very sensitive to washing. Therefore, we decided to leave out 

the washing step that is normally included to remove unbound AuNPs. Leaving the AuNP in 
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the cell medium during photoporation did not influence photoporation efficiency and neither 

did it cause substantial toxicity to the cells. With this adapted protocol we achieved an 

excellent cell viability of more than 90% (Figure S9b). 

NHEK cell culture. NHEKs (Normal Human Epidermal Keratinocytes) were purchased from 

Lonza (#192907, Lonza). NHEKs were cultured in KGM-Gold™ Keratinocyte Growth Medium 

(KGM-Gold BulletKit, #00192060, Lonza) at 37°C with 5% CO2 atmosphere. 300,000 cells 

were seeded in a 100 mm dish (cell density ~3800 cells/cm2) and subcultured at ~70% 

confluence. The number of population doublings (PD) was calculated at each passage 

according to28:𝑃𝐷 = log (
𝑁𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

𝑁𝑝𝑙𝑎𝑡𝑒 𝑐𝑒𝑙𝑙𝑠
) /𝑙𝑜𝑔2. 

Toxicity measurement of NHEK cells. NHEKs in the exponential growth phase were 

plated in 24 well plates (5000 cells/well) 24 h before labeling or photoporation. For Hoechst 

labeling, the cells were incubated with Hoechst 33342 (2 µg/ml) for 15 min at room 

temperature. For labeling with Alexa 647-dextran with 10 kDa (AD10), cells were incubated 

with Alexa dextran at a concentration of 20 µg/ml for 24 h at 37°C.  Next, cells were 

incubated with AuNPs at the indicated concentration for 0.5 h, after which photoporation 

was performed in the cells in the whole well. The samples were finally washed a few times 

with PBS and supplemented with new cell medium. After labeling or photoporation, cells 

were cultured for another 4 days at 37°C and 5% CO2 atmosphere. MTT cytotoxicity 

measurements were finally performed. Briefly, 30 µl of a 5 mg/ml 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma, Belgium) solution is added to each 

well. Following an incubation period of three hours at 37°C the MTT containing cell medium 

was removed and cells were lysed using dimethylsulfoxide (Sigma, Belgium). When the 

formazan crystals were completely dissolved and a homogeneous colour was obtained, the 

absorbance in each well was measured at 570 and 650 nm using an Envision Xcite multilabel 

reader (PerkinElmer LAS, Boston, MA). 

Cell-selective photoporation and isolation of PK and MK cells. NHEKs in the 

exponential growth phase were plated in 24 well plates with 5000 cells/well before 

incubation with AD10. 20 µg/mL of AD was added to the cell medium for 24 h at 37°C and 

5% CO2 to label endolysosomes in the perinuclear area. Next, cells were incubated with 

AuNPs at the relevant concentrations (see main text) for half an hour, followed by washing 

with PBS. Cells were finally imaged by confocal microscopy with a low magnification 10× 

objective. 12 by 12 images were recorded to visualize the entire 24-well plate. The location 

of MK and PK cells was determined by image processing as described in the main text and 

Figure S12. With our Matlab code it typically took 5-10 min to process all the images (144 

frames). Finally, FD10 was added to the cells for labeling of the selected cells by 

photoporation. After laser treatment, cells were washed, supplied with fresh cell medium 

and imaged again before being put back in the incubator for 24 h. The cells were 
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subsequently collected for sorting by BD FACS Aria III (BD Biosciences, Erembodegem, 

Belgium). Sorting was based on the presence of FITC signal. After sorting, PK/MK cells were 

collected for further culture and quantification of isolation levels. The isolation level of PK 

was defined as, 

𝑃𝑃𝐾 =
𝑁𝑃𝐾

𝑁
  (5) 

where NPK is the number of PK cells and N is the total number of collected cells. Similarly, 

MK isolation is defined as, 

𝑃𝑀𝐾 =
𝑁𝑀𝐾

 𝑁
 (6)  

where NMK is the number of MK cells. 

Code availability. We provide the Matlab code which was developed SNAP to determine 

cell positions in the supplementary information. 

 

3. RESULTS AND DISCUSSION 

3.1 SNAP 

The first step in SNAP is to incubate cells with plasmonic nanoparticles (see Fig. 1a). In 

this work we have used cationic 70 nm AuNPs which have been modified for optimal cell 

membrane adsorption. After 30 min incubation, cells are typically washed to remove 

unbound AuNPs, leaving between 5 and 10 AuNP associated per cell, as can be verified with 

confocal reflection microscopy (Figure S1a). The next step is to add the compound of 

interest into the cell medium, followed by laser irradiation. Here we performed 

photoporation with VNBs as we have shown it to be a very efficient cell permeabilization 

mechanism17. Briefly, upon absorption of a laser pulse (7 ns) with a fluence above the VNB 

threshold (here we used 2 J/cm2 as optimized before17, 19) the AuNP’s temperature increases 

sufficiently to let the surrounding water evaporate. This results in the formation of VNBs 

that expand and collapse, inducing nanopores in the cell membrane and allowing the 

compound of interest to diffuse into the cell cytoplasm. Figure S1c and Supplementary 

Movie 1 demonstrate that only irradiated cells become photoporated, in this case with 

Propidium Iodide (PI). The pores recover in a 1-3 min time frame19. In our set-up the 

diameter of the photoporation laser beam can be adjusted so that either single or multiple 

cells can be irradiated per laser pulse. A programmed motorized microscope stage is used 

to move the sample through the laser beam (see Figure S2 and Methods) to photoporate 

the cells of interest. SNAP was implemented according to two distinct modes: with pre-



Chapter 5 

146 

 

defined pattern or in an interactive image-guided manner  (Fig. 1b-e). There are two 

variants for each mode , as will be explained in detail below. 

Pre-defined pattern SNAP 

The simplest way to perform SNAP according to a pre-defined pattern is by ‘line scanning’. 

Cells can be photoporated according to simple geometrical shapes by scanning the sample 

line-by-line through the laser beam, as schematically shown in Figure S3a. One example 

is shown in Fig. 1b where HeLa cells were photoporated with quantum dots (QDs). Note 

that the line width is simply determined by the diameter of the photoporation laser beam. 

Indeed, as shown in Figure S3b, changing the diameter of the laser beam also changes 

the width of the photoporated lines of cells. With a laser beam of 150 µm and a pulse 

repetition rate of 20 Hz the stage can move at 3 mm/s, which corresponds to a 

photoporation rate of about 200 cells/s. Evidently, if a laser with higher pulse repetition 

rate is used, even higher photoporation rates are possible. 

If more complex patterns are desired, a ‘pixel-based’ approach is more convenient where 

the photoporation pattern is defined in a binary image. As illustrated in Figure S3c, a single 

laser pulse is applied to the sample according to the black pixels in the binary image. At 

each of those pixel locations a single laser pulse is applied to locally photoporate the cells. 

The size of the final pattern in the cell culture essentially depends on the laser beam 

diameter. The mapping of the image to the cell culture is done such that one image pixel 

corresponds to 80% of the laser beam diameter. This ensures a small spatial overlap 

between subsequent photoporation pulses so that all cells are effectively photoporated. An 

example is shown in Fig. 1c where HeLa cells were photoporated with FITC-dextran of 10 

kDa (FD10) according to a black-and-white drawing. The zoomed-in images in Figure S4 

clearly show the individually labeled cells. We next delivered different compounds in 

different regions of the cell culture according to Andy Warhol’s painting of Einstein (Fig. 1c 

and Supplementary Movie 2). Three rounds of photoporation were subsequently 

performed with cascade blue-dextran, Alexa 647-dextran and FITC-dextran. Another 

example is shown in Figure S5 and Supplementary Movie 3 where a 6 color ‘living 

painting’ was produced in a culture of HeLa cells. With a laser repetition rate of 20 Hz this 

means that we achieve 20 pixels per second. For instance, both examples in Fig. 1c (with 

about 5000 black pixels and 50000 cells each) did not take more than 5 min to complete. 
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Figure 1. Schematic overview of SNAP. (a) Following AuNP incubation and washing of unbound AuNPs, the 

compound that should be delivered into the cells is added to the cell medium. An automated xy-stage is 

used to perform photoporation in selected areas of the cell culture. Only those cells that receive a laser 

pulse will be photoporated and take up the compound that was added to the medium, while the other cells 

remain unaffected. (b) By line-scanning of the sample through the photoporation laser beam, HeLa cells 

were photoporated with quantum dots (QDs) forming the letters ‘U’ and ‘G’ in the cell culture. Scale bar is 

150 µm. (c) In the pixel-based variant the photoporation beam is directed towards distinct locations in the 

cell culture according to the pixels of a binary image. HeLa cells were photoporated with FITC-dextran with 

10 kDa (FD10) according to the black pixels of a drawing of Albert Einstein. By repeating the photoporation 

procedure it is possible to deliver different compounds to different regions in the cell culture. As an example, 
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Andy Warhol’s painting of Einstein was reproduced by photoporating HeLa cells sequentially with cascade 

blue-dextran (blue), FITC-dextran (green) and Alexa 647-dextran (red). Scale bars are 1000 µm. (d) 

Image-guided cell-selective photoporation is possible by first recording microscopy images of the cell 

culture. The user can then select manually which cells are of interest and should become photoporated. 

Here, selected HeLa cells were photoporated with FD10 (green), demonstrating that single cell precision 

can be achieved. Scale bar is 50 µm. (e) The entire process can be automated if cell selection is done by 

automated image analysis. Cells of interest may be identified based on morphological features or, as in this 

example, based on a fluorescent cell marker. Red-labeled HeLa cells were mixed with unlabeled ones in a 

ratio of 1:5 and automatically localized by image processing for subsequent photoporation with FD10 

(green). Scale bar is 100 µm. 

Image-guided SNAP 

Many applications would benefit from photoporating selected cells according to certain 

visual features, rather than based on a particular location in a culture well. Distinctive 

features could be the cell or nuclear morphology, or the presence of a certain (fluorescent) 

biomarker. Therefore, as a next step, we implemented image-guided photoporation of 

selected cells with both a manual (Fig. 1d) and automated (Fig. 1e) cell recognition mode 

of operation. In the manual mode, the user indicates in the recorded microscopy images 

which cells should be photoporated after inspection of previously acquired images. As shown 

in Fig. 1d, single cell resolution is easily obtained by reducing the photoporation laser beam 

diameter to slightly less than the size of a typical cell. Complete automation was achieved 

by integrating automated image analysis in the pipeline. A proof-of-concept is shown in Fig. 

1e where the cells of interest have a red fluorescent reporter signal. Here, HeLa cells were 

first labeled with Alexa 647-dextran (AD) by AuNP sensitized photoporation of all cells in 

the culture17. Next, these cells were trypsinized and reseeded after mixing with unlabeled 

HeLa cells at a 1:5 ratio. The cell culture was imaged by fluorescence microscopy and the 

red labeled cells were localized by a simple image processing procedure (Figure S6). 

Subsequently, SNAP was carried out to deliver green fluorescent FD10 into those cells that 

were stored in the list with coordinates (Fig. 1e and Figure S7a, b). Colocalization analysis 

revealed that 70.4 ± 9.7% (n=3) of the red-fluorescent targeted cells were successfully 

labeled with FD10. About 30% of the cells were incorrectly labeled with FD10. These false 

positive cells are on the one hand due to a small amount of dead cells into which FD10 can 

diffuse. On the other hand, false positives also arise from inaccurate positioning of the 

photoporation laser beam, which is due to two reasons. First, the relatively simple image 

processing method that we have used to identify the cell’s position (based on the maximum 

intensity) in some cases doesn’t indicate the exact center of the cell. Secondly, cells 

sometimes move or divide between taking the images and the actual photoporation 

procedure so that they are not at the indicated position anymore. In next generations of 

the SNAP technology these two shortcomings can be addressed by improving the cell 

detection algorithm and by combining SNAP with a confocal microscope to minimize the 

time delay between imaging and photoporation. In case of a fluorescent label these false 
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positives can be reduced by a subsequent targeted photobleaching procedure (Figure S7c). 

After two rounds of photobleaching the false positive cells could be reduced to 5% (true 

positives increased to 95%) (Figure S7d). With automated image-guided SNAP we could 

achieve a cell photoporation rate of 20 cells/s, as determined by the limited pulse repetition 

rate of the laser used in this study. While this is already an order of magnitude more than 

the highest reported rate for standard photoporation12-14, higher photoporation rates are 

very well possible with lasers of higher pulse frequency. 

3.2 Labeling of a sparse set of individual neurons by automated image-guided 

SNAP 

The unprecedented speed and flexibility of SNAP opens up a whole new range of applications 

that were not possible before. Here we apply our developed technology to two proof-of-

concept applications that benefit from labeling a specific subset of cells. As a first example 

application, SNAP was used to automatically label a sparse set of living primary hippocampal 

neuronals in a dense culture for spine density quantification. In vitro neuronal networks are 

frequently used models in studies of neuroplasticity, with synapses, in particular 

postsynaptic regions known as dendritic spines, serving as sensitive morphological 

correlates of neuronal connectivity20. However, accurate quantification of spine density is 

difficult with classical labeling strategies. Indeed, the current gold standard consists of the 

application of hydrophobic dyes such as DiI to the whole cell culture, which suffer from 

several drawbacks such as lack of control, staining of clustered cells (especially in dense 

cultures), heterogeneous staining efficiency and artefacts (overstaining, debris) (Figure 

S8). These difficulties preclude automated analysis. Targeted labeling strategies are 

therefore highly desirable. Although photoactivatable fluorescent proteins (FPs) have 

recently been explored to highlight individual neuronal cells21, transfection and 

overexpression of FPs always comes with the concern of inducing artefacts22, apart from 

the fact that transfection and photoconversion processes are both time-consuming 

processes. Hence, to quickly and automatically label a sparse set of neuronal cells in a 

hippocampal culture, we made use of automated image-guided SNAP (Fig. 2a). First, 

hippocampal cells were labeled with the nuclear stain Hoechst for facile automated 

recognition of true neurons (Fig. 2b). The nuclei positions were identified by image 

processing and used as coordinates of the cells. A random selection was made from the list 

of extracted cell coordinates using the constraint that selected cells should be at least 200 

µm apart (Figure S9a and Methods). The sparse set of selected cells were subsequently 

labeled by photoporation of Alexa Fluor® 488 phalloidin, a well-known cell impermeable F-

actin stain. Each cell received one laser pulse at the indicated position with a beam diameter 

of ~20 µm. As the photoporation beam was centered onto the nuclear area, phalloidin will 

initially enter the soma of the cell, after which it will diffuse throughout the cell into the 

dendrites and label the dendritic spines. A typical result is shown in Fig. 2b, where 12 cells 
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were randomly selected to be photoporated out of several hundreds of cells in total. 8 out 

of 12 selected neuronal cells became successfully labeled with phalloidin which is close to 

~70% target efficiency as similarly obtained for HeLa cells (Figure S9b). The magnified 

cell in Fig. 2b shows a single neuronal cell in the full field of view of a hippocampal culture. 

A 3-D confocal image of this cell is shown in Supplementary Movie 4. The inset shows 

that dendritic spines can be unambiguously resolved, thus enabling quantitative 

morphological analysis. As a proof-of-concept we followed the dendritic spine density over 

time in culture. In hippocampal cultures of 7, 14 and 21 days in vitro (DIV), a sparse set of 

cells was labeled with phalloidin. An example image is shown in Fig. 2c for each time point, 

with more images being shown in Figure S10. Image analysis shows that the spine density 

increases significantly over time (Fig. 2d). This is in good agreement with previous findings 

based on manual counting in DiI-stained cultures23. It opens up the possibility to perform 

such analyses in an automated fashion in the future since the positions of photoporated 

cells are precisely known. In addition, the selective labeling can be directed to specific 

neurons that show particular geno- or phenotypic patterns of interest. These may be 

neuronal subtypes (e.g. pyramidal- or interneurons) or neurons that show intracellular 

accumulation of toxic proteins (e.g. alpha-Synuclein or Tau). It is of note that sparse 

labeling of individual neurons has been attempted before with standard photoporation (i.e. 

without sensitizing nanoparticles). However, the success rate was very low at only ~10% 

of the cells being successfully labeled, next to the fact that the photoporation rate was 

relatively low at ~1.7 cells/s14. Instead, with automated image-guided SNAP we achieved 

a more than 10-fold higher throughput of 20 cells/s with seven times better efficiency (~70% 

success rate). 
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Figure 2. Labeling of a sparse set of individual neurons in a dense primary mouse hippocampal culture by 

automated image-guided SNAP. (a) Schematic overview of labeling selected neurons by image-guided 

SNAP. (b) Image recorded with low magnification lens (10×) to locate hippocampal cells labeled with the 

nuclear stain Hoechst 33342. The position of the nuclei is identified by image processing as indicated by 

the red dots. A random selection of cells is made that are at least 200 µm apart, here indicated by orange 

circles. Those positions will be used for subsequent photoporation of the selected cells with AlexaFluor 488 
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phalloidin. About 70% of the targeted individual neurons become successfully labeled (green fluorescence). 

A high resolution image of the indicated cell shows that the entire morphology of neuronal cell can be clearly 

discerned. The inset to the right shows that individual spines (white arrows) along the dendrites can be 

unambiguously resolved, even though the cell is surrounded by many other (unlabeled) cells. (c) By sparse 

labelling of individual neurons in primary hippocampal cultures, changes in dendritic spine density could be 

easily visualized as a function of days in vitro (DIV) culture. Example images of single neurons are shown 

at 7, 14 and 21 DIV. (d) The spine density could be unambiguously quantified by image analysis, showing 

a significant increase as a function of DIV (n=3). The data were compared with ANOVA test. Scale bars in 

c are 20 µm (top images) and 2 µm (bottom insets). 

 

3.3 SNAP enabling non-toxic isolation of mononuclear and polynuclear NHEKs 

SNAP was next used to enable the isolation of morphologically distinct subpopulations of 

cells in culture. In particular, we aimed to isolate relatively rare polynucleated from 

mononucleated primary normal human epidermal keratinocytes (NHEKs). In contrast to 

cancerous cells, normal diploid cells cannot divide indefinitely, but rather enter a senescent 

state after a finite number of divisions. While senescence is characterized by an irreversible 

cell cycle arrest, several studies indicate that this state may not be as stable as generally 

assumed24. Some senescent cells could re-renter the cell cycle and generate precancerous 

daughter cells, called post-senescence neoplastic emergent (PSNE) cells that are mutated, 

transformed and tumorigenic24, 25 (Figure S11). Based on microscopy observations it has 

been suggested that polynucleated senescent cells are the progenitors of PSNE cells24. In 

order to study this important phenomenon in more detail, it is of current interest to isolate 

polynuclear keratinocytes (PKs) from mononuclear keratinocytes (MKs) in a non-toxic 

manner to enable further downstream molecular and functional analyses. Initial attempts 

of ours to sort polynuclear cells with FACS using a cell-permeable nuclear stain like Hoechst, 

failed due to substantial long-term toxicity, with only 37.2 ±11.9% (n=3) cells surviving 

after 4 days measured by MTT. Hence we explored if SNAP could be used to selectively label 

one of both subpopulations with an inert non-toxic fluorescent probe (FD10) that would not 

cause long-term cytotoxicity. Discriminating PK from MK cells in transmission microscopy 

images by automated image processing is not easily done. In order to facilitate image 

analysis, we first incubated the cells with 10 kDa Alexa 647-dextran (AD) for 24 h, which 

labels the late endosomes and endo-lysosomes in the perinuclear area. At low magnification 

the nuclei are then visible as dark areas, as can be seen in Fig. 3. This type of labeling was 

found to be completely harmless to NHEKs with 103.7% ± 9.7 cells surviving after 4 days. 

An image processing protocol was designed to automatically find the location of either PK 

or MK cells, as outlined in Figure S12. These locations were then used to deliver FD10 to 

the targeted subpopulation by automated image-guided SNAP (Fig. 3). An AuNP 

concentration of 2.5×107 nps/ml and a laser fluence of 1.0 J/cm2 were chosen for the 

photoporation experiments on NHEKs because under these conditions we achieved >90% 
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labeling efficiency with ~80% cell viability (Figure S13). When targeting PK cells we found 

that 67.1 ± 9.5% (n=3) of all labeled cells were PK cells, which is close to the ~70% 

accuracy that we found earlier for HeLa cells and neurons. When targeting MK cells we 

achieved an accuracy of 95.9 ± 3.2% (n=3). This higher value can be explained by the fact 

that most of the cells are MKs so that upon mistargeting it is very likely that still a MK is 

being photoporated. In a next step we tried isolating MK from PK by FACS sorting. The 

initial cell culture consisted of 17% polynuclear cells and 83% mononuclear cells, based on 

visual inspection of hundreds of cells. When sorting was done based on labeled PK cells 

(with unlabeled MK cells), PK cells could be purified to ~65%, which is 4 fold higher than 

the initial culture (see left panel, Fig. 3). At the same time the purity of MK cells increased 

from 83% to 93%. When cells were sorted based on labeled MK cells, the PK purity could 

be sensitized from 17% to ~40%, while MK purity increased from 83% to >95%. These 

results show that the best enrichment of a particular subpopulation is achieved when that 

particular fraction is labeled. In case, however, one would want to avoid introducing a label 

into the cells that are of interest for further downstream analysis, the results show that 

enrichment of a particular subpopulation is still possible by labeling the other subpopulation, 

although at a lower efficiency. Finally we would like to note that higher purification levels 

could evidently be reached by simple repetition of the entire procedure. Taken together we 

conclude that automated image-guided SNAP enabled isolation of PK cells from MK cells 

without inducing long-term toxicity. This will be very helpful in further research aimed at 

determining the molecular specificities of PK cells that confer the ability to escape from 

senescence and generate mutated daughter cells. 
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Figure 3. SNAP enables non-toxic isolation of mononuclear and polynuclear NHEKs. Endolysosomes in the 

perinuclear area are labeled by 24 h incubation of NHEKs with 10 kDa Alexa 647-dextran (red). Following 

the identification of mononuclear NHEKs (MK) and polynuclear NHEKs (PK) by automated image processing 

(indicated by white arrows), either of both populations is selectively labeled with FD10 (green) by automated 

image-guided SNAP. Separation and isolation of both populations is finally done by FACS after trypsinisation 

of the cells. Cell frequency (n=5000) vs. fluorescence intensity (FI) is shown for photoporated (green) and 

control (grey) cells. The percentage of PK and MK cells are shown before (white bars) and after (green and 

red bars) isolation. The results are the mean ± SD of n=3 independent biological repeats. The data are 

compared with ANOVA test. Scale bar is 100 µm. 



Chapter 5 

155 

 

4. CONCLUSIONS 

In summary, we have developed a methodology that can be used to deliver molecules such 

as fluorescent labels into living cells in a spatially resolved manner in high throughput, even 

down to single cell resolution. Spatially selective delivery can be performed according to 

pre-defined patterns, but most interestingly can be achieved in an interactive image-guide 

manner as well. By full automation of the procedure we achieved delivery rates that exceed 

the fastest reported methods by more than one order of magnitude12, 14. We expect that 

speed can be increased by at least another order of magnitude when using a laser with 

higher pulse frequency. Spatial selective delivery with single cell resolution was recently 

also demonstrated with a planar arrangement of laser-illuminated gold nanotubes on top of 

which cells are grown26. Throughput was, however, very low as cells had to be manually 

positioned into the laser beam. In addition, such an approach requires specially 

microfabricated substrates and is inherently limited to 2-D cell cultures. Instead, SNAP is 

compatible with normal microscopy samples and may be extended to 3-D cell cultures as 

well. While we showed two applications where cells were selectively labeled with contrast 

agents, our platform is equally suited to deliver biologically active molecules, such as nucleic 

acids or proteins, into selected cells. This could, for instance, be of interests for studying 

bystander effects or to enable spatially controlled differentiation of stem cells27.  
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6. SUPPLEMENTARY INFORMATION  

Supplementary Figures 

 

Figure S1. Characterization of SNAP. (a) AuNPs (false-colored in green) that remain adsorbed to the cell 

membrane (labeled with deep red plasma membrane stain after the washing step) can be detected by 

confocal microscopy in reflection mode. The image is a 3D projection of a confocal z-stack to visualize all 

AuNPs on the cell. Scale bare is 5 µm. (b) A single laser pulse was applied to HeLa cells in the indicated 

circular area. Subsequent influx of of propidium iodide (red) shows that only the irradiated cells become 

photoporated, while the neighbouring unirradiated cells remain unaffected. Scale bar is 20 µm.  (c) 

Generation of VNB can be verified by dark field microscopy. VNB efficiently scatter light and are visible as 

transient dots of bright light (orange arrow heads). Alternatively, VNB can be detected in time-resolved 

mode by monitoring the change in transmitted light of a CW (continuous wavelength) laser focused on the 

sample. During the VNB lifetime (typically tens to a few hundreds of ns) the CW laser light focus is shifted 

due to a local change in refractive index, which is detected as a change in transmitted signal through a 

confocal pinhole in front of the detector. 
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Figure S2. Schematic diagram of the SNAP platform. Laser light from a pulsed laser is directed to the 

sample through a beam expander, diaphragm and objective lens. The adjustable diaphragm is used as a 

simple means to adjust the laser beam diameter. Computer software drives the xy-translation stage and 

controls the laser pulse energy. Every time the xy-stage arrives at a targeted position it will send a trigger 

signal to the pulse generator, which in turn triggers the laser to send a single pulse to the sample at that 

location.   
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Figure S3. Cells can be photoporated according to pre-defined patterns. (a) In line-scanning mode one 

defines the start and stop coordinates of individual lines which together form a desired geometry. The line 

width is determined by the width d of the photoporation laser beam. (b) Demonstration that the 

photoporation line width can be controlled by changing the laser beam diameter d. Photoporation with FD10 

was performed along single lines at neighbouring locations in a HeLa cell culture with different beam sizes 

(d = 50, 75, 150, 200 µm).  (c) In the pixel-based mode one uses the pixels of a black-and-white image as 

a template to define the places in the sample that should receive a photoporation laser pulse. The selected 

size of the laser beam determines how the image pixels (x,y) will be mapped onto the sample (X,Y).    
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Figure S4.  Zoom-in of Fig. 1b showing individual photoporated cells. The scale bars are 1000 µm (top) 

and 100 µm (bottom).   
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Figure S5. Delivery of multiple compounds into selected regions of a cell culture by repeated photoporation.  

The signature of the Ghent street artist BUE was used to create a painting in a culture of living HeLa cells 

with six colors: Alexa 647-dextran (AD; red), FITC-dextran (FD; green), cascade blue-dextran (CD; blue), 

mixture of FD with AD (yellow), and a mixture of FD with CD and AD (white).    
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Figure S6. Automated image-guided SNAP of selected cells. (a) The cells in the region of interest (here the 

entire well) are imaged by capturing adjacent microscopy images. The locations of the cells of interest are 

determined by image processing for each image. These coordinates are transformed to stage coordinates 

for sequential photoporation of the selected cells. (b) Overview of the image processing procedure to define 

the location of fluorescently labeled cells of interest. Edge detection is used to delineate the cells of interest 

and to define cell masks. The cell coordinates are calculated as the local max. intensity in cell mask.   
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Figure S7. Validation of image-guided automated SNAP. (a) A culture of HeLa cells was prepared with 

labeled and unlabeled cells in a 1:5 ratio. The image shown is a stitched image consisting of 9 individual 

images covering a total area of 3.81 mm by 3.81 mm. This area contains 377 red fluorescent cells as 

determined by image processing. (b) The positions of the red fluorescent cells as determined by image 

processing are used as input to deliver a green fluorescent compound (FITC-dextran) into those cells by 

SNAP. More than 70% of the red cells were successfully loaded with the green fluorophore. (c) Of all green 

cells about 30% were false positives (calculated as the ratio of cells with only green dye over the number 

of targeted (red) cells). This comes from neighbouring cells which became photoporated too, as well as 

some dead cells into which the dye can penetrate. In case of fluorescent labels, these false positives can 

be largely removed by a subsequent photobleaching procedure targeting cells that only contain green dye.  

(d) After two rounds of targeted photobleaching the fraction of false positive cells could be reduced to 5%. 

The data shown comes from three independent repeats where n1=847, n2=416, and n3=633 cells were 

targeted (i.e. red fluorescent).   
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Figure S8. An example image of DiI-stained neurons with dendritic spines after 14 days in culture. Cells 

were fixed (4% paraformaldehyde in 0.1 M phosphate buffer, 10 min at room temperature) and stained 

with the carbocyanine dye CM-DiI (Life Technologies) at 1 µg/ml for 20 min at room temperature. The 

images were recorded at least 24 h post staining allowing the hydrophobic dye to spread throughout the 

plasma membrane. Images are shown in negative contrast for improved visualization. In such densely 

labeled cultures it is difficult to find regions that are suitable for quantitative morphological analysis, thus 

hindering high-throughput automated image analysis as required in screening assays. 
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Figure S9. Automated selection of a sparse set of distant neuronal cells. (a) A simple algorithm was 

developed to randomly select individual cells that are at least 200 µm apart. After determining the cell 

positions by image processing (here based on the nuclear stain Hoechst), the distances between all cells 

are calculated. Next, a subset of cells is selected that are at least 200 µm apart. This list with coordinates 

is finally used for photoporation of the selected cells with phalloidin. (b) The target efficiency was quantified 

based on the labeling of hundreds of cells (n=3). To assess cell viability, the photoporation procedure was 

performed on an entire culture of hippocampal cells. Cell viability was measured by subsequent Propidium 

Iodide labeling (2 h after the photoporation procedure) for three independent biological repeats. Despite 

hippocampal cells being very sensitive cells, the near perfect cell viability shows that the optimized 

photoporation procedure is very gentle to the cells.    
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Figure S10. Labeling of selected neuron cells in primary mouse hippocampal cultures enables accurate 

imaging of dendritic spines. Exemplary images are shown of three different single neurons at 7 DIV, 14 DIV 

and 21 DIV (scale bars 20 µm). Below each image a magnified view of the indicated dendrite is shown 

(scale bar 2 µm).  The images clearly show that the spine density along the dendrites increases over time.  
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Figure S11. Growth curve of in vitro cultivated NHEKs. The growth curve of NHEKs starts with an initial 

exponential growth, followed by a senescence plateau characterized by cell cycle arrest. A small fraction of 

the senescent cells, however, re-enter the cell cycle, which is referred to as PSNE (post senescence 

neoplastic emergence). Transmission microscopy images are shown of typical cells in each phase. In the 

growth phase, the cells have their typical morphology of epithelial cells growing as islets. Cells in the 

senescence phase (Sen) typically become larger in size. In the PSNE phase there are senescent cells from 

which new daughter cells emerge, which are the PSNE cells.          
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Figure S12. Image processing 

procedure for determining the 

location of mononuclear and 

polynuclear NHEK cells. (a) 

Nuclei are visible as dark areas 

by labeling the late and 

endolysosomes in the 

perinuclear area. (b) Cell masks 

are defined by edge detection 

and subsequent filling using 

Matlab functions ‘edge’ and 

‘imfill’. (c) Local minimal within 

each cell mask are identified, 

indicated by the red points. (d) 

Local minima close to the edge 

of the cell mask are removed. 

(e) The remaining red points 

demarcate the position of nuclei. 

(f) Polynucleated cells are 

identified based on two nuclei 

positions that within a short 

distance (15 µm) of each other. 

The polynucleated cells are 

indicated with a green dot, and 

those coordinates are 

subsequently used for selective 

photoporation of those cells. 

Alternatively the mononucleic 

cells can be identified (indicated 

by red dots) for subsequent 

photoporation.   
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Figure S13. Optimization of cytotoxicity and labeling of NHEK with FITC-dextran.  (a) Presenescent NHEKs 

were photoporated with FD10 using two different AuNP concentrations (concentration of 1/400 AuNPs is 

~2.5 × 107 nps/ml, and 1/200 AuNPs is ~5.0 × 107 nps/ml) and 3 different laser fluence settings (I = 0.6, 

1.0 and 1.8 J/cm2). Cytotoxicity was measured by MTT assay after 4 days to assess long-term cytotoxicity. 

(b) The labeling efficiency was measured in parallel for the two lowest laser fluence levels. Labeling 

efficiency was quantified as the fraction of positive cells, i.e. the cells containing a detectable FD10 signal 

above the background (untreated cells).  
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Supplementary Movies 

Supplementary Movie 1. To validate selective delivery by SNAP, the cytoplasmic accumulation of cell 

impermeable dye of Propidium Iodide (PI) was in situ recorded by fluorescence microscopy before and after 

photoporation. Subsequent influx of of PI (red) shows that only the irradiated cells become photoporated, 

while the neighbouring unirradiated cells remain unaffected.  

(https://figshare.com/s/7cb6528a1d9c083dbcf3) 

Supplementary Movie 2. Andy Warhol’s painting of Einstein was reproduced by photoporating HeLa cells 

sequentially with cascade blue-dextran (blue), FITC-dextran (green) and Alexa 647-dextran (red). The cells 

in two specific region were imaged in a stage-top cell incubator (37 °C) with confocal microscopy for ~10 

hours. (https://figshare.com/s/bf5166bd2163ad9d1fb8)  

Supplementary Movie 3. The signature of the Ghent street artist BUE was used to create a painting in a 

culture of living HeLa cells with six colors: Alexa 647-dextran (AD; red), FITC-dextran (FD; green), cascade 

blue-dextran (CD; blue), mixture of FD with AD (yellow), and a mixture of FD with CD and AD (white).   

The cells in one specific region were imaged in a stage-top cell incubator (37 °C) with confocal microscopy 

for ~10 hours. (https://figshare.com/s/7db34274e973d00bc069)   

Supplementary Movie 4. A neuron cell in primary mouse hippocampal cultures selectively labeled by 

SNAP and 3D imaged with confocal microscopy. (https://figshare.com/s/608dba9fabd24f043505)  

  

https://figshare.com/s/7cb6528a1d9c083dbcf3
https://figshare.com/s/bf5166bd2163ad9d1fb8
https://figshare.com/s/7db34274e973d00bc069
https://figshare.com/s/608dba9fabd24f043505
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Supplementary Matlab Code  

The Matlab code source which was developed SNAP to determine cell positions can be 

downloaded via this link: https://figshare.com/s/227b20516d845711dbb2 
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cFRAP sizing nanomaterials: introduction, theory and 

validation 
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ABSTRACT 

FRAP is widely applicable in the biophysical, pharmaceutical and material sciences to study 

diffusion of molecules and nanoparticles on a micrometer scale. With an intense laser beam 

the fluorescence inside a micrometer sized area is photobleached, and the subsequent 

recovery of the fluorescence due to diffusion of the labelled molecules is imaged over time. 

To date, quantitative interpretation of FRAP data is based on analyzing the average intensity 

in the bleach area as a function of time. Consequently, the spatial information in the 

diffusion profiles remains largely unused, due to which interpretation of FRAP data is limited 

to a single average diffusion coefficient.  Recently, our group developed a new and improved 

FRAP model, based on the photobleaching of a rectangular area (rFRAP), which allows 

analysis of the entire spatial diffusion profile in confocal recovery images. Although rFRAP 

was demonstrated to offer improved precision over standard FRAP, interpretation was 

limited to a single diffusion coefficient until now. Here we extend the capability of rFRAP to 

measuring polydisperse samples with a continuous distribution of diffusion coefficients  

(cFRAP). First we present the mathematical derivation of the cFRAP model. The influence 

of experimental parameters of a cFRAP experiment on the measurement is examined by 

simulations. We confirm through simulations that cFRAP can correctly analyze polydisperse 

systems with a continuous broad range of diffusion coefficients. Furthermore, we 

investigate what is the minimal SNR that is needed in the recovery images to perform 

meaningful cFRAP analysis. Finally, cFRAP is validated by performing FRAP experiments on 

solutions of FITC-dextran of different molecular weight and mixtures thereof, in comparison 

with DLS measurement. Thanks to including spatial information in the cFRAP model, we 

found that the apparent PDI of the distributions was significantly less compared to the PDI 

measured by DLS, which demonstrated the improved precicsion of this method thanks to 

taking the full tempo-spatial information into account.  
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1. INTRODUCTION 

Fluorescence recovery after photobleaching (FRAP) has been used extensively to study 

mobility of molecules and nanoparticles on a micrometer scale in terms of an average local 

diffusion coefficient1, 2. Since its development in the 1970s3, 4, FRAP has been widely applied 

to the biophysical, pharmaceutical and material sciences. For example, FRAP has been used 

to study the diffusion of molecules in living cells like the mobility of molecules in the cell 

membrane5-10, cytoplasm11-15 and nucleus16-19. Additionally, FRAP has also been applied to 

study the mobility of macromolecules in extracellular matrices20-24 and pharmaceutical 

solutions and gels25-31. 

In a FRAP experiment, fluorescently labeled molecules in a micron sized area of the sample 

are photobleached by a powerful laser excitation pulse. Through this photochemical process, 

fluorescent molecules lose their fluorescence properties. After photobleaching, the 

photobleached fluorescent molecules will diffuse out of the beach area and are replaced by 

unbleached fluorescent molecules from the surrounding region. A gradual recovery of the 

fluorescence inside the area will occur due to this diffusional exchange, as can be observed 

from confocal time-lapse images. The rate of fluorescence recovery is proportional to the 

rate of diffusion of the fluorescently labeled molecules. Fitting a suitable FRAP model to the 

observed fluorescence recovery can yield the physical quantities describing the local 

diffusion in the sample, such as the average diffusion coefficient29.  

To date, quantitative interpretation of FRAP data is limited to the analysis of the average 

intensity in the bleach area over time, as it reduces the mathematical complexity of the 

diffusion model. As such the spatial information of the diffusion profiles is essentially lost, 

which results in limited precision of FRAP analyses. Recently, we developed a fast and 

straightforward FRAP model that makes use of the full temporal and spatial diffusion process 

after photobleaching of an  arbitrary rectangular area (rFRAP)32. While it offers improved 

precision, rFRAP with least squares fitting still limits data interpretation to a single-

component diffusion process, or a discrete multicomponent system at best. Generally, 

however, polydisperse systems have a continuous distribution of diffusion coefficients While 

some attempts have been made to apply FRAP to the measurement of polydisperse systems, 

success was very much limited as those methods still relied on analyzing the average 

intensity over time33-35. 

Here, we extend the rFRAP model to describe a continuous distribution of diffusion 

coefficients (termed as cFRAP). We make use of the Maximum Entropy Method (MEM) when 

fitting the cFRAP model to confocal recovery images to ensure that features, such as local 

extrema, in the resulting distribution of diffusion coefficients are statistically warranted by 

data36-38. First we will give an outline of the mathematical derivation that leads to the cFRAP 

model. Next, we will test the influence of experimental parameters on the distribution of 
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diffusion coefficients by fitting the cFRAP model to simulated recovery images. Following, 

the ability of this method to recover continuous diffusion coefficients distributions will be 

evaluated. Furthermore, the minimal SNR that is needed in the recovery images to perform 

meaningful cFRAP analysis is tested. Finally, cFRAP analysis is validated in sizing single or 

mixture different FITC-dextran, and compared with DLS measurement. 

 

2. THEORY OF CFRAP 

We start from the rFRAP (rectangle FRAP) model developed before for measuring a single 

average diffusion coefficient according to Deschout et al., which makes use of both time 

and spatial information in the recovery images32: 

𝐹(𝑥, 𝑦, 𝑡) = 𝐹0 − 𝐹0 ∙
𝐾0

4
∙ [𝑒𝑟𝑓 (

𝑥 +
𝑙𝑥

2

√𝑟2 + 4𝐷𝑡
) − 𝑒𝑟𝑓 (

𝑥 −
𝑙𝑥

2

√𝑟2 + 4𝐷𝑡
)]                          

∙ [𝑒𝑟𝑓 (
𝑦 +

𝑙𝑦

2

√𝑟2 + 4𝐷𝑡
) − 𝑒𝑟𝑓 (

𝑦 −
𝑙𝑦

2

√𝑟2 + 4𝐷𝑡
)]    (1) 

where t is the time after photobleaching, K0 the photobleaching parameter (which 

determines the extent of bleaching), D is the isotropic diffusion coefficient of diffusing 

species, lx and ly are the width and height of the rectangular photobleaching area, and r² is 

the mean square resolution of the bleaching and imaging point-spread function. In case of 

N independent diffusing components, we can simply make a superposition of the individual 

fluorescence recovery profiles: 

𝐹(𝑥, 𝑦, 𝑡) = ∑ 𝛼𝑖휀𝑖𝐹𝑖(𝑥, 𝑦, 𝑡)

𝑖

      (2) 

where αi is the relative fraction of the ith component and εi is the corresponding relative 

fluorescence brightness. Evidently, ∑ 𝛼𝑖 = 1𝑁
𝑖=1 . 

Defining: 

𝑘𝑖 = 𝛼𝑖휀𝑖𝐾0𝑖    (3) 

the multicomponent rFRAP model becomes:  
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𝐹(𝑥, 𝑦, 𝑡) = 𝐹0 − 𝐹0

∙ ∑
𝑘𝑖

4
∙ [𝑒𝑟𝑓 (

𝑥 +
𝑙𝑥

2

√𝑟𝑖
2 + 4𝐷𝑖𝑡

) − 𝑒𝑟𝑓 (
𝑥 −

𝑙𝑥

2

√𝑟𝑖
2 + 4𝐷𝑖𝑡

)]                          

𝑖

∙ [𝑒𝑟𝑓 (
𝑦 +

𝑙𝑦

2

√𝑟𝑖
2 + 4𝐷𝑖𝑡

) − 𝑒𝑟𝑓 (
𝑦 −

𝑙𝑦

2

√𝑟𝑖
2 + 4𝐷𝑖𝑡

)]   (4) 

The multicomponent rFRAP model of Eq. (4) can be generalized to describe a continuous 

distribution of diffusion coefficients α(D): 

𝐹(𝑥, 𝑦, 𝑡) = ∫ 𝛼(𝐷)𝑓(𝑥, 𝑦, 𝑡, 𝐷, 𝐾0(𝐷), 𝑟(𝐷)) 𝑑𝐷      (5) 

where f(x,y,t,D,K0(D),ε(D),r(D)) describes the fluorescence recovery of a component with 

diffusion coefficient D. Inserting Eq. (1) and (2) into Eq. (5) yields: 

𝐹(𝑥, 𝑦, 𝑡) = 𝐹0 −
𝐹0

4
∫ 𝛼(𝐷)𝜖(𝐷)𝐾0(𝐷)𝑓′(𝑥, 𝑦, 𝑡, 𝐷, 𝑟(𝐷))𝑑𝐷  (6) 

where f’(x,y,t,D,r(D)) is defined as: 

𝑓′(𝑥, 𝑦, 𝑡, 𝐷, 𝑟(𝐷))

= [𝑒𝑟𝑓 (
𝑥 +

𝑙𝑥

2

√𝑟2 + 4𝐷𝑡
) − 𝑒𝑟𝑓 (

𝑥 −
𝑙𝑥

2

√𝑟2 + 4𝐷𝑡
)]                          

∙ [𝑒𝑟𝑓 (
𝑦 +

𝑙𝑦

2

√𝑟2 + 4𝐷𝑡
) − 𝑒𝑟𝑓 (

𝑦 −
𝑙𝑦

2

√𝑟2 + 4𝐷𝑡
)]  (7) 

For numerical computation according to the maximum entropy method (MEM) we now make 

the transition to the semi-continuous case. Let D be discretized in n components (e.g. with 

equal interval in log(D) space) in the range of Dmin  to Dmax., Eq. (7) becomes:  

𝐹(𝑥, 𝑦, 𝑡) = 𝐹0 −
𝐹0

4
∑ 𝑘𝑖𝑓′(𝑥, 𝑦, 𝑡, 𝐷𝑖 , 𝑟𝑖)          (8)

𝑛

𝑖=1

 

where we made use of Eq. (3). Eq. (8) can be used for direct fitting to the pixel values in 

the recovery images. 

Alternatively, the recovery data can be analyzed based on the average intensities in ring 

areas (Fig. 1b). This considerably reduces computation time while retaining the essential 

spatial information. The average intensity in ring Ri is calculated as: 

𝐹𝑖(𝑡) =
1

𝑀𝑖

∑ 𝐹(𝑥, 𝑦, 𝑡)

(𝑥,𝑦)𝜖𝑅𝑖

    (9) 
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where F(x,y,t) is defined in Eq. (8) and Mi  is the number of pixels inside ring Ri . 

 

Figure 1. (a) Confocal images (field of view 153.6 μm by 153.6 μm) are shown of an cFRAP experiment in 

a FITC-dextran solution. Images are shown before (t < 0), during (t = 0) and after photobleaching (t > 0). 

cFRAP analysis is performed on the indicated Region of Interest (ROI). The REF region indicates the 

reference area that is used in the analysis to correct for potential laser fluctuations and bleaching during 

imaging. (b) For analysis according to the ‘ring-based method’, the ROI is divided into n equally spaced 

rectangular ring areas. (c) The normalized average intensity of each ‘ring’ is shown at time points t = 1.6, 

10.6 and 50.6 s. The solid lines represent the best fit of the cFRAP model. Note that a single fit is done to 

all spatial profiles for all available time points in the data set simultaneously. 

Instead of performing a standard least squares fitting of Eq. (9) to the experimental data, 

the Maximum Entropy Method (MEM) finds the ‘best-fit’ solution with maximum entropy. 

MEM ensures that the fitting result (i.e. the distribution of diffusion coefficients) contains 

the least possible information in order to avoid over-interpretation of noise due to limited 

sampling statistics. In other words, it looks for the smoothest best fit solution in the 

maximum entropy sense. The ‘historic MEM’ approach was implemented in this work, which 

means maximizing the Shannon-Jaynes entropy:   

 𝑆 = − ∑ 𝑘𝑖𝑙𝑜𝑔𝑘𝑖   

𝑛

𝑖=1

     (10) 

under the least-squares condition of χ2 =M, where M is the total number of data points. For 

the pixel based fitting, the χ2 statistic is calculated by: 
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𝜒2 = ∑ ∑ ∑
[𝐹𝑖𝑗(𝑡𝑘) − 𝐹𝑖𝑗

′ (𝑡𝑘)]2

𝜎𝑖𝑗
2 (𝑡𝑘)

             (11)

𝑘𝑗𝑖

 

where Fij(tk) is the normalized fluorescence at position xi, yj at time point tk and σij
2(tk) is 

the corresponding variance.  F'ij(tk) is the corresponding theoretical value calculated from 

Eq. (8). 

On the other hand, for the ring analysis, the χ2 statistic is calculated by: 

𝜒2 = ∑ ∑  
[𝐹𝑖(𝑡𝑘) − 𝐹𝑖

′(𝑡𝑘)]2

𝜎𝑖
2(𝑡𝑘)

𝑘𝑖

      (12) 

where Fi(tk) is the experimental average fluorescence in ith ring at time point tk and σi
2(tk) 

is the corresponding variance. F'i(tk) is again the corresponding theoretical value calculated 

from Eq. (9). The variance can be calculated for simulated images according to: 

𝜎𝑖
2(𝑡𝑘) =

𝜎2

𝑀𝑖

     (13) 

where σ is the standard deviation on the pixel values used for simulating the FRAP recovery 

images. For experimental images it can be calculated from39: 

𝜎𝑖
2(𝑡𝑘) =

𝑎𝐹𝑖(𝑡𝑘) + 𝑏

𝑀𝑖

   (14) 

Where a and b are constant parameters that can be determined by a series of images with 

various laser intensities of a homogeneous fluorescent solution with identical instrumental 

settings as in the final FRAP experiment40.  

Based on the theory outlined above, a Matlab code was written for MEM analysis of the 

recovery images which results in a semi-continuous distribution of diffusion coefficients, 

which can be converted to a distribution of sizes by the Stokes-Einstein equation when 

required. The Matlab code source is online available: 

figshare.com/s/9d93ae06318911e58f3e06ec4bbcf141 and a user’s guide is also available:  

figshare.com/s/cb38f1cc318911e5a4f706ec4bbcf141 (or see Appendix A). To ensure 

proper use of this method, it is important to stress two important experimental 

requirements. The theory is based on 2-D diffusion only. In 3-D extended samples (as is 

the case in this work) this means that bleaching should be performed with an objective lens 

of sufficiently low NA (typically <0.5) which produces a cylindrical laser beam in a 

substantial area above and below the focal plane. In that case, the bleaching will be quite 

uniform over an extended region along the optical axis, so that only 2-D radial diffusion 

effectively takes place1. Secondly, in the derivation of the rFRAP model according to 

Deschout et al.32, the assumption is made of a linear photobleaching process. In reality, 

https://figshare.com/s/9d93ae06318911e58f3e06ec4bbcf141
https://figshare.com/s/cb38f1cc318911e5a4f706ec4bbcf141


Chapter 6 

184 

 

however, photobleaching rather follows an exponential type of decrease.  This means that 

the model will only work perfectly for modest bleach depths, i.e. up to 50% photobleaching 

as demonstrated before32. This can be easily accommodated for by changing the bleach 

laser intensity appropriately.  

 

3. MATERIASL AND METHODS 

3.1 FRAP equipment and experimental procedure.  

FRAP experiments were performed on a C1-si confocal microscope (Nikon, Japan) equipped 

with a 488 nm Ar-ion laser of 40 mW and acoustic optical tunable filter (AOTF) to modulate 

the laser intensity for bleaching and imaging (fastest imaging rate ~0.5 frame/s). 

Rectangular areas were photobleached and the fluorescence recovery was imaged using 

the Nikon NIS Elements AR software package. A 10× NA 0.45 plan apochromat objective 

lens was used for bleaching and imaging. The laser power was adjusted to obtain 25-50% 

bleaching, in accordance with the theoretical requirement of limited bleaching (due to the 

assumption of a linear photobleaching process in the derivation of Eq. (1)). The recovery 

time depends on the diffusion coefficient as well as the size of the bleach area. A particular 

benefit of our theoretical framework is that we can adjust the size of the bleach rectangle 

in a continuous fashion. The smallest component in our applications is FITC-dextran of 4 

kDa (FD4), while the largest is FITC-dextran of 500 kDa (FD500). To capture the diffusion 

from the smallest to largest components we used a bleach area of 50 µm with a sampling 

time that starts at 0.5 s per frame and increases to 16 s per frame towards the end of the 

time lapse recording. As explained in detail in later, this ensures that the sampling was 

optimal over the entire experiment to capture the fastest and slowest component in one 

and the same measurement.  

For FRAP experiments, 4 uL of the samples was ‘sandwiched‘ between a microscope slide 

and a coverslip sealed by an adhesive spacer of 120 µm thickness (Secure-seal, Spacer, 

Molecular probes, Leiden, The Netherlands). This provides a 3D environment for diffusion 

while avoiding flow in the sample. All FRAP measurements were performed at room 

temperature (22.5 °C).   

3.2 Simulation of FRAP images.  

FRAP images were simulated using Eq. (2) in Matlab. Simulations were performed with the 

reported values of the diffusion coefficient(s) Di, their relatively frequency αi, 

photobleaching amount K0,i and resolution parameter ri. 

3.3 Viscosity measurement.  
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The measured distribution of diffusion coefficients can be converted to a corresponding 

distribution of hydrodynamic sizes (diameter), using the Stokes-Einstein equation 𝐷 =

𝑘𝑇/3𝜋𝜂𝑑, where k is the Boltzmann constant, T the absolute temperature, 𝜂 the dynamic 

viscosity of the solution and D the diffusion coefficient of the molecule. However, this 

requires accurate knowledge of the viscosity of the sample. While e.g. a capillary 

viscosimeter can be used for this in case of solutions prepared in the lab, it cannot be 

applied to the often minute samples retrieved from animal experiments. Therefore, we have 

made use of a viscosity probe with known size that can be added to the samples to 

inherently calibrate the viscosity of the sample under study. 10 kDa FITC-dextran (FD10) 

at a weight concentration of 20 mg/ml was added to the sample solution at a volume ratio 

of 1:20 so that the effect on the sample viscosity by adding the viscosity probe was 

considered neglectable.  

3.4 cFRAP data analysis.  

Before fitting of the data to the cFRAP model, the recovery data (Fig. 1) was normalized to 

the fluorescence before bleaching. Normalization to the pre-bleach intensity can be 

performed by dividing every pixel in the recovery images by the corresponding pixel in the 

pre-bleach image. To limit the corresponding amplification of noise, the pre-bleach image 

was smoothed first with a median filter with a kernel of 5×5 pixels. Correction for laser 

fluctuations and bleaching during imaging is performed by dividing the pixels of each 

recovery image by the average value from one reference background region in the same 

image (Fig.1a). The reference background region was placed sufficiently far from the 

bleach region so as to remain unaffected by the diffusion front during the observation time.  

Data analysis is done by fitting of the cFRAP model (Eq. (8)) to the pixel values of the 

normalized recovery images. Alternatively, as detailed in later, the region of interested (ROI) 

can be divided into n equally spaced ring-shaped areas. In that case Eq. (9) is fitted to the 

average intensity values in each of the ring-shaped areas. The Maximum Entropy Method 

(MEM) was included into the analysis so as to obtain the smoothest distribution fulfilling the 

requirement of χ2 =M , where M is the total number of data points used for fitting. This is a 

well-known method to ensure that the final distribution does not contain more features than 

statistically warranted by the data14. In practice, using the function ‘fmincon’ in the Matlab 

Optimization tool box (The matworks, Natick, MA, USA) the entropy criterion according to 

Eq. (10) was maximized, while the constraint χ2 =M in Eq. (12) was relaxed to the narrow 

interval  𝑀 − √2𝑀 ≤ 𝜒2 ≤ 𝑀 + √2𝑀.  

3.5 Dynamic light scattering (DLS) size measurements.  

DLS size measurements were performed on a Malvern Zetasizer Nano ZS (Malvern 

Instruments LTD., Malvern, UK) equipped with a 632 nm, 4 mW He-Ne laser source. 
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Instrument performance was verified by a system suitability test according to the 

manufacturer’s IQ/OQ documentation and consisting of a measurement of 60 nm and 200 

nm polystyrene beads from Thermo Scientific (Erembodegem, Belgium). For each 

measurement, 40 µL samples were transferred into a ZEN0040 Micro cuvette (Malvern 

Instruments LTD). Sample measurements were performed at 25°C with automatic 

attenuation. Samples were equilibrated for 180 seconds at 25°C. Measurement position was 

fixed at 4.65 by ‘The seek for optimum position’ option. The sample was measured 10 times 

using automatic measurement duration with a delay of 60 seconds between each 

measurement. Measurements were performed under a 173° backscattering angle. For data 

processing, the general purpose algorithm was used. The polydispersity index (PDI) was 

defined as PDI=(σ/d)2, where σ is the standard deviation of the size distribution and d the 

mean diameter.  

3.6 Fluorescent/dextran probes.   

FITC-dextran (FD) or dextran (D) of various MW (FD4/D4: MW =4×103 g/mol, FD10/D10: 

MW =1×104 g/mol, FD40/D40: MW =4×104 g/mol,  FD150/D150: MW =1.5×105 g/mol, 

FD500/D500: MW=5×105 g/mol) were purchased from Sigma-Adrich (Bornem, Belgium). 

For the validation experiments of cFRAP,  FITC-dextran solutions were prepared in HEPES 

buffer at pH7.0 and dextran solutions were prepared in distilled water. The concentration 

was always 0.5 mg/ml for DLS (Dynamic Light Scattering) measurements. For each type of 

FD, a concentration series was prepared in order to determine the linear fluorescence range 

as observed on the confocal microscope. 

 

4. RESULTS AND DISCUSSION 

4.1 Pixel-based fitting vs. ring-averaged method  

The rFRAP model presented here provides a complete description of the recovery phase in 

time and space after photobleaching. Therefore, fitting of the model can be done to all pixel 

values in a confocal time-lapse recording of the fluorescence recovery. Direct fitting to all 

pixel values in the ROI (120 by 120 pixels), however, results in very long calculation times. 

In order to speed up the fitting procedure, we evaluated a slightly modified approach where 

the spatial information (pixel values within a particular confocal image) is averaged over 

rectangular ring areas as illustrated in Fig. 1. The ROI is divided into n rings according to 

ΔL=L/2n , where ΔL is the spacing between each ring and L is the length of the ROI. We 

hypothesize that the same accuracy can be obtained as compared to fitting to all individual 

pixels on condition that the spatial increment of rectangular ring areas is sufficiently small. 

To evaluate this, we simulated recovery images of a single component system with a 
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diffusion coefficient of 10 µm2/s. As the results show in Fig. 2, the ring-averaged method 

has the same precision as pixel based fitting when the number of rings is larger than 10. 

Increasing the number of rings more did not result in more precision. Most importantly, the 

calculation time is reduced by 3 orders of magnitude when using the ring method (n=10) 

versus pixel-based fitting. An interesting special case is when a single ring is used, which 

corresponds to the most common way to analyse FRAP data where only the time-course of 

the average intensity in the bleach region is considered. As shown in Suppl. Fig. 2 (NC=1, 

where NC is the number of divided rectangle ring), while the apparent D-distribution is still 

centred at the expected D-value of 10 µm2/s, it is much broader as compared to our new 

method where also the spatial information is included. This nicely demonstrates that cFRAP 

offers much better precision and resolution to analyse polydisperse samples as before.  

 

Figure 2. Recovery images were simulated according to Eq (2) for a single component system of D = 10 

µm2/s. D-distributions are shown for the ring-based method for different numbers of equally spaced rings 

(NC=1, 2, 5, 10 and 20) and the pixel-based method. 

4.2 Discretization of D-space 

The cFRAP approach requires discretization of the D-space. Obviously, a finer discretization 

is expected to give a better description of the distribution, but comes at the expense of 

longer calculation times. Therefore, we evaluated the influence of the number of D-
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components (ND) on the fitting results. Recovery images were simulated for a single 

component system with D = 10 µm2/s. The D-space was logarithmically discretized in ND 

components over 3 orders of magnitude. The results in Fig. 3 show that increasing ND from 

20 to 30 did not appreciably change the resulting distribution, while the calculation time 

increases more than two fold. Based on these results, we decided to use ND of 20 for further 

experiments. 

 

Figure 3. The influence of discretization of D-space is evaluated for a single component D=10 µm2/s. ND 

is the number of D values that are chosen over three orders of magnitude with logarithmic spacing. ND was 

varied from 10 to 30. 

4.3 Optimization of the total measurement time and the time interval between 

recovery images 

After photobleaching, time-lapse images are recorded of the recovery phase. The question 

then arises what is the most optimal time between subsequent images (Δt)? On the one 

hand it should be sufficiently short so as to capture all diffusion dynamics, while on the 

other hand one wants to limit total measurement recording time (T) by limiting total number 

of images to minimize (unwanted) photobleaching during imaging. To investigate what are 

suitable values for Δt and T, recovery images were simulated of a single component system 

with a diffusion coefficient of 10 µm2/s. To allow to draw general conclusions, Δt and T will 

be expressed relative to the characteristic recovery time, defined as 𝜏 =  (𝑙/2)2 4𝐷⁄ , where l 

is the length of the shortest side of the bleach rectangle and D is the diffusion coefficient. 

As shown in Fig. 4a, according to the single component system there is no improvement 

as soon as 𝑇 ≥ 𝜏. Looking at the result in Fig. 4b, we conclude that Δt should be smaller or 

equal to 0.5𝜏. To study the influence of these experimental parameters in more detail for a 
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complex polydisperse systems, we also simulated recovery images of a two-component 

system consisting 50% of D1=1.0 μm2/s and 50% of D2=10 μm2/s. Here, we defined τslow 

and τfast as characteristic recovery time of the slow and fast component, respectively The 

results are shown in Fig. 4c, d for different Δt  and T. Not unexpectedly the slow component 

cannot be accurately determined anymore when T becomes too short. Just as for the single 

component system we conclude that T≥ τslow. Also regarding Δt we come to the same 

conclusion as from the single component system that Δt≤ 0.5τfast. 

.  

Figure S4. The influence of total measurement time (T) and time interval (Δt) is evaluated for (a, b) a 

single component (D=10 µm2 s-1) and (c, d) a two-component system (D1=1.0 µm2 s-1and D2=10 µm2 

s-1). (e)  To limit the number of recovery images, the time interval Δt can be increased with ~20% per 

recovery image or (f) with 100% per every 5 frames. For ease of comparison, the dashed lines in e and f 

show the distributions calculated for T =τslow, Δt =0.5 τfast from c and d. 
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Taken together, from these simulations we conclude that Δt should be at least 50% of the 

characteristic diffusion time of the fastest component, while the total measurement time 

should be at least equal to the characteristic diffusion time of the slowest component. For 

a fixed Δt this actually leads to over-sampling of the slower components so that more 

images are recorded than actually needed for the analysis, potentially leading to substantial 

photobleaching during imaging of the recovery phase. Therefore, we recommend the use 

of a linearly increasing of Δt with ~20% per image or, as in our case, a doubling of the time 

step per every 5 frames as shown in Fig. 4e, f, until the selected total imaging time T is 

reached. 

4.4 Discriminating and quantifying subpopulations with different diffusion 

coefficients 

Having optimized experimental and analysis parameters, it is of interest to determine the 

resolution of cFRAP with which it can distinguish between subpopulations with different 

diffusion coefficients. Recovery images were simulated for a two-component system with 

different ratios of the diffusion coefficients (RD =D2/D1). Both components are present in 

the same concentration (50/50%).  The results are shown in Fig. 5a for RD=5, 3 and 2. For 

RD=5 both components are found in the expected 50/50% ratio. Indeed, the area under 

the curve is 49.9% for the slow component and 50.1% for the fast component. Also at a 

ratio of RD=3 both components are still well resolved, but at a ratio of 2 both populations 

could no longer be discriminated. Still this is an excellent result as compared to the standard 

approach of only taking the time-progression of the average intensity into account. This 

corresponds to n = 1 ring with our method, and in that case a ratio RD at 8 is needed to 

discriminate both components as shown in Fig. 5b. 

 

Figure 5. The ability of cFRAP to discriminate two components was investigated using simulated recovery 

images. Different ratios of diffusion coefficients were evaluated using (a) the full tempo-spatial information 
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vs. (b) using only time information as in standard FRAP analysis. RD indicates the ratio of the two diffusion 

coefficients, where D1=0.5 µm2/s. The black lines indicate the diffusion coefficients used in the simulations. 

4.5 Analysis of continuous D distributions 

For parameter optimization and basic evaluation of the method until now we used single or 

double component systems. However, the cFRAP method was developed with the aim to 

analyze continuous distributions of diffusion coefficients. Therefore, we went on to simulate 

recovery images for a polydisperse sample with a continuous distribution of diffusion 

coefficients according to a lognormal distribution with location parameter  = 1.4 μm2/s  

and varying scale parameter  from 0.1 to 2 to simulate an increasingly polydisperse system 

(black bars in Fig. 6a-c). The orange curves are the result from cFRAP analysis and nicely 

corresponds to the expected distributions. Going one step further we also simulated a 

double lognormal distribution with 1=0.9 μm2/s ,1 =1.5 and2=8.7 μm2/s 2=1.5. As 

shown in Fig. 6d, again cFRAP is very well capable of retrieving the expected distribution. 

This demonstrates that cFRAP is very well suited for the intended task of analyzing complex 

polydisperse systems. 
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Figure 6. The ability of cFRAP analysis to recover continuous D distribution was tested for two simulated 

polydisperse systems. As indicated by the black bars, (a-c) the first system follows a lognormal distribution 

with location parameter  = 1.4 μm2/s and scale parameter  varying from 0.1 (a), 0.5 (b) to 2.0 (c)and 

(d) the second follows a double lognormal distribution with 1=0.9 μm2/s ,1 =1.5 and2=8.7 μm2/s 

2=1.5.The orange curves are the result from cFRAP analysis and almost perfectly match with the true 

distributions.  

4.6 Validation of cFRAP-sizing 

The performance of cFRAP-sizing was compared experimentally to DLS (Dynamic Light 

Scattering) as a standard technique for measuring the size distribution of nanomaterial 

dispersions. Solutions of dextrans of various molecular weights were prepared and their 

size distribution was measured by DLS. FITC-labeled dextrans of similar molecular weights 

were used for sizing by cFRAP. In all cases the cFRAP size distributions corresponded very 

well with the ones obtained by DLS (Fig. 7). As could be expected, thanks to including 

spatial information in the cFRAP model, the PDI (polydispersity index) of the distributions 

was significantly less compared to the apparent PDI measured by DLS which only takes 

time information into account and, therefore, has more limited precision (Fig. 8). 
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Figure 7. Experimental validation of cFRAP versus DLS as a standard sizing technique of nanomaterial 

dispersions. Measurements are performed on five types of dextrans each with a different nominal MW: (a) 

4 kD, (b)10 kD, (c) 40 kD, (d) 150 kD and (e) 500 kD. For cFRAP the dextrans were labeled with FITC (FD), 

while they were unlabelled (D) for DLS. The orange lines correspond to the cFRAP measurements, and the 

black lines correspond to DLS results. The dashed lines indicate the standard deviation (n = 10).   
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Figure 8.  Comparison of the apparent size polydispersity measured by cFRAP compared to DLS. As DLS 

essentially only uses time information of the diffusion process, its precision is significantly less as compared 

to cFRAP which also takes spatial information into account. (n=10, one-way ANOVA analysis, *P<0.05).    

Next, we wanted to prove experimentally that cFRAP is very well capable of analyzing broad 

size distributions of nanomaterials. Therefore, as a final validation step, we prepared 

mixtures of FD (FITC-dextran) with a gradually increasing range of MW to see if cFRAP can 

measure the full size distribution correctly. As the results in Fig. 9 show, cFRAP can 

accurately retrieve the expected size distributions from ~2 to ~80 nm, in line with the aim 

to develop a method for nanomaterial sizing in this range.  
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Figure 9. Experimental validation of cFRAP-sizing.  Mixtures were prepared with a gradually increasing 

number of FITC-dextrans with different MW: (a) mixture of 1 mg/ml FD4 (4 kD FITC-dextran) and 0.5 

mg/ml FD10 (10 kD FITC-dextran), (b) mixture of 1 mg/ml FD4, 0.7 mg/ml FD10 and 0.5 mg/ml 40 kD (40 

kD FITC-dextran), (c) mixture of 1 mg/ml  FD4, 0.7 mg/ml FD10, 0.3 mg/ml FD40 and 0.3 mg/ml FD150 

(150 kD FITC-dextran), (d) mixture of 1 mg/ml FD4, 0.6 mg/ml FD10, 0.4 mg/ml FD40, 0.25 mg/ml FD150 

and 0.25 mg/ml FD500 (500 kD FITC-dextran). The grey dotted lines indicate the size distribution of the 

individual FITC-dextrans measured by cFRAP. The black dotted lines are the sum of the grey dotted lines 

and represent the expected size distribution of the FD mixtures. The solid orange lines are the size 

distributions of the mixtures as experimentally measured by cFRAP, while the orange dashed lines indicate 

the SD (standard deviation). (n=10)   

 

5. CONCLUSIONS 

A new FRAP method of cFRAP has been developed here based on rFRAP model can precisely 

and straightforwardly measure the distribution of diffusion coefficients/size of a 

polydisperse systems. A rectangle is photobleached and the full tempo-spatial information 

available in the confocal recovery images is exploited using a dedicated theoretical recovery 

model to extract a continuous distribution of diffusion coefficients. cFRAP can distinguish 

two subpopulations of their diffusion coefficient differences by as small as a factor 3 in 

comparison with the differences by at least a factor of 8 for the classic FRAP (only the 

average fluorescence in the bleach area is considered as a function of time). It is confirmed 
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through simulations that cFRAP can correctly analyze polydisperse systems with a 

continuous broad range of diffusion coefficients. Furthermore, it is investigated that cFRAP 

analysis can be performed down to SNR = 2.4. The performance of cFRAP was compared 

experimentally to DLS as a standard technique for measuring the size distribution of 

nanomaterial dispersions. Thanks to including spatial, information in the cFRAP model, the 

PDI of the distributions was significantly less compared to the apparent PDI measured by 

DLS which only takes time information into account and, therefore, has more limited 

precision.  
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ABSTRACT 

Sizing nanomaterials in complex biological fluids, such as blood, remains a great challenge 

in spite of its importance for a wide range of biomedical applications. In drug delivery, for 

instance, it is essential that aggregation of protein-based drugs is avoided as it may alter 

their efficacy or elicit immune responses. Similarly it is of interest to determine which size 

of molecules can pass through biological barriers in vivo in order to diagnose pathologies, 

such as sepsis. In this chapter, we report on continuous Fluorescence Recovery After 

Photobleaching (cFRAP) as a new analytical method enabling size distribution 

measurements of nanomaterials (1-100 nm) in undiluted biological fluids. We demonstrate 

that cFRAP allows to measure protein aggregation in human serum and to determine the 

permeability of intestinal and vascular barriers in vivo. cFRAP is a new analytical technique 

that paves the way towards exciting new applications that benefit from nanomaterial sizing 

in bio-fluids.     
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1. INTRODUCTION 

Measuring the size of nanosized materials in complex biological fluids, such as blood or 

cerebrospinal fluid, is of great importance in a wide range of applications in the life sciences. 

In drug delivery, for instance, the effective size of nanomaterials in biofluids is important 

because it directly influences the biodistribution in the body1-4. Indeed, even though 

nanomedicine formulations may be stable under normal storage conditions, they may very 

well aggregate after administration into a biological fluid such as blood5, 6. Similarly, there 

is a growing appreciation that the colloidal stability of therapeutic proteins needs to be 

tested in blood as protein aggregation after intravenous administration will alter their 

functionality and may induce immunogenic responses7, 8. Yet, methods to investigate 

submicron protein aggregates in serum are virtually non-existent9, 10. Being able to size 

nanomaterials in biofluids is of interest to medical diagnosis as well, for instance to 

determine intestinal or vascular barrier permeability which is related to several pathologies, 

such as sepsis, liver disease, inflammatory bowel disease and neurodegenerative 

diseases11-13. Barrier permeability can be assessed by administering inert size probes, e.g. 

orally or intravenously, followed by quantification of the size and amount of probes that 

have leaked through the barrier.  

Despite its relevance, measuring the size of molecules and nanomaterials in complex 

biological fluids remains a major challenge. A few years ago our group demonstrated that 

nanoparticles can be sized in undiluted biological fluids by fluorescence Single Particle 

Tracking (fSPT) microscopy14-17. However, as it is based on imaging the Brownian motion 

of individual, fluorescently labeled nanomaterials, it is mostly suited for nanoparticles with 

a size above ~0.1 µm. Therefore, a technique for measuring size distributions of 

nanomaterials in biofluids in the 1100 nm range is still very much needed. 

Here we report on the use of fluorescence recovery after photobleaching (FRAP) to measure 

size distributions of nanomaterials in biological fluids (Fig.1). In a FRAP experiment, the 

sample is placed on a confocal laser scanning microscope and the fluorescently labeled 

molecules or nanoparticles are photobleached in a micron sized area by a powerful 

excitation pulse. The fluorescence inside the bleach area will subsequently recover at a rate 

that is proportional to the diffusional rate of the fluorescent species. Until now, FRAP data 

have mostly been analyzed and interpreted in terms of a single average diffusion coefficient. 

Verkman and Periasamy were the first to develop a FRAP model for the measurement of 

continuous distributions of diffusion coefficients18. The method was based on measuring the 

fluorescence intensity as a function of time in a spot bleached by a stationary focused laser 

beam, as was common at that time. Consequently, since only time information was taken 

into account, the resolution to discriminate species with a different diffusion coefficient was 

rather limited (factor of 8). A similar approach was recently reported based on multi-photon 
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spot beaching experiments for determining the size of macromolecular complexes in cells19. 

In the meantime, Hauser and colleagues showed that the resolution to discriminate two 

diffusing components could be substantially enhanced (factor of 3) by including spatial 

information into FRAP analysis20. Building forth on these concepts, here we propose an 

improved FRAP methodology that enables the measurement of continuous distributions of 

diffusion coefficients (cFRAP), which can be easily converted to equivalent size distributions. 

A rectangle is photobleached and the full tempo-spatial information available in the confocal 

recovery images is exploited using a dedicated theoretical recovery model to extract a 

continuous distribution of diffusion coefficients. The method is very flexible in that the 

rectangle can have any size, which conveniently allows to optimize the recovery time for a 

given diffusion coefficient so as to optimally match the sampling rate of the microscope 

used. 

 

Figure 1  Schematic overview of cFRAP-sizing experiments.  (1a) Measuring protein aggregates in serum 

and (1b) measuring the permeability of the small intestines and vasculature of mice following oral gavage 

or intravenous (IV) injection of fluorescent probes. (2) Only a few microliters of sample are required for 

cFRAP experiments on a standard confocal microscope (3) for retrieving the size distribution.  

First we demonstrate that cFRAP-sizing enables accurate determination of protein 

aggregation in undiluted blood serum (Fig.1a). Next, in combination with the 

administration of a broad range of inert size probes, we show that cFRAP-sizing allows to 

characterize in great detail the intestinal and vascular permeability in mice (Fig.1b). 

Importantly, since a single measurement is sufficient to determine the full size distribution 

of probes that have leaked through the barrier, we find that the number of animals needed 

to assess the barrier permeability is reduced up to five times compared to classic 

approaches where probes of different size are administered and analyzed separately. 
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2. MATERIALS AND METHODS 

2.1 Covalent protein labeling with an extrinsic fluorophore 

 A 10 mg/mL solution of bovine serum albumin (BSA) was prepared by dissolving BSA 

lyophilised powder ≥ 96 % (Sigma-Aldrich) in carbonate buffer pH 8.3. The free amine 

groups of BSA were covalently labeled by 5-6-carboxyfluoresceine succinimidyl ester (5(6) 

FAM, SE) (Life Technologies Corporation, Molecular Probes®, Eugene, USA). For this 

purpose, 100 µL of a 5 mg/mL fluorescein solution in dimethylsulfoxide (Life Technologies 

Corporation, Ghent, Belgium) was added to a 2 mL 10 mg/mL BSA solution and incubated 

for 1 hour under constant gentle stirring. The incubation was stopped by adding 200 µL of 

a 210 mg/mL hydroxylamine (Sigma-Aldrich) (stop solution) in ultrapure water adjusted to 

pH 8.5 with 4 M sodium hydroxide solution (Sigma-Aldrich). Next, the excess of free 

fluorescein labels was removed by dialysis overnight against 4 L 0.1 M phosphate pH 7.0 in 

a Slide-a-lyser 20 kDa MWCO (Thermo Scientific, Rockford, USA). The phosphate buffer 

was adjusted to pH by varying the amount of 0.1 M monobasic dihydrogen phosphate (WR, 

Leuven, Belgium) and 0.1 M dibasic monohydrogen phosphate (Merck, Darmstadt, 

Germany) solution. The buffer was filtered through a 0.2 µm PES filter (Novolab, 

Geraardsbergen, Belgium) before use.  

Soluble protein concentration and labeling efficiency was determined by measuring the 

absorbance at 280 nm and at 495 nm respectively on a Spectramax M2 (Molecular devices, 

Sunnyvale, USA) with the SoftMax pro software version 6.1. For all measurements, samples 

were diluted 10-fold and 200 µL samples and buffer controls were transferred in triplicate 

to a 96-well plate (96 well pureGrade, non-sterile, transparent, F-bottom, Novolab). 

The degree of labeling (DOL) was calculated using the measured absorbance of the dye at 

its absorbance maximum of 495 nm (blank corrected) and according to the following 

equation:  

𝐷𝑂𝐿 =  
𝐴max 𝑑𝑦𝑒  𝑥 MW𝑝𝑟𝑜𝑡𝑒𝑖𝑛

[𝑝𝑟𝑜𝑡𝑒𝑖𝑛] 𝑥 휀𝑑𝑦𝑒

  

with MWprotein for the molecular weight of the protein, 휀𝑑𝑦𝑒for the molar extinction coefficient 

of the dye (68000 cm-1M-1) at its absorbance maximum (494 nm), and the protein 

concentration (mg/mL). The Lambert-Beer law is used to calculate the protein concentration. 

For this application, the measured protein absorbance at 280 nm was corrected for the dye 

absorbance at 280 nm according to manufactures’ instructions using the following equation: 

Aprotein = A280nm – Amax dye (CF) with CF = 
𝐴280 𝑓𝑟𝑒𝑒 𝑑𝑦𝑒

𝐴max 𝑓𝑟𝑒𝑒 𝑑𝑦𝑒
 . 

2.2 Size exclusion chromatographic measurements.  
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The protein size distribution in the non-stressed and stressed samples for labeled and non-

labeled BSA was further evaluated by size exclusion chromatography. For chromatographic 

separation, a Yarra SEC-3000 column (300 mm × 4.6 mm × 3.0 µm) attached to a Security 

cartridge GFC 3000 (4 × 3.0 mm) (Phenomenex, Utrecht, Netherlands) was installed on an 

Acquity H-Class UPLC BioSystem (Waters, Milford, MA, USA) equipped with a PDA detector 

with a 5 mm 1500 nL titanium flow cell. Empower 2 was used as operating system. The 

mobile phase consisted of 0.1 M phosphate pH 7.0 and the used Gel Filtration Standard was 

from Bio-Rad (Temse, Belgium). Before injection of the sample and standards on the column, 

the insoluble aggregates were removed by centrifugation in a 5424R centrifuge with FA-45-

24-11 rotor (Eppendorf) for 10 minutes at 15000 rpm. The concentration of the soluble 

protein was determined on a spectramax M2 multi-detection reader using the Lambert- 

Beer equation with the measured absorbance at 280 nm and the theoretical absorbance at 

280 nm for a 1% solution (being 0.66 for BSA). In addition, the absorbance at 320 nm was 

measured for background correction. During analysis, the autosample tray and column oven 

sample tray were both thermostated at 22 °C. The flow rate was set on 0.35 mL/min. After 

equilibration with the mobile phase, samples and standards were injected in triplicate. 20 

µg was injected for each sample. Protein elution from the column was detected at 280 nm, 

while 320 nm was recorded as background control. The molecular weight standard was 

injected in triplicate. For the proteins within the molecular weight separation range of the 

column, a linear correlation between logarithm of the molecular weight and the elution time 

was established and used for size estimation of the aggregated and non-aggregated 

proteins. 

2.3 Temperature stressed protein 

Labelled and non-labelled BSA was diluted 10-fold to obtain a 1 mg/mL solution. Next, the 

sample was distributed over 1.5 mL Eppendorf tubes (Eppendorf, Hamburg, Germany) in 1 

mL fractions and subjected to temperature stress upon incubation in a Thermomixer 

comfort (Eppendorf) for 6 hours at 75 °C. A non-stressed labeled and non-labelled sample 

was retained at 4 °C. During all manipulations over the different steps, the samples were 

kept protected from light.  

To measure the size distribution of protein in biological fluids, blood was withdrawn on 

citrate from healthy volunteers under informant consent. Plasma was prepared by 

centrifugation. For analysis of proteins with the cFRAP method, mixtures of plasma and 

protein (90/10, v/v plasma/protein) were prepared. The same dilutions of protein in buffer 

were made to serve as a control. 

2.4 Fluorescent/dextran probes.  
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 FITC-dextran (FD) or dextran (D) of various MW (FD4/D4: MW =4×103 g/mol, FD10/D10: 

MW =1×104 g/mol, FD40/D40: MW =4×104 g/mol,  FD150/D150: MW =1.5×105 g/mol, 

FD500/D500: MW=5×105 g/mol) were purchased from Sigma-Adrich (Bornem, Belgium). 

For the validation experiments of cFRAP,  FITC-dextran solutions were prepared in HEPES 

buffer at pH7.0 and dextran solutions were prepared in distilled water. The concentration 

was always 0.5 mg/ml for DLS (Dynamic Light Scattering) measurements. For each type of 

FD, a concentration series was prepared in order to determine the linear fluorescence range 

as observed on the confocal microscope. For the in vivo permeability measurements, 

different FDs were mixed at a weight ratio 

(FD4:FD10:FD40:FD150:FD500=40:25:15:10:10) and subsequently dissolved in PBS 

buffer, where the concentration of FD4 was 80 mg/ml. While this is outside the linear 

fluorescence range, such a high concentration was chosen to compensate for the dilution 

that occurs when the mixture is injected into mice. 

2.5 Animals 

C57BL/6J mice were housed in an SPF animal facility with ad libitum access to food and 

water. Both male and female mice (8–12 weeks old) were used. All experiments were 

approved by the ethics committee of the Faculty of Science of Ghent University. Mice were 

distributed randomly in different cages and mice from the same cage were randomly 

allocated to different experimental groups. They were injected intraperitoneally (i.p.) with 

8.75 mg/kg body weight LPS from Salmonella enterica serotype abortus equi (Sigma), an 

LD100 dose for wild type C57BL/6J mice. No statistical method was used for sample size 

estimate. 

2.6 In vivo experiments on intestinal permeability. 

 Control mice (injected with D-PBS) were sampled 7 h after injection. Septic shock mice 

were sampled 7 and 20 h after induction of peripheral inflammation. FITC-labeled dextran 

solution was administered to mice by gavage five hours before sampling. Blood obtained 

by heart puncture was collected in EDTA-coated tubes (Sarstedt) and plasma was prepared. 

Leakage of FITC-labeled dextran into the circulation was determined by measurement of 

the fluorescence with λex/λem = 488/520 nm. Values were normalized to the PBS control 

value. After fluorescence measurement, these samples were also measured by cFRAP in a 

similar fashion as for the vascular permeability experiments. No blinding was done for all 

of samples. The fluorescence intensity of these samples as measured by fluorimetry were 

compared by one-way analysis of variance (ANOVA). No samples or animals were excluded 

from the analysis 

2.7 In vivo experiments on vascular permeability.  
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Control mice (injected with D-PBS) were sampled 7 h after injection. Septic shock mice 

were sampled 7 and 20 h after induction of peripheral inflammation. One hour before 

sampling, mice were injected intravenously (IV) with the relevant FITC-labeled dextran 

solutions. CSF was harvested from the fourth ventricle, centrifuged at 300 g to remove all 

cell debris, and CSF supernatant was collected and diluted 50-fold in D-PBS (Invitrogen) 

prior to analysis. Next, mice were transcardially perfused with D-PBS supplemented with 

heparin to remove all labeled dextran in circulation. Organs were isolated, cut into small 

pieces and incubated with formamide to extract the remaining FITC-labeled dextran from 

the tissues. After overnight incubation at 37°C, samples were centrifuged and supernatant 

was collected. Finally, the fluorescence of CSF and organ supernatant was measured at 

λex/λem = 488/520 nm by Fluostar Omega and values were normalized to the PBS control 

per tissue. Again, the samples of the fluorescence were compared by one-way ANOVA. The 

samples were subsequently analysed by cFRAP to determine the size distribution of FITC-

dextrans in the various bodily fluids and organs. 

 

3. RESULTS  

3.2 Characterization of protein aggregation in biological fluids 

As a first application, we used cFRAP-sizing to analyze protein aggregates in the sub 0.1 

µm range in full serum. This is of current interest since protein aggregation has emerged 

as a key issue underlying multiple deleterious effects in the use of protein therapeutics, 

including loss of efficacy, altered pharmacokinetics, reduced stability and shelf life, and 

induction of unwanted immunogenicity7, 8. Fluorescently labeled bovine serum albumin (BSA) 

was used as a model protein, which could be analyzed by cFRAP down to a concentration 

of 4 µg/ml (60 nM) (Fig. 2). Protein aggregates were prepared by applying heat stress to 

the BSA monomers in a buffer solution. The unstressed and heat-stressed samples were 

first characterized in buffer solution by two standard techniques: DLS and SEC (Size 

Exclusion Chromatography). For the heat stressed sample, SEC showed both a monomer 

peak and the presence of aggregates (Fig. 3a). However, the SEC signal corresponding to 

aggregates was not very well resolved, so that the extent of aggregation was difficult to 

assess. On the other hand, DLS does show the size range of aggregates in the heat-stressed 

sample but failed to detect the monomers (Fig. 3b). Interestingly, cFRAP-sizing could 

discriminate both monomers and aggregates in a single measurement instead (Fig. 3c), 

with the size range of aggregates in excellent agreement with the DLS size distribution. 

This nicely demonstrates again the superior resolving power of cFRAP. Next, we addressed 

the main question if cFRAP is able to size protein aggregates directly in serum, which is 

difficult, if not impossible, to do by DLS or SEC. cFRAP was used to analyze samples 

prepared of BSA monomers and BSA aggregates in 90% serum. Comparison with the size 
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distributions in buffer solution shows that both monomers and aggregates could be correctly 

sized in serum by cFRAP (Fig. 3d). We conclude that cFRAP-sizing is very well capable of 

accurately quantifying protein aggregates in a complex biological fluid like serum in the < 

0.1 µm range with excellent resolving power.  

 

 

Figure 2. The influence of signal to noise ratio (SNR) on cFRAP analysis and determination of the lower 

concentration limit. cFRAP was performed on solutions with decreasing FD40 concentration and, therefore, 

deteriorating SNR. Experimental results are cross-checked with simulated experiments (single component 

system with D=50 µm2 s-1) having similar SNR.  Even at a SNR as low as 2.4, the distribution of diffusion 

coefficients could be retrieved by cFRAP. On the confocal microscope used in this study, this corresponded 

to a lower concentration of 4 µg ml-1 FD40 (100 nM). It is to be noted that the exact value of the lower 

concentration limit depends on the type of confocal microscope used and the brightness of the labeled 

molecules. 
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Figure 3  Sizing protein aggregates by SEC, DLS and cFRAP. Aggregates of fluorescently labeled BSA were 

prepared through heat-stress. (a-c) FITC-labeled BSA in buffer is measured before (black) and after 

(orange) applying 6 h heat stress by (a) Size Exclusion Chromatography, (b) Dynamic Light Scattering 

(DLS) and (c) cFRAP. (d) Unstressed (black lines) and heat-stressed (orange lines) samples were diluted in 

(90%) serum. The solid lines show the size distributions as measured by cFRAP while the dashed lines 

indicate the standard deviation on three independent repeats (with 10 cFRAP measurement per repeat). 

The size distributions as determined by cFRAP in serum nicely correspond to those in buffer. This 

demonstrates that cFRAP is very well capable of analyzing protein aggregates in (nearly undiluted) serum.  

3.2 Assessing intestinal permeability in mice with septic shock 

To further evaluate the potential of cFRAP-sizing we wondered to which extent cFRAP could 

be suitable for a detailed assessment of the permeability of the intestinal barrier in mice. 

The intestinal barrier is essential to prevent entry of the harmful intestinal content into the 

bloodstream. It consists of a single layer of epithelial cells that are sealed by tight junctions 

composed of claudins and other proteins in the junctional complex. Loss of intestinal barrier 

integrity is associated with various diseases, such as sepsis and inflammatory bowel disease. 

As there are indications that restoring intestinal integrity might ameliorate disease 

progression21, there is great interest in finding pharmacological compounds, such as 

probiotics, that can safely strengthen the intestinal barrier. Therefore, methods are needed 

to accurately and quantitatively assess the intestinal barrier permeability. Inert 

fluorescently labeled dextrans of different molecular sizes (32000 kDa) can be used for 

this purpose. A probe of a particular size is administered orally and the quantity that leaks 
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into the blood is measured by fluorimetry, potentially coupled to size exclusion 

chromatography22. To get information to which extent the barrier is compromised, this 

approach requires administering dextrans of various sizes sequentially – for which a new 

set of animals may be needed each time - and even then only discrete size information is 

obtained depending on the size of the probes used. In addition, these probes typically show 

some polydispersity so that the exact size that has leaked through is never certain. 

To overcome these limitations, we propose the oral intake of a mixture of FITC-dextrans 

covering a wide range of sizes. cFRAP can then be used to analyze the size distribution of 

FITC-dextrans that have entered into the blood circulation after permeation through the 

intestinal barrier. A mixture of FITC-dextrans (FD) was prepared with a size ranging from 

~2~80 nm. We verified that the entire size distribution could be measured by cFRAP, both 

in PBS buffer and in serum (Fig. 4a). The FD mixture was administered by oral gavage to 

mice treated with an intraperitoneal injection of PBS (control) or lipopolysaccharides (LPS) 

to induce septic shock. As schematically shown in Fig. 4b, blood was collected by cardiac 

puncture respectively 7 and 20 h after induction of septic shock and plasma was prepared. 

In each case, oral gavage of FDs was done 5 h before blood collection. Plasma fluorescence 

was measured by fluorimetry to determine the overall fraction of intestinal FD that had 

entered into the blood circulation (Fig. 5). These results confirm that septic shock results 

in loss of intestinal barrier integrity, as would be expected23, 24. cFRAP-sizing was 

subsequently performed on the plasma samples to determine the size distribution of FDs 

that had leaked through the epithelium (Fig. 4b).  An exemplary cFRAP experiment is 

shown in Fig. 6. To correct for differences in concentration and molecular brightness 

between the various FDs in the mixture, all size distributions in serum were normalized to 

the reference measurement of the FD mixture in PBS buffer (Fig. 4a). As for the control 

mice with intact intestinal barrier (treated with PBS only), the amount of FD in plasma was 

insufficient to perform meaningful cFRAP experiments. In LPS treated mice we found that 

at 7 h after LPS injection FDs in the lower size range (up to 10 nm) had entered into the 

blood circulation. Twenty hours after LPS injection the distribution had not substantially 

changed, which suggests that the barrier integrity does not change noticeably from 7 h to 

20 h after inducing septic shock. Note that subtle differences in the distributions may arise 

from the fact that the results at each time point are determined from a different set of 

animals. 
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Figure 4. Assessing the permeability of the intestinal epithelium in mice. To assess the permeability of the 

intestinal barriers, a mixture of FITC-dextrans was prepared spanning a wide range of sizes from ~2 to ~80 

nm. The mixture was prepared according to the weight ratio FD4 : FD10 : FD40 : FD150 : FD500 = 45 : 25 

: 15 : 10 : 10.  (a) The full size range can be measured by cFRAP in PBS buffer and (95%) serum.  By 

normalizing the serum data to the results in PBS, these differences between FD components are cancelled 

out (since ki is constant independent of the medium) and a virtually uniform distribution is obtained which 

is very well suited to interpret in a continuous fashion the size range of probes that can permeate through 

the barrier.  (b) Following the induction of septic shock by intraperitoneal injection of LPS, a mixture of FDs 

covering a broad range of sizes (grey lines) was administered to mice by oral gavage, respectively 2 h and 

15 h after LPS injection. Blood samples were collected respectively 7 h (green lines) and 20 h (orange lines) 

after LPS injection. Leakage of FDs through the intestinal epithelium in healthy mice (injected with PBS 

instead of LPS) was negligible and could not be measured by cFRAP. The data shown are average values 

obtained on 3 mice, with 10 cFRAP-sizing measurements per mouse. The solid lines are the average of all 

these results, while the dashed lines indicate the corresponding standard deviation. (c) To validate the 

cFRAP results on the intestinal barrier permeability, a classic experiment was performed where FITC-

dextrans of various sizes are administered separately to mice by oral gavage. The fluorescence intensity 

values are shown relative to the values of control mice (indicated by black dashed line). Only the values for 

FD4 and FD10 are significantly higher than the control case (P<0.05). 
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Figure 5. The total fluorescence of FDs in blood after oral gavage in mice with septic shock was measured 

by fluorimetry (λex=488 nm and λem=520 nm). The values (n = 3) are expressed relative to the fluorescence 

in control mice (indicated by black dashed line), which were injected intraperitoneally with PBS only. Blood 

samples were collected at t = 7 h (green bar) and t=20 h (orange bar).  

 

Figure 6. Example of a typical cFRAP experiment performed in blood. (a) The blood sample was collected 

at 7 h after LPS injection of a mixture of FDs covering a broad range of sizes. Confocal time-lapse series 

showing images before (t<0) and after bleaching (t = 0.5, 2.0 and 10.4 s). (b) Examples of spatial recovery 

curves at different time points are shown. N is the ring number as explained in Figure 1. The symbols denote 

the experimental data and the solid lines indicate the best fit solution of the cFRAP model to the data. 

To validate these results, we performed extra experiments according to the classical 

approach of administering FITC-dextrans of different size separately in different mice and 

measuring the resulting fluorescence by fluorimetry in blood. In correspondence with the 
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cFRAP experiments, we found that only FD with a nominal hydrodynamic size of ~2.4 nm 

(FD4) or ~4.0 nm (FD10) had entered the blood circulation, while larger FDs were not 

detected (Fig. 4c). Importantly, while ~30 mice were needed to determine the size cut-off  

of the intestinal barrier by the classical method of using different FD probes sequentially, 

microliter blood samples of only 6 mice were needed when cFRAP-sizing was used. This 5 

fold reduction in the number of lab animals is one of the great advantages of cFRAP-sizing 

to measure barrier leakiness in vivo. 

3.3 Assessing vascular permeability in mice with septic shock 

Vascular permeability is essential for supplying tissues with nutrients and clearing waste 

products. Vascular permeability may be increased by diseases such as inflammatory 

disorders and cancer, as well as by wound healing. This hyperpermeable state is believed 

to influence the composition of the extravasate and the pathways that solutes follow in 

crossing the vascular endothelium25. Vascular hyperpermeability may also affect the 

barriers in the brain, including the endothelial blood-brain (BBB) and epithelial blood-CSF 

barrier (BCSFB)26. Disruption of the integrity of the BBB and BCSFB is believed to play a 

detrimental role in disease pathogenesis as protection of the delicate microenvironment of 

the brain from neurotoxic agents in the blood is compromised. 

In order to quantify the size range of molecules that can leak through the vascular barrier, 

fluorescently labeled dextrans of different sizes can be injected intravenously, followed by 

analysis of fluorescence intensity in the relevant tissues. According to the classic protocol, 

each size of dextran is to be injected separately, each time in a different animal. Instead, 

by intravenous administration of a mixture of FDs covering a broad range of sizes, here we 

demonstrate that a single experiment is sufficient when combined with cFRAP-sizing. First 

we confirmed that the full FD size range could be analyzed in various organ fluids and CSF 

collected from control mice to which the FD mixture was added (Fig. 7). Next, as 

schematically shown in Fig. 8, mice were treated with an intraperitoneal injection of PBS 

(control) or LPS (septic shock). The mixture of FDs was injected intravenously 1 h before 

sample collection, which occurred respectively 7 and 20 h after PBS or LPS injection. CSF 

was collected using the cisterna magna puncture method. Kidney, brain, lung, spleen, ileum 

and liver were isolated after cardiac perfusion with PBS/heparin to remove all blood. Next, 

organ fluid was extracted from the different organs and total fluorescence was measured 

by fluorimetry after removing cellular debris, showing that there was a large increase in 

vascular permeability following septic shock (Table 1). From 7 to 20 h, the permeability 

increased further for CSF, kidneys, lung and ileum. Next, these samples were analyzed with 

cFRAP to determine the size distribution of FDs that had leaked through the vascular barrier. 

The size distributions (Fig. 8) were normalized to the relative fluorescence intensity as 

measured by fluorimetry (cfr. Table 1) so that the y-axis reflects the amount of FD that 
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has leaked through relative to the control (healthy PBS injected mice) for CSF or each organ. 

The cFRAP-sizing results are shown in Fig. 8 for CSF and kidney extract, while Fig. 9 shows 

the cFRAP results obtained on extracts from brain, lungs, spleen, ileum and liver.  Clearly, 

while no FD was found in the CSF of healthy control mice, FDs with a size below ~10 nm 

significantly permeated from the blood into the CSF in LPS treated mice. In kidneys the 

endothelium was found to become more permeable over time with FDs up to ~20 nm 

leaving the blood and entering the kidneys. Also here it is of note that 5 times less animals 

were needed as would have been the case for the classic fluorimetry method for which the 

size probes are to be administered separately in different animals. At the same time 

unprecedented detailed information is obtained on the continuous size range of probes that 

can leak through the barrier. 

 

Figure 7. To assess the permeability of the vascular barrier, a mixture of FITC-dextrans was prepared 

spanning a wide range of sizes from ~2 to ~80 nm. (a) The FD mixture was measured by cFRAP in PBS, 

CSF and extracted organs fluids. (b) Normalization of the size distributions in CSF or organ fluids to the 

size distribution in PBS buffer corrects for differences in concentration and fluorescence brightness between 

the various probes in the mixture. All of above data are the average of 10 measurements. 
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Figure 8. Assessing the vascular permeability in mice. Following the induction of septic shock by 

intraperitoneal injection of LPS, a mixture of FDs covering a broad size range (grey line) was intravenously 

injected respectively 6h and 19h after the LPS treatment. CSF and  organs were  collected  respectively at 

7 h (green lines)  and 20 h (orange lines) after the LPS treatment. cFRAP-sizing was performed on (a) CSF 

and (b) kidney-extract.  Control mice were injected with PBS (instead of LPS) to determine the leakage in 

healthy mice as a reference (black lines). Note that in healthy mice FDs did not appear in the CSF. The data 

shown are average values obtained on 3 mice, with 10 cFRAP-sizing measurements per mouse. The solid 

lines  are the average of all these results, while the dashed lines indicate the corresponding standard 

deviation. Note that the Relative FI values can only be compared for the various time points per fluid. 

Comparison of Relative FI values should not be made between different sample types. 

 

Table 1. The overall fluorescence intensity in CSF and organ fluids as measured by fluorimetry. Samples 

were collected at time points of t=7 h and t=20 h after intraperitoneal injection of PBS (control) or LPS 

(septic choc) in mice. The mixture of FDs was IV injected 1h before sample collection. The fluorescence 

intensity values are shown as absolute fluorescence intensity (FI, arbitrary units) and relative to the 

fluorescence in control mice, which were injected with PBS only. 
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Figure 9. Assessing the vascular permeability in mice by measuring the range of probes that can permeate 

through the vascular endothelium in mice. cFRAP-sizing measurements were performed on (a) brain-, (b)  

lung-, (c) spleen-, (d) ileum- and (e) liver-fluids. Control mice were injected with PBS (instead of LPS) to 

determine the leakage in healthy mice as a reference (black lines). The data shown are the average from 3 

mice, and for each mice 10 cFRAP measurements were performed. The solid line is the average of all these 

results and the dashed lines indicate the corresponding standard deviation. Note that direct comparison of 

the Relative FI values is only valid for the different time points of the same organ. Comparison of Relative 

FI values should not be made between organs. We could see brain an increase in the permeation of small 

molecules < 10 nm for LPS treated mice. The same is true for the lungs although they also contained a 

small fraction of large FDs (> 20 nm) after 20h. In the spleen there was only an increase in the permeation 

of large molecules (> 20 nm) while in the liver probes were found over the entire tested range (~2 - ~80 

nm). The Ileum, finally, exhibits a bimodal distribution of probes in LPS treated mice with a marked increase 

in the permeation of small molecules (~2 - ~10 nm). These data show that the cFRAP method enables 

detailed analysis of vascular permeability in all tested organs. 
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4. DISCUSSION 

FRAP has been used for decades to measure the average diffusion coefficient of 

fluorescently labeled molecules in various media, from cells and extracellular matrices to 

food products and drug delivery materials27. Instead, rather than measuring a single 

average diffusion coefficient, we succeeded in extracting the full distribution of diffusion 

coefficients from the recovery images using a dedicated theoretical framework that makes 

use of the full temporal and spatial information available in confocal recovery images. As 

the cFRAP method is compatible with standard laser scanning confocal microscopes, it is 

easily accessible and straightforward to apply. Although cFRAP surely can be used to 

perform detailed biophysical diffusion studies, instead we have evaluated this technique to 

measure the size of nanomaterials in biological fluids. Considering the capabilities of typical 

confocal microscopes in terms of sensitivity and image acquisition rate, cFRAP is perfectly 

suited to measure the diffusion of nanomaterials in the 1-100 nm size range in fluids. As 

such it nicely complements the fluorescence Single Particle Tracking (fSPT) method that 

was recently developed in our group for nanoparticle sizing primarily in the 0.1-1 µm range 

17, 28.  

When characterizing protein aggregation, we even found that a single cFRAP experiment 

produces the same size information as obtained by DLS and SEC combined. Furthermore, 

a major benefit of cFRAP is that microliter samples are sufficient. In principle even smaller 

volumes are very well possible since a single confocal image series typically probes a volume 

of 100 µm × 100 µm × 10 µm which corresponds to 0.1 nl. Assuming 10 measurements 

per sample this amounts to a probed volume of only 1 nl. Sizing by cFRAP, therefore, is 

perfectly compatible with miniaturization approaches like microfluidics. 

As a first proof-of-concept application, we successfully demonstrated that cFRAP-sizing can 

be used to characterize protein aggregates directly in undiluted serum. This would be 

impossible to do by DLS due to strong light scattering by serum components. Also SEC is 

not without its problems since the high serum protein content may lead to interactions with 

the column matrix and altered elution profiles. Evidently the use of cFRAP comes at the 

expense of having to label the protein of interest. Yet, this is balanced by the fact that there 

are virtually no other techniques at this moment to characterize submicrometer protein 

aggregates in complex biological fluids. 

Based on cFRAP-sizing we also devised a new approach to rapidly assess the integrity of 

the intestinal and vascular barriers which is related to disease pathogenesis. While 

disruption of tight junctions involved in cellcell contact causes leakage of small molecules, 

the presence of epithelial apoptosis will allow permeation of larger molecules as well29. In 

the classic approach inert probes, such as FITC-dextrans, of a particular size are 

administered to lab animals. However, as the sequential administration and fluorimetric 
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analysis of probes of different sizes requires each time a different set of animals, it is time-

consuming, expensive and poses ethical issues. Instead, we have demonstrated the use of 

a single mixture of probes (FITC-dextrans) covering a very broad range of sizes. After 

sample collection of the relevant fluids, a single cFRAP experiment on a microliter sample 

can reveal the full size distribution of probes that have permeated through the barrier. The 

cFRAP-sizing method, therefore, reveals in a single experiment the full size distribution of 

probes that can leak through the barrier. Importantly, five times less animals were needed 

as compared to the classic fluorimetric method where FDs of (five) different sizes would 

have to be administered and analyzed separately. Although there is one report that has 

tried to assess endothelial barrier permeability with a mixture of FITC dextrans and 

fluorescence SEC analysis30, cFRAP-sizing has the clear advantage of being able to work 

with tiny sample volumes, even down to nanoliters if required. It is also very fast and does 

not require calibration (other than an intrinsic viscosity measurement) as is needed for SEC 

to interpret the elution profiles. Using cFRAP-sizing we even succeeded in analyzing FD 

leakage in microliter samples of cerebrospinal fluid, notwithstanding that the fluorescence 

was very weak. To the best of our knowledge this would be impossible to do by SEC. 

 

5. CONCLUSIONS 

We conclude that sizing by cFRAP is a powerful and valuable new analytical technique for 

measuring the size of nanomaterials in complex biological fluids. While we have 

demonstrated its usefulness in proof-of-concept applications, the potential of cFRAP-sizing 

reaches much further and more valuable applications are expected to follow suit, potentially 

in combination with microfluidic approaches which enable accurate handling of small sample 

volumes.   
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Part I INTRACELLULAR DELIVERY OF BIOPHARMACEUTICALS AND CONTRAST 

AGENTS BY VAPOR NANOBUBBLE PHOTOPORATION 

VNB photoporation is a relatively new method that is gradually receiving increasing interest 

in recent years to deliver nanomaterials into cells1-4. We report on a systematic comparison 

of two nanoparticle enhanced photoporation mechanisms in Chapter 2. Under condition of 

a single laser pulse per cell, we performed a systematic comparison of membrane 

permeabilization by photothermal heating vs. mechanical pore formation by vapor 

nanobubbles in terms of delivery efficiency and cytotoxicity. Despite the fact that it requires 

higher laser energies, we find that VNB photoporation allows more efficient cellular uptake 

of compounds due to the fact that larger pores could be formed. Yet, VNB photoporation 

did not induce extra cytotoxicity as compared to heating due to the fact that VNB generation 

is an almost purely mechanical effect that does not lead to heat diffusion into the 

surrounding tissue. Interestingly, by tuning the laser energy and hence the size of the VNBs, 

it seems possible (as we have no real proof of this) to tune the size of the pores that are 

created. This in turn allows to control the amount of molecules that are delivered into the 

cytosol, as well as the maximum size of molecules that are allowed to pass through. 

Although we are convinced that VNB photoporation is a promising alternative physical 

technique to efficiently deliver compounds into cells with little or no toxicity, further 

fundamental research is needed to fully understand the underlying mechanisms, like heat 

transfer from plasmonic nanoparticles to the environment, nanobubble dynamics and cell 

repair mechanisms. These aspects are explained in more detail below. A better 

understanding of these fundamental mechanisms will enable to better control and predict 

the influx of molecules into the cytoplasm. 

Specifically, it is well known that in plasmonic nanoparticles like AuNPs, the optical 

absorption is enhanced by Localized Surface Plasmon Resonance (LSPR). Due to LSPR, a 

series of sequential energy transfer processes occur. First, the oscillating electrons become 

thermalized within a few hundreds of fs through electron-electron interactions. After that, 

the thermalized electrons transfer their energy to the nanoparticle phonons (i.e. lattice 

vibrations) by electron-phonon coupling, resulting in an increase of the nanoparticle 

temperature. Finally, thermal equilibration is achieved in ~100 ps inside the NPs. This laser-

NP interaction has been extensively studied and is well known5-8. However, following 

thermal equilibration, the mechanisms of heat transfer from the particle to the environment 

remain  unclear. Neither is it entirely clear how the heating of NPs induces the formation of 

vapor nanobubbles. When the NP temperature remains below the critical water evaporation 

temperature, heat transfers occurs through heat diffusion9. However, when water 

evaporation occurs around the NP surface, heat transfer is more complex. Normally, the 

heat transport from NPs to water is simply described by a single critical interface 

conductivity which is assumed to be uniform across the NP surface10-12. This assumption 
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seems suitable when the vapor layer surrounding the NPs is formed in a homogenous 

manner. However, the Luo group recently showed that the vapor layer on the nanoscale is 

not homogenous on a nano-structured surface13. As a result, it seems logical that the heat 

transfer in case of a non-uniform vapor layer vapor will result in non-homogeneous heat 

transfer into the environment. Therefore, it is of interest to study how heat is transferred 

to water in case of a heterogeneous vapor layer formation in order to assess its contribution 

to membrane permeabilization and the impact of this heat transfer on cell viability. 

More fundamental studies on water vapor nanobubble dynamics are needed as well. When 

the NP temperature is above the critical temperature to initiate water vaporization, water 

vapor nuclei are formed around the NP surface. These will grow and coalesce to form a 

nanobubble around the NP, which can further expand and collapse. Current research on the 

dynamics of nanobubbles assumes a symmetric expansion and collapse11, 12. This seems to 

be a reasonable assumption when NPs are suspended in liquid far from any obstacles. 

However, in NP enhanced photoporation, the NPs are necessarily close or even adsorbed to 

the cell membrane, which will affect the nanobubble dynamics. For bubbles on the 

microscale it has already been described that they collapse in an asymmetrical fashion near 

a surface, resulting in the formation of a liquid jet towards the surface14, 15. Furthermore, 

when two bubbles are in close proximity, asymmetric bubble deformation can occur with 

the formation of a microjet16. To better understand photoporation process it is of 

fundamental interest to investigate in further detail how water vapor nanobubbles interact 

with the cell membrane. Yet, clearly this is very challenging from an experimental point of 

view as nanobubbles are too small to be resolved by optical imaging, as is done for 

microbubbles. Instead it seems more reasonable to study this by numerical simulation tools 

like molecular dynamics simulations. Recently, Berkowitz’s group applied coarse-grained 

molecular dynamics to study spontaneous nanobubble collapse and its mechanical effect on 

the cell membrane17. Although the 60 nm bubble was located closely to the membrane (~3 

nm), it did not induce a pore in the membrane. This shows that the location of the 

nanoparticle relative to the membrane is essential for obtaining perforation of cell 

membrane. In the future, it would be of fundamental interest to try to better understand 

the interaction of nanobubbles of various sizes with the cell membrane and to determine 

how pores can be most efficiently formed. In particular it would be of interest to compare 

pore formation when the nanoparticles are attached on the cell membrane, slightly 

invaginated (i.e. onset of endocytosis), or completely enveloped inside an endosome. 

Following pore formation in the cell membrane, the cell will try to repair the inflicted 

damage, which is quite essential to avoid cell death. The repair mechanism is reportedly 

based on Ca2+ influx that induces exocytosis of lysosomes for ‘patching’ of the pores18, 19. 

However, very little is known at this moment on  whether or not size and lifetime of pores 

influence the repair processes . In some reports attempts have been made to estimate the 
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pore lifetime, but the reported values range from tens of seconds to tens of minutes20-22. 

This is likely caused by differences in photoporation conditions, different cell types and 

different ways how the measurements are performed. Therefore, more systematic studies 

are needed to better understand and predict pore formation and repair, which in turn is 

needed to better understand the loading process for different types of cells and molecules. 

This will be especially useful to optimize photoporation of larger macromolecules, such as 

mRNA or plasmids.   

In Chapter 3 we showed that photoporation is a well-suited technology for the cytosolic 

delivery of nano-labels for long-term in vivo imaging of cells. It was shown that direct 

cytosolic delivery of nano-sized contrast agents by VNB photoporation opens up exciting 

avenues for improved long-term quantitative in vivo cell tracking. Apart from much more 

efficient cell loading and prolonged cell visibility in vitro and in vivo as compared to 

endocytic labeling, we show that asymmetric inheritance of labels can be avoided by 

delivering the labels directly into the cytosol through VNB photoporation. As VNB 

photoporation is independent of the cell type and contrast agent used, we expect that it will 

be  an enabling technology that is of benefit for improved cell tracking studies. While in this 

thesis we focused on fluorescence labels, it will be of interest to evaluate in the future other 

contrast agents that are used for cell tracking, like superparamagnetic iron oxide 

nanoparticles or Gd-complexes for magnetic resonance imaging. Similar to the fluorescent 

labels, the most straightforward way to label cells with these contrast agents is also by 

simple incubation and endocytic uptake during in vitro culture. Yet, these MRI contrast 

agents suffer from similar disadvantages as the fluorescent labels when sequestered in 

endosomes. First, the endocytic labeling is a slow procedure that needs to be optimized for 

each combination of cell-type and contrast agent. This can be problematic especially for 

cells with a limited in vitro lifespan, such as pancreatic islets or cells which have little or no 

endocytic uptake, like T-cells. Second, asymmetric inheritance of labels over daughter cells 

leads to progressive label heterogeneity upon each cell division23, 24. Finally, it has been 

shown that sequestration of Gadolinium chelates in intracellular vesicles can result in 

quenching of the MRI T1 signal, interfering with accurate signal quantification25-27. Therefore, 

it will be of interest to see if these problems can be overcome by delivery of these NPs into 

cytosol by photoporation. The benefits of cytosolic delivery of contrast agents as found in 

Chapter 3 were obtained with photoporation as delivery technology. It will be of future 

interest to find out if these benefits are uniquely linked to photoporation, or if the same 

benefits can be found when other delivery methods are used, such as electroporation28 or 

the recently reported cell squeezing technology29, 30.   

In Chapter 4, we demonstrate that VNB photoporation is able to deliver functionalized QDs 

efficiently into the cytosol of cells for labeling of subcellular structures. In particular, we 

could show that antibody functionalized QDs could be targeted to the microtubules in living 
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cells. While the final contrast was limited, likely due to the presence of too many unbound 

QDs, microtubules could be distinguished by confocal microscopy. While further work is 

certainly needed, it does show the potential of VNB photoporation to become a versatile 

tool for the delivery of exogenous labels for subcellular microscopic visualization. Future 

work should focus on getting better control over the amount of QDs that are delivered into 

the cells. More specifically, we recently found that graphene nanoparticles can be used to 

generate multiple VNB, while AuNP can only generate a single AuNP after which they are 

destroyed. This opens up the possibility to gradually increase the amount of nano-labels 

that are delivered in the cells by repeating generation of VNB. Obviously future work should 

also focus on delivering other fluorescent labels, like antibodies that are used for 

immunolabeling of fixed cells. If successful it would mean that a plethora of ‘old-school’ 

labels can be used for live cell imaging, which is currently limited to cell permeable 

constructs, or over-expression of proteins with the danger of associated artefacts.  

In Chapter 5, we explored spatially resolved nanoparticle enhanced photoporation (SNAP) 

for fast and flexible delivery of nanomaterials into living cells with low toxicity. We 

developed an integrated platform that can be used to deliver nanomaterials into living cells 

in a spatially controlled manner, even down to single cell resolution. It offers very flexible 

cell-selective delivery according to pre-defined patterns or in an interactive image-guided 

manner. Our equipment can be used in a total of four working modes, which will meet most 

experimental requirements. Compared to traditional photoporation with a focused fs laser, 

or the recently developed system with laser-irradiated gold plasmonic nanotubes, the 

throughput of SNAP is more than one order higher3, 31-34. With our current SNAP set-up we 

achieved 20 cells/s, whereas only 1.7 cells/s has been reported as the fasted throughput 

with standard photoporation (i.e. without enhancing nanoparticles). We expect that the 

SNAP throughput can be increased by at least another factor of 10 when a laser is used 

with higher pulse repetition frequency. It is of note that other methods are also explored 

for cell-selective delivery. Microinjection can be used but it is a slow and technically 

demanding technique35. Spatially resolved electroporation has been explored as well, 

demonstrating that cells were selectively transfected with genes by an array of 

microelectrodes28. This method, however, is limited to the transfection of fixed patterns 

according to the design of the electrode array. Interactive image-guided delivery would be 

impossible with such a technology. In addition, the electrodes are too large for single cell 

selective delivery.  

In this thesis we have shown many benefits of photoporation as a fast and flexible delivery 

technology in adherent cells. Clearly, there is great interesting in 3D cell cultures as well. 

A 3D cell culture is an artificially-created environment in which biological cells are permitted 

to grow or interact with their surroundings in all three dimensions. Unlike 2D culture, a 3D 

cell culture allows cells in vitro to grow in all directions, which is closer to the in vivo 
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situation36. As such it is of interest to develop our technology further towards 3D cell 

selective delivery. One of the key questions is how to precisely deliver sufficient laser energy 

to the selected cells in 3D culture without affecting the cells above and below. Yet, it does 

not seem impossible since VNB generation is a threshold phenomenon. With a more tightly 

focused laser beam it could be possible to find conditions where the light intensity is only 

high enough near the focal region for effective photoporation. Another approach could be 

to make use of a multi-photon process with a fs laser with a wavelength outside the LSPR 

peak. As explained in Chapter 1, in such conditions there will be very little heating while 

in the laser focus plasma-mediated nanobubbles can be formed due to multiphoton 

ionization37, 38. In this way, heating of cells above and below the focal plane can be avoided 

and only the selected cells in the focal plane will be photoporated.  

We illustrated the usefulness of SNAP in two exemplary applications in Chapter 5. First we 

demonstrated that a sparse set of distant neuronal cells can be selectively labeled in a 

primary rat hippocampal culture in high throughput and with little or no toxicity. Targeted 

labeling of spatially separated neurons in a dense neuronal network by SNAP facilitates 

research in two ways. First, it enables one to assess neuronal morphology with automated 

image analysis, without fluorescence from nearby neurons and their neurites that 

traditionally complicate the analyses. Secondly, the labeling can be directed to neurons that 

show geno- or phenotypic patterns of interest. These may be neuronal subtypes (e.g. 

pyramidal- or interneurons) or neurons that show intracellular accumulation of toxic 

proteins (e.g. alpha-Synuclein or Tau). While this study focused on dendritic spines through 

actin staining, several other membrane-impermeable dyes could be photoporated into 

single neurons, showing the wide range of potential applications of this technique. Next we 

demonstrated that a fluorescent label can be automatically delivered into morphologically 

distinct subpopulations of cells. This allowed us to purify polynuclear from mononuclear 

primary NHEK cells, which will be useful in the future to unravel the role of polynuclear 

NHEKs in PSNE. In particular it is of interest to further unravel the underlying molecular 

mechanisms of PSNE by downstream molecular and functional analysis like sequencing of 

DNA breaks39.   

Taken together we can conclude that VNB photoporation is a maturing promising technique 

for unprecedented flexible intracellular delivery of membrane impermeable substances that, 

thanks to its unique capabilities, will secure its place next to the more established 

intracellular delivery methods.  

 

Part II SIZING NANOMATERIALS IN BIO-FLUIDS BY FLUORESCENCE RECOVERY 

AFTER PHOTOPOBLEACHING 
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FRAP is widely applicable in the biophysical, pharmaceutical and material sciences to study 

diffusion of molecules and nanoparticles on a micrometer scale. To date, most mathematical 

models quantitatively interpreted FRAP data based on the average intensity in the bleach 

area as a function of time. As spatial information is essentially lost in this process, FRAP 

analysis has been limited to measuring a single overall diffusion coefficient, even though 

the system might be very polydisperse. Extension of FRAP to investigate polydisperse 

diffusion could become possible by also including spatial information in the analysis. 

In Chapter 6, we report on a new analytical FRAP method for measuring a continuous 

distribution of diffusion coefficients (cFRAP). We developed a dedicated mathematical 

framework that makes use of the full tempo-spatial information available in confocal 

fluorescence recovery images. Although the applications in Chapter 7 have already shown 

that cFRAP is an exciting method, there are still some further improvements possible from 

a technical point of view. The mathematic model of cFRAP is derived on the assumption of 

compounds undergoing free diffusion in the system. While this is correct for viscous 

solutions, other systems like soft materials, the cell cytoplasm, mucosa or biofilms, have 

more complex properties. They have a heterogeneous structure in which obstacles and 

molecular interactions can cause a deviation from free diffusion. Instead, molecules will 

undergo anomalous diffusion, leading to a time- dependent diffusion coefficient. Therefore, 

to further broaden its application in these systems, the cFRAP model could be extended for 

anomalous diffusion.  Since cFRAP makes use of the full tempo-spatial information it is 

expected to offer better accuracy and precision as compared to previous FRAP methods for 

anomalous diffusion that only take temporal information into account40.  

In Chapter 7, we made use of cFRAP to measure the size distribution of nanomaterials (1-

100 nm) in undiluted biological fluids. Sizing nanomaterials in complex biological fluids, 

such as blood, remains a great challenge for a wide range of biomedical applications. First, 

we demonstrate that cFRAP allows to measure protein size for characterization of 

aggregation not only in buffer but also in human serum. Even in buffer, the SEC signal 

corresponding to aggregates was not very well resolved and DLS failed to detect the 

monomers, while cFRAP could discriminate both monomers and aggregates in a single 

measurement. In future research it would be of interest to further validate this technique 

for actual protein based drugs, rather than BSA which was used as a model protein. In 

theory,  a therapeutic protein in biological fluids like serum should remain in the monomer 

state. However,  unexpected interactions and aggregation may occur41. Due to a lack of 

methods  studying and understanding protein aggregation in e.g. serum remains a 

challenge;  cFRAP may thus offer new opportunities in this area  in the future. A few years 

back, our group has shown that fluorescence single particle tracking (fSPT) is a powerful 

technique for the characterization of submicron protein aggregates in human serum, plasma 

and formulations containing human serum albumin (HSA). However, as it is based on 
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imaging the Brownian motion of individual, fluorescently labeled nanomaterials, it is mostly 

suited for nanoparticles with a size above ~0.1 µm42. Therefore, cFRAP complements fSPT 

as it is perfectly suited to measure the diffusion of protein aggregates in the 1-100 nm size 

range in fluids. It is of note that very recently a microfluidic platform was developed for 

protein sizing that is based on the spatial analysis of diffusion profiles as well. It was shown 

to allow sizing of molecules/nanoparticles ( from  sub-nanometers to hundreds of 

nanometers) in buffer43. Although it was not applied to measure the size of protein 

aggregates in biological fluids, it would be quite interesting to see how this method 

compares to cFRAP in terms of precision and accuracy.   

As a second application in Chapter 7, we measured the size distribution of fluorescent 

probes ranging from 2 to 80 nm before and after administration in mice to determine the 

permeability of intestinal and vascular barriers in vivo. Apart from revealing unprecedented 

detailed information on pore sizes, cFRAP needed 5 times less animals compared with the 

classic fluorimetry method for which the size probes are to be administered separately in 

separate animals. Instead, by intravenous administration of a mixture of five FDs covering 

a broad range of sizes from 2-80 nm, a single experiment was sufficient. Using cFRAP-sizing 

we even succeeded in analyzing FD leakage in microliter samples of cerebrospinal fluid. It 

could be of interest as well  to try to implement cFRAP in a microfluidic set-up as it is 

naturally compatible with minute sample volumes. 

We can conclude that cFRAP is a powerful and valuable new analytical technique for 

measuring the diffusion or size of molecules or nanomaterials in complex biological fluids. 

Undoubtedly there are many more potential applications in cell biology and pharmacy which 

are open to exploration.   
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This thesis consists of two parts, which summarized separately below. 

Part I INTRACELLULAR DELIVERY OF BIOPHARMACEUTICALS AND CONTRAST 

AGENTS BY VAPOR NANOBUBBLE (VNB) PHOTOPORATION  

Cytosolic delivery of foreign materials into live cells is an important step for many 

applications in cell biology and pharmacy. For instance, intracellular delivery of DNA is 

required for studying gene expression, mutation analysis, and gene therapy. Similarly, 

mRNA delivery into live cells enables assessing cell biological functions, while small 

interfering RNA (siRNA) is introduced for sequence-specific gene silencing. Apart from 

biological molecules there is an equal interest in the intracellular delivery of contrast agents. 

Recently, the use of inorganic particles as imaging contrast labels is being investigated, 

such as superparamagnetic iron oxide nanoparticles (SPIONs) and Gadolinium complexes 

for MRI, and quantum dots (QD) and upconversion nanoparticles for fluorescence imaging. 

Some of those exogenous nanomaterials could be introduced into cells via a viral vector. 

But immunogenicity and toxicity are major concerns. On the other hand, the nanomaterials 

could be formulated into non-viral carriers, typically lipid or polymer based. As these are 

generally internalized by cells through endocytosis, escape from the endosomes into the 

cytosol is typically needed. Up to date, endosomal escape remains one of the major 

bottlenecks hampering safe and efficient delivery of nanomaterals into the cytosol. Physical 

approaches have been developed as well to deliver nanomaterials into the cytosol of cells 

by transient permeabilization of the cell membrane. Such physical methods have attracted 

considerable interest as they typically offer generic applicability to a variety of cell types 

and enable direct delivery of the exogenous materials into cytosol. Micro-injection, 

electroporation and sonoporation are typical examples of physical delivery methods. Laser-

assisted photoporation is an alternative promising physical technique that is receiving 

increasing attention in the last decade. Especially in combination with enhancing 

nanoparticles like plasmonic NPs it seems to be a promising technology. By attaching 

plasmonic NPs such as gold nanoparticles (AuNPs), to the cell membrane, the photoporation 

effect can be achieved at lower laser intensities. This means that throughput can be 

increased since non-focused laser light can be used to illuminate a large amount of cells, 

leading to distinct phenomena such as heating of the cell membrane, acoustic shockwaves, 

and formation of water vapor nanobubbles (VNBs). Recently, it has been shown that VNBs 

can be used to permeate the plasma membrane and deliver cell impermeable compounds 

into the cytosol by the mechanical force induced by their expansion and collapse. A 

particular feature of VNB photoporation is that there is no neat heat transfer to the 

surrounding tissue as all energy is converted to mechanical energy. As VNB photoporation 

is still fairly new, the aim in Part I is to explore its usefulness for a number of applications, 

as detailed below.   
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 In Chapter 1, an in-depth introduction is provided on photoporation to explain its 

fundamentals as well as its current applications. The various forms of laser-assisted 

photoporation are explained, with the two major classes being direct laser-induced 

photoporation and nanoparticle sensitized photoporation. The mechanisms responsible for 

cell membrane permeabilization are discussed, alongside technological advances and 

biological applications. This review chapter should give the reader the necessary 

background for a good understanding of the subsequent experimental chapters.  

In Chapter 2, we report on a systematic comparison of AuNP mediated photoporation for 

delivering macromolecules in cells by heating of the membrane and VNB generation. While 

it has been shown that both heating of AuNPs and VNBs can be used to permeate the 

plasma membrane and deliver cell-impermeable compounds into the cytosol, it remains 

unclear which of both mechanisms are the most efficient. Despite the fact that it requires 

higher laser energies, surprisingly we find that VNBs allow more efficient cellular uptake of 

compounds with little or no cytotoxicity as compared to direct heating. This is attributed to 

the fact that bigger pores can be formed with VNB photoporation, allowing better entry of 

molecules that are present in the cell medium. Furthermore, we successfully show that VNB 

photoporation can transfect cells with siRNA more efficiently as compared to direct heating, 

resulting in enhanced gene silencing. Finally, we show that pores of different sizes can be 

created with VNB photoporation depending on the laser intensity, thus enabling size-

selective delivery of macromolecules in cells.  

In Chapter 3, we explore the use of VNB photoporation for the cytosolic delivery of contrast 

agents in a fast and non-toxic manner. Long-term in vivo imaging of cells is crucial for the 

understanding of cellular fate in biological processes in cancer research, immunology or in 

cell-based therapies such as beta cell transplantation in type I diabetes or stem cell therapy. 

Traditionally, cell labeling with the desired contrast agent occurs ex vivo via spontaneous 

endocytosis, which is a variable and slow process that requires optimization for each 

particular label-cell type combination. Following endocytic uptake, the contrast agents 

mostly remain entrapped in the endolysosomal compartment, which leads to label 

degradation, cytotoxicity and asymmetric inheritance of the labels upon cell division. We 

hypothesize that direct delivery of contrast agents into the cytosol by VNB photoporation 

can alleviate the many difficulties related to endocytic cell labeling. First, we demonstrate 

efficient and safe loading of fluorescent dextran and QD in different cell types by 

photoporation. Compared to endocytic uptake, cell loading with photoporation was 50 and 

3 times more efficient for FD and QD, respectively. Combined with reduced toxicity, this 

enabled extended cell visualization in vitro over 10 cell generations for FD and 3 generations 

for QD. This shows that old-school labeled dextrans are excellent inexpensive and bio-

compatible labels for cell tracking when delivered by photoporation as compared to much 

more expensive and often toxic QDs. We demonstrate for the first time that asymmetric 
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inheritance of fluorescent labels can be avoided by cytosolic delivery via photoporation. As 

a result, the cell intensity polydispersity remains identical over multiple cell divisions, while 

it rapidly increases for endocytic loading (already factor 10 after 6 divisions). Finally, we 

show extended in vivo imaging of an insulin producing cell line (INS-1E cell line) labeled 

with Cy5.5-dextran by photoporation. Cells labeled by photoporation could be imaged up 

to two months instead of only two weeks in case of endocytic labeling. 

In Chapter 4, VNB photoporation is applied to deliver antibody funcationlized QDs in living 

cells for subcellular labeling. The application of QDs as subcellular labels for microscopic 

investigation of living cells remained virtually impossible until now due to a lack of means 

to deliver QDs unambiguously into the cytosol of cells. We first confirmed highly efficient 

delivery of PEG-coated QDs into living cells. We obtained more than 80% of positive cells 

while the cell viability remained as high as ~85%. As a first proof-of-concept, we delivered 

antibody functionalized QDs in HeLa cells targeted at the microtubules. Successful labeling 

of the microtubules was achieved, although the contrast was rather limited likely due to the 

presence of too many unbound QDs in the cytosol. Although further work is needed to get 

better control on the quantity of QDs that are delivered into the cells, it shows that 

photoporation has the long-awaited capability to deliver antibody-targeted QDs into living 

cells for live cell microscopic visualization.  

In Chapter 5 we explored one of the most unique features of photoporation, which is to 

deliver exogenous materials into selected cells within a large population of cells. We 

developed the soft- and hardware to perform cell-selective intracellular delivery by spatially 

resolved nanoparticle enhanced photoporation (SNAP). Cells can be photoporated according 

to pre-defined patterns or in an interactive image-guided manner. The unique technological 

capability to deliver compounds quickly and flexibly into selected cells was applied to two 

challenging application. Applying SNAP to cell-selective photoporation of single neurons in 

automated image-guided mode, we labeled and highlighted single neurons for accurate 

morphological analysis. On the other hand, we used SNAP to deliver a non-toxic fluorescent 

marker into morphologically distinct primary normal human epidermal keratinocytes. In 

particular, polynucleated or mononucleated senescent cells are separately targeted so that 

they can be purified for further downstream molecular and functional analysis in relation to 

cancer research. 

 

Part II SIZING NANOMATERIALS IN BIO-FLUIDS BY FLUORESCENCE RECOVERY 

AFTER PHOTOPOBLEACHING (FRAP) 

FRAP is advanced well-known fluorescence microscopy method for measuring molecular 

mobility in biomaterials, cells and tissues. FRAP has been widely applied in the biophysical, 
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pharmaceutical and material sciences. In a FRAP experiment, the sample is placed on a 

microscope and the fluorescently labeled molecules or nanoparticles are photobleached in 

a micron sized area by a powerful excitation pulse. The fluorescence inside the bleach area 

will subsequently recover at a rate that is proportional to the diffusional rate of the 

fluorescent species. Typically the average fluorescence intensity inside the bleach area is 

quantified as a function of time. A suitable mathematical model is used to fit the 

fluorescence recovery data, from which an average local diffusion coefficient follows. 

However, by calculating the average fluorescence in the bleach area, the special information 

is effectively lost and only the time-progression of the average intensity is taken into 

account. Instead, by also analyzing the spatial diffusion profile in function of time one can 

expect much better precision of FRAP experiments. In Part II we develop such a new and 

improved tempo-spatial FRAP model and show that it can be used for diffusion analysis of 

polydisperse systems. In particular the method is used to measure the hydrodynamic size 

of molecules in biological fluids, as explained below.    

In Chapter 6, we describe the improved FRAP methodology that enables the measurement 

of continuous distributions of diffusion coefficients (cFRAP). A rectangular area is 

photobleached and the full tempo-spatial information available in the confocal recovery 

images is exploited using a dedicated theoretical recovery model to extract a continuous 

distribution of diffusion coefficients. It is found from simulations that cFRAP can distinguish 

two subpopulations if their diffusion coefficient differs by as small as a factor 3 in 

comparison with at least a factor of 8 for traditional FRAP methods which only consider the 

average fluorescence as a function of time. It is confirmed through simulations that cFRAP 

can correctly analyze polydisperse systems with a broad range of diffusion coefficients. The 

performance of cFRAP was compared experimentally to DLS as a standard technique for 

measuring the size distribution of polydisperse nanomaterial dispersions. Thanks to 

including spatial, information in the cFRAP model, the PDI of the distributions was 

significantly less compared to the apparent PDI measured by DLS. 

In Chapter 7, we demonstrate the strength and versatility of cFRAP in a number of 

challenging sizing applications. As a first application, we used cFRAP-sizing to analyze 

protein aggregates in the sub 0.1 µm range in full serum. This is of current interest since 

protein aggregation has emerged as a key issue underlying multiple deleterious effects in 

the use of protein therapeutics, including loss of efficacy, altered pharmacokinetics, reduced 

stability and shelf life, and induction of unwanted immunogenicity. Fluorescently labeled 

BSA was used as a model protein, which could be analyzed by cFRAP down to a 

concentration of 4 µg/ml (60 nM). cFRAP-sizing could discriminate both monomers and 

aggregates in a single measurement, not only in buffer but also in undiluted serum. As a 

second application cFRAP was used to study the permeability of the intestinal and vascular 

barriers in mice in unprecedented detail. The classic protocol requires the separate 
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administration of dextrans of different molecular weights, each time in a different animal. 

The leakiness of the barrier is then evaluated by quantifying the fluorescence intensity for 

each dextran size in the relevant fluid (prepared from the receptor tissue). Instead, by 

intravenous administration of a mixture of five FDs covering a broad range of sizes from 

about 1-100 nm, here we demonstrate that a single experiment is sufficient when combined 

with cFRAP-sizing. This results in 5 times less animals compared with the classic fluorimetry 

method. At the same time unprecedented detailed information is obtained on the continuous 

size range of probes that can leak through the barrier. Using cFRAP-sizing we even 

succeeded in analyzing FD leakage in microliter samples of cerebrospinal fluid, 

notwithstanding that the fluorescence was very weak. Both applications show that cFRAP is 

a promising new method to measure the size distribution of molecules and nanomaterials 

in undiluted biological fluids. 
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Deze scriptie bestaat uit twee afzonderlijke delen zoals hieronder beschreven. 

Deel I  INTRACELLULAIRE AFGIFTE VAN BIOFARMACEUTICA EN 

CONTRASTAGENTIA D.M.V. WATERDAMP NANOBUBBEL FOTOPORATIE 

Afgifte van exogene materialen in het cytosol van levende cellen is een belangrijke stap 

voor vele toepassingen in celbiologie en farmacie. Zo is de intracellulaire afgifte  van DNA 

noodzakelijk voor het bestuderen van genexpressie, de analyse van mutaties en 

gentherapie. Analoog is de aflevering van mRNA in cellen van belang voor het onderzoeken 

van celbiologische functies, terwijl small interfering RNA (siRNA) geïntroduceerd wordt voor 

sequentie-specifieke genonderdrukking. Naast biologische moleculen is er evenzeer 

interesse in de intracellulaire afgifte van contrastagentia. Zo wordt het gebruik van 

anorganische nanopartikels onderzocht als contrastagentia voor beeldvorming, waaronder 

superparamagnetische ijzeroxide nanopartikels en gadolinium complexen voor MRI, naast 

quantum dots en opconversie nanopartikels voor beeldvorming op basis van fluorescentie. 

Een aantal van dergelijke exogene materialen kunnen via een virale drager in cellen 

binnengebracht worden. Daarbij zijn echter immunogeniciteit en toxiciteit een concrete zorg. 

Niet-virale dragers, gebaseerd op lipiden of polymeren, vormen daartoe een alternatief. In 

het algemeen zorgen die echter voor opname in de cellen via endocytose zodat ontsnapping 

uit endosomen een noodzakelijke stap is. De ontsnapping uit endosomen blijft echter tot 

op vandaag een van de belangrijkste hinderpalen voor niet-virale dragers, wat efficiënte 

afgifte in het cytosol verhindert. Er zijn ook fysische methodes ontwikkeld voor 

intracellulaire afgifte van exogene nanomaterialen d.m.v. een transiënte permeabilisatie 

van de celmembraan. Dergelijke fysische methodes hebben heel wat interesse gewekt 

doordat ze algemeen toepasbaar zijn op een grote variëteit aan celtypes. Welbekende 

voorbeelden hiervan zijn microinjectie, electroporatie en sonoporatie. Een alternatief hierop 

dat recent aan populariteit wint is laser-geïnduceerde fotoporatie. Voornamelijk in 

combinatie met versterkende nanopartikels, zoals plasmonische nanomaterialen, lijkt het 

een bijzonder beloftevolle technologie. Door plasmonische NP, zoals goud nanopartikels 

(AuNP), aan de celmembraan te koppelen kan het fotoporatie-effect bekomen worden bij 

lagere laserintensiteit. Daardoor kan de ‘throughput’ toenemen aangezien niet-gefocust 

laserlicht gebruikt kan worden om vele cellen tegelijkertijd te belichten waarbij fenomenen 

optreden zoals opwarming van de celmembraan, acoustische schokgolven en de vorming 

van waterdamp nanobubbels (VNB). Recent werd aangetoond dat VNB gebruikt kunnen 

worden om poriën te vormen in de celmebraan d.m.v. de mechanische kracht veroorzaakt 

door hun expansie en implosie, zodat cel-impermeabele componenten vervolgens tot in het 

cytosol kunnen doordringen. Een bijzondere eigenschap van VNB fotoporatie is dat er geen 

netto transfer is van warmte in de omgeving doordat alle energie omgezet wordt tot 

mechanische energie. Deel I van deze scriptie heeft tot doel om VNB fotoporatie als relatief 
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nieuwe technologie verder te exploreren in verscheidene applicaties, zoals hieronder in 

meer detail besproken wordt. 

In Hoofdstuk 1 wordt een gedetailleerde introductie gegeven op zowel de basisprincipes 

van fotoporatie als de toepassingen van deze techniek. Hierbij komen de verschillende 

vormen van laser-gemedieerde fotoporatie aan bod, met als belangrijkste categorieën de 

zogenaamde directe laser-fotoporatie en NP-versterkte fotoporatie. De mechanismen 

worden besproken die betrokken zijn bij permeabilisatie van de celmembraan, naast 

technologische ontwikkelingen en biologische applicaties. Dit hoofdstuk heeft zodoende tot 

doel de lezer een degelijke achtergrond te geven van een aantal basisconcepten die een 

goed begrip van de daaropvolgende experimentele hoofdstukken moeten geven. 

In Hoofdstuk 2 rapporteren we over een systematische vergelijking van AuNP 

gemedieerde fotoporatie voor de intracellulaire aflevering van macromoleculen d.m.v. 

opwarming van AuNP versus VNB generatie. Hoewel aangetoond werd dat beide 

fotoporatiemechanismes kunnen gebruikt worden, blijft het onduidelijk welke van beide het 

meest efficiënt is. Ondanks dat hogere laserintensiteit benodigd is, vinden we VNB 

fotoporatie de meest efficiënte afgifte van moleculen in het cytoplasma mogelijk maakt met 

bijna verwaarloosbare cytotoxiciteit. Dit feit is toe te schrijven doordat grotere poriën 

gevormd worden met VNB fotoporatie waardoor de inwaartse flux van moleculen vergroot. 

Bijkomend wordt aangetoond dat VNB fotoporatie efficiëntere transfectie van cellen met 

siRNA mogelijk maakt met verhoogde genonderdrukking. Tenslotte tonen we aan dat poriën 

van verschillende groottes gevormd kunnen worden met VNB fotoporatie afhankelijk van 

de laserintensiteit. Dit maakt grootte-afhankelijk intracellulaire afgifte van moleculen 

mogelijk. 

In Hoofdstuk 3 exploreren we het gebruik van VNB fotoporatie voor de cytosolaire 

aflevering van contrastagentia op een snelle en niet-toxische manier. Langdurige in vivo 

beeldvorming van cellen is van cruciaal belang voor een goed begrip van de rol van cellen 

bij biologische processen in kanker en immuun respons, maar ook voor celtherapieën zoals 

stamceltherapie of transplantatie van betacellen i.g.v. diabetes type I. Traditioneel gebeurt 

het labelen van cellen met contrastagentia ex vivo d.m.v. spontane endocytische opname, 

hetgeen een variabel en traag proces is dat geoptimaliseerd dient te worden voor iedere 

combinatie van label en celtype. Na endocytose zitten de contrastagentia grotendeels vast 

in endosomen, hetgeen uiteindelijk kan resulteren in afbraak van het label, cytotoxiciteit 

en asymmetrische verdeling van de labels over dochtercellen na celdeling. Onze hypothese 

is dat directe aflevering van contrastagentia in het cytosol met VNB fotoporatie een 

oplossing kan bieden voor deze problemen bij endocytische opname. In dit hoofdstuk tonen 

we eerst de intracellulaire afgifte aan van fluorescent dextraan (FD) en QDs in verschillende 

celtypes met fotoporatie. In vergelijking met endocytische opname blijkt fotoporatie te 
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resulteren in een 50 en 3 keer hogere opname van respectievelijk FD en QD. Gecombineerd 

met gereduceerde cytotoxiciteit resulteert dit in substantieel verlengde tijd waarover de 

cellen gevisualiseerd kunnen worden, zijnde 10 celgeneraties voor FD gelabelde cellen, 

terwijl dit 3 generaties is voor QD gelabelde cellen. Dit toon dat de welgekende fluorescente 

dextranen excellente en relatief goedkope biocompatibele labels zijn voor celvisualisatie 

indien afgeleverd via fotoporatie. Bijkomend tonen we in dit hoofdstuk voor het eerst aan 

dat asymmetrische verdeling van labels over dochtercellen vermeden kan worden met 

fotoporatie. Een belangrijk gevolg hiervan is dat de polydispersiteit van celintensiteiten 

identiek gelijk blijft over opeenvolgende celgeneraties, terwijl dit snel toeneemt i.g.v. 

endocytische opname (toename met factor 10 na 6 celgeneraties). Tenslotte tonen we 

verlengde in vivo beeldvorming aan van een insuline producerende cellijn (INS-1E cellijn) 

met Cy5.5 dextraan d.m.v. fotoporatie. Deze cellen konden gevisualiseerd worden tot twee 

maand na transplantatie, terwijl dit beperkt bleef tot twee weken bij endocytische labeling.  

In Hoofdstuk 4 wordt VNB fotoporatie toegepast om QD gefunctionaliseerd met 

antilichamen af te leveren in cellen voor subcellulaire labeling. Het gebruik van QD als 

subcellulaire merkers in levende cellen bleef tot nog toe onmogelijk door een gebrek aan 

een methode om QD in het cytosol af te leveren. Vooreerst bevestigen we dat gepegyleerde 

QD in HeLa cellen kunnen afgeleverd worden d.m.v. VNB fotoporatie. Daarbij bereiken 

we >80% positieve cellen met een celviabiliteit van ~85%. Vervolgens brengen we 

antilichaam gefunctionaliseerde QD in de cellen gericht tegen de microtubuli. De microtubuli 

werden succesvol gelabeld hoewel het contrast eerder beperkt was, vermoedelijk door een 

overmaat van ongebonden QD in het cytosol. Hoewel verdere optimalisatie nodig is om de 

hoeveelheid afgeleverde QD beter te controleren, tonen deze preliminaire resultaten aan 

dat fotoporatie de langverwachte mogelijkheid biedt om QDs als subcellulaire labels in 

levende cellen te gebruiken. 

In Hoofdstuk 5 exploreren we één van de meest unieke eigenschappen van fotoporatie, 

namelijk het intracellulair afleveren van exogene materialen in een selectie van cellen 

binnen een grote celpopulatie. We ontwikkelen hard- en software om cel-selectieve 

aflevering te realiseren d.m.v. spatiaal geresolveerde nanopartikel versterkte fotoporatie 

(SNAP). De technologie laat toe om cellen te fotoporeren volgens vooraf gedefinieerde 

patronen of volgens een beeld-gebaseerde interactieve manier. De unieke mogelijkheid om 

materialen snel en flexibel in geselecteerde cellen af te leveren wordt toegepast op twee 

uitdagende applicaties. Geselecteerde neuronale cellen worden selectief gefotoporeerd met 

een fluorescente merker om accurate morfologische analyse van deze cellen mogelijk te 

maken. Daarnaast gebruiken we SNAP om een niet-toxische merker in een morfologisch te 

onderscheiden subpopulatie te brengen van primaire normale humane epidermale 

keratinocyten. Meer bepaald werden hetzij de polynucleaire of mononucleaire cellen 

selectief gelabeld voor purificatie. Dit is noodzakelijk om bijkomende functionele en 
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moleculaire analyses te kunnen uitvoeren op deze subpupulaties van cellen om zo hun rol 

in de vorming van neoplasmen en kanker te kunnen ontrafelen. 

 

Deel II HET METEN VAN DE GROOTTE VAN NANOMATERIALEN IN 

LICHAAMSVOCHTEN D.M.V. FLUORESCENTIEHERSTEL NA FOTOBLEKING (FRAP) 

FRAP is een gekende fluorescentie microscopiemethode om de mobiliteit van moleculen te 

meten in biomaterialen, cellen en weefsels. FRAP is doorheen de jaren frequent toegepast 

in biofysisch, farmaceutisch en materiaalkundig onderzoek. In een FRAP experiment wordt 

het staal op een microscoop geplaatst waarin vervolgens in een micrometer grote regio de 

fluorescent gelabelde moleculen gefotobleekt worden met een krachtige lichtpuls. Na 

fotobleking zal de fluorescentie zich geleidelijk herstellen in de gebleekte zone met een 

snelheid die proportioneel is met de diffusiesnelheid van de gelabelde moleculen. 

Traditioneel wordt daarbij de gemiddelde fluorescentie-intensiteit in de gebleekte zone 

gekwantificeerd in functie van de tijd. Met een passend mathematisch model wordt 

vervolgens het fluorescentieherstel geanalyseerd om zodoende de lokale diffusiecoëfficiënt 

te bepalen. Doordat echter de gemiddelde fluorescentie-intensiteit berekend wordt, gaat de 

spatiale informatie van het diffusieprofiel grotendeels verloren. Het gevolg is dat FRAP 

analyses weinig precies zijn en daardoor niet geschikt om polydisperse systemen te 

analyseren. We stellen ons daarom in dit deel van de thesis tot doel een FRAP methode te 

ontwikkelen die gebruik maakt van de volledige temporele en spatiale informatie in FRAP 

experimenten. Dit moet een hogere precisie toelaten en zodoende de analyse van 

polydisperse systemen. In het bijzonder wensen we daarmee een methode te bekomen 

waarmee, via diffusie-analyse, de groottedistributie van nanomaterialen in biologische 

vloestoffen bepaald kan worden van 1 tot 100 nm. 

In Hoofdstuk 6 beschrijven we de ontwikkeling van deze verbeterde FRAP methodologie 

waarmee polydisperse systemen geanalyseerd kunnen worden in termen van een continue 

distributie van diffusiecoëfficiënten (cFRAP). De methode is gebaseerd op de fotobleking 

van een rechthoekige regio waarvoor we een theoretisch model ontwikkeld hebben 

waarmee de spatiale diffusieprofielen geanalyseerd kunnen worden in functie van de tijd. 

Vertrekkend van simulaties blijkt dat cFRAP twee componenten van mekaar kan 

onderscheiden als hun diffusiecoëfficiënt een factor 3 verschillend is. Ter vergelijking, met 

traditionele FRAP gebaseerd op louter tijdsinformatie is dit een factor 8. Verdere simulaties 

en experimenten tonen aan dat cFRAP geschikt is om continu-polydisperse systemen te 

analyseren van 1-100 nm grootte. De performantie van cFRAP wordt vergeleken met DLS 

als standaardtechniek voor het meten van groottedistributies van polydisperse 

nanomaterialen. Daarbij wordt gevonden dat cFRAP distributies een kleinere PDI vertonen 
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dan bij DLS wegens de verhoogde precisie dankzij tempo-spatiale analyse van het 

diffusieproces. 

In Hoofdstuk 7 tenslotte tonen we de sterke en veelzijdigheid van cFRAP aan via 

toepassing van de techniek in enkele uitdagende applicaties. Vooreerst gebruiken we cFRAP 

om sub 0.1 µm proteïneaggregaten te analyseren in vol serum. Dit is van belang aangezien 

proteïneaggregatie tegenwoordig beschouwd wordt als één van de belangrijke nadelen van 

eiwittherapeutica. Aggregatie van therapeutische eiwitten kan namelijk leiden tot verlies 

van het therapeutisch effect, gewijzigde farmacokinetiek, kortere bewaartijd en 

immunogeniciteit. We gebruiken fluorescent gelabeld BSA als model, waarbij concentraties 

vanaf 4 µg/ml (60 nM) geanalyseerd kunnen worden met cFRAP. Met cFRAP kunnen we 

monomeren van aggregaten onderscheiden in een enkele meting, niet alleen in buffer maar 

zelfs in onverdund vol serum. Vervolgens passen we cFRAP toe om de permeabiliteit van 

de intestinale en vasculaire barrière te bepalen in muizen. Het klassieke protocol vergt 

administratie van afzonderlijke FD met verschillend moleculair gewicht, telkens in andere 

proefdieren. De permeabiliteit van de barrière wordt dan gekwantificeerd door de intensiteit 

van elk van de FD te meten in de relevante vloeistoffen (geprepareerd van het relevant 

receptorweefsel). Met cFRAP daarentegen kan het mengsel van al deze FD tegelijk in 

éénzelfde proefdier ingebracht worden, om vervolgens de volledige groottedistributie van 

FD te bepalen in de vloeistof van het receptorweefsel. Concreet betekent dit dat 5 keer 

minder proefdieren benodigd zijn i.v.m. de klassieke methode. Tegelijkertijd wordt continue 

informatie verkregen over de grootte van FD die door de barrière doorgekomen zijn, daar 

waar de klassieke methode enkel informatie geeft over de discrete groottes. Met cFRAP zijn 

we zelfs in staat analyses te doen op microliter stalen van cerebrospinaal vocht, hoewel de 

fluorescentie bijzonder zwak was. Beide toepassingen tonen aan dat cFRAP een beloftevolle 

nieuwe methode is om de groottedistributie van moleculen en nanomaterialen mogelijk te 

maken in onverdunde biologische vloeistoffen. 
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User’s guide of cFRAP matlab code
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User's guide for Matlab code 

In this guide it is explained how to use the custom written Matlab code for analysis of FRAP 

recovery images and to obtain the diffusion coefficient or size distributions. The user’s guide 

includes the following sections: description of the structure of the main code, the procedure 

for adding the cFRAP code to the Matlab program, examples on simulated and experimental 

FRAP images. 

1. Structure of code 

The cFRAP code consists of a main routine which is used to call three main subroutines: the 

image loading routine, rFRAP and cFRAP fitting routines, and the data output and saving 

routines. Each routine is written as a separate M-file: 

 Main routine M-file : rFRAP_MEM_GUI.m . A flow chart of the main routine is presented 

in Fig. 1. When the main routine is running, a window named ‘rFRAP_MEM_GUI’  will open 

(Fig. 3). The FRAP image files and parameters are required to be filled out in this window 

(for details please refer to the examples further on). The main routine calls the subroutines 

to load the FRAP images and starts with performing a one component least squares fitting 

to obtain reasonable initial values for D, K0, k and r2 that are needed for further cFRAP 

analysis.  Before cFRAP analysis, it is verified if χ2 can arrive at a value <M+√2𝑀 when 

performing a classic least-squares fit of the multi-component rFRAP model. If so, the main 

routine continues by calling the subroutine for cFRAP analysis. Otherwise, it stops and asks 

for a different set of parameters or better quality FRAP movies. After finishing cFRAP 

analysis, the resulting distributions of the diffusion coefficient is saved in ‘csv’ format.  

Image loading M-files: bfopen.m, importdata.m and load_image.m. These functions 

are used to load the FRAP images that should be either in Nikon ‘.nd2’, ‘.mat’  or ‘.tif’ format. 

One component rFRAP fitting M-file: rFrapFit.m. This M-file is needed to perform a 

classic least-squares fitting of the FRAP images according to the one component rFRAP 

model as reported earlier.   

Multicomponent rFRAP fitting M-file: FRAP_leastsquare.m. The function is used to 

perform a classic least-squares fit of the FRAP images with the multicomponent rFRAP model. 

cFRAP fitting M-file: FRAP_MEM.m. This function performs cFRAP analysis of the FRAP 

images. First the recovery data is normalized to the fluorescence intensity before bleaching. 

Correction for laser fluctuations and bleaching during imaging is performed by dividing the 
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pixels of each recovery image by the average value from one or more reference background 

regions in the same image. Data analysis is done by fitting of the cFRAP model (Eq. (12)) 

to the average fluorescence intensity values in rectangular ring-shaped areas of into which 

the ROI is divided. To accelerate convergence of the fitting routine, initial values of the 

parameters D, K0, k and r2 are set according to the results from the 1 component least 

square fitting. The cFRAP procedure then continues with maximizing the entropy according 

to Eq. (10) under the constraint  𝑀 − √2𝑀 ≤ 𝜒2 ≤ 𝑀 + √2𝑀. cFRAP analysis is performed on 

the values of all ring-shaped in the ROI over the entire time lapse movie.  

Data saving M-file: mat2csv_wheaders.m.  This function is able to output the data as 

a ‘csv’ file. 
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Figure 1. Flow chart of the cFRAP Matlab code. 

 

 

 

 

2. Adding the cFRAP source code to Matlab 

Matlab software version of R2010b or above is required. Uncompressing the zip file of 

“matlab code soure package.zip” and copy the fold of “cFRAP-v3.0” ,  to e.g. “C:\Program 

Files\MATLAB\R2010b\”. Run Matlab and add this folder to the Matlab search path (e.g. 

File->Set Path->Add Folder->Save) .  

 

3. Examples of analysing FRAP images by cFRAP 

 

3.1 Example 1: analyse simulated rFRAP images with the cFRAP code  

Step 1: Simulate rFRAP images   

Start Matlab software and input “sim_rFRAP_Im” in the command window to open the GUI 

for the simulation of rFRAP images (Fig. 2a). 

Note : the “Simulate” button will start calculation of the simulated images; “Display” can 

be used to display the selected images. The slider can be used to display a particular frame 

number. 

Clicking the ‘Simulate’ button will open a window where the desired parameters of the 

simulated images can be filled out (Fig. 2b). By clicking ‘OK’ the simulated images will be 

calculated according to Eq. (2). For the example shown in Fig. 2b, an rFRAP time lapse 

movie will be calculated for single component system with a diffusion coefficient of 5 µm2/s. 

The movie will consist of 30 recovery frames and with 1s intervals. The simulated image 

can be viewed by clicking the ‘Display’ button. 
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Figure 2. GUI for simulation and viewing of FRAP images (a). This window will pop up when clicking the 

‘Simulate’ button and is designed to input all parameters that are required for the simulation of FRAP images 

(b). 

Step 2: Analysis of simulated rFRAP images  

A. Type “rFRAP_MEM_GUI” in the Matlab command window to open the main GUI 

for cFRAP analysis (Fig. 3a). 

B. Select the recovery images simulated in previous step by clicking  ‘Select Files’ 

and the name  of the file will be shown in list box after selection.  

C. The radio button “Simulated Images” should be selected for analyzing simulated 

recovery images. A noise level should be filled out as the percentage of Gaussian 

noise that will be added to the simulated images before applying cFRAP analysis. 

The radio button “Is Multicomponent LS fitting” should be selected to check if  χ2  

can reach the required small value (see above).  

D. Click the ‘Analyse’  button to open the input window shown in Fig. 3b. The 

required parameters should be filled out before clicking ‘OK’ to start the analysis.  

E. After finishing the calculation, the data is saved as ‘csv’ file. The diffusion 

coefficient distribution can be displayed by selecting the csv file in the list-box 

as shown in Fig. 3c. 
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Figure 3. Main GUI window for cFRAP analysis (a). A pop-up window is used to input the required 

parameters for cFRAP analysis (b). The diffusion coefficient distribution is displayed in the GUI window when 

cFRAP analysis is complete (c).   

 

3.2 Example 2: cFRAP analysis of experimental rFRAP images  

A. Type “slop_intercept” in the Matlab command window to open the GUI for calculation 

of fluorescence intensity variance as a function of average fluorescence intensity 

(required for Eq. (14)) to calculate the variance of each ROI divided ring region. In 

the equation, a  and b are constant parameters and they can be determined by a 

series of images with various laser intensities in a homogeneous solution of the 

fluorescent species with identical instrumental settings as will be the final FRAP 

experiment as described before. The average  and variance of fluorescence intensity 

for each ring can be calculated and plotted as variance as a function of the average 

of fluorescence of intensity. The slope (a parameter) and intercept (b parameter) of 

a linear fit through the data points will yield the constant of a and b. The program 

will yield the slope and intercept values which are used to calculate the variance of 

each ring region into which the ROI is divided (Fig. 4a).  
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B. Load the movies recorded with different laser intensities and calculate the 

parameters slope and intercept by clicking the ‘calculate’ button. 

C. Type “rFRAP_MEM_GUI” in the Matlab command window to open GUI for rFRAP_MEM 

analysis (Fig. 3a) and load the experimental FRAP recovery images. Select the 

‘Experimental images’  radio button and fill out the slope and intercept values into 

the pop-up interface window. Select the radio button “Is Multicompent LS fitting” to 

check if  χ2  can reach the required small value (see above). . 

D. When cFRAP analysis is complete, the result is saved as a ‘csv’ file. The diffusion 

coefficient distribution can be displayed by selecting the file in the list-box as shown 

in Fig. 4b. 

 

Figure 4. GUI for calculating the slope and intercept in Eq. (14). (a) These two parameters are required 

for subsequent cFRAP analysis. (b) The diffusion coefficient distribution can be displayed by selecting the 

file in the list-box.
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结束语 / END： 

 

“故天将降大任于是人也，必先苦其心志，劳其筋骨，饿其体肤，空伐其身行，行弗乱

其所为，所以动心忍性，曾益其所不能。” 

“When Heaven is about to place a great responsibility on a great man, it always 

first frustrates his spirit and will, exhausts his muscles and bones, exposes him to 

starvation and poverty, harasses him by troubles and setbacks so as to stimulate 

his spirit, toughen his nature and enhance his abilities.” 

                                                                                                        

《孟子·告子下》 

Mencius 

  



 

 

 

 

 




