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Abstract—A large number of filters has been proposed to
compute local gradients in grayscale images, usually having
as goal the adequate characterization of edges. A significant
portion of such filters are antisymmetric with respect to the
origin. In this work we propose to generalize those filters by
incorporating an explicit evaluation of the tonal difference. More
specifically, we propose to apply restricted dissimilarity functions
to appropriately measure the tonal differences. We present the
mathematical developments, as well as quantitative experiments
that indicate that our proposal offers a clear option to improve
the performance of classical edge detection filters.

Index Terms—Image processing; edge detection; restricted
dissimilarity function; convolution filter.

I. INTRODUCTION

Edge detection is assumed to be a multiphase process, as
enunciated by Torre and Poggio in [1], where the authors stated
that “A traditional belief in computational vision is that [...]
at least two separate stages are required”. Different authors
have proposed breakdown structures to specify the role and
goal of each phase of such process. Examples are the proposals
by Prager (preprocessing, edge representation, grouping and
postprocessing [2]) or Law et al. (filtering, detection and
tracing [3]), although the most comprehensive work is that
by Bezdek et al. [4]. In [4] four phases were defined, namely
conditioning, feature extraction, blending and scaling. The
feature extraction phase has been the one receiving more
attention from the scientific community. In this phase local
edge cues and indicators are gathered, so that a decision about
the edges can be made at subsequent phases. In a sense, the
information in the conditioned (enhanced) image is projected
to a feature space for a further classification of the pixels into
edge or non-edges.

Most of the proposals for feature extraction for edge de-
tection are based on convolution filters, which are used to
estimate the first or second derivatives of an image. This
is due to the fact that the derivatives of an image contain
most of the information about the local intensity changes, and
can be consequently used to discern the transition between
objects. In the early years of digital image processing discrete
convolution filters were presented, being the most famous
those by Sobel [5], Prewitt [6] and Roberts [7]. In the 80s,
different works were grounded on notions from signal process-
ing to develop filters that were optimal to detect edges under
some restrictive conditions [8], [9], [10]. These works, which
include the widespread proposals by Marr and Hildreth [11]

and Canny [12], [13], have been often revisited. Although their
mathematical grounds have been critiziced (or even shown to
be debatable [14], [15]), they usually stand as the reference
for comparison. Moreover, despite a large number of edge
detection methods has been presented thereafter, convolution
filters still stand as one of the most common ways to compute
edge features.

The study of convolution filters for gradient computation
has been rather still in the past 20 years. Despite remarkable
works have been presented, most of the novelties consist of
introducing enhanced constraints leading to the redefinition of
the concept of optimality and, consequently, producing new
convolution filters [10], [15]. A significant breakthrough has
been the multiscale methods, which propose to generate scale-
spaces from which a richer interpretation of the partial deriva-
tives can be extracted. Although already suggested by Canny
(who proposed the so-called feature synthesis to combine the
results of convolution filters of different size and orientation),
the study of multiscale methods and their corresponding scale-
spaces was boosted after the works by Witkin [16], Perona and
Malik [17] or Lindeberg [18].

In this work we revisit the convolution filters for gradient
computation. More specifically, we propose to incorporate a
more elaborated treatment of the tonal information in the
decision about the significance of a given tone transition.
We propose a generalization that can be applied to most of
such filters, and has as ultimate goal the enhancement of
their adaptability to specific problems. This generalization
is partially inspired by bilateral filtering [19], in the sense
that it aims to incorporate into the spatial filtering (provided
by the convolution filter) an explicit evaluation of the tonal
differences.

In Section II we recall some concepts that are applied in the
development of this work. Section III contains our proposal,
which is backed up by quantitative, experimental results in
Section IV. To conclude, in Section V we summarize the work
and discuss some future lines of research.

II. PRELIMINARIES

In this work we make use of Restricted Dissimilarity
Functions (RDFs) [20].

Definition 1: [20] A restricted dissimilarity function is a
mapping r : [0, 1]2 → [0, 1] satisfying

(R1) r(x, y) = r(y, x) for all x, y ∈ [0, 1];
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(a) r[1,0.5] = |
√
x−√y| (b) r[0.5,0.5] =

√
|
√
x−√y|

(c) r[1,1] = |x− y| (d) r[0.5,1] =
√
|x− y|

(e) r[1,2] = |x2 − y2| (f) r[0.5,2] =
√
|x2 − y2|

Fig. 1. Restricted dissimilarity functions constructed as in Proposition 1.

(R2) r(x, y) = 1 if and only if (x, y) = (0, 1) or (x, y) =
(1, 0):

(R3) r(x, y) = 0 if and only if x = y;
(R4) for all x, y, z ∈ [0, 1], if x ≤ y ≤ z, then r(x, y) ≤

r(x, z) and r(y, z) ≤ r(x, z).
The following proposition shows a way to construct RDFs

from automorphisms.
Proposition 1: Let ϕ1 and ϕ2 be two automorphisms of the

unit interval, then the mapping r : [0, 1]2 → [0, 1] defined by

r(x, y) = ϕ1(|ϕ2(x)− ϕ2(y)|) (1)

is a restricted dissimilarity function.
In order to narrow down the scope of this work, we will

only consider the RDFs constructed as in Proposition 1. More
specifically, we refer with r[α,β], where α, β ∈ R, to the RDF
constructed with ϕ1(x) = xα and ϕ2(x) = xβ . That is,

r[α,β](x, y) = (|xβ − yβ |)α . (2)

Figure 1 includes some RDFs constructed as in Eq. (2).
Note that r[1,1] corresponds to the absolute difference.

In the remainder of this work we use lower case for scalar
data (a, b), while the vectorial data takes up boldface symbols
(~a,~b).

III. PROPOSAL

In this section we present a reformulation of the con-
volution operator for partial derivative approximation. This
reformulation is grounded on the assumption that the filters
used for such approximations are antisymmetric. Our proposal

results in a generalization of the classical convolution in which
the measurement of the tonal differences is carried out by
a problem-specific funtion. Furthermore, we describe how
to apply RDFs in the generation of such problem-specific
funtions and relate our proposal with other approaches in the
literature.

A. Computing partial derivatives on digital images

It is well known that the concept of derivative roots on the
variation of a function. Hence, in a discrete setting, the local
difference could be considered as a possible generalization of
the derivative. In this way, the partial derivatives of an image
f at each pixel could be computed as its difference with the
next one, i.e.:

∂f

∂x
(i, j) = f(i+ 1, j)− f(i, j) and

∂f

∂y
(i, j) = f(i, j + 1)− f(i, j) .

(3)

However, in practical applications this renders in deceptive
results, due to the contamination of the data, which makes
this methodology extremely unreliable. An example of the
unreliability of the estimations based on Eq. (3) can be seen
in Fig. 2. In the top row of this figure we see two signals,
the second being a contaminated version of the first. In this
signal four edges coexist, two of them related to each of the
objects (plateaus) in the signal. Note that two of such edges
should produce positive peaks (maxima) of the first derivative,
while the remaining two should manifest as local minima. In
the second row of Fig. 2 we see the approximation of the
derivative of such signals using Laligant’s filter [21], which
corresponds to Eq. (3). We observe that, although accurate in
the original signal, it becomes extremely sensitive to the noise
in the contaminated one. Consequently, different methodolo-
gies have been developed to compute partial derivatives in a
discrete setting able to cope with contamination, mainly based
on convolution filters.

There exist very different filters for the computation of the
partial derivatives of an image, either discrete (such as those
by Sobel [5] and Prewitt [6]) or continuous (such as the well-
known Canny filter [12] and its subsequent evolutions [15],
[22]). Any of these filters is used for convolving the image.
Specifically, the partial derivative of the image is computed as
the convolution of the image with the filter g.

Let us recall that the convolution of an image f and a filter
g is defined as

f ∗ g(x) =
∫ ∞
−∞

∫ ∞
−∞

g(ξ) · f(x+ ξ) · dξ . (4)

In order to approximate a partial derivative of an image by a
convolution it is necessary to choose an appropriate filter. Most
of the filters used for such task satisfy antisymmetry1,2g(ξ) =

1Note that from a pure mathematical point of view, g is an odd function.
However, we have opted to follow here the terminology generally used in
image processing.

2In general, this property does not hold for those filters used to estimate
the second derivative, since these filters are usually symmetric [9], [11].
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Fig. 3. One-dimensional convolution filters used in Fig. 2. The dots account
for the discrete representation of the filter.

−g(−ξ). Thus, by considering an antisymmetric filter g we
have

f ∗ g(x) =
∫ ∞
−∞

∫ ∞
−∞

g(ξ) · f(x+ ξ) · dξ =

=

∫ ∞
−∞

∫ ∞
0

g(ξ)f(x+ ξ)dξ +

∫ ∞
−∞

∫ 0

−∞
g(ξ)f(x+ ξ)dξ

=

∫ ∞
−∞

∫ ∞
0

g(ξ)f(x+ ξ)dξ +

∫ ∞
−∞

∫ ∞
0

g(−ξ)f(x− ξ)dξ

=

∫ ∞
−∞

∫ ∞
0

g(ξ)f(x+ ξ)dξ −
∫ ∞
−∞

∫ ∞
0

g(ξ)f(x− ξ)dξ

=

∫ ∞
−∞

∫ ∞
0

g(ξ)(f(x+ ξ)− f(x− ξ))dξ .

Finally, note that from a practical point of view, we can
assume a finite support of g. In that case, the formula above
can be reformulated as:

f ∗ g(x) =
∫ k

−k

∫ k

0

g(ξ)(f(x+ ξ)− f(x− ξ))dξ . (5)

where [−k, k]2 is the support of the filter g.
From the previous equation, it is clear that the estimation of

the partial derivative of the signal f by a convolution involves:
• the difference between the intensity on both sides of the

pixel (i.e. the expression f(x+ ξ)− f(x− ξ))
• weighted by the value of the filter g.

Hence, instead of measuring such a difference by subtraction,
we can consider a mapping ε : [0, 1]2 → [−1, 1] in charge of
measuring the perceived dissimilarity in the transition from
the tone f(x− ξ) to f(x+ ξ) and, subsequently, reformulate
Eq. (5) as

f ∗ g(x) =
∫ k

−k

∫ k

0

g(ξ)ε(f(x+ ξ), f(x− ξ))dξ . (6)

In this way, the computation of the partial derivative of an
image is dependent upon the spatial (domain) filter f and a
certain tonal (range) filter ε. We refer to g(ξ) as the spatial
term, while ε(f(x+ ξ), f(x− ξ)) is called tonal term.

B. Using restricted dissimilarity functions

We propose to replace the arithmetic difference in Eq. (6) by
a function ε able to evaluate the perceived difference between
two tones. This function should produce large absolute values
when the perceived tonal dissimilarities are large, as well as
near-zero values when the tones are perceptually similar. In
this work we propose to generate such function ε using RDFs,
more specifically to use as tonal evaluation term the expression

εr(y, z) = sign(z − y) · r(y, z) , (7)

where r is a restricted dissimilarity function.
There is a practical motivation behind the use of RDFs

for measuring the perceived dissimilarity between two tones.
We have that the properties of RDFs (see Definition 1)
are perfectly suited for our purposes. By using Eq. (7) the
functions ε satisfy a minimal set of properties, namely:

(E1) εr(y, z) = −εr(z, y):
(E2) εr(y, z) = 0 if and only if y = z;
(E3) εr(y, z) = 1 if and only if (y, z) = (1, 0);

and, εr(y, z) = −1 if and only if (y, z) = (1, 0);
(E4) for any t, y, z ∈ [0, 1], t ≤ y ≤ z, we have that

εr(t, y) ≤ εr(t, z) and εr(y, z) ≤ εr(z, t) .
These properties guarantee the expected behaviour for the
tonal evaluation. For example, because of (E2), we know that
Eq. (6) will only produce a zero response if and only if
f(x + ξ) = f(x − ξ) for every position within the support
of the filter.

In addition to the good behaviour guaranteed by the prop-
erties (E1)-(E4), constructing functions ε from RDFs has the
advantage of providing a connection between a novel proposal,
such as ours, with a well established field of research. In
this way, we can aim to transfer the knowledge gathered in
previous developments to our filtering proposal.

C. Relationship with other filtering paradigms in the literature

This work is not the first proposal to incorporate explicit
tonal analysis into classical filtering. In fact, any Content-
Aware (CA) filtering technique somehow integrates the tonal
analysis (to design the filter) with the spatial analysis (to
apply the filter). However, both aspects of the problem are
approached in two separated and consecutive steps.

The most relevant contribution integrating the treatment of
tonal and spatial information in an explicit way is bilateral
filtering [19]. In [19] the authors propose to combine filters
in the tonal and spatial domain for CA regularization. More
specifically, they propose to filter a signal f as

f∗(x) =
1

kd

∫ ∞
−∞

∫ ∞
−∞

f(x+ξ)·g(ξ)·h(‖f(ξ)−f(x+ξ)‖)dξ

where kd is a normalization factor, ‖·‖ represents the Eu-
clidean norm, g is a classical low-pass filter and h is a unary,
decreasing function. Thus, the value of each translation x+ ξ
contributes to the regularized value of f∗(x) as long as it
is close in the spatial (filter g(ξ)) and in the tonal (function
h(‖f(ξ)− f(x+ ξ)‖)) domains.



28 2013 International Conference of Soft Computing and Pattern Recognition (SoCPaR)

O
ri

gi
na

l
si

gn
al

s
0

1

0

1

L
al

ig
an

t
fil

te
r

0 0

Pr
ew

itt
fil

te
r

0 0

C
an

ny
fil

te
r

(σ
=

1
)

0 0

C
an

ny
fil

te
r

(σ
=

2
)

0 0

(a) Synthetic signal (b) Contaminated signal

Fig. 2. Estimations of the first derivative of a signal computed using different 1D convolution operators. The contaminated signal has been obtained after
adding to the synthetic signal zero-mean Gaussian noise with standard deviation 0.02. The convolution operators are those by Laligant [21], Prewitt [6] and
Canny [13].

Bilateral filters have been thereafter applied to different
problems, but they have been mostly dedicated to CA regular-
ization with specific goal, such as denoising or de-texturing,
among others [23]. Other authors have focused on developing
mathematical models connecting bilateral filtering, with other
well-known CA regularization techniques, such as anisotropic
diffusion or mean-shift [24], [25], [26].

Our proposal, although conceptually similar to that in [19],
renders in a different formulation. The most relevant change
is that we consider tonal evaluation based on the values of
symmetric positions of each pixel neighbourhood, while in
bilateral filtering the tonal evaluation is performed taking into
account the value of the neighbor and that of the central
pixel (more specifically, the difference between them). The
other critical difference is that the scope of the bilateral filter
involves the whole neighbourhood around a each pixel, while
we only consider half of it (the other is implicitly taken into
account in the tonal evaluation).

IV. EXPERIMENTAL VALIDATION

The proposal in Section III is based on the assumption that
the arithmetic difference is not necessarily the best descriptor
of the tonal dissimilarity between two pixels. However, there is
a need for qualitatively and quantitatively validating this fact.
Since qualitative experiments can be seen as mere examples,
and given the limited space, we present in this section a
quantitative experiment measuring the performance obtained
by our proposal.

A. Edge extraction technique

The procedure used to produce binary edge images is
described as follows:

1. Smooth the image with a Gaussian filter with standard
deviation σ = 1;

2. Compute the gradients as the combination of the partial
derivatives, which are obtained according to Eq. (6) with
the settings described below.

3. Compute the edginess at each pixel as the Euclidean
magnitude of the components of its gradient.

4. Binarize the edge image using non-maxima suppre-
sion [27] in combination with hysteresis [12], whose
thresholds are set using the technique by Medina-
Carnicer et al. [28].

In this experiment, we have used the following settings for
our proposal (see Eq. (6)):

• ε as in Eq. (7) constructed from RDFs r[α,β], with α, β ∈
{0.5, 1, . . . , 3};

• gh and gv functions based on the Canny filter, i.e

gh(ξ) =
−ξx
σ2

e−
ξ2x+ξ2y

2σ2 and gv(ξ) =
−ξy
σ2

e−
ξ2x+ξ2y

2σ2 ,

(8)
where σ = 1.

Note that, when using r[1,1], the algorithm becomes compu-
tationally equivalent to the Canny filters. Hence, by including
(α, β) = (1, 1) in the comparison, we compared the results
by different RDFs with those obtained by the Canny method,
and, consequently we can evaluate whether the replacement of
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the arithmetic difference by other dissimilarity measures can
result in quantitative improvements.

B. Quantification of the quality of the results

In this experiment we adhere to the most common experi-
mental setup in the literature, which is based on computing the
F -measure [29], [30] on the BSDS dataset [31]. The details
of our procedure for quantitative evaluation are analogous to
those in [32].

C. Experimental results

In Table I we list the results obtained in our experiments.
First, in Table I(a) we list the average performance of each
combination (α, β). Second, in Table I(b) and I(c) we display
number of images for which each combination of (α, β)
produces the best and worst result. That is, the number of
images for which each combination leads to the best (or worst)
possible results, in terms of F -measure.

We can observe that the combination of (α, β) = (1, 1)
(which recovers the Canny method) is not the best performer
in the set of candidates. Several other settings produce better
results, both in terms of average performance and in number
of best/worst results Hence, from these results we conclude
that r[0.5,β] and r[1,β] with β ∈ {1.5, 2, 2.5} often lead to
results better than those of r[1,1]. This conclusion holds for the
average performance, but also for the number of best/worst
results. We consider noteworthy the case of r[0.5,1.5] and
r[0.5,2], since they are assessed an average performance better
than that of r[1,1] and, at the same time, have the best ratio of
best/worst results in the comparison. Although more extensive
experiments should be carried out, our results point out that the
arithmetic difference might not be the best function to express
the dissimilarity between tones.

V. CONCLUSIONS

In this work we have presented a novel model to generalize
antisymmetric filters for gradient computation with application
to edge detection. Our model proposes to use an explicit tonal
term in the filtering of the image to be able to adapt the per-
ceived dissimilarity between tones. To this end, we have pro-
posed to use restricted dissimilarity functions, which provide
a minimal set of desired properties, while also offering high
flexibility. We have illustrated, using quantitative experiments,
that our proposal is able to improve the results by classical
filters for edge feature extraction. We consider that the results
are promising and, although they should be backed up by more
extensive experiments, they indicate that tonal evaluation is a
potential source of improvements for classical, convolution-
based edge detection methods. Moreover, we highlight the
fact that the explicit tonal term offers new possibilities for
the training of specialized functions in the tonal space, which
can adapt the filters to specific applications.
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β

0.5 1.0 1.5 2.0 2.5 3.0

α

0.5 .46 .56 .59 .59 .57 .55
1.0 .47 .56 .58 .57 .54 .51
1.5 .48 .56 .56 .53 .50 .48
2.0 .48 .54 .52 .50 .47 .44
2.5 .49 .51 .50 .46 .44 .41
3.0 .48 .49 .47 .44 .41 .38

(a) Average F -measure for each combination of (α, β).

β

0.5 1.0 1.5 2.0 2.5 3.0

α

0.5 3 5 13 13 7 9
1.0 3 6 8 4 1 1
1.5 - 3 2 - - 2
2.0 1 4 3 1 1 -
2.5 1 2 2 1 - -
3.0 1 1 - 1 1 -

(b) Number of images in the dataset for which each combination of
(α, β) produces the best result.

β

0.5 1.0 1.5 2.0 2.5 3.0

α

0.5 14 - 1 - - 2
1.0 5 - - - - -
1.5 5 - - - 1 -
2.0 - - - - - 2
2.5 2 - - - - 4
3.0 6 - 2 3 5 48

(c) Number of images in the dataset for which each combination of
(α, β) produces the worst result.

TABLE I
QUANTITATIVE RESULTS OBTAINED WITH OUR PROPOSAL ON THE BSDS

TEST SET.

Centre of Excellence (Projects CZ.1.05/1.1.00/02.0070 and
CZ.1.07/2.3.00/30.0010).

REFERENCES

[1] V. Torre and T. Poggio, “On edge detection,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 8, no. 2, pp. 147–163, 1984.

[2] J. M. Prager, “Extracting and labeling boundary segments in natural
scenes,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 2, no. 1, pp. 16–27, 1980.

[3] T. Law, H. Itoh, and H. Seki, “Image filtering, edge detection, and edge
tracing using fuzzy reasoning,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 18, no. 5, pp. 481–491, 1996.

[4] J. Bezdek, R. Chandrasekhar, and Y. Attikouzel, “A geometric approach
to edge detection,” IEEE Trans. on Fuzzy Systems, vol. 6, no. 1, pp.
52–75, 1998.

[5] I. Sobel and G. Feldman, “A 3x3 isotropic gradient operator for
image processing,” 1968, presented at a talk at the Stanford Artificial
Intelligence Project.

[6] J. M. S. Prewitt, Object enhancement and extraction, ser. Picture
Processing and Psychopictorics. Academic Press, 1970, pp. 75–149.

[7] L. G. Roberts, “Machine perception of three-dimensional solids,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1963.



30 2013 International Conference of Soft Computing and Pattern Recognition (SoCPaR)

[8] R. M. Haralick, “Digital step edges from zero crossing of second
directional derivatives,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 6, no. 1, pp. 58–68, 1984.

[9] M. Basu, “Gaussian-based edge-detection methods- A survey,” IEEE
Trans. on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, vol. 32, no. 3, pp. 252–260, 2002.

[10] S. Mahmoodi, “Edge detection filter based on Mumford–Shah Green
function,” SIAM Journal on Imaging Sciences, vol. 5, no. 1, pp. 343–
365, 2012.

[11] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of
the Royal Society of London, vol. 207, no. 1167, pp. 187–217, 1980.

[12] J. Canny, “Finding edges and lines in images,” Massachussets Institute
of Technology, Cambridge, MA, USA, Tech. Rep., 1983.

[13] ——, “A computational approach to edge detection,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698,
1986.

[14] H. Tagare and R. deFigueiredo, “On the localization performance
measure and optimal edge detection,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 12, no. 12, pp. 1186–1190, 1990.

[15] W. McIlhagga, “The Canny edge detector revisited,” International Jour-
nal of Computer Vision, vol. 91, pp. 251–261, 2011.

[16] A. P. Witkin, “Scale-space filtering,” in Proc. of the International Joint
Conference on Artificial Intelligence, vol. 2, 1983, pp. 1019–1022.

[17] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[18] T. Lindeberg, “Edge detection and ridge detection with automatic scale
selection,” International Journal of Computer Vision, vol. 30, no. 2, pp.
117–156, 1998.

[19] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. of the International Conference on Computer Vision,
1998, pp. 838–846.

[20] H. Bustince, E. Barrenechea, and M. Pagola, “Relationship between
restricted dissimilarity functions, restricted equivalence functions and
normal EN-functions: Image thresholding invariant,” Pattern Recogni-
tion Letters, vol. 29, no. 4, pp. 525–536, 2008.

[21] O. Laligant and F. Truchetet, “A nonlinear derivative scheme applied
to edge detection,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 32, no. 2, pp. 242–257, 2010.

[22] P.-L. Shui and W.-C. Zhang, “Noise-robust edge detector combining
isotropic and anisotropic Gaussian kernels,” Pattern Recognition, vol. 45,
no. 2, pp. 806–820, 2012.

[23] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “Bilateral filtering:
Theory and applications,” Foundations and Trends in Computer Graph-
ics and Vision, vol. 4, no. 1, pp. 1–73, 2008.

[24] M. Elad, “On the origin of the bilateral filter and ways to improve it,”
IEEE Trans. on Image Processing, vol. 11, no. 10, pp. 1141–1151, 2002.

[25] D. Barash, “A fundamental relationship between bilateral filtering,
adaptive smoothing, and the nonlinear diffusion equation,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 24, pp. 844–847,
2002.

[26] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[27] A. Rosenfeld and M. Thurston, “Edge and curve detection for visual
scene anaiysis,” IEEE Trans. on Computers, vol. 20, no. 5, pp. 562–
569, 1971.

[28] R. Medina-Carnicer, F. Madrid-Cuevas, A. Carmona-Poyato, and
R. Muñoz-Salinas, “On candidates selection for hysteresis thresholds
in edge detection,” Pattern Recognition, vol. 42, no. 7, pp. 1284–1296,
2009.

[29] D. Martin, C. Fowlkes, and J. Malik, “Learning to detect natural image
boundaries using local brightness, color, and texture cues,” IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol. 26, no. 5, pp. 530–
549, 2004.

[30] C. Lopez-Molina, B. De Baets, and H. Bustince, “Quantitative error
measures for edge detection,” Pattern Recognition, vol. 46, no. 4, pp.
1125–1139, 2013.

[31] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. of the 8th
International Conference on Computer Vision, vol. 2, 2001, pp. 416–
423.

[32] C. Lopez-Molina, B. De Baets, H. Bustince, J. Sanz, and E. Barrenechea,
“Multiscale edge detection based on Gaussian smoothing and edge
tracking,” Knowledge-Based Systems, vol. 44, pp. 101–111, 2013.


