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Summary 

The main goal of the ecological risk assessment of chemicals (ERA) is the protection 

of populations and communities and the correct effect assessment of chemicals on the 

structure and functioning of aquatic ecosystems. At present, ERA is mainly based on 

data obtained from standard ecotoxicity experiments. These experiments are typically 

conducted under standardized optimal conditions, at the species level and exposed at 

a single stressor at the time. However, these general ERA approaches are in sharp 

contrast with natural conditions. Natural populations and communities are often 

exposed to a mixture of multiple stressors that are biotic (e.g. food shortage, predation) 

and abiotic (e.g. eutrophication, non-optimal temperature or water chemistry, metals). 

Species interactions such as predation and competition for food are two major biotic 

factors that are able to significantly affect the responses of organisms to toxicants. 

Additionally, abiotic factors such as temperature (T) can also play an important role 

affecting the toxic effects of chemical pollutants (e.g. by influencing its bioavailability 

and toxicokinetics). Therefore, by ignoring ecological interactions and by not 

considering natural field conditions these single-species tests oversimplify the actual 

field situation and ERA may not be protective. The aim of this PhD thesis was to 

investigate the combined effect of Zn with natural environmental stressors 

(temperature and/or phosphorous) at different organization levels (population vs. 

community) on freshwater organisms in order to increase the realism of current 

ERA. 

Do environmental factors such as temperature (T) and phosphorous (P) affect Zn 

toxicity to a freshwater plankton community? In Chapters 2 and 3 this was assessed 

by exposing a freshwater plankton community (zooplankton, phytoplankton and 

protozoa) to different levels of Zn (Reference, HC5-plankton, HC50-plankton), T (Reference 
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and a warmer regime) and P (Reference: low P addition and high P addition) in a full 

factorial design. During this experiment the abundances of plankton species, the 

community metabolism and the general properties of the water were monitored during 

5 weeks. 

Chapter 2 focused on the part of the freshwater microcosm study that was conducted 

to assess the direct and indirect effects of Zn on the community structure and function 

of a freshwater plankton community at a single level of T and P. At the highest Zn 

treatment (HC50-plankton: predicted hazardous concentration for 50% of the organisms  

only based on the chronic toxicity data of plankton species that was first normalized to 

the target chemical properties of the water by using the Zn BLM’s) a significant 

reduction in cladocerans increased the rotifers, ciliates and phytoplankton abundances. 

Additionally, the phytoplankton community shifted in dominance from grazing-resistant 

to edible species. In contrast to the SSD (Species sensitivity distribution) predictions, 

which identified phytoplankton as the most sensitive groups, only the total chlorophyll 

and two phytoplankton taxa were adversely affected at the highest Zn treatment. The 

HC5-plankton estimated from the bioavailability-normalized SSD was overall protective 

for the plankton community, however, the SSD was not able to correctly predict the 

species sensitivity ranking within their community context at the HC50-plankton. 

In chapter 3 it was assessed to what extent the toxicity of Zn is affected by temperature 

and phosphorus supply and how these T & P effects on Zn toxicity vary between the 

levels of organisation (population, functional group and community) and their endpoints 

in a community. Consistent interactions between Zn and T were only rarely found at 

the species level (4%), but were more frequently found at the functional group level 

(36%), for community structure (100%) and for community function (100%, such as 

Dissolved Organic Carbon concentrations and total chlorophyll). The majority of the Zn 
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× T interactions were only observed at HC50-plankton and generally indicated a 

smaller negative effect of Zn on these endpoints at higher T. The results thus suggest 

that higher T, e.g. related to global warming, decrease the toxic effects of the HC50-

plankton Zn concentration on these endpoints. It is possible, however, that T itself was 

the main factor affecting the community (e.g. composition, species interactions) and 

this could obscure some of the expected Zn effects at the population and group level. 

Furthermore, P poorly affected the effects of Zn on the community at any level of 

organization. Interestingly however, 90% of all the Zn × T interactions observed at the 

species, group and community composition level were found at high P addition. 

However, a real explanation for this phenomenon could not be found within this PhD 

and needs further research. At the community level the different plankton groups 

(Zooplankton, phytoplankton and protozoa) were only consistently affected at the 

HC50-plankton under high P addition (cold and warm). However, under warm low P 

addition the phytoplankton community composition was consistently affected at the 

HC5-plankton and thus not protective for the plankton community. Collectively, our 

study with the model chemical Zn, suggests that temperature and phosphorus loading 

to freshwater systems should be accounted for in risk assessment, as these factors 

may modify the effects of chemicals on the structure and functioning of aquatic 

communities. Not doing so may underestimate risks in some and overestimate risks in 

other systems, depending on their temperature and phosphorous loading.  

In Chapter 4 the combined effects of interspecies interaction (food competition), 

temperature and Zn was assessed by conducting a simple community experiment. 

Here, Daphnia longispina populations were exposed to different Zn, temperature and 

interspecific competition levels (No interspecific Brachionus competition= no 

Brachionus calyciflorus added; interspecific Brachionus competition= B. calyciflorus 



VIII 
 

added). Interspecific Brachionus competition and temperature by itself had a limited 

effect on the Daphnia abundances, but significantly interacted with the highest Zn 

concentration. Without Brachionus competition the highest Zn treatment had a stronger 

negative effect on the D. longispina population in the warm regime than in the cold 

regime. However, with Brachionus competition the highest Zn treatment had a reduced 

negative effect on the D. longispina juvenile abundances in the warm regime. This is 

probably due the fact that at the highest Zn treatment the B. calyciflorus were more 

numerous under cold conditions than under warmer conditions. Under cold condition 

the highest Zn treatment affected the juvenile abundance more negatively when 

Brachionus was present. Possibly the competition for food reduced the amount of 

energy that could be used for (1) reproduction (dynamic energy budget theory), 

resulting in fewer juveniles, or (2) to maintain enough energy to maintain normal body 

function when the metabolic costs increased due to Zn stress which could affect toxic 

effects observed at the population level. The present study illustrates that the influence 

of temperature and interspecific competition on the effect of Zn on the D. longispina 

abundance and should be considered when assessing ecological risks of chemicals. 

In Chapter 5 the findings of this PhD thesis are combined, reviewed and summarized. 

Additionally, suggestions and possible directions for future research are provided in 

this chapter. Conventional ERA is generally based on the extrapolation of single-

species ecotoxicity data to natural populations and communities (e.g. SSD method). 

Here, we tried to determine whether population level effects (single and interactions) 

of chemicals, observed in lower-tier experiments (as in Chapter 4) are similar to 

population level effects during high-tier experiments (as in Chapters 2 and 3). Stated 

otherwise: can lower-tier results be extrapolated to higher-tier experiments or to natural 

aquatic ecosystems? For this purpose, a D. longispina population experiment 
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(exposing D. longispina to different Zn and temperature) was conducted and was 

compared with the D. longispina population results from Chapters 2-4. At the highest 

Zn treatment the Zn effects observed in the lower-tier experiments are similar to 

population level effects during high-tier experiments. For D. longispina consistent Zn × 

T interactions were only observed in the lower-tier experiments at the highest Zn 

concentration. At the lowest Zn concentration the Zn effects goes from no effect (D. 

longispina population), to a positive effect (“D. longispina + small rotifers” community 

and “D. longispina + B. calyciflorus + small rotifers” community) to a negative effect (D. 

longispina in complex plankton community). The most likely explanations for this 

difference are biotic interactions. These biotic interactions can be very complex and 

can modify or even mask toxic effects of toxicants. In the complex community study 

(Chapter 2 and 3) for example, Mesostoma sp. predated selectively on the Daphnia 

populations, and it is unclear if the D. longispina population declines, in Chapters 2-3, 

were induced by Zn toxicity, Mesostoma sp. predation, a combination of both or by 

inter- and intra-specific interactions which could have had an effect on the species 

sensitivity to toxicants. The results from this PhD thesis indicate the importance of 

species interactions, T and P on Zn toxicity effects on aquatic organisms. By ignoring 

biotic interactions and environmental conditions ERA is in sharp contrast with natural 

conditions and the extrapolation of conventional ecotoxicological results from 

individuals to populations and ecosystems could be dubious. Therefore we believe that 

the combination of higher-tier experiments and ecological models are crucial for 

correctly predicting effects of chemicals on populations and communities. 
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Samenvatting 

Het hoofddoel van de ecologische risico assessment (ERA) van chemicaliën is de 

bescherming van populaties en gemeenschappen en de correcte beoordeling van de 

effecten van chemicaliën op de structuur en functionering van aquatische 

gemeenschappen. Momenteel is de ERA vooral gebaseerd op data, verkregen uit 

standaard ecotoxicologische experimenten. Deze experimenten werden typisch 

uitgevoerd onder gestandaardiseerde, optimale condities, op soort niveau en slechts 

blootgesteld aan één stressor tegelijk. Echter staat deze algemene ERA benadering 

in sterk contrast met natuurlijke condities. Natuurlijke populaties en gemeenschappen 

worden vaak blootgesteld aan een verscheidenheid van multipele biotische (bv. 

voedselschaarste, predatie) en abiotische (bv. eutroficatie, non optimale temperatuur 

of water chemie, metalen) stressoren. Soortinteracties zoals predatie en competitie 

voor voedsel zijn twee belangrijke biotische factoren die een invloed hebben op hoe 

toxicanten organismen affecteren. Abiotische factoren zoals temperatuur (T) kunnen 

ook een belangrijke invloed hebben op de toxische effecten van toxicanten door het 

beïnvloeden van de bio beschikbaarheid en toxicokinetiek. Single-species testen zijn 

een over-simplificatie van natuurlijke omstandigheden doordat ze ecologische 

interacties negeren en geen rekening houden met de natuurlijke condities waardoor 

ERA mogelijk niet beschermend genoeg is. Het doel van deze PhD thesis was het 

onderzoeken van het gecombineerde effect van Zn met natuurlijke stressoren (fosfor 

en/of temperatuur) bij verschillende levels van organisatie (populatie vs. gemeenschap) 

op zoetwater organismen met als doel het verhogen van het realisme van ERA. 

Kunnen omgevingsvariabelen zoals temperatuur (T) en fosfor (P) de Zn toxiciteit 

affecteren op een zoetwatergemeenschap? In hoofdstukken 2 en 3 werd onderzocht 

of temperatuur en fosfor een effect kunnen hebben op de Zn toxiciteit effecten op een 
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zoetwater gemeenschap. Dit was onderzocht door een zoetwater plankton 

gemeenschap (zoöplankton, fytoplankton en protozoa) bloot te stellen aan 

verschillende Zn (Referentie, HC5-plankton en HC50-plankton), T (Referentie en warm 

regime) en  en P levels (Referentie en hoge P additie) in een full factorial design. 

Tijdens dit experiment de plankton abundantie en de generale waterkwaliteit 

parameters werden gemonitord gedurende vijf weken.  

In Hoofdstuk 2 wordt de nadruk gelegd op het onderzoeken van de directe en indirecte 

effecten van Zn op de gemeenschapsstructuur en functie van een zoetwater 

planktonische gemeenschap. Bij de hoogste Zn concentratie (HC50-plankton) 

resulteerde de significante reductie van de cladoceren in de verhoging van de rotifeer, 

ciliaat en fytoplankton abundanties. Bovendien was er een verschuiving in de 

fytoplanktongemeenschap van een begrazings-resistente naar een begrazing 

gevoeligere gemeenschap. In contrast met de Single-Species Distributie (SSD) 

voorspellingen, die de fytoplanktongemeenschap als meest gevoelig voorspelde, 

werden enkel de totale chlorofyl en 2 fytoplankton taxa negatief beïnvloed door de 

hoogste Zn concentratie. Dus hoewel de HC5-plankton concentratie, die voorspeld 

werd door middel van de bio beschikbaarheid-genormaliseerde SSD, beschermend 

was voor de plankton gemeenschap, voorspelde de SSD niet de correcte soort 

gevoeligheid binnenin de gemeenschap.  

In hoofdstuk 3 werd er onderzocht hoe de Zn toxiciteit werd beïnvloed door 

temperatuur en fosfor aanvoer en hoe deze T en P effecten op Zn toxiciteit variëren 

binnen de verschillende organisatorische niveaus (populatie, functionele groep en 

gemeenschap) en hun eindpunten binnenin een gemeenschap. Consistente 

interacties werden tijdens deze studie maar zelden waargenomen op soort niveau 

(4%), maar kwamen frequenter voor op groep (36%) niveau, gemeenschapsstructuur 
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(100%) en functie (100%, bv. totale chlorofyl). De meerderheid van de Zn × T 

interactions werden waargenomen bij HC50-plankton en verwezen naar een kleine Zn 

effect bij hogere T. Voorts werden er geen indicaties gevonden dat hoge P additie op 

zichzelf een effect had op de globale Zn toxiciteit. Belangstelling wekkend was het feit 

dat 90% van alle Zn × T interactions gevonden werden bij hoge P additie. Een 

explinatie voor dit phenomeen kan echter niet gevonden worden binnenin dit 

onderzoek. Op gemeenschapsniveau werden de verschillende plankton 

gemeenschappen bij hoge P additie enkel geaffecteerd bij HC50-plankton. Bij hoge T 

en lage P echter werd de fytoplanktongemeeschap reeds geaffecteerd bij de HC5-

plankton en bleek dus niet beschermend voor de gemeenschap. De resultaten van 

hoofdstukken 2 en 3 illustreren dat T en P een effect kunnen hebben op Zn 

toxiciteitseffecten op een zoetwater planktonische gemeenschap. Hierdoor zouden 

zowel T als P als factoren in beschouwing moeten genomen worden voor risk 

assessment, omdat het niet incorporeren ervan kan leiden tot het onder-of over 

voorspellen van toxische effecten. 

In hoofdstuk 4 werd het gecombineerde effect van interspecifieke interactie 

(voedselcompetitie) van temperatuur en Zn onderzocht door middel van het uitvoeren 

van een simpel gemeenschap experiment. Hiervoor werd een Daphnia longispina 

populatie experiment uitgevoerd, waarbij het werd blootgesteld aan verschillende Zn, 

T en interspecifieke competitie levels (Geen interspecifieke Brachionus competitie= 

geen Brachionus calyciflorus toegevoegd; interspecifieke Brachionus competitie= B. 

calyciflorus toegevoegd). Interspecifieke Brachionus competitie en temperatuur op 

zichzelf hadden een beperkt effect op de Daphnia abundanties, maar ze interageerden 

significant met de hoogste Zn concentratie. Zonder Brachionus competitie had de 

hoogste Zn concentratie een sterker negatief effect op de D. longispina populatie bij 
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warme condities. Wanneer er echter wel Brachionus competitie was, had de hoogste 

Zn concentratie een verminderd negatief effect op de D. longispina juveniele 

abundanties bij warme condities. Dit kan waarschijnlijk verklaard worden doordat de B. 

calyciflorus bij de hoogste Zn concentratie meer abundant waren onder koude 

omstandigheden dan onder warme. Onder koude omstandigheden had de hoogste Zn 

concentraties een groter negatief effect op de juveniele abundanties wanneer 

blootgesteld aan Brachionus competitie. Mogelijks resulterende de voedselcompetitie 

voor een verminderde hoeveelheid energie die gebruikt kon worden voor (1) 

voortplanting, wat resulteerde in minder juvenielen, of (2) voor het onderhouden van 

voldoende energie voor het onderhouden van de normale lichaamsfuncties wanneer 

de metabolisme kosten stijgen door Zn stress. Deze studie illustreert het effect van 

temperatuur en interspecifieke competitie hebben op de effecten van Zn op de D. 

longispina abundanties en zouden in rekening moeten gebracht worden bij ERA. 

In hoofdstuk 5 werden de bevindingen van deze PhD thesis gecombineerd en 

samengevat. Aanvullend werden er in dit hoofdstuk ook suggesties gedaan naar 

toekomstig onderzoek. Conventioneel ERA is vooral gebaseerd op de extrapolatie van 

single-species ecotoxicologische data naar natuurlijke populaties en 

gemeenschappen (bijvoorbeeld doormiddel van de SSD methode). In hoofdstuk 5 

werd getracht te bepalen of populatie level effecten (single en interacties) van 

chemicaliën, geobserveerd in lagere-tier experimenten (zoals in hoofdstuk 4) dezelfde 

zijn als effecten geobserveerd in hogere-tier experimenten (zoals in hoofdstukken 2 en 

3). Anders gezegd: kunnen lagere-tier resultaten worden geëxtrapoleerd naar hogere-

tier experimenten of naar aquatische ecosystemen? Om dit te onderzoeken werd een 

D. longispina populatie (D. longispina populatie blootstellen aan verschillende Zn en 

temperatuur) experiment uitgevoerd en vergeleken met de D. longispina populatie 
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resultaten van hoofdstukken 2-4. Bij de hoogste Zn concentratie werd geobserveerd 

dat de Zn effecten in de laagste-tier experimenten gelijkaardig zijn aan de populatie 

level effecten in de hoge-tier experimenten. Bij de laagste Zn concentratie kon 

vastgesteld worden dat de Zn effecten variëren van geen effect (D. longispina 

populatie), tot een positief effect (“D. longispina + kleine rotiferen” gemeenschap en 

“D. longispina + kleine rotiferen + B. calyciflorus” gemeenschap) en tot een negatief 

effect (D. longispina in een complexe plankton gemeenschap). Voor D. longispina 

werden consistente Zn × T interacties enkel geobserveerd in de lagere-tier 

experimenten bij de hoogste Zn concentratie. Bij de hoogste Zn concentratie werd 

geobserveerd dat de Zn effecten in de laagste-tier experimenten gelijkaardig zijn aan 

de populatie level effecten in de hoge-tier experimenten. De meest waarschijnlijke 

oorzaak voor dit verschil zijn biotische interacties. Deze biotische interacties kunnen 

heel complex zijn en deze kunnen de effecten van stressoren modificeren of zelfs 

maskeren. In de complexe gemeenschapsstudie (hoofdstuk 2-3) bijvoorbeeld, 

predateerde Mesostoma sp. zeer selectief op de Daphnia populaties. Hierdoor werd 

het onduidelijker of de geobserveerde populatie dalingen van de Daphnia het resultaat 

waren van Zn, Mesostoma sp. of door een combinatie van de 2. De resultaten van 

deze PhD thesis tonen de belangrijkheid aan van soorten interacties, T en P op de 

toxische effecten van Zn op aquatische organismen. Door biotische interacties en 

omgevingsfactoren te negeren staat ERA in sterk contrast met de natuurlijke condities 

en daarbij kan de extrapolatie van conventionele ecotoxicologische resultaten van 

individuen naar populaties en ecosystemen dubieus zijn. Hieruit werd afgeleid dat de 

combinatie van hogere-tier experimenten en ecologische modellen cruciaal zijn voor 

het correct voorspellen van effecten van chemicaliën op populaties en 

gemeenschappen.  
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1.1 ENVIRONMENTAL RISK ASSESSMENT 

The main goals of the ecological risk assessment (ERA) of chemicals are the protection 

of populations or higher levels of organisation (communities) and the correct effect 

assessment of chemicals on the structure and functioning of aquatic ecosystem [1,2]. 

Currently, conventional risk assessment is mainly based on data obtained from 

standard ecotoxicity experiments, that are conducted under standardised optimal 

conditions (e.g. temperature, food, etc.), at the individual level (single species 

measuring e.g. survival or reproduction) and exposed to a single stressor at the time. 

Subsequently, these single-species ecotoxicity data are extrapolated to natural 

populations and communities. These extrapolations are generally based on statistical 

models such as species sensitivity distribution (SSD) [3,4]. In the SSD approach a 

probability distribution is fitted to a set of toxicity threshold data, derived from single-

species toxicity tests (e.g. 10% effect concentration [EC10] or no observed-effect 

concentrations [NOEC]). These probability distributions are used to calculate the 

concentration that is protective to most of the single species [3,4]. Typically the HC5 

(the concentration at which 5% of the species is affected, i.e. 95% of the species is 

protected) is used as a safe environmental concentration. The SSD approach is 

commonly used and the major advantage of this technique is that it incorporates the 

data from different species [4]. In metal effect assessment studies the SSD approach 

is often combined with bioavailability models, which are used to normalize the chronic 

metal toxicity data (EC10 or NOEC) to the chemistry of the water body for which the 

assessment is performed (Figure 1.1) [5]. 

However, these general ERA approaches are in sharp contrast with natural conditions. 

Natural populations and communities are often exposed to a mixture of multiple 
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biotic (e.g. food shortage, predation) and abiotic (e.g. eutrophication, non-optimal 

temperature or water chemistry, metals) stressors. 

 

Figure 1.1: Cumulative probability plot of the NOECs, which are bioavailability normalized to 

the water characteristics of microcosms at the start of the test in chapter 2 and fitted Species 

Sensitivity Distribution curve. Normalizations were conducted using the Zn bioavailability 

models (BLM) for Daphnia magna [6], Oncorynchus mykiss [7,8] and 

Pseudokirchneriella subcapitata [7].  

 

Species interactions such as predation and competition for food are two major biotic 

factors able to significantly affect the responses of organisms to toxicants [9]. 

Additionally, abiotic factors such as temperature can also be important drivers affecting 

the toxic effects of chemical pollutants by influencing their bioavailability and 

toxicokinetics [10,11]. By ignoring ecological interactions and by not considering 

natural field conditions these single-species tests oversimplify the actual field situation 

[9,12,13]. Hence, it might be possible that the effect of a pollutant is over or under 

protected via the current standardized ERA methods. More ecology and environmental 

realism is therefore needed in risk assessment [14,15]. As it is not possible to discuss 
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all possible biotic and abiotic factors affecting chemical pollutants, below we focus on 

metal toxicity (Zn), and the abiotic and biotic factors that are most relevant to this study. 

  

1.2 Biotic and abiotic variables affecting metal ecotoxicity 

Physicochemical properties of the water 

Total or dissolved metal concentrations by themselves are no good predictors of toxic 

effects. This is because the physicochemical properties of the water have a major 

effect on metal bioavailability or, in other words, on metal toxicity [5,7,16]. Under certain 

physicochemical conditions the metal will be less bioavailable for the organisms and 

so less toxic (= higher NOEC) and vice versa. In order to adequately assess the 

potential impact of metal toxicity on the organism, bioavailability should be taken into 

account. For Zn the most critical variables for accurately predicting the chronic 

bioavailability and toxicity are pH, calcium (Ca2+) and dissolved organic carbon (DOC) 

[5,7]. Another important factor affecting metal toxicity is temperature [10,11,17,18], but 

this will be discussed in detail later in this chapter (see 1.5). 

 

pH 

By influencing metal speciation and competition with the biotic ligand, pH has an 

important effect on metal toxicity. Speciation has been defined as “the distribution of 

an element amongst defined chemical species in a system” [19]. The speciation of the 

metal is of main importance since it determines whether it can be taken up by the 

organism (=bioavailable) or not. In non-dissolved form the metal can enter the 

organisms through dietary uptake but for most metals this is only a minor route for 
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metal uptake [20]. In dissolved form the metal can occur as free metal ions (Me2+) or 

can be bound to an organic or inorganic ligand. Generally the Me2+ species is 

considered to be the most bioavailable and so the most toxic [16]. Lowering the pH 

generally increases the Me2+ concentration due to the competition between the Me2+ 

and the protons for the complexation with the organic ligands. Furthermore, the 

concentrations of inorganic ligands (e.g. OH-, HCO3
-, CO3

2-) will determine the 

possibilities of complexation with Me2+ and so the metal toxicity (increased Me2+ 

inorganic ligand bindings = less toxic).  

 

Hardness 

Hardness of water is a term referring to the measured concentrations of Ca2+, Mg2+ 

present in the water. These minerals can affect metal speciation and can affect metal 

toxicity by competitive interactions at the biotic ligand [16,21,22]. Heijerick et al. (2005) 

[6], for example, reported protective effects of the cations Ca2+, Na+, Mg2+ and H+ on 

the chronic Zn toxicity to Daphnia magna and he explained the observed effect as 

competition effects with these cations at the site of action. Similar to Ca2+, Na+ and 

Mg2+ decrease the Zn toxicity but less effectively [22,23]. At present the protectiveness 

of cations such as Ca2+, Na+, Mg2+ and H+ are generally accepted and are used to 

calculate the chronic bioavailability and toxicity of Zn [5,7]. 

 

DOC 

Dissolved organic carbon (DOC) is the group of dissolved organic molecules with a 

wide varied composition and origin (e.g. decomposed dead organisms). Due to its thiol 
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groups (R-S-H) DOC can bind with metals (R-S-Me), making it bio-unavailable and 

reducing the accumulation and toxicity of the metal [6,24,25]. Waters with a low DOC 

concentration are generally more vulnerable to metal toxicity [24]. Therefore, 

accounting for DOC concentration is crucial for assessing metal toxicity [5].   

 

Biotic variables 

Species interactions 

The competition for resources and predation are considered to be the most important 

species interactions. These interactions can occur between individuals of different 

species (interspecific interaction) or within the same species (intraspecific interaction). 

SSDs assume that species interactions have no effect on the sensitivity of the 

community to a chemical [15]. De Laender et al. (2008) [15] compared the traditional 

SSD approach with the SSD that took ecological interactions (eco-SSD) in account (by 

a mechanistic ecosystem model) and he found that for about 25% of the toxicants the 

traditional SSD was less strict (Higher PNEC). This implies the possibility that the 

traditional SSD derived HC5 are not protective for natural communities.  

The competition for resources can refer to the competition for food, light, space or any 

other limited resource and can significantly modify the responses of organisms to 

toxicants [15,26–28]. For example, the toxic effects of a toxicant can decrease the 

abundances of the most sensitive species (direct effect) and this can result in an 

increased abundance of a more resistant species as a result of decreased competition 

(indirect effect) [9]. These indirect effects are frequently observed in microcosm and 

mesocosms studies [9,13,29,30]. Furthermore, the competition for food among species 

can reduce the amount of energy that can be used for reproduction (dynamic energy 
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budget theory [31]) which could enhance toxic effects observed at the population level 

[32–34] and recovery rates [35,36]. At the present, only few studies exist that 

investigate the combined effect of food competition and metal stress. One of these 

studies was conducted by Heugens et al. (2005) [17], who found that the adverse 

effects of cadmium (Cd) on a D. magna population were lower at higher food levels. 

Sarma et al. (2007) [37] investigated the combined effect of Zn and food concentrations 

on the competition between the rotifers Anuraeopsis fissa and Brachionus rubens and 

they illustrated the significant interactive effects between Zn and food concentration on 

the competitive outcomes.  

Similar to competition for food, predation can play an important role on how organisms 

respond to toxicants. The chemical toxicant can affect the predator, prey or both. When 

the predator is negatively affected (direct effect) this can have a positive effect on the 

prey (indirect effect) [9]. For example, Van Wijngaarden et al. (2005) [29] observed that 

the phytoplankton species increased in abundance after an abundance reduction of 

the zooplankton grazers due to the application of the insecticide chlorpyrifos. 

Additionally, when exposed to a chemical stress, predator pressure can prevent 

density dependent compensation or recovery which can make the prey more sensitive 

to chemical stress. Gergs et al. (2013) [28] for example, found that the combination of 

predation and another stressor (p-353-nonylpheol) lead to the extinction of a Daphnia 

population, even though the effects of the single stressors were only small. Chemical 

stressors can also indirectly affect predator species by eliminating their food source [9]. 

Although the awareness of the influence of biotic interactions on toxicity effects of 

chemicals is growing [12,15,38] only a few studies exist investigating their combined 

effect, and those studies were mainly focused on pesticides [26,27,32,35]. To predict 

how biotic interactions influence the effects of metals, more research is needed.  
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1.3 Global change and its possible effect on chemical toxicity 

The ecosystems panel defined global change as “the interactions between natural 

changes in the Earth’s physical and biological structure and the broader effects of 

human activity.” Global change includes natural and anthropogenic components and it 

is largely due to increased human population (increased resource consumption, 

technological advancement), which induces disturbances of natural systems. During 

the last century global change became a dire reality and its impact is expected to 

further increase in the future [39].  

One of the main, and best known effects of global change is a global temperature 

increase. Climate models predict that climate change will induce a general temperature 

increase of 2°C to 4°C within the next century in temperate regions [40]. Extreme 

weather conditions such as storms (precipitation), heat waves and intense temperature 

fluctuations are predicted to occur more frequently. These increased rainfall intensities 

are predicted to induce additional eutrophication events due to increased phosphorous 

loading from land to lakes and streams [41]. Authors like Jeppesen et al. (2009) [41] 

and Moss et al. (2011) [42] predict that global climate change will not only induce 

additional eutrophication (increase nutrient influx due to increased rainfall intensities) 

but will also enhances its effects on aquatic ecosystems (Figure 1.2).  
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Figure 1.2: Example linking global climate change and eutrophication symptoms [42]. 

 

Recent studies have already revealed the importance of the effects global change can 

have on chemical pollution [10,39,43,44] and ecological risk assessment [45]. Moe et 

al. (2013) [43] for example, indicated that global climate change effects (e.g. 

temperature increase) can have a significant impact on species, species interactions 

and ecosystem processes and may affect the sensitivity of organisms to chemicals. In 

the light of the ongoing temperature increase and other global change effects it is 

crucial to understand and predict how these changes will affect chemical stressors 

effects on populations and natural communities. For this reason we focus in this study 

on the possible effects temperature and P can have on Zn toxicity effects on freshwater 

populations and communities. In the context of global change, and the predicted 

general temperature increase of up to 4°C within the next century, the two different 

water temperatures within this study will be based on the ambient water temperature 
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and the ambient +4°C. In section 1.5 the effects of temperature and P on metal toxicity 

are discussed in more detail.  

 

1.4 Model systems: plankton community 

In this study plankton communities were used as test systems. Plankton is an important 

part of aquatic ecosystems and consists of zooplankton, phytoplankton and protozoa.  

 

Zooplankton 

Zooplankton are heterotrophic organisms and are an important component of 

freshwater ecosystems. There are three important groups of zooplankton (Figure 1.3): 

rotifera, cladocerans and copepods. Small zooplankton, such as rotifers and copepod 

nauplii are also often called microzooplankton. Rotifers are the smallest (40 µm – 2mm) 

of the zooplankton and are filter feeders that mainly feed on algae and protozoa by 

using their corona (ciliated region). When conditions are favourable rotifers reproduce 

by parthenogenesis (asexually, clonal reproduction) [46]. However, under less 

favourable conditions (e.g. food shortage, high predation pressure, temperature, 

drought, high population density and chemical stress) the females will produce haploid 

eggs, which will develop into males and sexual reproduction and the formation of 

dormant eggs can occur.  
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Figure 1.3: Examples of taxa of the major freshwater taxonomic zooplankton groups observed 

and used in this study.  

 

Cladocerans and copepods are two important groups of the crustacean zooplankton. 

Most cladocerans are filter feeders (some are carnivorous) and mainly feed on algae, 

bacteria and protozoa. Cladocerans are commonly known as “water fleas” and their 

most well known genus is Daphnia. In many freshwater ecosystems Daphnia are the 

main grazers and have a huge impact on the phytoplankton community (biomass and 

species composition) [9,47,48]. This feature makes them a key stone species of many 

aquatic ecosystems. Cladocerans are cyclically parthenogenetic that will reproduce 
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asexually under favourable conditions and sexually under unfavourable conditions 

(resulting in dormant eggs: ephippia) [46,47].  

Planktonic copepods are present in most freshwater ecosystems and are classified 

based on their antennae length: Calanoidea (antennae longer than body length) and 

Cyclopoidea (antennae shorter than body length). Generally copepods reproduce 

sexually, the eggs are fertilized and extruded in one (most Calanoidae) or two 

(Cyclopoidea) egg sacs [46]. After hatching, copepod nauplii will appear and they will 

undergo several larval stages before becoming an adult copepod. Therefore copepod 

life-time is often longer than those of cladocerans. Copepods will, under suboptimal 

conditions, produce resting eggs than can lay dormant in the sediment until better 

conditions.  

Figure 1.4 illustrates a simplified traditional freshwater planktonic food web. Copepods 

and Cladocerans compete with rotifers for food and since they can ingest a wider range 

of algae cells they can outcompete the rotifers and prevent them to become abundant 

[46,48,49]. Additionally, rotifers can be damaged by being swept into the branchial 

chamber of the cladocera (: mechanical interference) [49]. On the other hand, epizoic 

rotifers (e.g. Brachionus rubens) can attach themselves onto the Daphnia carapax and 

this can have a negative effect on their host (associated with increased Daphnia 

mortality) [50]. Smaller rotifers require less food to reach maximum growth rates and 

are better adapted to live under low food environments [46,49]. Copepod and 

Cladoceran densities are greatly determined by predation intensities (e.g. 

planktivorous fish or invertebrates) [46,51,52]. Cladoceran predation by Turbellarians, 

such as Mesostoma sp. are known to have a great effect on the zooplankton 

community [30,52].  
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Figure 1.4: Simplified traditional freshwater pelagic food web (adapted from [46]).   
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Phytoplankton 

The word phytoplankton can be broken down in phyto, which means plant and plankton, 

which means wandering. However, these “wandering plants” are not plants but algae 

that occur in the open water of lakes and large streams. The vast majority of the 

phytoplankton are photo autotrophic and are considered as primary producers. The 

algal cell wall is often made of cellulose and other polysaccharides and often contains 

silica, proteins and lipids. Since the chemical composition and the structure of the algae 

cell wall is species-specific it has been used for taxonomic classification. Diatoms for 

example have a very characteristic silicified cell wall (with sculpted ridges and grooves) 

which consists of two parts that fit over each other as a lid. Numerous phytoplankton 

species underwent several adaptations (e.g. spines, larger size, fast reproduction, 

mucus sheets) to withstand grazing pressure. The major planktonic freshwater 

taxonomic groups (Figure 1.5) are Bacillariophyta (diatoms), Cyanobacteria, 

Chrysophyta, Chlorophyta, Cryptophyta, Xanthophyta, Pyrrophyta (dinoflagellates) 

and Euglenophyta [46].    

The plankton community composition is mainly correlated with environmental factors 

(e.g. nutrients, pollutants, light, temperature) and species interactions (e.g. interactions 

between other phytoplankton species or grazing pressure) [46]. Since phytoplankton 

communities are so well correlated with environmental factors they are often used as 

bio indicators [53–55].  

 



  Chapter 1 
 

15 
 

 

Figure 1.5: Examples of taxa of the major freshwater phytoplankton taxonomic groups 

observed in this study.  

 

Protozoa 

Protozoa or “first animals” are unicellular eukaryotic heterotrophic (or mixotrophic: 

heterotrophic but supplementing their feeding with photosynthesis) organisms that 

range from 1-300 µm. They are regarded as the most important bacterial consumers 

and have a short generation time (=high reproductive potential) [46,56]. This short 

generation time allows them to respond very fast to resources fluctuation. The 

classification of the different protozoa groups is based on their morphology and way of 

movement. Three groups are distinguished: heterotrophic flagellates, amoebae and 
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the ciliates (Figure 1.6). The amoebae use their pseudopodia (temporary “feet” 

expansions) for movement and feeding. The flagellates use flagella (whip-like structure) 

for locomotion and the ciliates cilia (short hairs).  

 

Figure 1.6: The different protozoa groups observed in this study.  

 

Protozoa play a key role in the microbial loop (Figure 1.7) and its connection to the 

traditional food web [46]. Dissolved organic matter (DOM) excreted from organisms 

(e.g. phytoplankton and zooplankton) is consumed by bacteria. In turn, the bacteria 

are consumed by the protozoa and the zooplankton. Additionally, the zooplankton 

predate on the protozoa and have a major effect on their abundances [48,56,57].   
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Figure 1.7: Carbon (Dissolved organic material: DOM) and nutrient transport into the microbial 

loop (dashed arrows) and the link with traditional food web (adapted from [46]).   

 

1.5 Model stressors 

Zinc 

Zinc (Zn) is a natural component present in the soil, rock, coal, air and water [58]. It is 

an essential element, necessary for the growth and development of organisms (e.g. 

crucial component enzymes and proteins). A natural source of Zn addition to the 

environment is the weathering of Zn-containing bedrock. At present, Zn is mainly used 

in the galvanization industry and its use is still increasing, mainly in China and India. 
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The main anthropogenic sources for Zn to the environment are industrial activities such 

as steel processing, galvanisation and mining. The natural background dissolved Zn 

concentration in most European surface waters varies between 1 and 10 µg Zn/L (10th 

– 90th percentile) but can range up to 310 µg Zn/L in extreme cases (FOREGS). 

Although Zn is an essential element for many metabolic functions in most organisms, 

it can be harmful for aquatic ecosystems [5,13,59,60]. Based on Daphnia and fish Zn 

toxicity studies it has been shown that an important mode of action for Zn toxicity is the 

inhibition of Ca2+ uptake, which can lead to hypocalcaemia [61–63]. Muyssen et al. 

(2006) [63] investigated the chronic Zn effects on D. magna (e.g. growth, reproduction, 

mortality, respiration) and they found that Daphnia mortality mainly occurred during the 

first week. The internal Ca concentrations of the Daphnia suggested that their mortality 

was related with a decreased Ca concentration, which may occur due to the inhibition 

of Ca uptake [63]. An elevated Zn concentration in the water can also have a negative 

effect on the photosynthetic activities of the phytoplankton. This is due the fact that Zn 

can disturbed the electron transport within the PSII [64]. Additionaly, increasing Zn 

supply may induce P deficienty in algae [65,66]. Paulsson et al. (2002) [65] conducted 

an indoor flow-through microcosm study and she found that by increasing the Zn 

concentration from 2 µg Zn/L to 654 µg Zn/L the alkaline phosphatase activity (an 

indicator of P deficient) within the periphyton community increased by 2.5 fold. By 

influencing the P uptake and the bioavailibility of dietary P, Zn can affect the nutrient 

quality of organisms (e.g. C:P ration). Evens et al. (2012) [67] found that by increasing 

the Zn supply to 90 µg Zn/L, the C:P ratio of the algae Pseudokirchneriella subcapitata 

was reduced by half. He hypothesed that in his study, the reproductive outcome of D. 

magna, when exposed to Zn contaminated algae could more be related to Zn-induced, 

changes of the dietary P level than by direct dietary Zn toxicity [67]. Additionaly, it has 
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been well documented that algae with a lower P contect typicaly have a thicker cell 

wall which makes them more difficult to digest by zooplankton [46].       

 

Temperature 

Temperature is an important environmental factor that can have major effects on 

planktonic community composition and functioning [11,18,68–70], especially since 

most aquatic organisms are ectotherms. Ectothermic organisms are strongly 

influenced by temperature in terms of their metabolic rates, behaviour and 

physiological processes [11]. The mean water temperature in European waters are 

15°C in late spring and 20°C in early summer [46]. However, the water temperature in 

rivers and ponds can range between 5°C up to 26°C and can fluctuate daily [46]. 

Generally at higher temperatures (within tolerance range) ectotherms such as Daphnia, 

mature faster and this can enhance population growth [17]. Extreme temperatures may 

be lethal for organisms. However, it is possible that organisms acclimate to 

temperatures outside their tolerance range (within genetic tolerance limits) [71].  

Based on the Organisation for economic co-operation and development (OECD) 

guidelines most ecotoxicology studies with Daphnia are conducted at 20°C [72]. 

However, under natural conditions organisms are exposed to a wide range of 

fluctuating temperatures and as a result of global change the general water 

temperature is predicted to increase by 2°C to 4°C within the next century [40]. 

Temperature is known to be able to influence the toxic effects of pollutants by 

influencing their bioavailability and toxicokinetics [10,11,73]. A review study conducted 

by Noyes et al. (2009) [44] stated that a temperature increase generally enhances the 

toxicity of contaminants. To date most metal toxicity studies also indicated an 
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increased metal toxicity at higher temperatures [17,39,71,74–76]. One of these studies 

was conducted by Heugens et al. (2003) [74] who found that for a Daphnia magna 

population (monoclonal) the adverse cadmium (Cd) effects on growth were enhanced 

at higher temperature. She found that for D. magna the 24h-LC50 decreased nearly 

two-fold when increasing the temperature from 20°C to 23°C. This was for example 

also demonstrated for Zn by Bat et al. (2000) [76] for Gammarus pulex where the 96h-

LC50 decreased from 12.1 mg/L at 15°C to 9.3 mg/L at 20°C and to 5.2 mg/L at 25°C. 

It is assumed that at higher temperatures the metabolic rates increase, which could 

increase metal uptake and accumulation [17,39,75]. However a recent study 

conducted by Pereira et al. (2016) [77] on D. magna reported that the chronical metal 

toxicity of Zn, Cu and Ni were generally higher at lower temperatures. For Zn, Cu and 

Ni she found that at 15°C the reproductive 21-day EC50 was 1.1, 1.4 and 1.3 times 

lower than at 20°C. Thus, to date, information concerning the effects of temperature 

on Zn (or metals in general) toxicity to freshwater organisms is very limited. 

 

Phosphorus 

Phosphorus (P) is an essential element for all life since it is a crucial component of cell 

metabolism (e.g. enzymes), DNA, RNA and the cell energy system (adenosine 

triphosphate). In water most of the P (usually 80 %) is included in the organic 

phosphorus fraction [46]. Phosphorus itself is taken up by the organisms as phosphate 

(PO4
3-). In most freshwater ecosystems P is the limiting factor for primary producers 

growth. Sediment release, P influx from the catchment area and atmospheric 

deposition are the main influxes of P into the water. Lakes and rivers are often 

categorized based on their P concentrations. Aquatic ecosystems with a low P 

concentration (total P: 5-10 µg P/L) are categorized as oligotrophic and aquatic 
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ecosystems with a high P concentration (total P: 30-100 µg P/L) as eutrophic [46]. 

During the last decades, high anthropogenic P loading (e.g. agriculture and waste 

water) has caused many aquatic ecosystems to become eutrophic. One of the possible 

consequences of nutrient enrichments is the occurrence of cyanobacteria blooms 

which could be toxic, food web alternating and hypoxia generating [78]. Nutrient 

addition can directly affect the phytoplankton community (by altering biomass, size and 

nutritional quality), which can have and indirect effect on the zooplankton community 

[79–81]. However, extreme eutrophication is usually unfavourable for most 

zooplankton species, primarily due to the occurrence of unfavourable cyanobacterial 

booms [51].  

Phosphorous can also affect metal toxicity to freshwater algae. At an elevated pH 

phosphates can precipitate with metal ions by complexation, making it bio-unavailable 

[82]. Additionaly, at luxury P supply phosphorus can be stored in algae cells in the form 

of polyphosphate [82]. These polyphosphates can sequester metal ions in the cell, 

decreasing the intracellular free metal ions and therefore reducing toxicity [83]. Serra 

et al. (2010) [84] and Twiss and Nalewajko (1992) [85] for example found that an 

increased P supply significantly decreased copper (Cu) toxicity on algae biomass (with 

up to a 3.6-fold increase in EC50). On the other hand, Gao et al. (2016) [86] found that 

at higher P supply, Zn was more toxic to Pseudokirchneriella subcapitata cell densities. 

At present too few studies have investigated the relationship between metal toxicity 

and P supply to draw consistent conclusions.   
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1.6 Problem formulation, objectives and conceptual framework 

To protect the environment, a correct effect assessment of contaminants is crucial. 

However, from section 1.1 it is clear that conventional risk assessment is mainly 

focused on the effect assessment of a single stressor, conducted under optimal 

conditions and at the individual level. This is in contrast with natural conditions where 

aquatic communities are exposed to a mixture of constantly changing stressors, often 

under non-optimal conditions. As mentioned in section 1.1 and 1.5, species 

interactions and environmental conditions (e.g. temperature and P) can affect metal 

toxicity effects. Therefore, current ERA of metals may not be protective (or 

overprotective), by ignoring ecological interactions and by not considering natural 

environmental conditions. The objectives of this study can be divided in 3 main 

research questions:  

1) Do environmental factors such as temperature and phosphorous affect Zn 

toxicity to a freshwater plankton community? 

2) Do species interactions affect Zn toxicity effects on a freshwater plankton 

community? 

3) Are the combined and interactive effects between Zn and temperature observed 

at the population level similar to the combined and interactive effects observed 

in more complex freshwater plankton communities? 

The research conducted in this PhD thesis is described in 3 research chapters 

(chapters 2-4). The conceptual framework and outline of this PhD thesis is described 

in figure 1.8. In the final chapter 5, the conclusions and research perspectives are 

summarized.  

In Chapters 2 and 3 it is assessed whether temperature and phosphorous can affect 

Zn toxicity on a freshwater community. This was done by exposing a freshwater 
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plankton community (zooplankton, phytoplankton and protozoa) to different Zn, 

temperature and phosphorous levels in a full factorial design and monitoring the 

plankton abundances, community metabolism and general properties of the water 

during 5 weeks. Before we can understand how temperature and P interact with the 

Zn effects on a freshwater plankton community, we first need to understand the effect 

that Zn itself has on a freshwater plankton community. This is done in Chapter 2 where 

the direct and indirect effects of Zn on the community structure and function of a 

freshwater community is assessed.  

In chapter 3 the combined and interactive effect of Zn, temperature and P on the 

structure and functioning of a freshwater community is assessed.  

In the first two experimental chapters the whole planktonic community was used in the 

microcosm studies. However, to assess whether species interactions can affect Zn 

toxicity effects, using the whole planktonic community can make the assessment too 

complex. Therefore, in Chapter 4 the combined effects of interspecies interaction 

(food competition), temperature and Zn was assessed by conducting a simple 

community experiment. Here, Daphnia longispina populations were exposed to 

different Zn, temperatures and two interspecific competition levels (No interspecific 

Brachionus competition= no Brachionus calyciflorus added; interspecific Brachionus 

competition= B. calyciflorus added). 

In the final Chapter 5, the findings of this PhD thesis are combined, reviewed and 

summarized. Additionally, in Chapter 5 we tried to determine whether population level 

effects (single and interactions) of chemicals, observed in lower-tier experiments (as 

in Chapter 4) are similar to population level effects during high-tier experiments (as in 

Chapters 2 and 3). Stated otherwise: can lower-tier results be extrapolated to higher-

tier experiments or to natural aquatic ecosystems? For this purpose a small D. 
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longispina population experiment (exposing D. longispina to different Zn and 

temperature) was conducted and was compared with the D. longispina population 

results from Chapters 2-4. Additionally, suggestions and possible directions for future 

research are provided in this chapter.  

 

Figure 1.8: Conceptual framework and outline of the PhD thesis. Chapters 3 and 4 were used 

to answer the first question; Chapters 2 and 3 for the second question and chapters 2-5 for the 

third. 
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2.1 Introduction 

Zinc (Zn) is a widely used heavy metal and the natural background concentration of Zn 

in European surface waters varies between 1 and 10 µg Zn/L (10th – 90th percentile) 

but can range up to 310 µg Zn/L in extreme cases [5]. Although Zn is an essential 

element for many metabolic functions in most organisms, it can be harmful for 

freshwater plankton communities [5,13,59,60,66]. Total or dissolved Zn concentrations 

by themselves are not good predictors of toxic effects, since Zn bioavailability varies 

under different conditions and needs to be taken into account to adequately assess 

the potential impact of Zn on aquatic ecosystems [5,16,87]. The Biotic Ligand Model 

(BLM) was developed to predict metal toxicity based on the local physico-chemistry of 

the water [16,87]. The most critical variables for accurately predicting the chronic 

bioavailability and toxicity of Zn are pH, Ca and dissolved organic carbon (DOC) [5,7]. 

Zn BLM’s have been developed for Daphnia magna [6], Oncorynchus mykiss [7,8] and 

Pseudokirchneriella subcapitata [7]. To determine site specific HCx values (hazardous 

concentration affecting X % of the species within the community), chronic toxicity data 

obtained during chronic experiments (i.e. NOEC and EC10 values) are first normalized 

to the target water chemistry [6]. This normalization process takes into account both 

the speciation of Zn as well as the competition between Zn and other cations at the 

biotic ligand.  

However, these BLM’s are based on single species laboratory tests and the 

extrapolation of the results of laboratory single-species toxicity tests to natural 

populations and communities is one of the major challenges with the risk assessment 

of chemicals [13]. Laboratory experiments oversimplify the actual field situations by not 

considering natural field conditions and ecological interactions (intra-and interspecies) 

that play a major role in determining the community structure [9]. Micro-and 
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mesocosms are generally considered to be a realistic higher tier approach to 

investigate effects of chemicals on population and community level under relatively 

well controlled conditions [13,29,30,88,89]. In the past, microcosm studies for Cu [90] 

and Ni [91] have already confirmed the protectiveness of the HC5 for freshwater 

communities. For Zn, however, very few studies exist which have investigated the 

possible adverse effects Zn has on the whole planktonic community [60,92] and none 

of these studies measured all the necessary chemical variables (pH, DOC and Ca) 

needed to calculate the Zn bioavailability. Without bioavailability calculations there are 

many uncertainties to correctly assess the impact Zn has on the planktonic community 

[5]. Based on the Species Sensitivity Distribution (SSD) (Appendix A, Figure A1), 

constructed with the chronic tests of 22 freshwater species [5], it can be hypothesised 

that the phytoplankton taxa are the most sensitive to Zn stress in a freshwater plankton 

community and that as a consequence the zooplankton would be affected indirectly 

(by food web interactions). Although protozoa are an important part of the planktonic 

community [46], there are very few freshwater toxicology studies that have 

incorporated protozoa in their community analysis [59]. Assessing the effects of 

chemicals on the structure and function of the aquatic ecosystems is a major challenge 

in environmental toxicology [1,2].  

The aim of the present study was to determine the direct and indirect effects of Zn on 

the community structure and function of a freshwater plankton community and to 

investigate if the normalized HC5-plankton (HC5 only based on the chronic toxicity data 

of plankton species that was first normalized to the target chemical properties of the 

water by using the Zn BLM’s) for Zn is protective for the plankton community 

(populations and community). By only using plankton species for the HCx calculation 

it was possible to estimate the possible effect Zn has on the plankton community. For 
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this purpose, a microcosm study with a freshwater plankton dominated community, 

comprising of phytoplankton, zooplankton, protozoa and two macroinvertebrate 

species (Mesostoma sp. and Lymnaea stagnalis), was performed under semi-realistic 

conditions. The cosms were constantly exposed to three different Zn concentrations 

(background, HC5-plankton or HC50-plankton), for five weeks. The responses of several 

biological and physico-chemical endpoints were studied during the five weeks of 

exposure. For every sampling date the No Observed Effects Concentrations (NOECs) 

were calculated for all population and community endpoints and compared with the 

calculated normalized HC5.  

 

2.2 Materials and methods 

2.2.1 Test systems 

The experimental design consisted of three Zn treatments (background= control, HC5-

plankton and HC50-plankton) with three replicates for the Zn amended and four for the 

control, I.e. ten cosms in total. The experiment was carried out in indoor microcosms 

installed in a water bath (16 - 19 °C) for temperature regulation, in a climate controlled 

room (constant temperature 19 ± 2 °C; photoperiod 14 h at 70 ± 10 µmol) at 

Wageningen University (Wageningen, The Netherlands). Each microcosm consisted 

of a glass cylinder (diameter 0.25 m, height 0.35 m, volume 18 L), filled with a sediment 

layer of approximately 0.02 m and 14 L of water. The sediment and the water were 

collected in June 2013 from an uncontaminated mesotrophic ditch (Sinderhoeve 

Experimental Station, Renkum, The Netherlands; Appendix A Table A1). The 

microcosm set-up described by Van Wijngaarden et al. [29] has been used for this 

experiment to mimic plankton-dominated shallow freshwater systems. The 
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microcosms were randomly and evenly seeded with additional zooplankton from 

uncontaminated waterbodies from the Sinderhoeve experimental site. All 

macroinvertebrates were removed manually prior to the zooplankton seeding. 

Nutrients (NH4NO3:1 mg N/L; KH2PO4 and K2SO4: 1 mg K/L, 0.01 mg P/L) were added 

twice a week to stimulate the phytoplankton growth, starting 3 weeks before the actual 

start of the experiment (i.e. the pre-treatment period). During this period most of the 

water (removed to just above the sediment) from all the microcosms was taken out 

once a week and mixed in a central tank. After the mixing, the water was randomly 

returned to the cosms to ensure adequate mixing and similar start conditions in all test 

systems [89]. A light flow of compressed air was installed above the water surface to 

prevent the formation of a bacterial surface biofilm sealing off the cosm surface and to 

stimulate some gentle water movement. Water loss was replenished with 

demineralized water when needed. Two snails (Lymnaea stagnalis) were placed in 

every cosm to suppress periphyton growth.  

 

2.2.2 Zinc application and analyses 

After a pre-treatment period of three weeks, two sets of three microcosms received a 

first Zn dosing (=start of treatment, week 0). The four remaining were selected as 

controls. The two target Zn concentrations (75 µg/L: HC5-plankton and 300 µg/L: HC50-

plankton) were determined by fitting the SSD to BLM normalised chronic Zn toxicity data 

as explained in detail by Van Sprang et al. 2009 [5], based on the chemical properties 

of the water of the microcosms the day before the start of the treatments (Appendix A 

Table A1 and A2). For this, all invertebrate NOECs are normalized with the chronic D. 

magna BLM [6], all vertebrate NOEC values with the chronic O. mykiss BLM [9] and 

all algae NOEC values with the P. subcapitata BLM [11] using BLM software version 
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2.1.2 [5,93] (all parameter files used for this normalization with BLM modelling can be 

found in the Supportive information. Each parameter file corresponds to a toxicity data 

line (i.e. a NOEC or EC10 value) within the chronic zinc toxicity database published by 

Van Sprang et al. (2009) [6]). 

Zinc was applied by dosing a Zn stock solution (in milli-Q water, dissolved ZnCl2: 500 

µM). The Zn stock solution was distributed evenly over the water surface of the 

microcosms by using a graduated cylinder or pipet and mixed by gentle stirring. 

Solution were sampled at frequent intervals to monitor Zn and Zn concentrations were 

adjusted by additional spiking to compensate for losses from the water column. For 

every sampling, two 10 ml water samples (one not filtered for measuring the total Zn 

concentration and one filtered through a 0.45 µm filter for measuring the dissolved Zn 

concentration, Acrodisc; Pall Life Sciences) were taken almost daily for Zn 

concentration measurement. The samples were taken after gently stirring using a 

syringe, approximately 15 cm under the water column. When Zn was dosed, samples 

were taken just before the Zn dosing and another at least 15 minutes after the Zn 

dosing. Samples for Zn measurement were acidified to 0.14 mol/L HNO3. To prevent 

metal contamination, only acid (1% HNO3) and sample washed (using 3 times 10 ml 

cosm water) syringes and filters were used to take samples. All Zn concentrations, 

except those of the controls, were measured using flame atomic absorption 

spectrophotometry (SpectrAA100; Mulgrave; Environment Canada: limit of 

quantification 20 µg Zn/L; method detection limit 6 µg Zn/L). The Zn concentrations of 

the controls were measured with inductively coupled plasma mass spectrometry (ICP-

MS; Agilent 7700x, in the He mode using 72Ge as internal standard: limit of 

quantification 3 µg Zn/L; method detection limit 1 µg Zn/L). 
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2.2.3 Zooplankton 

Zooplankton was sampled weekly from each microcosm, starting 1 day before the start 

of the first Zn application. A total of 1 L of water was collected from several positions 

in the microcosms by using a perspex tube (length 0.4 m; volume 0.8 L) and was 

filtered through a plankton net (mesh width, 55 µm; Hydrobios, Kiel, Germany). The 

collected zooplankton was preserved with lugol. The filtered water was returned to the 

microcosms. Zooplankton was identified and counted using an inverted microscope. 

Cladocera and Rotifera were identified to the lowest practical taxonomic level. 

Copepoda were classified as Cyclopoida and Calanoida. All macro-zooplankton (i.e. 

Cladocera, adult and copepodite stadia of Copepoda and Ostracoda) individuals 

present in the sample were identified and counted. Abundances of micro-zooplankton 

(i.e. Rotifera, copepoda nauplii and Chaetonotus sp.) were determined and adjusted 

per litre, by counting a subsample of a known volume.  

 

2.2.4 Phytoplankton and protozoa 

The species composition of the phytoplankton and protozoa was identified to the 

lowest practical taxonomic level. One litre of water was collected in a similar way as 

for the zooplankton and was filtered through a plankton net (mesh width, 20 µm; 

Hydrobios, Kiel, Germany). A subsample of a known volume was settled overnight in 

sedimentation chambers and the concentrated organisms were counted along 

longitudinal transects according to Utermöhl et al. (1958) [94] with the use of an 

inverted microscope. At least 400 individual cells were counted and identified for every 

subsample and the abundances recalculated to numbers per litre. Colony-forming 
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algae were counted as a single individual. Bacillariophyceae were only identified as 

single cell diatoms or Fragilaria sp. colony chain. 

The total chlorophyll concentration in every microcosm was measured on the same 

days as the other biological parameters. Two 10 ml water samples were taken 15 cm 

below the water column at the centre of every microcosm, during gentle stirring with a 

syringe and analysed by using a BBE Moldaenke GmbH Algae Lab Analyser. 

 

2.2.5 Community metabolism and general chemical properties of the water 

Dissolved oxygen (DO), temperature and pH were measured in the morning (start 

photoperiod) and evening (one hour before the end of the photoperiod) twice a week 

at mid water depth, starting one day before the start of the treatment. DO 

measurements were used to estimate net primary production (DOevening day x - DOmorning 

day x) and community respiration (DOmorning day x +1 - DOevening day x) rates [95]. 

Measurements for DO, temperature and the pH were measured using a WTW 340i 

multi-meter. Conductivity was measured once a week by using a WTW LF 191 

conductivity meter. Total and filtered (0.45 µm filter, Acrodisc; Pall Life Sciences) water 

samples were taken for nutrient analysis just before the biota samples were taken. 

Ammonium, total phosphorus (TP) and NO2 + NO3 were only measured 1 day before 

the start of the treatment and 2 and 5 weeks after the first treatment and were analysed 

using the ascorbic acid method (TP) and a Skalar 5100 auto analyser (NH3 and NO2 

+ NO3). The scalar 5100 auto analyser was also used to analyse the Soluble reactive 

phosphorus (SRP) concentration. Dissolved (in)organic carbon (DOC, DIC) were both 

measured with a total organic carbon analyser (TOC-5000; Shimadzu; limit of 

quantification 1.5 mg DOC/L; method detection limit 0.5 mg DOC/L). Total dissolved 



  Chapter 2 

33 
 

phosphorus (TDP), Na, Mg, Al, Ca, Cr, Mn, Fe, Co, Ni, Cu, As, Mo, Cd and Pb were 

measured with ICP-MS (Agilent 7700x). 

Additionally, a 5-day biochemical oxygen demand (BOD5) test [96] was conducted 

every week for every microcosm with water that was filtered with a plankton net (mesh 

size, 55 µm; Hydrobios, Kiel, Germany).  

 

2.2.6 Data analysis 

Before univariate and multivariate analyses were performed, the zooplankton data 

were ln (2x+1) transformed and the phytoplankton/protozoa data were ln (1.67x+1) 

transformed where x is abundance value. This was done to down-weight high 

abundance values and to approximate a log-normal distribution of the data (see [97] 

for rationale). No Observed Effect Concentrations (NOECs) at the parameter or taxon 

level (p ≤ 0.05) were calculated using the Williams test (analysis of variance) in the 

Community Analysis software [98,99]. This test assumes an increasing effect with 

increasing dose. NOECs were considered consistent when they showed statistically 

significant deviations in the same direction (adverse or beneficial) for at least 2 

consecutive sampling dates. 

The effects of the Zn treatment on the zooplankton, phytoplankton and protozoa 

communities were analysed by using the Principal Response Curves method (PRC). 

The PRC method is a multivariate technique which is based on the redundancy 

analysis ordination technique and was performed using the CANOCO 4.5 [100]. The 

PRC diagram shows the difference in species composition between the treatments and 

to the controls as they develop over time. This technique was specifically developed 

for analysing microcosm experiment data [101,102]. The results of the PRC analysis 
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can also be evaluated in terms of the fraction of the variance, that is explained by the 

factors’ time and treatment. Only the fraction that is explained by treatment is shown 

in the PRC diagram. To assess the statistical significance of the effects of the 

treatments on the species compositions a Monte Carlo permutation test was performed 

together with the redundancy analysis. Monte Carlo permutation of the microcosms 

was used to test the significance of the PRC diagram in terms of displayed treatment 

variance, by using an F type test statistically based on the eigenvalue of the component 

[101]. For each sampling day a Monte Carlo permutation test was conducted, using 

the ln-transformed intended doses as the explanatory variables, to assess the 

significance of the treatment effects for each sample date. In case of a significant 

relationship between the treatment and the species composition, the treatment levels 

differ significantly from the controls were determined to derive NOECs at the 

community level (NOECcommunity). The NOECcommunity were calculated by applying the 

Williams test [101,103] on the PCA sample scores resulting from a PCA analysis 

performed for each sampling date separately.  

In order to evaluate the treatment effects, the observed effects were summarized into 

effect classes, which classifies effects based on reliability of the data and the 

magnitude of the effect, incorporating the Minimum Detectable Difference (MDD) as 

proposed by Brock et al. [89]. It is a practical guidance which is accepted by the 

European Food Safety Authority (EFSA) to analyse the statistical power of 

microcosm/mesocosms experiments and to demonstrate effects at population and 

community level. Hommen et al. 2015 [91] is an example of a microcosm, risk 

assessment study of nickel that used Brock et al. 2015 [16] as guideline. 
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Briefly, to determine the reliability (sufficient statistical power to demonstrate treatment 

related responses) of a taxon for analysis, the MDD categorizes the taxa in 3 different 

categories [16]: 

• Category 1: The MDD of the taxon meets at least one of the following 

conditions during exposure period: < 100 % for at least 5 sampling moments; 

< 90 % for at least 4 sampling moments; < 70 % for at least 3 samplings or 

< 50 % for at least 2 samplings. 

• Category 2: MDD of the taxon does not meet criterion for category 1 but a 

LOEC can be calculated for at least 1 sampling period. 

• Category 3: MDD of the taxon did not meet the category 1 and 2 criteria.  

An MDD of >100 % indicates that the statistical power of the test is too low to 

demonstrate treatment-related changes in abundance.  

Category 1 and 2 taxa can be used for effect classification of the treatment-related 

effects. This results in 4 effect classes [89]: 

• Effect class 1: No effect observed. 

• Effect class 2: Slight effects. Effects only observed on individual samplings. 

• Effect class 3: Clear short-term effects. Effects observed at, at least two 

subsequent sampling dates. Full recovery occurred after < 8 weeks. 

• Effect class 4: Clear effect in short-term study. Study too short to 

demonstrate full recovery within study period (< 8 weeks). 

All calculated MDD values of the different endpoints (e.g. taxa, algae classes, 

zooplankton groups and chlorophyll levels) were added in supporting information 

(Appendix A Table A3).  
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2.3 Results 

2.3.1 Zinc concentrations 

 

The average (± standard deviation) total dissolved Zn concentrations in the 75 (22.0 ± 

4.9 µg/L) and 300 µg Zn/L (51.1 ± 13.87 µg/L) treatments were below their target 

concentrations during the first week (Figure 2.1). The target concentrations were 

achieved after one week. The average (± standard deviation) dissolved Zn 

concentrations between weeks 1-5 were within 2 % of the target concentration at the 

lowest dose (77.9 ± 17.8 µg/L) and within 4 % at the highest dose (287 ± 52.3 µg/L). 

In the controls, the mean dissolved Zn concentration were 5.1 ± 3.2 µg/L. For simplicity 

and because of the small deviations between average measured and nominal Zn, we 

will further refer to the nominal concentrations (75 and 300 µg Zn/L) throughout the 

paper. 

Figure 2.1: Measured dissolved Zn concentrations (µg/L) before and after spiking. Error bars 

are standard deviations. 
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2.3.2 Zooplankton 

A total of 41 zooplankton taxa were identified. The majority of the taxa belonged to the 

micro-zooplankton (i.e. 32) followed by the macro-zooplankton (i.e. 9). Eight of these 

taxa fulfilled the MDD category 1 criterion for reliable statistical analysis (Appendix A 

Table A3). In the pre-treatment period (weeks –3 to 0), Cladocera abundances were 

low and all microcosms were mainly dominated by copepod nauplii and rotifers 

(Auraeopsis fissa and Polyarthra remata). During the exposure period (weeks 0-5), 

however, the control microcosms were dominated by, in decreasing order of 

abundance, rotifers (A. fissa, Lecane group lunaris, Lecane group luna), copepoda 

(nauplii, Cyclopoida) and Cladocera (Chydorus sphaericus, Daphnia longispina and 

Simocephalus vetulus). The species abundances of the different plankton groups 

(zooplankton, phytoplankton and protozoa) of the microcosms per sampling date are 

given in the appendix A (Table A7). 

The PRC diagram of the zooplankton showed very little variation in community 

composition between treatment levels at the start of the experiment (Appendix A Figure 

A2 A). 14% of the variation in the zooplankton community composition between the 

different cosms, was explained by treatment, while 61% was explained by exposure 

time. The results from the Monte Carlo permutation tests and the NOECcommunity 

calculations (Figure 2.2 A) showed a significant difference (p < 0.05) in community 

structure between the controls and the highest Zn treatment throughout the experiment, 

starting from 2 weeks after exposure. The 75 µg Zn/L treatment community was only 

significantly affected at 2 weeks of exposure.  

Cladoceran taxa like D. longispina, C. sphaericus and S. vetulus had a positive weight 

(species weight: bk) within the PRC diagram, indicating that their abundances 

decreased in both treatment levels. Most rotifer taxa and Copepoda had a negative 
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affinity, implying an increase in abundance in the Zn treatments. Figure 2.3 shows the 

abundance values of some of the taxa for which a consistent significant treatment 

effect (Table 2.1) was found and a high affinity in the PRC diagram was noted. 

At the population level, the highest Zn treatment had a significant negative effect on all 

Cladocera populations, especially on D. longispina which disappeared after 2 weeks 

of exposure and on S. vetulus (Figure 2.3 B and D). The lowest calculated consistent 

NOEC (< 75 µg Zn/L) was calculated for S. vetulus. The microcosms at the highest Zn 

treatment were dominated by copepods while cladocerans were the dominant macro-

zooplankton group in the controls and low treatments (Figure 2.3 A). After three weeks, 

D. longispina and S. vetulus densities declined in all test systems, including the 

controls, possibly because of intensive predation by Mesostoma sp. (microtubellarian). 

After three weeks Mesostoma sp. became visible in all the microcosms (during the first 

3 weeks Mesostoma sp. was only observed microscopically) and was not adversely 

affected by Zn treatments (Appendix A Figure A2). Between 2 and 4 weeks after the 

start of the treatment, rotifers in general (NOEC < 75 µg Zn/L) became significantly 

more abundant in the treated microcosms (Figures 2.3 C, E and F).  
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Figure 2.2: Principal response curve (PRC), resulting from the analysis of the zooplankton (A) 

and phytoplankton (B) data, indicating the effects of the different Zn treatments. The vertical 

axis represents the differences in community structure of the treatments compared to the 

controls expressed as regression coefficients (Cdt). The affinity of a taxon to the PRC is 

expressed as the species weight (bk). *: significant difference in community structure from the 

control (p < 0.05, Monte Carlo permutation test). Calculated Monte Carlo permutation test p 

values are plotted above the figures. See [101,102] for additional information. 
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Figure 2.3: Population dynamics of some of the zooplankton taxa for which a consistent 

significant treatment effect and a high affinity in the PRC diagram was found. The geometric 

means (standard deviation as error bars) of the abundances (or relative abundances) per 

treatment concentration of Cladocerans in macro-zooplankton (A), Simocephalus vetulus (B), 

Lecane group luna (C), Daphnia longispina (D), Rotifers (E) and Cephalodella gibba (F) are 

shown. Calculated no-observed-effect concentrations are plotted above the figures. 
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Table 1: No-observed-effect concentrations (NOECs) (Williams test, p < 0.05) and observed effect classes per 

sampling date for the different plankton endpoints and species. The preselected effect classes refer to: 1= no effect; 

2= slight effect; 3=clear short-term effects; 4: clear effect in short-term study; ↓= decrease; ↑= increase; ↑↓= increase 

and decrease on species and/or sampling date. a Effects observed only after 7 days of treatment. 

    NOEC (µg/L) Effect class 

Endpoint Taxa -1 7 14 21 28 35 75 µg/L 300 µg/L 

Zooplankton                   

    PRC    < 75 75 75 75 2 4 

    Number of taxa      75↓ 75↓ 1 4↓ 

    Cladocerans   < 75↑ < 75↓ 75↓ 75↓ 75↓ 2↓(↑a) 4↓ 

 Daphnia longispina   < 75↑ 75↓ 75↓ 75↓ 75↓ 2↑a 4↓ 

 Chydorus sphaericus   75↓ 75↓ 75↓ < 75↓ 2↓ 4↓ 

 Simocephalus vetulus     < 75↓ < 75↓ 75↓ 3↓ 4↓ 

    Copepods     75↑ 75↑  1 3↑ 

 Nauplii    75↑ 75↑  1 3↑ 

    Rotifers    < 75↑ < 75↑ < 75↑  3↑ 3↑ 

 Lecane gr. lunaris   < 75↑ 75↑ < 75↑  2↑ 3↑ 

 Lecane gr. luna   < 75↑ < 75↑ 75↑  3↑ 3↑ 

 Cephalodella gibba   < 75↑ 75↑ 75↑  2↑ 3↑ 

Phytoplankton           

    PRC    < 75 75 75 < 75 2 4 

    Number of taxa     75↓   1 2↓ 

    Total chlorophyll  75↓   75↓ 75↓ 1 4↓ 

    Cyanobacteria        1 1 

 Anabaena sp.  75↓ < 75↓    2↓ 3↓ 

 Aphanocapsa sp. 1   < 75↑ 75↑   2↑ 3↑ 

 Aphanothece sp.  75↓ 75↑ 75↑   1 3(↓a)↑ 

    Bacillariophyta    75↑    1 2↑ 

    Chlorophyta    75↑ 75↑ 75↑ 75↑ 1 4↑ 

 Scenedesmus sp. 2     75↑ 75↑ 1 4↑ 

 Haematococcus sp.  < 75↓   75↑ < 75↑ 2(↓a)↑ 4↑ 

 Desmodesmus sp.   75↑ < 75↑ 75↑ 75↑ 2↑ 4↑ 

 Monoraphidium sp. 2   < 75↑ 75↑ 75↑  2↑ 3↑ 

    Cryptophyta    75↑ 75↑ 75↑ 75↑ 1 4↑ 

 Cryptophyta sp. 2   < 75↑ 75↑ 75↑ 75↑ 2↑ 4↑ 

 Cryptophyta sp. 1 75↑  75↑ < 75↑ 75↑ < 75↑ 2↑ 4↑ 

    Chrysophyta   75↓ 75↑ 75↑ 75↑ 75↑ 1 4↑(↓a) 

 Uroglena sp.    75↓ < 75↓  2↓ 3↓ 

 Chrysococcus sp.  75↓ 75↑ 75↑ 75↑ 75↑ 1 4(↓a)↑ 

    Dinophyta        1 1 

    Euglenophyta    < 75↑ 75↑ 75↑  2↑ 3↑ 

Protozoa           

    PRC    75 75 75  1 3 

    Number of taxa        1 1 

    Ciliates   75↓ 75↑ 75↑ 75↑ 75↑ 1 4↑(↓a) 

    Bacterivorous ciliates   75↑ 75↑ < 75↑ 75↑ 2↑ 4↑ 

 R. brachykinetum    75↑  < 75↑ 75↑ 2↑ 4↑ 

 Cyclidium sp.   75↑ 75↑ < 75↑ 75↑ 2↑ 4↑ 

    Algivorous ciliates       1 1 

    Predaceous ciliates       1 1 

    Amoeba        1 1 

    Heterotrophic flagellates    75↑ 75↑  1 3↑ 

  Codosiga botrytis       75↑ 75↑   1 3↑ 
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2.3.3 Phytoplankton 

The phytoplankton community consisted of 83 different taxa, mostly belonging to the 

Chlorophyta (i.e. 38) and Cyanobacteria (i.e. 11). Six of the total number of taxa fulfilled 

the MDD category 1 criterion and 30 taxa were placed in category 2 (Appendix A Table 

A3). During the experimental period, the controls were characterized by Cyanobacteria 

(Pseudanabaena sp., Aphanocapsa sp. and Anabaena sp.), Chrysophyta (e.g. 

Chrysococcus sp.), Bacillariophyta and Chlorophyta (e.g., Chlorococcus sp., 

Radiococcus sp. and Scenedesmus sp.).  

The PRC of the phytoplankton dataset (Figure 2.2 B) indicated that 20% of the total 

variance was explained by treatment and 37% by time. Significant treatment effects on 

the phytoplankton community were first observed 14 days after the first application. 

Monte Carlo permutation tests (Figure 2.2 B) showed that the community was affected 

by the highest Zn treatment throughout the experiment. The NOfECcommunity was below 

75 µg Zn/L after 2 weeks and at the end of the experiment. In addition, a NOECcommunity 

of 75 µg Zn/L was observed on day 21 and 28. The species weights (bk scores) 

indicated that most filamentous cyanobacteria (Anabaena sp., Pseudanabaena sp., 

Woronchinia sp.) and several non-filamentous cyanobacteria (Chroococcus sp., 

Aphanocapsa sp. 2) were adversely affected by the Zn treatments. In general it is 

observed that the abundance of most phytoplankton groups (Table 2.1) significantly 

increased in the highest treatment. No effects were observed for the Dinophyta 

abundances as a group and the Bacillariophyta abundances were only affected after 

14 days of treatment. The Euglenophyta was the only phytoplankton group of which 

the abundance was (short term) affected by 75 µg Zn/L.  
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Table 2: No-observed-effect concentrations (NOECs) (Williams test, p < 0.05) and observed 

effect classes [89] per sampling date for the relative abundances of the different phytoplankton 

groups. Treatments resulted in significant increases (↑) or reductions (↓).Blank fields indicate 

that NOEC were equal to or higher than the highest tested concentration (300 µg/L). 1= no 

effect; 2= slight effect; 3=clear short-term effects; 4: clear effect in short-term study. a Effects 

observed only after 7 days of treatment. 

    NOEC (µg/L) Effect class 

    -1 7 14 21 28 35 75 µg/L 300 µg/L 

Cyanobacteria  75↓ 75↓ < 75↓ < 75↓ < 75↓ 4↓ 4↓ 

Bacillariophyta  < 75↑ 75↓ 75↓  75↓ 2(↑)a 3↓ 

Chlorophyta    75↓   1 2↓ 

Cryptophyta  < 75↑ 75↑ 75↑ 75↑ < 75↑ 2↑ 4↑ 

Chrysophyta    75↓   1 2↓ 

Dinophyta       1 1 

Euglenophyta   < 75↑         2↓a 2↓a 

 

The community structure (relative abundances) itself was significantly affected by Zn 

(Figure 2.4, Table 2.2). The relative abundance of the Cyanobacteria decreased 

significantly with increasing Zn (NOEC: < 75 µg Zn/L at 28 and 35 days). The relative 

abundance of the Cryptophyta, on the other hand, started to increase significantly after 

14 days at the highest treatment and made up to 80 % of the phytoplankton population. 

Throughout the experiment the relative abundance of the Cryptophyta in the low 

treatment microcosms increased and became significantly different from the controls 

after 35 days. For the other phytoplankton groups no significant Zn effect was observed. 

The log abundances of six phytoplankton taxa, that could be used to calculate a 

consistent NOEC, are illustrated in Figure 2.4.  
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Figure 2.4: Total chlorophyll concentrations and population dynamics of some of the 

phytoplankton taxa for which a consistent significant treatment effect was found and a high 

affinity in the PRC diagram was found (standard deviation as error bars). The geometric means 

of the Total chlorophyll concentrations (A), the relative abundance values of the Cyanobacteria 

(B) and Cryptophyta (C) and the log abundances per treatment concentration of Uroglena sp. 

(D), Monoraphidium sp. 2 (E), Anabaena sp. (F), Cryptophyta sp. 2 (G) and the Chrysococcus 

sp. (H) are shown. Calculated no-observed-effect concentrations are plotted above the figures. 

 

Anabaena sp. and Uroglena sp. (NOEC: 75 µg Zn/L) were the only taxa with a 

consistent NOEC that indicated a decrease in abundance in comparison with the 

controls, however these effects were only temporal. The lowest Zn treatment only had 

a positive, temporal effect on the abundances of Monoraphidium sp., Desmodesmus 

sp., Haematococcus sp., Aphanocapsa sp. 1, Cryptohyte sp. 1 and 2. A significant 

effect of the highest Zn treatment were observed for Aphanothece sp. and 

Aphanocapsa sp. 1 on day 7 and 14 after the start of the treatment. Monoraphidium 

sp. 2 was significantly affected by Zn, starting 14 days after the first application and 

this effect was significant throughout the experiment with exception of day 35. All other 

phytoplankton taxa displayed in table 1 showed effect class 4 effects [89]. The total 

chlorophyll concentration in the controls and the treatments declined after the start of 
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the experiment (Figure 2.4 A). Significantly lower total chlorophyll levels (NOEC: 75 µg 

Zn/L) were observed at 7, 28 and 35 days after the first treatment.  

 

2.3.4 Protozoa 

Twenty-three distinct protozoa taxa were identified. Most taxa were ciliates (i.e. 15), 

followed by heterotrophic flagellates (i.e. 5) and amoeba (i.e. 3). None of all these taxa 

could be placed in MDD category 1 but 8 fulfilled the MDD criterion 2 (Appendix A 

Table A3). The percentage of the total variance in the protozoa data, that is explained 

by treatment, was 20 % and 42 % was explained by time (Figure 2.5). 

 

Figure 2.5: Principal response curve (PRC) resulting from the analysis of the protozoa data, 

indicating the effects of the different Zn treatments. The vertical axis represents the differences 

in community structure of the treatments compared to the controls expressed as regression 

coefficients (Cdt). The affinity of a taxon to the PRC is expressed as the species weight (bk). *: 

significant difference in community structure from the control (p < 0.05, Monte Carlo 

permutation test). Calculated Monte Carlo permutation test p values are plotted above the 

figures. See [101,102] for additional information. 
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Monte Carlo permutation tests revealed significant differences in community 

compositions starting from 14 days up to 28 days after first application (Figure 2.5). 

For these sampling days a NOECcommunity of 75 µg Zn/L was calculated. Ciliates, in 

general, became significantly more abundant after 14 days till the end of the 

experiment in the highest treatment compared to the controls (Table 2.1). 

Bacterivorous ciliates (Rimostrombidium brachykinetum and Cyclidium sp.) in 

particularly became much more abundant (Figure 2.6 B and C, table 2.1). 

Heterotrophic flagellates (e.g. Codosiga botrytis) abundance was significantly higher 

(NOEC: 75 µg Zn/L) after 21 and 28 days only (Figure 6 A, table 2.1). A consistent 

NOEC could not be calculated for abundances of protozoa (Table 2.1).  
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Figure 2.6: Population dynamics of some of the protozoa taxa for which a consistent significant 

treatment effect was found and a high affinity in the PRC diagram was found (standard 

deviation as error bars). The geometric means of the log abundances per treatment 

concentration of Codosigna botrytis (A), Rimostrombidium branchykinetum (B) and Cyclidium 

sp. (C) are shown. Calculated no-observed-effect concentrations are plotted above the figures. 

 

2.3.5 Community metabolism and general chemical properties of the water 

The physicochemical parameters: pH (morning, afternoon and mean), DO (morning, 

afternoon and mean), DOC and conductivity showed significant consistent treatment 

effects (Table 2.3, Figure 2.7). After 7 days of treatment the DO (afternoon and mean), 

primary production and the pH (morning and mean) were significantly lower for all the 

Zn treatments. Clear short term effects were observed for DO (with exception in the 
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morning and the mean value which had a consistent NOEC of 75 µg/L), productivity 

and respiration (Table 2.3) for both Zn treatments.  

Table 2.3: No-observed-effect concentrations (NOECs) (Williams test, p < 0.05) and observed 

effect classes per sampling date for community metabolism and chemistry endpoints in 

microcosms. The numbers of the preselected effect classes [89] refer to: 1= no effect; 2= slight 

effect; 3=clear short-term effects; 4: clear effect in short-term study; ↓= decrease; ↑= increase; 

↑↓= increase and decrease on species and/or sampling date. Blank fields indicate that NOEC 

were equal to or higher than the highest tested concentration (300 µg/L). 

    NOEC (µg/L) Effect class 

    -1 1 7 9 14 16 21 23 28 30 35 75 µg/L 300 µg/L 

DO                             

    morning —    75↓ 75↓      1 3↓ 

    afternoon   < 75↓  75↓ < 75↓ < 75↓  75↓   3↓ 3↓ 

    max-min —  < 75↓  75↓ < 75↓ < 75↓  75↓   3↓ 3↓ 

    min-max —  < 75↑  75↑ < 75↑ < 75↑  75↑   3↑ 3↑ 

    Mean    < 75↓  75↓ 75↓ < 75↓     2↓ 3↓ 

pH                

    morning   < 75↓  75↓ 75↓ < 75↓     2↓ 3↓ 

    afternoon   75↓  75↓ 75↓ < 75↓  < 75↓   2↓ 3↓ 

    Mean    < 75↓  75↓ 75↓ < 75↓     2↓ 3↓ 

N                

    NH3   — — —  — — — — —  1 1 

    NO3 + NO2  — — —  — — — — —  1 1 

P                

    Total   — — —  — — — — —  1 1 

    SRP   —  —  —  —  —  1 1 

DOC   —  — 75↓ — < 75↓ — < 75↓ — < 75↓ 4↓ 4↓ 

Conductivity  —  —  — 75↑ — 75↑ —  1 3↑ 

BOD5     — < 75↑ — 75↑ —   — 75↓ — 75↓ 2↑↓ 4↓↑ 

 

The pH was slightly lower at 75 µg Zn/L but showed a clear short term effect at the 

highest treatment. Although the electrical conductivity was generally higher in the 

highest treatments compared to the controls, only significant differences were found 
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for day 21 and 28. After 14 days the DOC (Figure 2.7 A) became significantly lower in 

the highest treatments but throughout the experiment a consistent NOEC of < 75 µg 

Zn/L was calculated. The concentration levels of ammonia, NO3 +NO2, SRP and Total 

P did not show any significant treatment effects. The BOD5 levels (Figure 2.7 C, Table 

2.3) of the microcosms increased significantly with increasing Zn (NOEC: 75 µg Zn/L) 

after 7 and 14 days but the BOD5 of the controls became significantly higher than the 

Zn treatments in the last 2 weeks of the experiment (NOEC: 75 µg Zn/L). The 

concentrations of calcium (Figure 2.7 D), chloride and potassium increased over the 

course of the experiment but did not show any significant treatment effects. The 

physico-chemical water parameters are given in the Appendix A (Table A5, 6). 
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Figure 2.7: Geometric means of the dissolved organic carbon (DOC) concentrations (standard 

deviation as error bars) (A), the mean pH (B), the Biological Oxygen Demand after 5 days 

(BOD5) (C) and the calcium concentrations (D) per treatment throughout the experiment. 

Calculated no-observed-effect concentrations are plotted above the figures. 

 

2.4 Discussion 

2.4.1 Zinc concentrations 

During the first 7 days the Zn rapidly disappeared from the water column in all the 

treatments. Most likely due to losses by sorption and uptake by the biota and the 

sediment. After 7 days of treatment, we presume an equilibrium was reached between 
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the water column and the sediment and the target concentrations were met throughout 

the rest of the experiment. The low Zn concentrations during the first 7 days may 

explain the absence of clear Zn effects on the biota and the physico-chemical water 

characteristics before the 14th day of exposure.  

 

2.4.2 Zn effects and community interactions 

Clear Zn effects were mainly observed for the cladoceran populations at the highest 

treatment (Table 2.1 till 2.4 shows the classification of the treatment related responses 

by using the different effect classes described by Brock et al. [89]). These adverse 

effects probably resulted in an indirect, positive effect on rotifers and nauplii 

abundances, which appeared to be less sensitive to Zn stress (Figure 2.8 illustrates a 

schematic overview of the observed effects of the highest Zn treatment on the 

ecosystem structure of plankton-dominated microcosms). These indirect effects were 

likely the result of a reduced food competition [46], which is frequently observed in 

micro- and mesocosms studies [9,13,29,30]. In contrast to Marshall et al. [60], no 

adverse Zn effects were observed for the rotifers or for cyclopoide copepods. However, 

higher tolerance to Zn stress of Cyclopoida have also been suggested by Monteiro et 

al. [59] and Baudouin and Scoppa [104].  

Despite the adverse Zn effect on the total chlorophyll levels and the primary production 

(community metabolites: pH, DO and DOC), only 2 algae taxa (Anabaena sp. and 

Uroglena sp.) showed a temporal adverse treatment effect (Table 2.1 and 2.3). Most 

phytoplankton groups and several taxa (e.g. Cryptophyta sp. 1, 2 and Chrysococcus 

sp.) in the present study showed a significant increase in abundance throughout the 

experiment at the highest Zn treatment. This is surprising, since phytoplankton is 
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considered to be the most sensitive group according to the Zn SSD (Appendix Figure 

A1; mean HC5-phytoplankton: 46 µg Zn/L and mean HC50-phytoplankton: 76 µg Zn/L; [5]) and 

Marshall et al. [60]. The most likely explanation for the increase in phytoplankton 

abundance is that Zn affects the top-down effects that the zooplankton has on the 

phytoplankton [9]. In our study, the reduced population size of the large cladoceran 

species like D. longispina, S. vetulus and C. sphaericus, likely reduced the grazing 

pressure on the phytoplankton population and probably altered the phytoplankton and 

protozoa community structure as mentioned by Arvola and Salonen (2001) [48]. 

Controls with high cladoceran grazing pressure were dominated by filamentous algae 

(e.g. Anabaena sp., Pseudanabaena sp., Mougeotia sp.) or colony forming (e.g. 

Fragilaria sp., Scenedesmus sp.1, Oocystis sp., Chroococcus sp., Uroglena sp.) taxa 

that were morphologically adapted to withstand grazing [46]. The Zn treatments 

reduced the Cyanobacteria dominance and increased the relative abundance of small 

(< 10 µm) Cryptophyta species (e.g. sp. 1 and 2, Rodomonas sp.) and other fast 

growing (r-strategy) and grazing sensitive species (e.g. Chrysococcus sp., 

Monoraphidium sp. and Scenedesmus sp. 2) [105]. The interaction (Linear regression: 

p = 0.002) between the Daphnia and the small Cryptophyta species in the control 

microcosms are shown in the Appendix A (Figure A3) to illustrate the effect the 

Daphnia has on them. Hypothetically these small species have a relatively low 

contribution to the total chlorophyll compared to the filamentous algae groups, which 

could explain the decline in total chlorophyll at the highest treatments. The ciliates 

(specifically bacterivorous ciliates) probably also benefitted from the disappearance of 

the large cladocerans, either due to less competition for food or due to a decreased 

predation pressure [48,106]. In addition to the planktonic food web interactions, the Zn 
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toxicity may also have changed the phytoplankton community structure, favoring the 

more Zn tolerant species. 

Figure 2.8: Schematic overview of the observed effects of the highest Zn treatment (300 µg/L) 

on the ecosystem structure of a plankton-dominated community (+: Increase; -: Decrease). At 

300 µg Zn/L, a significant reduction in cladocerans resulted in an increase of rotifers, nauplii 

and copepod adults, which is probably the result from reduced grazing competition. 

Additionally, the reduced grazing pressure on the edible phytoplankton and protozoa 

population had a positive effect on their abundances and shifted the phytoplankton community 

dominance from grazing-resistant to edible species. 

 

As grazers, large cladocerans, like D. longispina, have a large impact on the planktonic 

food web [47,106]. When these are removed or when their abundance declines this 

generally induces important planktonic community shifts [48]. In our study however, it 

is unclear if the D.longispina population declines were induced by Zn toxicity, 

Mesostoma sp., a combination of both or by inter- and intra-specific interactions which 
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could have an effect on the species sensitivity to toxicants [9,13,26]. Mesostoma’s are 

known to have a large effect on the zooplankton community [30,52] and so indirectly 

on the phytoplankton community. Although the Mesostoma predators possibly 

increased the stochasticity between the replicates, they are a natural part of the aquatic 

ecosystem. The zooplankton abundance plots (Figure 2.3 B - F) suggest that internal 

production more than kept up with sampling losses, thus avoiding concerns about 

population depletions over time due to sampling. 

The normalized NOEC values (for reproduction) of D. longispina from the chronic Zn 

toxicity database (Appendix A Table A4) are higher than the observed NOECs of D. 

longispina in the microcosms. Because of the difference in chemical properties of the 

water, the D. longispina NOECs for the highest Zn treatments were a factor 1.6 times 

lower than those for the controls. Although after 14 days the BLM NOEC within the 

highest treatment cosms (NOEC: 279 µg Zn/L), was slightly lower than the target 

concentration, D. longispina went extinct. The Daphnia population sizes in the lowest 

treatments tended to be lower (significant for S. vetulus) than in the controls and the 

population even neared extinction after 28 day. Our data suggests that the observed 

Zn toxicity effects on D. longispina in a planktonic community are bigger than the 

predicted effects based on single species data. A possible explanation for this is the 

lack of genetic variation by using isoclonal population for ecotoxicity tests [5,107,108]. 

Other than D. longispina, Anuraeopsis fissa is the only zooplankton species included 

in both the Zn BLM [5] and our study. A. fissa is also considered the most sensitive 

rotifer taxa in the Zn SDD (mean normalized NOEC= 313 µg Zn/L table S4). Even 

when the normalized NOEC of A. fissa sharply declined after 14 days (normalized 

NOEC: 183 µg Zn/L and stayed around this concentration) in the highest treatments, 
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no adverse effect on the A. fissa abundance was observed throughout the experiment, 

which deviates from the predicted effects based on single species data.  

 

2.4.3 Effects of Zn on chemical properties of the water and on HC5 or HC50 

Due to the pre-treatment mixing, there was very little variation between all the different 

microcosms in chemical properties of the water (Appendix A Table A1) and biology 

(Figures 2.2 and 2.5 ) at the start of the experiment. These small variations in water 

properties were crucial to ensure that all microcosms started with the same Zn 

bioavailability [5]. A possible explanation for the decreasing pH and DO in the first week 

could be the increased grazing pressure (sharp decline in total chlorophyll: Figure 2.4 

A; and phytoplankton densities: Figure 2.4 B - H) by the increased zooplankton 

abundances (Figure 2.3 A and B). In aquatic ecosystems calcium fluctuations are 

mainly explained by a combination of biotic (e.g. mollusk shell construction and 

bacteria), chemical (e.g. the pH-carbon dioxide-bicarbonate system) and physical (e.g. 

evaporation) processes [46]. In our study however, it is unlikely that evaporative water 

losses alone could explain the increase of the calcium concentration level throughout 

the experiment, and therefore biotic and chemical processes may also have 

contributed.  

To our knowledge, very few microcosm community studies with metals are available 

that have also investigated the effect on the DOC concentration. Hommen et al. [91] 

did not found any significant effect of Ni on the DOC measured in the exposure system. 

Schaeffers [90] reported on a mesocosm experiment with copper and their results 

suggest a possible effect of Cu on the DOC (although the authors did not explicitly test 

the statistical significance of this effect). The consistent Zn effect (NOEC < 75 µg/L) 
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observed on DOC (Figure 2.7 A) throughout the experiment is an indication that the 

treatments had a significant effect on the microbial loop and on pelagic food web 

interactions [46,109]. When lowering both the pH and DOC, Zn becomes more 

bioavailable and therefore more toxic for the biota [5,7,16,87]. By changing the water 

properties, the Zn itself influenced its own toxicity. After the experiment was completed, 

new calculations of the HC5-plankton and HC50-plankton were performed to reflect the actual 

physico-chemistry that was recorded during the experiment in the various treatments 

and to more optimally reflect the plankton community (by including toxicity data for 3 

rotifer species and not considering data from the epibenthic amphipod Hyalella azteca) 

(Appendix A Table A2 for details). The HC5-plankton and HC50-values values throughout 

the experiment are reported in Table 2.4. After 35 days of treatment the calculated 

HC5-plankton for controls were 1.3 times higher than for the 75 µg Zn/L treatments and 

1.6 times higher than for the 300 µg Zn/L treatments. The same trend can be observed 

for the HC50-plankton.  

 

Table 2.4: Mean (± standard deviation) calculated HC5-plankton and HC50-plankton per sampling 

day and treatment, calculated as explained in [5], taking into account chronic Zn toxicity data 

for species mentioned in table A2 

    -1 7 14 21 28 35 

HC5 (µg Zn/L) Control 85 ± 4 83 ± 4 69 ± 7 69 ± 4 64 ± 3 65 ± 3 
 75 87 ± 2 74 ± 11 56 ± 21 61 ± 9 55 ± 6 51 ± 8 
 300 84 ± 1 74 ± 4 46 ± 7 41 ± 3 38 ± 3 40 ± 5 

HC50 (µg Zn/L) Control 351 ± 31 271 ± 15 216 ± 32 201 ± 13 181 ± 8 189 ± 13 
 75 316 ± 20 222 ± 40 174 ± 64 172 ± 17 158 ± 8 151 ± 12  

  300 320 ± 21 214 ± 16 129 ± 18 122 ± 4 122 ± 6 124 ± 6 
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2.4.4 Zn risk assessment 

The current study focused on the plankton communities and did not include fish or 

macroinvertebrates (except Mestostoma sp. and snails, which were not investigated), 

which are, according to literature, less sensitive to Zn than phytoplankton [5,7]. In our 

study, however, only two phytoplankton taxa showed a temporally consistent adverse 

Zn effect (NOEC: 75 µg Zn/L), which is almost a factor 2 higher than the lowest 

calculated normalized NOEC of Pseudokirchneriella subcapitata (range NOEC: 75 - 

37 µg Zn/L), which is the most sensitive algae in the chronic Zn toxicity database (Table 

S2). Even at 300 µg Zn/L, most phytoplankton groups increased in abundance while 

the large cladocera were adversely affected. S. vetulus was the most sensitive taxon 

in our study (NOEC: < 75 µg Zn/L) and had a similar Zn sensitivity as the most sensitive 

cladocera in the chronic Zn toxicity database (C. dubia:table S2). This study thus 

demonstrates that community responses are not only dependent on the sensitivity of 

the organism alone [3,7] but also on the inter-and-intraspecific interactions [15,26], 

which can affect Zn risk assessment [5]. Therefore, it is recommended that additional 

multi-species Zn exposure experiments are carried out and these should preferably 

also include taxa belonging to higher trophic levels. This would enable a more complete 

understanding of how interspecific and intraspecific interactions can be taken into 

account in Zn risk assessment. Microcosm and mesocosm studies provide more 

realistic risk assessment than lower-tier single species tests and although these results 

are more difficult to interpret [29,89], they are essential and provide much extra 

information to Zn risk assessment studies.  

According to the recommendations by Brock at al. [89] at least 8 populations of 

potentially sensitive taxa with an appropriate MDD (category 1) should be present in 

the test system to assure that the power of the statistical analyses conducted is high 
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enough to demonstrate possible treatment-related responses in terms of abundance. 

In our study, at least 14 different category 1 taxa, including cladocerans, rotifers, 

Chlorophyta, cyanobacteria, Cryptophyta and diatoms were observed, thus conforming 

the reliability of our study [89]. The multivariate analysis (PRC) conducted on the 

different plankton groups (zooplankton, phytoplankton and protozoa) revealed a 

consistent NOECcommunity of 75 µg Zn/L. At 75 µg Zn/L (Figure 2.2) the PRC curves for 

zooplankton and phytoplankton were only significantly different from the controls after 

14 days and for the phytoplankton also at the end of the experiment. This is possibly 

due to community compensation (sensitive species replaced by less sensitive) or 

adaptation [9,66,110]. Protozoa have only been included in very few monitoring studies 

[59] and microcosm studies aiming to investigate the effects of toxicants on the 

community structure. Protozoa are an important link between the microbial loop and 

the pelagic food web [46] and can reveal important information about the effects the 

toxicants have on the aquatic community. In our study no consistent adverse effects 

were observed for any of the protozoa groups. 

Another important thing that should be taken into account for Zn risk assessment is the 

indirect effect Zn has on the chemical properties of the water, with most importantly 

the effects on the DOC (see results and discussion). This resulted in a considerable 

difference in metal bioavailability in the microcosms between the different treatments 

and with time. For the treatment at 75 µg Zn/L, which is the consistent NOECcommunity, 

the BLM-normalized HC5-plankton values ranged between 51 and 87 µg Zn/L throughout 

the experiment (Table 2.4). In this same treatment, the average measured Zn 

concentration during the last four weeks of exposure (77.9 µg Zn/L) was similar to or 

higher than the BLM-normalized HC5-plankton during the same period (i.e., between 51 

and 74 µg Zn/L, mean: 59 µg Zn/L), suggesting that the BLM-normalized HC5-plankton is 
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equal to or lower than the consistent NOECcommunity of the different plankton groups and 

thus protective of the major structural and functional components of the plankton 

dominated community in the present study.  

The latter suggestion of protectiveness of the HC5-plankton is based on an SSD-analysis 

in which only planktonic species were considered, which was done to match as closely 

as possible the pelagic community investigated in our microcosm experiment. However, 

current practice of SSD-analysis for risk assessment in regulatory context usually 

considers a wider range of species, including benthic and fish species to derive 

PNEC’s (EU) or WQC (US), regardless of the type community or water body that is the 

target of protection. We therefore also investigated the ‘protectiveness’ of two HC5 

values calculated according two ‘regulatory’ methodologies: (i) the HC5EU-regulatory, 

calculated with the EU methodology as explained in [5] (and in fact identical to the 

method used to calculate HC5-plankton, except that benthic and fish species were now 

also considered), and (ii) the HC5US-regulatory, calculated with the US methodology as 

explained in [111]. HC5 values with these two methodologies for all treatments and 

time points in the microcosm experiment are reported in Supplemental data (Appendix 

Table A8).  

Again focusing on the last four weeks of exposure (as above), we find that the mean 

HC5EU-regulatory for the 75 µg/L treatment is 73 µg/L. This value is only 24% higher than 

the HC5-plankton and still slightly lower (by 6%) than the measured exposure 

concentration of 77.9 µg/L in this ‘no effect’ treatment (NOECcommunity). Thus, the 

HC5EU-regulatory can be considered protective for the investigated plankton-dominated 

community. The mean HC5US-regulatory for the 75 µg/L treatment is 159 µg/L, which is 

2.2-fold higher than the HC5EU-regulatory. A detailed comparison of the two methodologies 

is outside the scope of the present study, but important differences in methodology 
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include (i) species selection (no algae species considered in US), (ii) effect estimate 

selection (EC10 or NOEC in EU, EC20 or MATC in US), (iii) BLM application (three 

different BLMS for each trophic level in EU vs. a single BLM in US for all species), (iv) 

statistical estimation of HC5 (fitting SSD to all chronic toxicity data in EU vs. only four 

chronic toxicity data closest to the 5th percentile used for calculation). The HC5US-

regulatory is also 2-fold above the NOECcommunity. Thus, the present study provides no 

evidence of ‘no community effects’ at or above the HC5US-regulatory. Yet, neither does it 

provide evidence of ‘community effects’ below the HC5US-regulatory, as the mean HC5US-

regulatory in the 300 µg/L treatment equals 133 µg Zn/L, which is 2.2-fold above the 

measured Zn concentration of 287 µg/L in this treatment (i.e. the LOECcommunity). 

Altogether, the HC5US-regulatory is about half-way between the NOECcommunity and 

LOECcommunity by about 2-fold in each direction and thus the protectiveness (nor the 

non-protectiveness) of the HC5-USregulatory for the structure and function of the 

community in the present study cannot be determined. Microcosm testing at 

concentrations intermediate to those investigated here, and thus closer to this HC5US-

regulatory would be required for a more definitive assessment.  

 

2.5 Conclusion 

The planktonic groups revealed a consistent NOECcommunity of 75 µg Zn/L, similar 

to or higher than the HC5-plankton, thus suggesting its protectiveness in this study. At 

300 µg Zn/L a significant reduction in cladocerans resulted in an increase of rotifers, 

ciliates and phytoplankton abundances. Additionally, the phytoplankton community 

shifted in dominance from grazing-resistant to edible species. Contrary to the Species 

Sensitivity Distribution (SSD) prediction, which identified phytoplankton as the most 
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sensitive group, only the total chlorophyll and the abundance of 2 phytoplankton 

species were adversely affected at 300 µg Zn/L. Thus, although the HC5-plankton 

estimated from the bioavailability-normalized SSD was overall protective for the 

plankton community, the SSD was not able to correctly predict the species sensitivity 

ranking within their community context at the HC50-plankton. 
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3.1 Introduction 

Metal pollution, together with eutrophication and climate change, can pose risks to 

aquatic ecosystems [40,43,84]. Understanding and being able to predict the effects of 

chemicals (e.g. metals) on the structure and function of the aquatic ecosystem under 

different environmental conditions (e.g. changing temperature and changing nutrient 

supply, e.g. phosphorus) is a major challenge in environmental toxicology [1,2,43,112]. 

This since climate models predict that climate change will induce a general 

temperature increase of 2°C to 4°C within the next century in temperate regions [40] 

and will also induce an increased phosphorus loading from land to lakes and streams 

due to increased rainfall intensity [41].  

Conventional ecological risk assessment of chemicals is mainly based on single-

species laboratory tests which evaluate the effects of a single stressor and which are 

conducted under optimal standard (e.g. temperature, food, pH) conditions. However, 

in reality aquatic communities are exposed to a mixture of stressors under different 

and often rapidly changing environmental conditions [113]. Many studies have already 

shown that environmental conditions can significantly alter the responses of organisms 

to toxicants [10,43,114–116]. This leads to interactive effects of environmental 

conditions and toxicants. The specific interaction type (synergistic: combined effect 

greater than expected; antagonism: combined effect smaller than expected; additive: 

combined effect as expected) itself can also vary by biologic response level (i.e. 

populations, community) and trophic level (i.e. autotrophs, heterotrophs) [115,116]. 

Jackson et al. (2016) [115] for example, conducted a meta-analysis on 88 freshwater 

studies and they found that the cumulative mean of the interactive effects was additive 

at the population level and antagonistic at the community level. However, antagonistic 

interactions were more common at the community level, while synergistic interaction 
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occurred more frequent at the population level [115]. This might be a result of the fact 

that at higher levels of biological organisation, compensatory species dynamics 

become more important and this may explain the difference in interaction type between 

the population and the community level (i.e. composition, function and diversity) [117]. 

Temperature (T) and phosphorous (P) are two important environmental factors that 

can have major effects on planktonic community composition and functioning 

[11,18,68–70,79–81,118,119] and both are also well known to influence the sensitivity 

of organisms to toxicants. Planktonic organisms are, like most aquatic organisms, 

ectotherms and they are strongly influenced by temperature on their metabolic rates, 

behaviour activity and physiological processes [11]. Temperature can also modify the 

toxic effects of pollutants by influencing their bioavailability and toxicokinetics [10,11]. 

A review study conducted by Noyes et al. (2009) [44] generally stated that an increase 

in temperature enhances the toxicity of contaminants. To date most metal toxicity 

studies also indicated an increased metal toxicity at higher temperatures 

[11,17,71,114]. As a limiting nutrient, variable P addition can directly affect the 

phytoplankton community by altering biomass, size and nutrient quality, which can 

have and indirect positive effect on the zooplankton community [79,81]. However, 

extreme eutrophication is unfavourable for most zooplankton species [51]. Phosphorus 

is known to both increase and decrease the metal toxicity to freshwater algae [84–86]. 

Serra et al. (2010) [84] and Twiss and Nalewajko (1992) [85] for example found that 

an increased P supply significantly decreased copper (Cu) toxicity on algae biomass. 

While Gao et al. (2016) [86] on the other hand found that Zn was more toxic to 

Pseudokirchneriella subcapitata cell densities at higher P supply. However, at the 

present few studies have investigated the relationship between metal toxicity and P 

supply to draw consistent conclusions.  
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Currently, very few 3-way interaction studies exist between nutrients/nutrition, 

temperature and a chemical factor, especially at the community level [6]. Heugens et 

al. (2003) [17] for example exposed a Daphnia magna population to different 

concentrations of cadmium (Cd), altered food supply and different temperatures and 

found significant 3-way interactions between these factors. These interactions 

indicated that the adverse Cd effects on Daphnia population growth were enhanced at 

higher temperature, whereas higher food concentrations protected the Daphnia 

population from Cd toxicity. Cd affected the Daphnia magna population more at low 

food levels and high temperatures [17]. Although, not a lot of data about three-way 

interactions is available, it is known that under eutrophic conditions the accumulation 

of polyphosphates by microalgae is stimulated by increasing temperature and this 

could counteract metal toxicity [82,84,85]. Phosphorus is also depleted faster at 

warmer temperatures, which hypothetically makes the primary producers more 

vulnerable to metal stress under phosphorus limitation at warm temperatures. If these 

interactions would propagate to the community-level, interactions at the community-

level may be expected in either direction (antagonistic or synergistic). A major concern 

is that conventional risk assessment approaches, based on single species tests under 

optimized (low stress) environmental factors may underestimate the ecological impacts 

in case of a synergistic interaction between the toxicant and the environmental factor 

[114,120]. 

Against this background, this study was set up to identify to what extent the toxicity of 

Zn is affected by higher temperature (T) and by higher phosphorus (P) supply and how 

these T & P effects on Zn toxicity vary between the levels of organisation (population, 

functional group and community) in a freshwater community. Based on the limited 

evidence described above, it is speculated that Zn is more toxic at higher T. The 
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reduced Zn toxicity at higher P supply, if any, may be more important in warmer than 

in colder water. In addition, based on Jackson et al. (2016) [115], we speculate that 

interactive effects are more common at higher organization levels. To test this an 

indoor microcosm study was conducted with a freshwater plankton (zooplankton, 

phytoplankton and protozoa) dominated community. After a pre-treatment period of 

three weeks the microcosms were simultaneously exposed to three different Zn 

concentrations, two different T regimes (reference and a warmer regime) and two 

different P addition rates (Reference: low P addition and high P addition), for five weeks. 

During these five weeks the species (zooplankton, phytoplankton and protozoa) 

densities, community composition, biodiversity, total chlorophyll concentrations and 

physico-chemical endpoints were measured. The 2-way interactions between the Zn 

and each T or P factors were explored at the three levels of organisation and were 

tested with due attention to the direction, i.e. synergism where stress factors lead to 

more effects than purely additive and antagonism for the reverse. 

 

3.2 Materials and methods 

3.2.1 Test systems and experimental design 

Forty indoor microcosms (diameter 0.25 m, height 0.35 m, volume 18 L) were installed 

in a water bath (16-19 °C) for temperature regulation, in a climate controlled room at 

Wageningen University (Wageningen, The Netherlands). Note that the water bath was 

divided in two compartments, in which the water temperature could be regulated 

seperately. To mimic a plankton-dominated shallow freshwater system, each 

microcosm was filled with a sediment layer of approximately 2 cm, 14 L of pond water 

and inoculated with a plankton dominated community that was collected in June 2013 
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from an uncontaminated mesotrophic ditch (Sinderhoeve Experimental Station, 

Renkum, The Netherlands; www.sinderhoeve.org). Two snails (Lymnaea stagnalis) 

were added to every cosm to suppress periphyton growth. Twice a week nutrients 

(NH4NO3:1 mg N/L; KH2PO4 and K2SO4: 1 mg K/L, 0.01 mg P/L) were added to 

microcosms to stimulate phytoplankton growth starting 3 weeks before the actual start 

of the experiment (i.e. the pre-treatment period). During the pre-treatment period most 

of the water from all the microcosms was taken out once a week and mixed in a central 

tank to ensure adequate mixing and similar start conditions in all test systems. Water 

loss was replenished with demineralized water when needed. A more detailed 

experimental set-up of the test systems has been described by Van de Perre et al. 

[121].  

After the pre-treatment period the microcosms were exposed to three factors (P, T and 

Zn) simultaneously. The experimental design consisted of two temperature (cold: 16-

19 °C and warm: 21-24 °C), two phosphorus (low P addition= 0.02 mg P/L a week and 

high P addition= 0.4 mg P/L a week) and three Zn treatments (background, 75 µg Zn/L 

and 300 µg Zn/L) in a full 2x2x3 factorial design, with three replicates for the Zn 

amended and four for the control (= no Zn added). The background Zn level is defined 

as the control. The two target Zn concentrations (75 µg/L: HC5-plankton and 300 µg/L: 

HC50-plankton) were determined by using the Biotic Ligand Model (BLM) software 

version 2.1.2 [5,93] which fits the Species Sensitivity Distribution to BLM normalised 

chronic Zn toxicity data as explained in detail by Van Sprang et al. 2009 [5], based on 

the chemical properties of the water of the microcosms the day before the start of the 

treatments [121]. Only toxicity data of plankton species were used for the calculation 

of the HC5-plankton and 300 µg/L: HC50-plankton. 
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The part of the experiment which focused on the Zn effects on the plankton community 

under cold low P addition conditions has already been published by Van de Perre et 

al. [121] and will not be addressed in detail in this manuscript but will be used to 

investigate possible interactions between Zn and the other factors.  

 

3.2.2 Treatment applications and analyses 

After the three weeks pre-treatment, the compartments of the water bath containing 

half of the microcosms was heated to 21-24 °C and the microcosms assigned to the 

Zn and P treatment received their first dosing (=start of treatment, week 0). Twice a 

week, together with the general nutrient dosing, additional phosphorous (KH2PO4: 0.19 

mg P/L so a total of 0.2 mg P/L was dosed added every dosing) was added to the 

microcosms assigned to simulate a freshwater system that is exposed to a constant 

high P addition.  

The Zn was dosed by distributing a Zn stock solution (ZnCl2) evenly over the water 

surface and mixed by gentle stirring. At frequent intervals two water samples (one not 

filtered for measuring the total Zn concentration and one filtered through a 0.45 µm 

filter for measuring the dissolved Zn concentration, Acrodisc; Pall Life Sciences) were 

sampled from the microcosm to monitor the Zn concentration and to adjust the Zn 

concentration by additional spiking to compensate for losses from the water column. 

Additional samples were taken just before a Zn dosing and at least 15 minutes after 

the dosing. Inductively coupled plasma mass spectrometry (ICP-MS; Agilent 7700x, in 

the He mode using 72Ge as internal standard: limit of quantification 3 µg Zn/L; method 

detection limit 1 µg Zn/L) was used to measure the Zn concentration in de control 

microcosms and all other Zn sampling were measured using flame atomic absorption 
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spectrophotometry (SpectrAA100; Mulgrave; Environment Canada: limit of 

quantification 20 µg Zn/L; method detection limit 6 µg Zn/L). Further details of the Zn 

treatment applications and analyses have been described by Van de Perre et al. [121]. 

 

3.2.3 Zooplankton, phytoplankton and protozoa 

Plankton (zooplankton, phytoplankton and protozoa) samples were sampled from each 

microcosm every week, starting 1 day before the start of the treatments. For the 

plankton a total of 1 L of water was sampled from several random positions in the 

microcosms microcosms by using a Perspex tube (length 0.4 m; volume 0.8 L) and 

was filtered through a plankton net (zooplankton: mesh width, 55 µm; phytoplankton 

and protozoa: mesh width, 20 µm Hydrobios, Kiel, Germany). After filtering the 

remaining water was returned to the microcosm. Lugol was used to preserve the 

collected plankton samples. An inverted microscope was used to identify the plankton 

to the lowest practical taxonomic level.  

All present macro-zooplankton (i.e. Cladocera, adult and copepodite stadia of 

Copepoda and Ostracoda) individuals were identified and counted. Copepoda were 

only classified as Cyclopoida, Calanoida and nauplii. Abundances of micro-

zooplankton (i.e. Rotifera, nauplii and Chaetonotus sp.), phytoplankton and protozoa 

were determined by counting a subsample of a known volume and the abundances 

were adjusted per litre. Every subsample was settled overnight in sedimentation 

chambers and at least 400 individuals were counted and identified along longitudinal 

transects according to Utermöhl et al. [94]. Colonies of colony-forming algae were 

counted as a single individual. Diatoms (Bacillariophyceae) were only identified as 

single cell diatoms or Fragilaria sp. colony chains. The plankton species observed 
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during the experiment were classified in the following groups: zooplankton (rotifers, 

Cladoceran and Copepoda), phytoplankton (Bacillariophyceae, Chlorophyta, 

Chrysophyceae, Chytridiomycetes, Cryphtophyta, Cyanophyta, Dinophyta and 

Euglenophyta) and protozoa (Amoeba, heterotrophic flagellates and ciliates). The 

ciliates were additionally classified as: algivorous, bacterivorous, algivorous + 

bacterivorous, epiplanktonic, mixotrophic and predacious. Diversity calculations 

(Shannon index) were carried out using PRIMER 5.  

Prior to every biological sampling, two 10 ml water samples were taken (15 cm below 

the water column at the centre of every microcosm after gentle stirring with a syring) 

from every microcosm for total chlorophyll analysis using a BBE Moldaenke GmbH 

Algae Lab Analyser. 

 

3.2.4 Community metabolism and general chemical properties of the water 

Measurements for dissolved oxygen (DO), temperature and pH were performed (WTW 

340i multi-meter) in the morning (start photoperiod) and evening (one hour before the 

end of the photoperiod) twice a week at mid water depth, starting one day before the 

start of the treatments. The net primary production (DOevening day x - DOmorning day x) was 

estimated by using the DO measurements [95]. Once a week the conductivity was 

measured by using a WTW LF 191 conductivity meter.  

Filtered (0.45 µm) and unfiltered water samples for nutrient analysis were taken before 

every biological sampling. A total organic carbon analyser (TOC-5000; Shimadzu; limit 

of quantification 1.5 mg DOC/L; method detection limit 0.5 mg DOC/L) was used for 

measuring the Dissolved (in)organic carbon (DOC, DIC). Measurements for total 
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dissolved P (TDP) and other elements, including Zn, were performed with ICP-MS 

(Agilent 7700x). 

Soluble reactive phosphorus (SRP), Ammonium (NH3) and NO2 + NO3 were analysed 

using a Skalar 5100 auto analyser. Total phosphorus (TP) was analysed by the 

ascorbic acid method.  

Additionally, a standard 5-day biochemical oxygen demand (BOD5) test [6] for every 

microcosms was conducted weekly with filtered (mesh size, 55 µm; Hydrobios, Kiel, 

Germany) microcosm water. 

 

3.2.5 Data analysis 

Interactive effects between Zn and T or P on the biological endpoints (plankton 

abundance) and on physico-chemical parameters for the different environmental 

conditions and sampling day were assessed. These endpoints were differentiated in 

different levels of organisation [Species level (1); group level, i.e. cladocera, 

chlorophyta (2); diversity, Shannon index (3); individual physico-chemical parameters 

(4); i.e. total chlorophyll, BOD5, DO; community level (5)] and interactive effects were 

determined at the different levels or organisation. Before univariate and multivariate 

analyses were performed, the zooplankton data were Ln (2x+1) transformed and the 

phytoplankton and protozoa data Ln (1.67x+1) transformed where x is the abundance 

value. This was done to down-weight high abundance values and to approximate a 

log-normal distribution of the data (see [39] for rationale).  

To identify how the toxicity of Zn is affected by increased T and increased phosphorus 

P the reference unstressed condition was defined as the Zn control under low P 

addition, cold conditions. To test whether the Zn interactions were dependent on the 
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Zn concentration, the data analyses were conducted for each Zn treatment separately 

(Zn low: 75 µg Zn/L and Zn high:300 µg Zn/L). First, a three-way ANOVA was 

performed to determine the significance (p < 0.05) of the three-way and two-way 

interaction terms for the first four types of endpoints. In case of a significant three-or 

two-way interaction, several more detailed two-way interactions were conducted to 

determine in which combinations of environmental conditions these interactions 

occurred. For example, when a significant Zn × T interaction was found, two additional 

two-way ANOVA analyses were conducted (by using the low P or high P data 

separately) to investigate under which environmental P conditions this significant Zn × 

T interaction occurred. Additionally, these two-way ANOVA analyses provide a formal 

statistical test of the Independent Action model [122]. Second, the observed combined 

effects (i.e. significant reduction or increase of the endpoint compared with the control) 

were compared with the predicted combined effects (independent action: sum of their 

single effects [122]) to determine whether the observed interaction was synergistic 

(observed Zn effect more than additive) or antagonistic (observed Zn effect less than 

additive). See De Coninck et al. (2013) [122] and Box 3.1 for further details on how the 

predicted effects were calculated and how the observed interactions were assessed. 

Interactions were only considered reliable when the ANOVA revealed the same type 

of interaction (synergistic or antagonistic) for at least two consecutive sampling dates 

In that case the interaction was defined as a ‘consistent interaction’. 

 

 

 

 



Chapter 3 
 

74 
 

Box 3.1 Determination of the interactive effects [122]

 

  

In this chapter we investigated whether the observed effects in the combined treatments, for 

the different treatment regimes (cold vs warm; low P addition vs high P addition), followed the 

independent action model. Bliss (1939) originally developed the independent action model 

which predicts the combined effects of binary stressors from observed effect in the individual 

stressor treatments [122,140]. In case of the Zn + T the following model was used (similar for 

Zn + P  treatments): 

EZnT,predicted= EZn + ET – EZn ×ET 

Where 

Ei= 
Ycontrol -Yi

Ycontrol
 

Ei is the observed fractional effect of the treatment i on endpoint Y relative to the control 

treatment. In our example i is either Zn, T or ZnT (combined Zn + T treatment). E i can be 

positive (indicating a decrease in endpoint compared to the control) or negative (indicating an 

increase in endpoint compared to the control). When the two-way ANOVA found a significant 

Zn × T interaction we defined it as synergistic when the observed effect in the combined 

treatment was higher than the effect predicted with the independent action model [122,140]. 

This was the case when EZnT, observed > EZnT, predicted in case EZnT, observed > 0 (The combined 

treatment causes a reduction of the endpoint compared to the control) or when EZnT, observed < 

EZnT, predicted in case EZnT, observed < 0 (The combined treatment causes an increase of the endpoint 

compared to the control). The interaction was defined as antagonistic if the observed effect in 

the combined treatment was smaller than the effect predicted with the independent action 

model [122,140]. This occurs if EZnT, observed > EZnT, predicted in case EZnT, observed < 0 or when EZnT, 

observed < EZnT, predicted in case EZnT, observed > 0. 
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The Principal Response Curves method (PRC) [35] was used to analyse and illustrate 

the effects of Zn, T and P treatments on the plankton community composition and was 

performed by using CANOCO 5.0 [100]. The statistical significance of the single effects 

of the different treatments on the species compositions and their interactions were 

assessed by performing a Monte Carlo permutation test using the redundancy analysis 

(RDA). The Monte Carlo permutation test tested the significance of the PRC diagram 

in terms of displayed treatment variance, by using an F type test statistically based on 

the eigenvalue of the component [101]. This test was conducted for each sampling day, 

using the ln-transformed nominal treatment factor as the explanatory variables, to 

assess the significance of the treatment effects for each sample date. Interaction was 

tested by entering the interaction between Zn treatment and the environmental factor 

(P or T) as explanatory variables and the used factors and treatment as co-variables. 

For a more detailed description see Van Wijngaarden et al. (2006) [123]. 

Additionally, the Williams test (analysis of variance) as incorporated in the Community 

Analysis software [98,99] was used to calculate the No Observed Effect 

Concentrations (NOECs) for Zn at the parameter or taxon level (p ≤ 0.05). NOECs at 

the community level (NOECcommunity) were derived by applying the Williams test 

[101,103] on the Principal component analysis (PCA) sample scores resulting from a 

PCA analysis performed, separately for each sampling date. NOECs were only 

considered consistent when they showed statistically significant deviations in the same 

direction (adverse or beneficial) for at least two consecutive sampling dates. 
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3.3 Results and discussion 

3.3.1 Zinc, phosphorous concentrations and temperature 

The target temperature was generally achieved. During the experiment the mean 

temperature (± standard deviation) of the cold and the warm microcosms was 17.8 ± 

0.7 °C and 22.3 ± 0.9 °C, respectively. 

The target Zn concentrations were generally relatively well achieved, with the 

exception of the first week of the experiment. During the first week the measured 

dissolved Zn concentrations in the water column of the microcosms were below the 

target concentrations of 75 and 300 µg Zn/L (Table 3.1; Appendix B Figure B1 and 

Table B1). This was most likely the result of losses due to sorption by the sediment 

and biota. In the period thereafter (week 2-5), the target Zn concentrations in all 

microcosms were achieved to within 9% and 26% in the cold and warm microcosms, 

respectively (Table 3.1). The average dissolved Zn concentration in the warm 

microcosms was thus generally lower than in the cold microcosms. (Table 3.1). This 

may be due to higher sorption by sediment and biota at higher T. It is possible that the 

lower Zn concentrations during the first week and under warm condition concealed 

some of the Zn effects on the biota. Throughout this paper we will further refer to the 

nominal concentrations (75 and 300 µg Zn/L) for simplicity.  

The TDP concentrations in the controls, low and high Zn treatments increased 

continuously throughout the experiment (Appendix B Figure B2). By the end of the 

experiment the mean TDP concentrations was 46 µg P/L under the low P addition and 

840 µg P/L under high P addition. The phosphorus concentrations in the microcosms 

were not consistently affected by Zn or T (Appendix B Table B2 and B3). The measured 

TDP concentrations in the low P addition exceeded the 10 µg P/L that is defined as the 
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limit for oligotrophy. Thus the low P addition treatment should in fact be categorized as 

eutrophic (starting from 30-100 µg P/L) [46]. Similarly, the microcosms under high P 

addition can be categorized as hypereutrophic (>100 µg P/L) 

Table 3.1: Average measured dissolved Zn concentrations (± standard deviation) in the 75 

(low Zn) and 300 (high Zn) µg Zn/L treatments and the different multiple stressor treatment 

regimes during the first week of treatment (a) and between weeks 1-5 (b). * From chapter 2.  

Week Treatment Cold Warm 

    Low P* High P Low P High P 

1 Low Zn  22.0 ± 4.9 28.1 ± 13.8 25.5 ± 7.8 23.3 ± 7.9 

1 High Zn  51.1 ± 13.9 54.8 ± 11.7 116.5 ± 81.6 164.4 ± 79.3 

2-5 Low Zn  77.9 ± 17.8 82.0 ± 20.0 62.0 ± 15.0 58.1 ± 18.3 

2-5 High Zn  287 ± 52.3 310.4 ± 55.9 222.5 ± 48.2 230.9 ± 55.9 

 

3.3.2 Single stress treatments (effects of T and P addition) 

The results of earlier studies that investigated the effects of experimental warming on 

zooplankton have been highly variable, ranging from negative [124] to small [79] or no 

clear effects [51]. The temperature increase during our study had a clear effect on the 

zooplankton community (Appendix B Table B4 and B11, Figure 3.1 A). Many of the 

zooplankton taxa experienced a clear short term positive (A. nana and A. rectangular), 

negative (Cyclopoida) or variable (from clear positive to clear negative: Lecane group 

luna and lunaris and C. oblusa) temperature effect. This may be explained by the fact 

that warming can affect competitive interactions and increase top-down regulation 

[11,79,118]. The species abundances of the plankton are given in the SI (Appendix B 

Table B5). 

It has already been shown that nutrient addition can indirectly have a positive effect on 

the zooplankton community by altering biomass, size and nutritional quality of the 

phytoplankton [79–81]. However, in our study, high P addition by itself only slightly 
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affected the planktonic community (Appendix B Table B11, Figure 3.1 A-C). A possible 

explanation for this is the fact that throughout the experiment the phosphorus 

concentrations (TDP, TP and SRP) in the controls, low and high Zn treatments 

increased continuously (Appendix B Figure B2, Table B1). By the end of the 

experiment the measured TDP concentrations defined the microcosms that were under 

the low P addition as eutrophic and the microcosms that were under the high P addition 

conditions as hypereutrophic [46]. Therefore, it is unlikely that P was a limiting factor 

during this study.  

 

Figure 1 part 1: Principal response curve (PRC), resulting from the analysis of the global 

zooplankton (A), phytoplankton (B) and protozoa data (C), indicating the effects of the different 

Zn (Ctr: No Zn added; ZnL: 75 µ Zn/L; ZnH: 300 µg Zn/L), temperature (16-19 °C: Ф; 21-24 °C: 

T) and P treatments (Low P: Ф; High P: P) on the cold low P addition Zn control microcosms 

(Ctr). The vertical axis represents the differences in community structure of the treatments 

compared to the controls expressed as regression coefficients (Cdt). The affinity of a taxon to 

the PRC is expressed as the species weight (bk). Species with a low bk (between 0.5 and -0.5) 

are not shown. See [101,102] for additional information. 
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Figure 3.1 part 2: Principal response curve (PRC), resulting from the analysis of the global 

phytoplankton (B) and protozoa data (C), indicating the effects of the different Zn (Ctr: No Zn 

added; ZnL: 75 µ Zn/L; ZnH: 300 µg Zn/L), temperature (16-19 °C: Ф; 21-24 °C: T) and P 

treatments (Low P: Ф; High P: P) on the cold low P addition Zn control microcosms (Ctr). See 

[101,102] for additional information. 
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Generally the DO, DOC (Figure 3.2 A) and pH (Figure 3.2 B) of the Zn controls were 

consistently lower under warm than under cold conditions (Appendix B Table B1 and 

B15). The microcosms under warm conditions were also characterised by a 

significantly higher conductivity (Appendix B Table B1). At the end of the experiment 

the pH started to increase in the warm, high P addition microcosms (Figure 3.2 B). The 

high P addition induced a short term decrease of DO (morning and primary production), 

pH and NH3 (Appendix B Table B3). Under high P addition the DOC concentrations 

were consistently lower and the conductivity increased with increasing P throughout 

the experiment (Figure 3.2 A and Appendix B Table B3).  

 

Figure 3.2 A: Dynamics of Dissolved organic carbon concentration (A) under cold low P 

addition, cold high P addition, warm low P and warm high P addition conditions. The means 

(standard deviation as error bars) of the different parameters for each Zn treatment and time 

point are shown. Calculated no-observed-effect concentrations are plotted above the figures.a: 

Consistent Zn (high) × T interaction; b: Consistent Zn (low) × T interaction; C: consistent Zn 

(low) × P interaction. 
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Figure 3.2 B: Dynamics of the pHmean dynamics (B) under cold low P addition, cold high P 

addition, warm low P and warm high P addition conditions. The means (standard deviation as 

error bars) of the different parameters for each Zn treatment and time point are shown. 

Calculated no-observed-effect concentrations are plotted above the figures. a: Consistent Zn 

(high) × T interaction; b: Consistent Zn (low) × T interaction; C: consistent Zn (low) × P 

interaction. 

 

3.3.3 Combined effects and interactions of T and P stress with Zn toxicity 

3.3.3.1 Species and group level 

During this study consistent interactions were only found for 3 out of 43 zooplankton 

species (Cyclopoida sp., nauplii and Simocephalus vetulus), 2 out of 86 phytoplankton 

species (Single cell diatoms and Cryptophyte sp. 1) and 1 out of 27 protozoa species 

(Rimostrombidium brachykinetum) (Table 3.2-4, Figure 3.3 and 3.5). None of these 
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consistent interactions were found under low P addition and with the exception of the 

Cyclopoida sp., all the consistent interactions were found between Zn and T at the 

highest Zn treatment.  

 

Table 3.2: Statistical significance (p values two-way ANOVA) and calculation of the interactive 

effects (synergism: S; or antagonism: A) of Zn (Low Zn: L; High Zn: H) and the different factors 

of some of the different plankton species at different treatment regimes. The interaction type 

is based on comparing observed and predicted effects (independent action) using the methods 

explained in De Coninck et al.[122]. Only species for which a consistent interaction was found 

(with three-way ANOVA) are represented here. A consistent interaction was defined as an 

interaction of the same type (i.e. in the same direction) that was consecutively found for at 

least 2 consecutive sampling dates. See Appendix B table B7 and B8 for the statistical details 

on all species that showed consistent interactions. 

Taxa Day Treatment regime Interaction factors Zn treatment p Interaction type 

Zooplankton             

   Cyclopoida sp. 14 High P Zn × T L 0.006 S 

 21 High P Zn × T L 0.001 S 

   nauplii 28 High P Zn × T H 0.001 S 

 35 High P Zn × T H 0.001 S 

   Simocephalus vetulus 21 High P Zn × T H 0.049 A 

 28 High P Zn × T H 0.022 A 

Phytoplankton       

   Single cell diatoms 14 High P Zn × T H 0.049 A 

 21 High P Zn × T H 0.032 A 

   Cryptophyte sp. 1 21 High P Zn × T H 0.005 A 

  28 High P Zn × T H 0.012 A 

Protozoa       

   R. brachykinetum 21 High P Zn × T H 0.025 A 

 28 High P Zn × T H 0.048 A 

 

Among all plankton species identified, consistent Zn × T × P interactions were only 

found for 3 species (Cyclopoida sp., Anisonema acinus and Nassula sp.). However, 

further analyses for the Anisonema acinus and Nassula sp. revealed no consistent 
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two-way interactions effects for any of the factors (Appendix B Table B7 and B8). 

Further analysis on the Cyclopoida sp. abundance data revealed that under high P 

addition the Zn (low) × T interactions were consistently synergistic after 7 and 14 days 

of treatment, indicating a larger (up to 5-fold higher than predicted) negative Zn effect 

at higher T (Table 3.2 and Appendix B B7 and B8). At the highest Zn concentration 

consistent synergistic Zn × T interactions were calculated for the nauplii (Table 3.2 and 

3.3 and Appendix B B9 and S B10, Figure 3.3 C). Under normal conditions Cyclopoida 

are considered to have a higher tolerance to Zn stress [59,104,121]. Under warm 

hypereutrophic conditions, however the nauplii were adversely affected at even the 

lowest Zn concentration (Figure 3.3 C). How the various plankton species were 

affected differently by the combination of Zn and the other stressors is explained in 

more detail in SI (Appendix B Figure B3 - 7 and Table B4, B6 and B12-15). 

At the group level consistent interactions were only found at the highest Zn treatment 

and this for 2 out of 3 zooplankton groups (Copepoda and Cladocera), 3 out of 8 

phytoplankton groups (Bacillariophyceae, Cryptophyta and Chlorophyta) and 1 out of 

3 protozoa groups (Ciliate) (Table 3.2-4). The majority (6 out of 8) of the consistent 

interactions were found between Zn and T. The cladocerans (Figure 3.3 D) and the 

ciliates as a group showed an antagonistic Zn (high) × T interaction under high P 

addition, indicating a lower Zn effect at higher T (Table 3.3). As an example, figure 3.4 

A illustrates the Zn and temperature effects and their interaction for the cladocerans 

after 35 days of exposure under the different P conditions. Here, it can clearly be 

observed that under high P addition the observed Zn + T effects on the cladoceran 

abundance were 1.5 times lower than predicted. The rotifers were the only zooplankton 

group that did not show any consistent interaction at the group level (Table 3.2 and 

3.3). Furthermore, all consistent Zn × T interactions effects for phytoplankton taxa and 
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groups were antagonistic (Table 3.3). For the Bacillariophyceae these Zn × T 

interactions were only significantly antagonistic under low P addition while significantly 

antagonistic for the Cryptophyta under both low and high P addition (Table 3.2 and 

3.3). Crain et al. (2008) indicated that the overall interactive effect across most studies 

were antagonistic for most autotrophs and he suggested that trophic level could be an 

important driver for interaction type since organisms with fundamentally different 

methods of energy acquisition may respond very differently to stressors [116]. 

 

Table 3.3: Statistical significance (p values two-way ANOVA) and calculation of the interactive 

effects (synergism: S; or antagonism: A) of Zn (Low Zn: L; High Zn: H) and the different factors 

of some of the different plankton species at different treatment regimes. The interaction type 

is based on comparing observed and predicted effects (independent action) using the methods 

explained in [122]. Only groups for which a consistent interaction (three-way ANOVA) was 

found are represented here. See appendix B Table B9 and B10 for the statistical details.  

Taxa group Day Treatment regime Interaction factors Zn treatment p Interaction type 

Zooplankton       

   Copepoda 28 High P Zn × T H 0.001 S 

 35 High P Zn × T H 0.001 S 

   Cladocera 28 High P Zn × T H 0.003 A 

 35 High P Zn × T H 0.006 A 

Phytoplankton       

   Bacillariophyceae  14 High P Zn × T H 0.048 A 

 21 High P Zn × T H 0.02 A 

   Cryptophyta  7 Warm Zn × P H 0.001 S 

 14 Warm Zn × P H 0.04 S 

 14 Low P Zn × T H 0.009 A 

 21 Low P Zn × T H 0.032 A 

 21 High P Zn × T H 0.001 A 

 28 High P Zn × T H 0.007 A 

   Chlorophyta 7 Warm Zn × P H 0.029 S 

 14 Warm Zn × P H 0.007 S 

Protozoa       

   Ciliate  21 High P Zn × T H 0.01 A 

  28 High P Zn × T H 0.019 A 
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Figure 3.3 : Dynamics of Cladocerans (C) and copepod nauplii (D) under cold low P addition 

(Chapter 2), cold high P addition, warm low P and warm high P addition conditions. The means 

(standard deviation as error bars) of the different parameters for each Zn treatment and time 

point are shown. Calculated no-observed-effect concentrations are plotted above the figures. 

a: Consistent Zn (high) × T interaction; b: Consistent Zn (low) × T interaction; C: consistent Zn 

(low) × P interaction.  
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Figure 3.4: Log cladoceran abundance after 35 days of treatment (A) and total chlorophyll 

concentrations after 28 days of treatment (B) and predicted values using the Independent 

Action model (IA) under low P and high P addition conditions. Error bars indicate standard 

deviation. A: significant antagonistic Zn × T interaction; S: significant synergistic Zn × T 

interaction.  
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At the highest Zn treatment and under warm conditions consistent synergistic Zn × P 

interactions were found for the Chlorophyta and Cryptophyta as a group after 7 and 14 

days of treatment. These results indicate that Zn had a larger positive effect (up to 30- 

and 6-fold higher than predicted) on the total abundances of the Chlorophyta and 

Cryptophyta at higher P (Table 3.3 and Appendix B B10). These interactions were not 

found under cold conditions. Therefore, it is possible that these Zn (high) × P 

interactions can be explained by the fact that, during the first week of the experiment, 

and only in the cold treatments, the measured Zn concentrations (300 µg Zn/L 

treatment) of the low P microcosms were significantly lower (by about 1.5-fold) than 

those of the high P microcosms (Table 3.1). Thus, high P addition by itself is concluded 

to have, at best, only slightly affected the overall Zn toxicity. Interestingly though, 90% 

of all the Zn × T interactions at the species and group level were found under high P 

addition, suggesting that a higher P loading, may enable a stronger influence of 

temperature on the effects of Zn on freshwater communities.   

In summary, during this study 4% of the species (33% synergistic; 67% antagonistic) 

and 36% of the functional groups showed a consistent Zn × T interaction (20% 

synergistic; 80% antagonistic). This demonstrates that the Zn toxicity effects on the 

plankton community can be affected by temperature at the functional group level, but 

very limitedly at the species level (Table 2-4). Most authors observed an increased 

metal toxicity with increasing temperature due to an increased uptake and 

accumulation of the metal by the organism [11,18,74,114]. However, the majority of 

the consistent Zn × T interactions during this study were antagonistic, which suggest 

that Zn did not have a larger effect at higher T for most taxa and groups (Table 2 and 

3). Our results are in line with Jackson et al. (2016) [115] who found that the interactive 

effects between stressors at the population level are usually additive and antagonistic 
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at the higher levels of organisation (functional group, community level). One of the 

possible explanations for the limited number of taxa that showed a consistent 

interactive effect is the fact that biotic interactions (indirect effects) within the 

community can mask or dampen possible interactive stressor effects that occur at the 

population level [116]. Indirect effects are frequently observed in microcosm studies 

[9,13,121] and can, for instance, be the result from a reduced food competition (or 

predation) [46]. Another possible explanation for the reason why interactions are more 

frequently found at the group level than at the species level, is the fact that species 

can sometimes completely disappear (or very low abundance) from the microcosms 

and reappear (e.g. through hatching of dormant eggs) in later samplings. On the other 

hand, the disappearance of this species can be compensated by the abundance 

increase of species with the same community function (functional redundancy), which 

could dampen the effects at higher levels of biological organisation [9]. Although these 

abundance fluctuations are a natural phenomenon it can limit the statistical power and 

the observation of consistent interactive effects. By combining the different species into 

functional groups we account for functional compensation and lower sampling errors 

and increased statistical power [89]. 
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Table 3.4: Summary of the number of statistically significant interactive effects between Zn 

(Low: L and high: H) and the different factors (P and T) on the different organization levels of 

the different plankton species groups and ecosystem functions on at least one time point 

(following three-way ANOVA and Monte Carlo permutation test). The total number of assessed 

entities (N) at the different levels of organization is also reported. The number of consistent 

interactions are given between parentheses. The number of consistent interactions are given 

between parentheses. See Table 3.2,3.3, 3.6 and Appendix B B7, B9, B12 and B23 for details 

   L H L H L H 

 level N Zn × T Zn × T Zn × P Zn × P Zn × T × P Zn × T × P 

Zooplankton                 

 Species 43 5 (1) 14 (2) 5 (0) 6 (0) 5 (1) 4 (0) 

 Group 3 1 (0) 3 (2) 1 (0) 1 (0) 0 (0) 1 (0) 

 Communitya 1 1 (0) 1 (1) 0 (0) 1 (0) 1 (0) 0 (0) 

 Biodiversityb 1 1 (0) 1 (0) 0 (0) 0 (0) 1 (0) 1 (0) 

Phytoplankton         

 Species 86 14 (0) 23 (2) 13 (0) 17 (0) 13 (0) 11 (0) 

 Group 8 1 (0) 7 (2) 6 (0) 6 (2) 0 (0) 2 (0) 

 Communitya 1 0 (0) 1 (1) 1 (0) 1 (0) 0 (0) 0 (0) 

 Biodiversityb 1 1 (0) 1 (0) 1 (0) 1 (0) 0 (0) 0 (0) 

Protozoa         

 Species 27 1 (0) 5 (1) 4 (0) 6 (0) 2 (0) 6 (0) 

 Ciliate groupc 6 0 (0) 2 (0) 1 (0) 2 (0) 1 (0) 3 (0) 

 Group 3 1 (0) 3 (1) 1 (0) 2 (0) 1 (0) 1 (0) 

 Communitya 1 0 (0) 1 (1) 0 (0) 1 (0) 0 (0) 0 (0) 

 Biodiversityb 1 0 (0) 1 (0) 1 (0) 1 (0) 0 (0) 1 (0) 

Function         

 BOD5 1 0 (0) 1 (1) 1 (0) 1 (0) 1 (0) 1 (0) 

 DOC 1 1 (0) 1 (1) 0 (0) 0 (0) 1 (1) 1 (0) 

 pHmean 1 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 

 DOnet 1 0 (0) 1 (1) 1 (0) 0 (0) 1 (0) 1 (0) 

 Total chlorophyll 1 1 (1) 1 (1) 0 (0) 1 (0) 1 (1) 1 (1) 

    

a: Monte Carlo permutation test; b: Shannon index; c: Functional feeding group within the Ciliates  
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Figure 3.5: Dynamics of Cryptophyta sp. 1 (E) and total chlorophyll concentration (F) under 

cold low P addition (chapter 2), cold high P addition, warm low P addition and warm high P 

addition conditions. The means (standard deviation as error bars) of the different parameters 

for each Zn treatment and time point are shown. Calculated no-observed-effect concentrations 

are plotted above the figures. a: Consistent Zn (high) × T interaction; b: Consistent Zn (low) × 

T interaction; C: consistent Zn (low) × P interaction.  
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3.3.3.2 Biodiversity and community level 

After 14 days of exposure and onwards significant Zn × T interactions (Monte Carlo 

permutation test) were observed at the zooplankton community composition level at 

the highest Zn treatment under high P addition (Table 3.5). The PRC diagram, visually 

revealed a clear temperature effect on the zooplankton community structure (Figure 

3.1 A). The zooplankton community composition was consistently affected (3-way 

ANOVA on PCA-scores) by temperature and by the highest Zn treatment (Appendix B 

Table B11). Zn mainly adversely affected the cladocerans (Figure 3.2 A) like Daphnia 

longispina, Simocephalus vetulus and Chydorus sphaericus and this could differ 

among the different P and T treatment regimes. No consistent interactions between Zn, 

T & P were found for the Shannon biodiversity index for the zooplankton, phytoplankton 

or protozoa (Table 3.5). 

At the phytoplankton community composition level significant Zn × T interactions were 

found after 7 and 14 days of treatment under high P addition at the highest Zn 

treatment (Table 3.5). A clear main Zn effect on the phytoplankton community structure 

was visually revealed after conducting a PRC analysis using the phytoplankton data 

from all the different treatments (Figure 3.1 B). The phytoplankton community 

composition was affected (3-way ANOVA on PCA-scores) by the highest Zn treatment 

after 14, 28 and 35 days of exposure (Appendix B Table B11). The species weights (bk 

score) indicated that most filamentous cyanobacteria (Pseudanabaena sp., Anabaena 

sp. and Woronchinia sp.), several non-filamentous cyanobacteria (Chroococcus sp. 

and Aphanothece sp.) and colony or filament forming algae (Scenedesmus sp.1, 

Mougeotia sp., Uroglena sp., Fragilaria sp.) and were adversely affected by the Zn 

treatment. On the other hand most phytoplankton taxa with a negative species score 

belonged to the Chlorophyta (i.e. Desmodesmus sp., Haematococcus sp. and 
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Monoraphidium sp.1 and 2) and Cryptophyta (i.e. Cryphtophyte sp. 1 and 

Rhodomonas sp.) and indicated an increase in abundance due to the Zn treatments 

(Figure 3.1 B). The dominance shift from filamentous algae groups to small species 

(relative low contribution to the total chlorophyll) could possibly explain the decline in 

total chlorophyll at the highest Zn treatment (Figure 3.5 F and 3.6).  

 

 

Figure 3.6: Schematic overview of the observed effects of the highest Zn treatment (300 µg/L) 

on the ecosystem structure of a plankton-dominated community (+: Consistent increase;             

-: Consistent decrease; ± Consistent increase during the first 2 weeks of exposure and a 

consistent decrease during the 2 last weeks, 0: No consistent effect) at the cold low P/ cold 

high P/ warm low P/ warm high P treatments. At 300 µg Zn/L, a significant reduction in 

cladocerans resulted in an increase of copepod adults and microzooplankton, which is 

probably the result from reduced grazing competition. Additionally, the reduced grazing 

pressure on the edible phytoplankton population had a positive effect on their abundances and 

shifted the phytoplankton community dominance from grazing-resistant to edible species. 
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One of the possible explanations for the dominance shift from filamentous algae 

groups to small species at the highest Zn treatments is the fact that biotic interactions 

(indirect effects) within the community can affect observed Zn effects [32]. Indirect 

effects are frequently observed in microcosm studies [9,13,121] and can be the result 

from a reduced food competition (or predation) [46]. One of the examples of this was 

at the highest Zn treatment, where Zn effects were mainly observed for the cladoceran 

populations in the cold (low and high P addition) and warm low P addition microcosms . 

Figure 3.6 illustrates a schematic overview of the observed effects of the highest Zn 

treatment on the ecosystem structure of plankton-dominated microcosms for the 

different treatment conditions. This decrease in abundance probably resulted in an 

indirect positive, top-down effect on the nauplii abundances and hypothetically on the 

rest of the plankton community [9,106]. By reducing the number of Cladocerans the Zn 

treatments indirectly increased the relative abundance of small (< 10µm) Cryptophyta 

species (e.g. Rodomonas sp., Cryptophta sp. 1 and 2) and other fast growing and 

zooplankton grazing sensitive species (e.g. Monoraphidium sp., Scenedesmus sp. 2 

and Haematococcus sp.), at the expense of the filamentous algae (e.g. Mougeotia sp., 

Anabaena sp., Pseudoanabaena sp.) or colony forming (Scenedesmus sp.1, 

Mougeotia sp., Uroglena sp., Fragilaria sp.) algae (Figure 3.1 B). The observed 

phytoplankton patterns (PRC species scores) in figure 3.1 B are most likely the result 

of indirect effects (by a reduced grazing pressure caused by the direct negative effects 

of Zn on the cladocerans) and were observed for each of the different P and T 

conditions [9,48] (Figure 3.6 and Appendix B B6). However, for the zooplankton and 

protozoa community structure, the observed indirect effects of the reductions in 

cladocerans at the highest Zn treatment vary among the different treatment conditions. 

The rotifers, for example, only benefited from the disappearance of the large 
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cladocerans (=less food competition [9,48]) under cold, low P addition conditions while 

no rotifer abundance increase was observed under the other treatment conditions 

(Figure 3.6).  

For the protozoa a consistent Zn × T interaction (between 21 and 28 days of treatment) 

was found at the community composition level under low P addition at the highest Zn 

treatment (Table 3.5). The PRC analysis, that was conducted with the protozoa data 

from all the different treatments, visually revealed no clear effect from any of the factors 

on the community structure (Figure 3.1 C). The protozoa community composition was 

affected (3-way ANOVA on PCA-scores) by the highest Zn treatment from 14 days 

onwards (Appendix B Table B11). 
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Table 3.5: Statistical significance (p values Monte Carlo permutation tests) of the interactive effects of Zn (L: 75 µg Zn/L; H: 300µg Zn/L) and the 

different factors (P and T) on the community structure of the different plankton groups at different treatment regimes. Significant (p < 0.05) are 

marked. 

    low P high P Cold Warm   

    L H L H L H L H L H 

Plankton group Day Zn × T Zn × T Zn × T Zn × T Zn × P Zn × P Zn × P Zn × P Zn × T × P Zn × T × P 

Zooplankton -1 0.56 0.988 0.823 0.588 0.697 0.794 0.467 0.821 0.714 0.923 

 7 0.186 0.068 0.028 0.084 0.583 0.836 0.064 0.253 0.035 0.377 

 14 0.356 0.109 0.068 0.031 0.057 0.176 0.296 0.417 0.093 0.578 

 21 0.831 0.437 0.412 0.043 0.123 0.501 0.512 0.834 0.58 0.678 

 28 0.703 0.258 0.068 0.011 0.296 0.531 0.656 0.308 0.824 0.43 

 35 0.562 0.205 0.4 0.016 0.31 0.818 0.348 0.045 0.366 0.083 

Phytoplankton -1 0.418 0.361 0.112 0.189 0.559 0.254 0.015 0.252 0.119 0.478 

 7 0.217 0.657 0.344 0.038 0.038 0.244 0.561 0.063 0.056 0.164 

 14 0.331 0.228 0.144 0.028 0.731 0.029 0.088 0.407 0.263 0.189 

 21 0.29 0.72 0.445 0.174 0.749 0.477 0.41 0.677 0.764 0.567 

 28 0.482 0.316 0.34 0.199 0.136 0.676 0.226 0.595 0.126 0.297 

 35 0.592 0.12 0.224 0.341 0.118 0.066 0.242 0.124 0.391 0.484 

Protozoa -1 0.06 0.55 0.034 0.18 0.104 0.198 0.094 0.728 0.01 0.324 

 7 0.494 0.398 0.311 0.24 0.363 0.321 0.063 0.082 0.238 0.561 

 14 0.451 0.495 0.509 0.056 0.722 0.32 0.492 0.051 0.438 0.253 

 21 0.198 0.021 0.158 0.098 0.263 0.003 0.108 0.853 0.209 0.089 

 28 0.631 0.016 0.178 0.03 0.762 0.06 0.205 0.085 0.929 0.068 

  35 0.234 0.362 0.301 0.14 0.479 0.874 0.409 0.261 0.288 0.86 
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3.3.4 Total chlorophyll, community metabolism and general chemical 

properties of the water 

The physico-chemical water parameters data and how they were affected by the 

combination of Zn and the other stressors are given in the Appendix B (Table B1 and 

B3). Under high P addition the DOC was adversely affected by Zn in both the cold (at 

300 µg Zn/L) and the warm (at 75 µg Zn/L) microcosms. However, in the warm 

microcosms with low P addition, no Zn effect on the DOC was observed (Figure 3.2 A). 

At the highest Zn treatment the DO was affected for a short term and was significantly 

lower than the control Zn under cold temperature conditions (Appendix B Table B3). 

The pH was consistently significantly lower at the highest Zn concentration and this for 

all the different regimes. The conductivity was not affected by Zn under high P addition 

and warm conditions and the NH3 concentrations were significantly higher in the cold 

high P addition Zn treatments. In the high P addition microcosms the Biological oxygen 

demand after 5 days (BOD5) significantly decreased with increasing Zn while in the low 

P addition microcosms the BOD5 were only consistently affected at the highest Zn 

concentration (Appendix B Table B3). The consistent Zn effect on the DOC and BOD5 

can also be an indirect indication that the microbial loop and the pelagic food web were 

affect by Zn [46]. 

During this study, consistent interactions were found for all the main community 

metabolites (DOC, BOD5, DO and pH) and for the total chlorophyll (Table 3.6). At the 

highest Zn treatment consistent antagonistic Zn × T interactions were found for the 

DOC, pHmean, DOmean and net primary production (DOnet). The Zn (high) × T interactions 

for the pHmean were consistent under both P conditions while the Zn (high) × T 

interactions of the DOC, DOmean and DOnet were only consistent under low P addition 

(Table 3.6). Under low P addition the observed effects (Zn high + T) on the DOC, 
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pHmean, DOmean and DOnet were on average 1.5, 1.8, 1.2 and 1.2 times less negative 

than predicted by the IA model (Appendix B Table B21). After 7 and 14 days of 

treatment consistent Zn (high) × T interaction were found for the Biological oxygen 

demand after 5 days BOD5. These interactions were synergistic under high P addition 

while antagonistic under low P addition (Table 3.6). However, these BOD5 results were 

only found during the first part of the experiment (= period below target Zn 

concentration) and should not be overemphasized.  

At the lowest Zn concentration, the DOC was the only parameter for which consistent 

interactions were found: Consistent synergistic Zn (low) × T interactions under high P 

addition (on average 4 times more negatively affected than predicted) and consistent 

antagonistic Zn (low) × P interactions under cold conditions (on average 7 times less 

negatively affected than predicted) (Table 3.6, Appendix B Table B21).  

Significant Zn × T × P interactions were observed for the total chlorophyll (Figure 3.5 

F) concentration during the last 3 weeks of exposure at the lowest Zn and during the 

last 2 weeks at the highest Zn treatment (Appendix B Table B16). Under low P addition, 

the Zn × T interactions were antagonistic for the total chlorophyll at the lowest Zn 

treatment after 21 and 28 days of exposure and at the high Zn treatment after 28 and 

35 days (Table 3.6). These Zn × T interactions indicated that under low P addition and 

high T the lowest and highest Zn treatment had a smaller adverse effect (3 and 1.4-

fold, respectively) on the total chlorophyll concentration than predicted (Table S10). As 

an example, figure 3.4 B illustrates the effects and interactions between Zn and 

temperature on the total chlorophyll concentrations after 28 days of exposure under 

the different P conditions. No consistent Zn × T interactions were observed under high 

P addition. High P addition had no significant effect on the overall Zn effect (No Zn × 

P) on the total chlorophyll (Table 3.6). Therefore it can be concluded that, in contrast 
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to Gao et al. (2016) [86], no indications were found during this study that Zn was more 

toxic to the phytoplankton at higher P supply, neither at species or group level or at the 

level of community composition or total chlorophyll concentration in the system. 

 

Table 3.6: Statistical significance (p values Three-and two-way ANOVA) and calculation of the 

interactive effects (synergism: S; or antagonism: A) of Zn (Low Zn: L; High Zn: H) and the 

different factors of the total chlorophyll, pHmean, DOC, mean dissolved oxygen (DOmean), net 

primary production (DOnet: DOevening day x - DOmorning day x) and BOD5 at different treatment regimes. 

The interaction type is based on the observed and predicted effects using the methods 

explained in [122]. Only parameters for which a consistent interaction was found are 

represented here. See Appendix B B16 and B21 for the statistical details. 

Parameter Day Treatment regime Interaction factors Zn treatment p Interaction type 

BOD5 7 Low P Zn × T H 0,009 A 

 14 Low P Zn × T H 0,005 A 

 7 High P Zn × T H <0,001 S 

 14 High P Zn × T H 0,007 S 

DOC 21 Low P Zn × T H 0,006 A 

 28 Low P Zn × T H 0,005 A 

 35 Low P Zn × T H <0,001 A 

 21 High P Zn × T L 0,002 S 

 28 High P Zn × T L 0,025 S 

 21 cold Zn × P L 0,041 A 

 28 cold Zn × P L 0,006 A 

 35 cold Zn × P L 0,010 A 

pHmean 14 Low P Zn × T H 0,011 A 

 21 Low P Zn × T H 0,024 A 

 14 High P Zn × T H 0,007 A 

 21 High P Zn × T H 0,049 A 

DOmean 14 Low P Zn × T H 0,035 A 

 21 Low P Zn × T H 0,019 A 

DOnet 14 Low P Zn × T H 0,026 A 

 21 Low P Zn × T H <0,001 A 

Total chlorophyll 21 Low P Zn × T L 0.03 A 

 28 Low P Zn × T L 0.034 A 

 28 Low P Zn × T H 0.013 A 

  35 Low P Zn × T H 0.013 A 
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3.3.5 Zn risk assessment 

Microcosm and mesocosms studies are essential for Zn risk assessment because by 

including biotic interaction they provide a more realistic risk assessment than the lower-

tier single species test [13]. Since microcosm studies can be difficult to interpret Brock 

et al. [89] worked out several guidelines and recommended that to ensure the statistical 

analysis, conducted to demonstrate a possible treatment related effect has enough 

power, at least 8 populations of potentially sensitive taxa with an appropriate MDD 

(category 1) are present in the study. In our study, at least 8 different category 1 taxa 

were observed under every treatment regime, including phytoplankton and 

zooplankton taxa but no protozoa, thus conforming the reliability of our study. Under 

high P addition (cold and warm) the multivariate analysis (PRC) conducted on the 

different plankton groups (Zooplankton, phytoplankton and protozoa) revealed a 

NOECcommunity of 75 µg Zn/L (Appendix B Figure B5 – 7). However, under warm low P 

addition the phytoplankton community composition was consistently affected at 75 µg 

Zn/L and a NOECcommunity of <75 µg Zn/L was calculated (Appendix B Figure B6 A). 

This is possibly due to the indirect effect the by Zn declined D. longispina (NOEC <75 

µg Zn/L) populations had on the phytoplankton community (especially for Cryptophyta 

sp.1: Figure 3.5 E) (Appendix B Table B13).  

Additionally, to the effect on the plankton community, Zn also indirectly affected the 

chemical properties of the water over time and hereby the metal bioavailability. During 

the experiment the pH and DOC levels were not only affected by temperature and 

eutrophication but also by the Zn treatments (with the exception of the warm low P 

addition microcosms and especially at high Zn). By lowering the DOC, Zn becomes 

more bioavailable and therefore more toxic [5,16].  
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3.4 Conclusions 

During this study consistent interactions between Zn and the other factors (T and P) 

were rarely found at the species level, but they were frequently found at the group, 

community structure and functional level, thus largely confirming our hypothesis that 

stressor interactions occur more frequently at a higher level of organisation. 

Biodiversity was the exception, as no interactions were found for this community-level 

characteristic. We also found that 82% of all the consistent interactions at species or 

group level were observed at the highest Zn treatment (300 µg/L) and only 18% at the 

lowest (75 µg/L). In addition, the majority of the consistent interactions were found 

between Zn and T, indicating that Zn effects on plankton communities can be affected 

by temperature. Furthermore, these consistent Zn × T interactions were mainly 

antagonistic, which suggests that Zn did not have a larger, but rather a smaller effect 

at higher T for most taxa, groups and functions.  

During this study, in contrast with our hypothesis that was based on single-species 

experiments, no clear indications were found that Zn was more toxic to the 

phytoplankton at a higher P supply, neither at the species or group level, nor at the 

level of community composition or total chlorophyll concentration in the system. Overall, 

high P addition by itself was concluded to have, at best, only slightly affected the overall 

Zn toxicity. Interestingly though, 90% of all the Zn × T interactions at the species and 

group levelwere found under high P addition. Additionally, with exception of the 

protozoa, all the observed consistent Zn × T interactions at the community composition 

level were only found under high P addition. Thus, high P addition clearly influenced 

the interactive effect between Zn and T. Collectively, our study suggest that 

temperature and phosphorus loading to freshwater systems should be accounted for 

in risk assessment of chemicals, as these factors may modify effects on aquatic 
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communities. Not doing so may underestimate risks in some and overestimate risks in 

other systems, depending on their temperature and phosphorous loading.     
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4.1 Introduction 

Currently the ecological risk assessment of chemicals (ERA) is generally based on 

results of single species laboratory tests conducted under standardised optimal 

conditions (e.g. temperature, food, etc.), which are then extrapolated to field conditions. 

Under natural conditions however, biological populations are constantly exposed to a 

variety of abiotic (e.g. temperature, nutrients) and biotic factors (e.g. competition, 

predation) which could interact with toxicant exposure effects [10,43]. The competition 

for resources between (interspecific) and within (intraspecific) species is one of the 

major biotic interactions and can significantly modify the responses of organisms to 

toxicants [15,26,27,125,126]. For example, a decrease of the most sensitive species 

due to toxic effects of the toxicant (direct effect) can result in an increase of a more 

resistant species (indirect effect) as a result of decreased competition or in a decrease 

of the consumer species due to starvation [9]. Furthermore, the competition for food 

among species can reduce the amount of energy that could be used for reproduction 

(dynamic energy budget theory [31]) or to withstand toxic stress [17] which could 

enhance toxic effects observed at the population level [34].  

Although the awareness of the influence of interspecific interactions on toxicity effects 

of chemicals is growing [15,38], only a few studies have investigated combined 

interspecific competition and chemical stress, and those studies were mainly focused 

on pesticides [26,27,32,35,37]. In Chapter 2 [121] we conducted a freshwater 

microcosm plankton community experiment under the same cold conditions as in the 

present study, and they observed that Zn drove a D. longispina population to extinction 

at a concentration below its reported chronic NOEC derived from single-species tests. 

We hypothesised in Chapter 2 and 3 that interspecific competition had an important 

effect on the Zn toxicity effects.  
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Additionally, abiotic factors such as temperature (T) can also be important drivers 

affecting competition (e.g. affecting competitive interaction and top down regulation) 

[11,118] and the toxic effects of pollutants by influencing their bioavailability and 

toxicokinetics [10,11]. To date, most studies indicate that metal toxicity increases with 

increasing temperature [17,18,74,75,127]. In the context of global change, and the 

predicted general temperature increase of up to 4°C within the next century in 

temperate regions [40], it is crucial for ERA to understand the combined and interactive 

effects of chemical stressors and temperature. 

At present, studies on how the combined effect of an abiotic factor and food 

competition affects the response of a population to a chemical stressor are even more 

underrepresented in the ecotoxicology literature. One of these studies was conducted 

by Heugens et al. (2006) [17] and they found that adverse cadmium (Cd) effects on 

Daphnia population growth were enhanced at higher temperature, whereas higher food 

concentrations protected the Daphnia population from Cd toxicity. 

The aims of the present study were to determine the single effects of zinc, temperature 

and interspecific competition (comp) on a Daphnia longispina population and to 

determine whether temperature and/or interspecific competition can affect the zinc 

toxicity effects. To this end, a jar (0.5 L) study was conducted in which D. longispina 

populations (5 adults and 5 juveniles) were exposed to three different zinc (Zn) 

treatments (background, 29 µg Zn/L and 110 µg Zn/L), two different temperature 

regimes (“ambient“ or cold: 16-19 °C and “ambient +4°C” or warm: 21-24 °C) and two 

interspecific competition levels (No interspecific Brachionus competition= no 

Brachionus calyciflorus added; interspecific Brachionus competition= B. calyciflorus 

added) in a full 3x2x2 factorial design. Higher effects of the Zn treatment on the D. 

longispina population were expected under warm conditions [10,18,74], especially 



Chapter 4 
 

106 
 

when the populations were under an increased food competition (dynamic energy 

budget theory [31]). 

 

4.2 Materials and methods 

4.2.1 Test systems and experimental design 

The experiment consisted of sixty 1 L glass jars filled with 0.5 L of filtered (0.20 µm) 

medium (originating from a mesotrophic ditch located at the Sinderhoeve Experimental 

Field Station, Wageningen, The Netherlands; general chemical properties of the water: 

Appendix C Table C1) and were installed in a water bath (ambient late spring water 

temperature mesotrophic ditch located at the Sinderhoeve Experimental Field Station: 

16-19 °C) for temperature regulation and a 12h diurnal photoperiod (3500-4500 lux). 

One week before the applications of the different treatments (i.e. the pre-treatment 

period) forty-eight glass jars were inoculated with 5 D. longispina adults (carying eggs) 

and 5 juveniles. The classification of the D. longispina organism subclasses was based 

on their size (adults: ≥ 500 µm and juveniles: < 500 µm). The adult size class was 

determined by a pre-test in which the smallest (body length) egg carrying D. longispina 

female was determined and was used as cut-off value. The D. longispina organisms 

used during this experiment were obtained from a lab culture (16-19 °C) that originated 

from the same mesotrophic ditch (Sinderhoeve Experimental Field Station, 

Wageningen, The Netherlands). Twelve glass jars were designed to only contain 

Brachionus calyciflorus but these were only inoculated after the pre-treatment period. 

After the pre-treatment period the jars were exposed simultaneously to three factors 

(Zn, T and Brachionus calyciflorus addition) for a period of 21 days. The applied Zn 

concentrations were based on the calculation of the hazardous concentration for x% 
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of the planktonic organisms, i.e. the HCxplankton. This is the HCx that is based on the 

chronic Zn toxicity data of plankton species that were first normalized to the target 

properties of the exposure medium by using the Zn Biotic Ligand Model [121]). The 

two target water temperatures (“ambient“ or cold: 16-19 °C and “ambient +4°C” or 

warm: 21-24 °C) were determined in context of global change, and the predicted 

general temperature increase of up to 4°C [40]. To simulate a more realistic community 

structure the Daphnia/Rotifer ratio (10:1450) used during this study was based on the 

starting communities of a microcosm study conducted by Van de Perre et al. (2016) 

[121]. The experimental design consisted of three Zn treatments (control = background 

Zn, i.e. no Zn added; 29 µg Zn/L= HC5plankton or Zn low and 110 µg Zn/L= HC50plankton 

or Zn high), two temperatures (cold: 16-19 °C and warm: 21-24 °C) and two 

interspecific competition levels (No interspecific Brachionus competition= no B. 

calyciflorus added; interspecific Brachionus competition= 1450 B. calyciflorus added) 

varied in a full 3x2x2 factorial design. Each treatment received four replicates.  

The rotifer B. calyciflorus cysts were obtained from MicroBioTest (Mariakerke, Belgium) 

and a stock culture was started and maintained at 16-19 °C and 21-24 °C several 

weeks before the start of the experiment. The B. calyciflorus and the D. longispina in 

the stock cultures and during the experiment were fed daily with Desmodesmus sp. (1 

g C/ml). The Desmodesmus sp. itself was frozen (for 1 week) to kill them and defrosted 

prior to feeding. This was done to prevent their growth in the jars, which made it 

possible to control the food supply, thus allowing food competition and limiting pH and 

Zn fluctuations (Box 4.1). To test whether the B. calyciflorus and the D. longispina 

populations would respond differently to dead or live Desmodesmus sp. feeding 

several pre-tests were conducted and none of these tests revealed a significant effect.  
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Twice a week the medium (acclimated to the right temperature) in the jars was changed 

completely to maintain the targeted Zn concentrations and water quality conditions.  

 

Box 4.1 Investigating the relation between algae concentration and Zn losses 

 

 

 

A small jar experiment (without sediment) was carried out to investigate whether the 

Zn loss during previous experiments could be explained by Zn algae uptake. Several 

concentrations (background, 0.25 mg/L, 0.50 mg/L, 1 mg /L and 2 mg/L) of a 

Desmodesms sp. solution were added to a 0.5 L jar. These jars were spiked one time 

with 150 µg Zn/L. Zn samples were taken after 0.5h, 1h, 2h, 4h, 7, 24 and 120h. 

Results strongly indicate that the higher the starting algae concentration, the more 

algae loss out of the water column. To contract this problem the D. longispina 

populations in the experiment in chapter 4 were fed with dead Desmodesmus sp. (by 

freezing and defrosting prior to use). 
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4.2.2 Zn treatment applications and general chemical properties of the water 

analysis 

The media for the three target Zn concentrations were prepared by spiking ZnCl2 into 

the water (target + 20% to compensate for Zn loss) and was acclimated to the target 

temperature at least one day before the medium change. Two water samples (one not 

filtered for measuring the total Zn concentration and one filtered through a 0.45 µm 

filter for measuring the dissolved Zn concentration, Acrodisc; Pall Life Sciences) were 

sampled from the jars before the medium was changed and from the new medium. 

The samples were taken after gently stirring using a syringe, approximately 10 cm 

under the water column and visually checked for D.longispina occurences (If D. 

longispina was present in the sample the sample was put back and retaken). The Zn 

samples were measured using an iCAPTM 7000 Plus Serie ICP-OES (limit of 

quantification 2 µg Zn/L; method detection limit 0.5 µg Zn/L; Thermo Scientific, 

reference material TM28-4 and TMDA-70.2). 

Water samples for nutrient analysis were taken simultaneously with the Zn samples. A 

total organic carbon analyser (TOC-5000; Shimadzu; limit of quantification 1.5 mg 

DOC/L; method detection limit 0.5 mg DOC/L) was used for measuring the Dissolved 

organic carbon (DOC) and dissolved inorganic carbon (DIC). Measurements for 

dissolved oxygen (DO), temperature and pH were performed (WTW 340i multi-meter) 

in the evening the day before changing the medium and in the morning, just before 

changing the medium. 
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4.2.3 Biological monitoring 

By filtering the medium over 3 sieves (mesh size 500 µm, 200 µm and 15 µm) the D. 

longispina abundances of the adults and juveniles could be separated and counted. 

The sieve with mesh size 15 µm was used to retain the rotifers. The abundances of D. 

longispina and B. calyciflorus were monitored every time the medium was changed (-

7, -3, 0, 4, 7, 11, 14, 18 and 21 days after the first treatment). The B. calyciflorus 

abundances were monitored by taking two 12.5 ml subsamples per jar and counted by 

using and inverted microscope (magnification 10x). After counting, the Daphnia and 

Brachionus were put back in the jars with fresh medium.  

 

4.2.4 Data analysis 

All statistical analyses were preformed using Sigmaplot 13. Prior to statistical analysis 

the abundances were log10-transformed to ensure the assumptions of normality 

(Shapiro–Wilkinson’s W test) and homoscedasticity (Levene’s test). In order to assess 

the main effects and interactions between Zn and temperature and interspecific 

competition on the D. longispina and B. calyciflorus abundances a series of ANOVA’s 

(three and two-way) were used for every sampling day (p < 0.05). To test whether the 

Zn interactions were dependent on the Zn concentration, the data analyses were 

conducted for each Zn treatment (Zn low: 29 µg Zn/L and Zn high:110 µg Zn/L). First, 

three-way ANOVA’s were performed to determine the significance (p < 0.05) of the 

three-way and two-way interaction terms for all endpoints. One way to interpret three-

way interactions (Zn × T × comp) in our study is that it indicates that the Zn × T 

interaction is different with and without Brachionus (or competition with Daphnia in 

case of Brachionus) competition or that the Zn × comp interaction differs between 
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temperatures [122,128], which matches the questions we wanted to address in this 

work. In case of a significant three-or two-way interaction (Three-way ANOVA) several 

more detailed two-way ANOVA’s (Zn × T and Zn × comp) were conducted (on a subset 

of the whole dataset) to get a better understanding about what these interactions 

implicated and to determine in which environmental conditions (cold and warm; no 

interspecific Brachionus competition and interspecific Brachionus competition) these 

interactions occurred. Additionally, these two-way ANOVA analysis provided a formal 

statistical test of the Independent Action model [122]. Secondly, interactive effects 

were evaluated relative to the Independent Action model and were classified as 

synergistic (combined effect greater than expected), antagonistic (combined effect 

smaller than expected) or additive (combined effect as than expected) [122]. In this 

chapter the cold microcosm jars, with no added Zn and no Brachionus added were 

defined as the reference condition (=control). See De Coninck et al. (2013) [122] and 

box 4.2 for further details on how the predicted effects were calculated and how the 

interactions were assessed. Additionally, pairwise comparison (Holm-Sidak method) 

was used to determine the single effect of Zn, temperature and interspecific 

competition. We defined statistically significant effects/interactions, that are significant 

for at least 2 consecutive sampling dates as “consistent” effects/interactions” [89]. 
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Box 4.2 Determination of the interactive effects [122]

 

    

 

In this chapter we investigated whether the observed effects in the combined treatments, for 

the different treatment regimes (cold vs warm; No interspecific Brachionus competition vs 

interspecific Brachionus competition), followed the independent action model. Bliss (1939) 

originally developed the independent action model which predicts the combined effects of 

binary stressors from observed effect in the individual stressor treatments [122,140]. In case 

of the Zn + T the following model was used (similar for Zn + comp treatments): 

EZnT,predicted= EZn + ET – EZn ×ET 

Where 

Ei= 
Ycontrol -Yi

Ycontrol
 

Ei is the observed fractional effect of the treatment i on endpoint Y relative to the control 

treatment. In our example i is either Zn, T or ZnT (combined Zn + T treatment). E i can be 

positive (indicating a decrease in endpoint compared to the control) or negative (indicating an 

increase in endpoint compared to the control). When the two-way ANOVA found a significant 

Zn × T interaction we defined it as synergistic when the observed effect in the combined 

treatment was higher than the effect predicted with the independent action model [122,140]. 

This was the case when EZnT, observed > EZnT, predicted in case EZnT, observed > 0 (The combined 

treatment causes a reduction of the endpoint compared to the control) or when EZnT, observed < 

EZnT, predicted in case EZnT, observed < 0 (The combined treatment causes an increase of the endpoint 

compared to the control). The interaction was defined as antagonistic if the observed effect in 

the combined treatment was smaller than the effect predicted with the independent action 

model [122,140]. This occurs if EZnT, observed > EZnT, predicted in case EZnT, observed < 0 or when EZnT, 

observed < EZnT, predicted in case EZnT, observed > 0. 
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4.3 Results and discussion 

4.3.1 Zinc concentrations and general water chemistry 

During the experiment the average dissolved Zn concentrations (± standard deviation) 

of the controls were 2.9 ± 1.9 µg/L, 25.7 ± 13.3 µg/L in the lowest Zn treatment and 

121 ± 24 µg/L in the highest Zn treatment (Table 4.1). The average DOC concentration 

was 5.0 mg/L ± 0.6 and TOC concentration 5.1 mg/L ± 0.9. During the experiment the 

average dissolved oxygen concentration was 9.0 mg/L ± 1.3 and the average pH 8.3 

± 0.3. On average the water temperature within the cold and warm treatments were 

17.1 ± 0.4 and 21.5 ± 0.9. 

Table 4.1: Mean (± standard deviation) of the average filterd Zn concentrations of the jar water 

before and after changing medium. 

    New medium (µg Zn/L) Before medium change (µg Zn/L) Average mean (µg Zn/L) 

Control  1.7 ± 1.1 3.0 ± 1.9 2.9 ± 1.9 

Zn low  37 ± 7 18 ± 4 25.7 ± 13.3 

Zn high   139 ± 9.8 100 ± 17 121.4 ± 24.4 

 

4.3.2 Single effects of Zn, T and interspecific competition 

4.3.2.1 Daphnia longispina 

Under cold conditions and without B. calyciflorus competition the abundance of D. 

longispina adults was unaffected by Zn while Daphnia juvenile abundance was 

consistently affected at both Zn concentrations (Figure 4.1A and Table 4.2). From 11 

days after the start of the experiment onward, the juvenile abundance was positively 

affected at the lowest Zn treatment (Figure 4.1E). As an essential element Zn itself can 

be a limiting factor and an addition of Zn could cause and increase in abundances 

[107,110,129,130]. Based on acclimation studies, Muyssen and Janssen (2005) [130] 

found that Daphnia exposed to a Zn concentration from 6 to 22 µg/L produce 
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significantly more offspring than Daphnia acclimated to lower or higher test 

concentrations. During our study (Chapter 4) the average Zn concentration (2.9 µg 

Zn/L) in the Zn controls was below the Zn optimum concentration for Daphnia, which 

could explain why the D. longispina juvenile abundances were consistently positively 

affected by the lowest Zn treatment (Table 4.2). Since the total D. longispina 

abundance largely consisted of juveniles it mainly reflected the population dynamics 

of the juveniles. 

At the highest Zn treatment the D. longispina juvenile abundances were consistently 

negatively affected after 14 days of exposure onwards (Table 4.2 and Figure 4.1E). 

Daphnia juveniles are known to be more sensitive to toxicants than adults [26,131]. 

However, the recorded population variables in this study do not allow to determine 

whether the negative effect of the highest Zn treatment on the juvenile abundance 

resulted from direct mortality, reduced reproduction from the adults (e.g. reduced brood 

size, fraction of reproducing adults [132]) or from the combination of both. The NOEC 

(for reproduction) of D. longispina in the chronic Zn toxicity database [5] normalized to 

our medium characteristics is 245 µg Zn/L, which is more than double the highest Zn 

concentration used in this study, and thus no Zn effect on reproduction was expected.  

Generally at higher temperatures Daphnia mature faster (i.e., lower the age at first 

reproduction) and this can enhance population growth. However, when comparing the 

cold control (No Zn nor Brachionus added) jars with the warm control jars no consistent 

temperature effect was observed for any of the different D. longispina subclasses 

throughout the experiment (adults: Figure 4.1A and 4.1C, juveniles: Figure 4.1E and 

4.1G, total: Figure 4.1I and 4.1K; Table 4.2). This is possible due the fact the mean 

temperatures used in this study were within the OECD based temperature optimum for 

Daphna reproduction (18 – 22°C) [72]. 



  Chapter 4 
 

115 
 

In the present study interspecific Brachionus competition by itself had no significant 

consistent effect on any of the D. longispina subclasses (adults: Figure 4.1A and 4.1B, 

juveniles: Figure 4.1E and 4.1F, total: Figure 4.1I and 4.1J; Table 4.2). This was 

expected since rotifers are generally outcompeted by Daphnia and only have a limited 

effect on Daphnia abundance in food competition studies [26,27,133]. 

 

4.3.2.2 Rotifers 

B. calyciflorus population densities declined sharply after 7 days of treatment and 

disappeared from most jars after 18 days (Figure 4.2). Their population densities were 

unaffected by the Zn and temperature treatments (Appendix C Table C3 and C4). 

Rotifers, like B. calyciflorus are also known to form dormant eggs (sexual reproduction) 

when under less favourable conditions (e.g. food shortage, chemical stress, 

temperature or high population density) [46]. Since these dormant eggs would only 

hatch after several weeks (after conditions are favourable again which could have been 

outside the duration of the experiment) it could partly explain why the B. calyciflorus 

abundance declined within the jars, even without the occurrence of D. longispina. 

However, this theory cannot be confirmed since the B. calyciflorus eggs were not 

counted during the experiment. Evaluating the effects of interspecific competition 

during our study became even more complex than anticipated due to the appearance 

of small rotifers (after 4 days) in the Daphnia jars (Figure 4.2). To avoid contamination 

the D. longispina individuals were transferred 3 times to clean medium just prior to the 

experiment. However, after 4 days of treatment and onward “small rotifer” species 

(Lecane lunaris, Lepadella patella, Cephalodella sp. and Mytilina sp.) detectably 

appeared in all the jars with D. longispina and their abundance further increased 
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throughout the experiment (Figure 4.2). With exception of the small rotifers, no other 

contaminations (e.g. algae or protozoa) were observed during this study. Most likely 

eggs of small rotifer species (or even the rotifers themselves) were attached to the 

carapax of the Daphnia and hatched later on [50]. Interspecific competition (by “D. 

longispina + small rotifers”) had a consistent negative effect on the B. calyciflorus 

abundances (Figure 4.2A and 4.2B, Appendix C Table C3 and C4). When under 

interspecific competition (by “D. longispina + small rotifers”) the B. calyciflorus 

abundance declined faster than when not under interspecific competition and even got 

extinct in some jars (Figure 4.2A and 4.2B). Cladocerans compete with rotifers for food 

and are generally known to outcompete (e.g. faster filtration rate, can ingest wider 

range of algae cells, bigger energy reserve) and suppress rotifer populations 

[26,27,133,134]. Additionally, cladocerans can damage the rotifers themselves (by 

being swept into the branchial chamber of the Cladocera: mechanical interference) and 

this can have a negative effect on the rotifer populations [134].  

Interspecific competition for food also occurs between rotifer species [37] and it is 

possible that B. calyciflorus was suppressed by the small rotifers. The small rotifers 

were probably more biologically adept (e.g. reproduction potential, tolerance to 

starvation, mechanical interference and different food niche: e.g more bacterivorous) 

to co-exist with the D. longispina. Smaller rotifers require less food (energy) to reach 

maximum growth rates (or start reproduction) and are better adapted to live under low 

(limited) food environments [46,133]. The small rotifer abundance showed no 

consistent Zn effect (Figure 4.2F; Appendix C Table C3 and C4). The temperature 

increase had a consistent positive effect on the small rotifer abundance between 4 and 

18 days of exposure (Figure 4.2F and 4.2H; Appendix C Table C3 and C4). The higher 
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small rotifer population density in the warm jars can potentially be explained by the 

positive effect temperature has on e.g. maturation rate and egg development rate [46].  

Surprisingly, the small rotifer abundances were positively affected, i.e. increased 

abundance, by an increased interspecific (by “D. longispina + B. calyciflorus”) 

competition (Appendix C Table C3-4 and compare Figure 4.2F and 4.2I: “D. longispina 

competition” vs “D. longispina + B. calyciflorus” competition). This positive effect was 

found, starting after 11 days of exposure and in the period of the sharp B. calyciflorus 

decline. It can be hypothesed that the declining Brachionus and Daphnia abundances 

indirectly affected the small rotifer abundances by reduced food competition as 

observed in previous studies [9]. Although a continuous and solemnly B. calyciflorus 

competition pressure experiment could have led to different results, the occurrence of 

the small rotifers provided an unique opportunity to investigate a more complex system. 

 

Table 4.2: Statistical significance (p values pairwise comparison control [cold, no Zn and no 

Brachionus added jars] vs treatment) Zn, temperature and interspecific competition effects at 

the different samplings. Significant (p < 0.05) values are flagged.  

    Independent variable Day after first treatment 

      4 7 11 14 18 21 

D. longispina total   Zn low 0.764 0.491 0.012 0.003 0.085 0.119 
  Zn high 0.71 0.51 0.842 0.008 0.001 0.001 
  Competition  0.625 0.081 0.308 0.508 0.642 0.963 
  Temperature  0.014 0.211 0.628 0.154 0.096 0.016 

D. longispina adult  Zn low 0.395 0.796 0.879 0.84 0.741 0.601 
  Zn high 0.58 0.644 0.662 0.786 0.134 0.077 
  Competition  0.838 0.754 0.899 0.357 0.992 0.644 
  Temperature  0.861 0.537 0.76 0.179 0.99 0.923 

D.longispina juvenile  Zn low 0.832 0.495 0.003 0.006 0.117 0.032 
  Zn high 0.821 0.568 0.707 0.009 0.001 0.001 
  Competition  0.524 0.055 0.197 0.179 0.672 0.635 

    Temperature  0.012 0.259 0.706 0.061 0.132 0.004 
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Figure 4.1: Population dynamics of D. longispina as shown by adult, juvenile and total abundance as a function of time for the different Zn 

treatments under the different temperature and Brachionus competition conditions. Error bars represent the standard deviation. *: significant Zn 

effect vs control (p < 0.05). a: consistent Zn (low) × T interactions; b: consistent Zn (high) × T interactions; C: consistent Zn (low) × Brachionus 

competition interactions; d: consistent Zn (high) × Brachionus competition interactions. 
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Figure 4.2: Population dynamics of B. calyciflorus and small rotifers as a function of time for the different Zn treatments under the different 

temperature and Daphnia competition conditions. The population dynamics of the small rotifers are further divided based on the occurrence B. 

calyciflorus (E-H: no B. calyciflorus present). Error bars represent the standard deviation. *: significant Zn effect vs control (p < 0.05). 
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4.3.3 Can interspecific competition affect Zn toxicity effects? 

At the lowest Zn treatment the only consistent interaction (3-way ANOVA) that was 

observed was a Zn (low) × Brachionus competition for the D. longispina adults after 18 

and 21 days of exposure (Table 4.3). However, when further analysing these 

interactions (2-way ANOVA), no consistent Zn (low) × Brachionus competition 

interactions were observed under any of the temperature conditions (Table 4.4). 

Additionally, it should be mentioned that in contrast to all other treatment regimes, no 

consistent positive Zn (low) effect was observed for the D. longispina juveniles (and 

total D. longispina population) when exposed to interspecific competition and cold 

conditions (Figure 4.1).  

At the highest Zn treatment significant 3-way interactions between Zn, T and 

Brachionus competition were observed for the total D. longispina abundance between 

4 and 14 days of exposure and for the juveniles between 4 and 11 days, but not for the 

adults (Table 4.5). When B. calyciflorus was present in the jars, it significantly affected 

the Zn effects on the D. longispina abundance (total and juvenile), as revealed by 

consistent Zn (high) × competition (Table 4.5 and 4.6). Under cold condition the highest 

Zn treatment affected the juvenile abundance sooner and more negatively (up to 9 fold) 

when simultaneously exposed to Brachionus competition (juveniles: Figure 4.1E and 

4.1F, total: Figure 4.1I and 4.1J). For example, after 4 days of treatment the D. 

longispina juvenile abundance was unaffected by high Zn in the jars without B. 

calyciflorus (Figure 4.1E). However, in the jars with B. calyciflorus the D. longispina 

juvenile abundance, after 4 days of treatment, was 3.2 times lower in the high Zn 

treatment in comparison with the Zn control (Figure 4.1F). These Zn (high) × 

competition interactions were only observed under cold conditions and this from the 

start until the complete disappearance of B. calyciflorus (day 18) from the jars (Figure 
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4.2). Previous research has already confirmed that toxicity effects could increase under 

food stress [17,32,37,135], or otherwise stated, higher food levels could provide extra 

energy content to resist toxicity [17,34]. Especially the early life stages of Daphnia 

(juveniles) are more sensitive to starvation than adults and this may explain why the 

juveniles were more effected by the highest Zn treatment when B. calyciflorus was 

present than the adults in this study [136]. It is possible that, when under Brachionus 

competition, the food intake of the juveniles was insufficient to maintain enough energy 

to maintain normal body function when the metabolic costs increased due to Zn stress. 

Additionally, the competition for food could have reduced the amount of energy that 

could be used for reproduction (dynamic energy budget theory [31]) resulting in fewer 

juveniles which could affect toxic effects observed at the population level. For example, 

under cold conditions B. calyciflorus competition may have counteracted the positive 

effect the lowest Zn treatment addition had on the juvenile abundances, that were 

observed under the other treatment regimes (Figure 4.1). Warming itself is known to 

be able to modify competitive interaction [11,79,118] and this could explain why Zn × 

competition interactions in this study are only observed under cold conditions. 

For the B. calyciflorus abundance No consistent significant 3-or 2-way interactions 

between Zn, T and competition (by “D. longispina + small rotifers”) were found 

(Appendix C Table C3). Also no consistent significant 3-or 2-way interactions between 

Zn, T and competition (by “D. longispina + B. calyciflorus”) were found for the small 

rotifer abundances (Appendix C Table C3 and C4).  
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Figure 4.3: Log D. longispina adult abundance after 18 days of treatment (A and B) and 

juvenile abundance after 7 days of treatment (C and D) and predicted values using the 

Independent Action model (IA) with and without Brachionus competition. Error bars indicate 

standard deviation. A: significant antagonistic Zn × T interaction; S: significant synergistic Zn 

× T interaction.  
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Table 4.3: Statistical significance (p values Three-way ANOVA) of the main effects and 

interactions of the lowest Zn treatment and the different factors (competition and temperature) 

at the different samplings. Significant (p < 0.05) values are flagged and consistent interactions 

in bold.  

    Independent variable Day after first treatment 

      4 7 11 14 18 21 

D. longispina total   Zn low (Zn L) 0.128 0.490 <0.001 <0.001 <0.001 <0.001 
  Competition (comp) 0.473 0.003 0.031 0.710 0.098 0.005 
  Temperature (T) <0.001 0.122 0.983 0.368 0.286 0.644 
  Zn L x Comp 0.988 0.241 0.593 0.344 0.977 0.101 
  Zn L x T 0.626 0.117 0.189 0.211 0.261 0.081 
  Zn L x Comp x T 0.798 0.272 0.048 0.240 0.681 0.115 

D. longispina adult  Zn low (Zn L) 0.658 0.025 <0.001 <0.001 <0.001 0.002 
  Competition (comp) 0.768 0.110 0.312 0.202 0.002 0.003 
  Temperature (T) 0.331 0.062 0.168 0.390 0.011 0.037 
  Zn L x Comp 0.927 0.068 0.033 0.024 0.049 0.767 
  Zn L x T 0.274 0.063 0.007 0.176 0.198 0.775 
  Zn L x Comp x T 0.420 0.342 0.706 0.294 0.242 0.128 

D.longispina juvenile  Zn low (Zn L) 0.088 0.790 <0.001 <0.001 0.005 0.001 
  Competition (comp) 0.456 <0.001 0.007 0.419 0.874 0.650 
  Temperature (T) <0.001 0.219 0.875 0.145 0.942 0.205 
  Zn L x Comp 0.791 0.417 0.983 0.941 0.273 0.011 
  Zn L x T 0.713 0.187 0.387 0.223 0.368 0.050 

    Zn L x Comp x T 0.669 0.338 0.020 0.565 0.926 0.370 
 

Table 4.4: Statistical significance (p values Two-way ANOVA) of the main effects and 

interactions of the lowest Zn treatment and competition for the different treatment regimes (cold 

and warm;) of the Daphnia longispina abundance at the different samplings. Significant (p < 

0.05) values are flagged and consistent interactions in bold.  

Experiment   Independent variable Day after first treatment 

      4 7 11 14 18 21 

Cold                 

     D. longispina adult  Zinc Low (Zn L) 0.606 0.782 0.655 0.090 0.013 0.095 

  Competition (comp) 0.784 0.315 0.211 0.040 0.027 0.100 

  Zn L x Comp 0.575 0.555 0.150 0.384 0.028 0.312 

Warm         

     D. longispina adult  Zinc Low (Zn L) 0.332 0.005 <0.001 0.002 0.001 0.001 

  Competition (comp) 0.551 0.206 0.847 0.586 0.027 0.003 

    Zn L x Comp 0.567 0.041 0.092 0.025 0.572 0.189 
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Table 4.5: Statistical significance (p values Three-way ANOVA) of the main effects and 

interactions of the highest Zn treatment and the different factors (competition and temperature) 

of the Daphnia longispina abundances at the different samplings. Significant (p < 0.05) values 

are flagged and consistent interactions in bold. 

    Independent variable Day after first treatment 

      4 7 11 14 18 21 

D. longispina total   Zn high (Zn H) 0.011 <0.001 <0.001 <0.001 <0.001 <0.001 
  Competition (comp) 0.017 <0.001 0.007 0.006 0.719 0.571 
  Temperature (T) <0.001 0.773 0.005 <0.001 0.382 0.019 
  Zn H x Comp 0.075 0.001 0.959 0.158 0.217 0.134 
  Zn H x T 0.447 0.753 0.102 0.188 0.399 0.069 
  Zn H x Comp x T 0.013 0.003 <0.001 0.002 0.260 0.543 

D. longispina adult  Zn high (Zn H) 0.715 0.791 0.113 0.005 <0.001 <0.001 
  Competition (comp) 0.380 0.365 0.507 0.149 0.594 0.741 
  Temperature (T) 0.566 0.909 0.109 0.278 0.186 0.210 
  Zn H x Comp 0.538 0.534 0.616 0.669 0.170 0.097 
  Zn H x T 0.682 0.904 0.866 0.552 0.037 0.016 
  Zn H x Comp x T 0.190 0.172 0.102 0.018 0.330 0.494 

D.longispina juvenile  Zn high (Zn H) 0.006 <0.001 <0.001 <0.001 <0.001 <0.001 
  Competition (comp) 0.017 <0.001 0.002 0.087 0.962 0.275 
  Temperature (T) <0.001 0.502 0.007 0.002 0.937 0.010 
  Zn H x Comp 0.051 <0.001 0.643 0.249 0.323 0.052 
  Zn H x T 0.253 0.442 0.072 0.208 0.445 0.597 

    Zn H x Comp x T 0.011 0.003 <0.001 0.052 0.324 0.634 
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Table 4.6: Statistical significance (p values Two-way ANOVA) of the main effects and 

interactions of the highest Zn treatment and the different factors (competition and temperature) 

for the different treamtent regimes (cold and warm; no competition and competition) of the 

Daphnia longispina abundance at the different samplings at . Significant (p < 0.05) values are 

flagged and consistent interactions in bold.  

Experiment   Independent variable Day after first treatment 

      4 7 11 14 18 21 

Cold                 

     D. longispina total  Zinc High (Zn H) 0.055 <0.001 0.006 <0.001 <0.001 <0.001 
  Competition (comp) 0.061 <0.001 <0.001 <0.001 0.079 0.199 
  Zn H x Comp 0.018 <0.001 0.004 0.004 0.143 0.188 

     D.longispina juvenile Zinc High (Zn H) 0,029 <0.001 0.002 <0.001 <0.001 <0.001 
  Competition (comp) 0.066 <0.001 <0.001 <0.001 0.040 0.091 
  Zn H x Comp 0.014 <0.001 0.001 0.002 0.108 0.250 

Warm         

     D. longispina total  Zinc High (Zn H) 0.101 0.019 <0.001 <0.001 <0.001 <0.001 
  Competition (comp) 0.150 0.001 0.377 0.844 0.106 0.024 
  Zn H x Comp 0.471 0.855 0.005 0.216 0.931 0.473 

     D.longispina juvenile Zinc High (Zn H) 0,124 0.019 <0.001 <0.001 <0.001 <0.001 
  Competition (comp) 0.131 <0.001 0.282 0.359 0.114 0.011 
  Zn H x Comp 0.541 0.696 0.004 0.645 0.999 0.123 

No Brachionus competition       

     D. longispina total  Zinc High (Zn H) 0.597 0.131 <0.001 <0.001 <0.001 <0.001 
  Temperature (T) 0.016 0.053 <0.001 <0.001 0.012 <0.001 
  Zn H x T 0.268 0.002 <0.001 0.002 0.116 0.045 

     D. longispina adult  Zinc High (Zn H) 0.860 0.781 0.135 0.022 <0.001 <0.001 
  Temperature (T) 0.153 0.731 0.082 0.570 0.002 0.014 
  Zn H x T 0.235 0.253 0.188 0.010 0.002 0.011 

     D.longispina juvenile Zinc High (Zn H) 0,583 0.108 <0.001 <0.001 <0.001 <0.001 
  Temperature (T) 0.009 0.061 <0.001 <0.001 0.145 <0.001 
  Zn H x T 0.358 0.003 <0.001 0.062 0.894 0.422 
         

Brachionus competition         

     D. longispina total  Zinc High (Zn H) 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
  Temperature (T) <0.001 0.260 0.425 0.714 0.312 0.914 
  Zn H x T 0.010 0.070 0.038 0.236 0.858 0.452 

     D. longispina adult  Zinc High (Zn H) 0.497 0.571 0.458 0.061 <0.001 <0.001 
  Temperature (T) 0.500 0.889 0.604 0.364 0.790 0.732 
  Zn H x T 0.523 0.420 0.322 0.281 0.516 0.276 

     D.longispina juvenile Zinc High (Zn H) <0,001 <0.001 <0.001 <0.001 <0.001 <0.001 
  Temperature (T) <0.001 0.168 0.164 0.990 0.021 0.659 

    Zn H x T 0.005 0.049 0.022 0.533 0.117 0.973 
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4.3.4 Can temperature affect Zn toxicity effects? 

Our study indicated that the Zn effects on a D. longispina population can be affected 

by temperature and that the presence of B. calyciflorus can significantly affect the 

interactive effects between Zn and T. Consistent Zn (high) × T interactions were 

observed (two-way ANOVA) for the total D. longispina abundances and the different 

sub-classes (juveniles and adults) when there was no interspecific B. calyciflorus 

competition (Table 4.6). As an example figure 4.3 illustrates the Zn and temperature 

effects and their interactions on the D. longispina adult abundance after 18 days of 

treatment (Figure 4.3A and B) and juvenile abundance after 7 days of treatment (Figure 

4.3C and D) with and without B. calyciflorus competition. Without B. calyciflorus 

present the D. longispina adult abundance under warm conditions after 14, 18 and 21 

days of treatment was, on average 2.8, 7 and 21 times lower in the high Zn treatment 

in comparison with the Zn control (Figure 4.1A and 4.1C) while under cold conditions 

no significant Zn effect was observed. After 7 and 11 days of exposure the D. 

longispina juvenile abundance, under warm conditions and within the highest Zn 

treatments, was on average 1.5 and 5.5 times lower than in the Zn controls (Figure 

4.1E and 4.1G). Without B. calyciflorus competition the observed Zn (high) × T 

interactions thus indicated that under warm conditions the highest Zn treatment had a 

more adverse effect on the juvenile and adult D. longispina abundances than predicted 

(=synergistic Zn (high) × T interaction) (Figure 4.3). This is in line with many other 

studies that observed an increased metal toxicity at higher temperature 

[11,12,18,74,75,127]. At higher temperatures it has been hypothesized that there is an 

increased metal toxicity due to a faster metabolism, resulting in an higher uptake and 

accumulation of the metal by the organism [11,18,74]. For Daphnia, however, no 

information is available about T effects on the elimination and detoxification rates. A 
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recent single clone study conducted by Pereira et al. [77] on D. magna (4 different 

single clones) reported that the chronic metal toxicity of Zn, Cu and Ni were generally 

higher at lower temperatures. This was the only study, however, that acclimated the 

test organisms to the different temperature treatments for 2 generations before 

applying the metal treatments. Furthermore her results for Ni were very clone 

dependent and she warned about extrapolating results about the effect of T on 

chemical toxcicity from single clone studies to the population level [77]. With B. 

calyciflorus competition present, consistent Zn (high) × T interactions were only found 

for the D. longispina juveniles (Table 4.6). However, the observed Zn (high) × T 

interactions for the juveniles abundances that were under B. calyciflorus competition 

showed a different interaction pattern than without B. calyciflorus. After 7 days of 

exposure, for example (similar for 4 and 11 days of exposure), these Zn (high) × T 

interactions indicated that under warm conditions and with Brachionus competition, the 

highest Zn treatment had a smaller adverse effect on the D. longispina juvenile 

abundance than predicted (=Antagonistic Zn (high) × T interaction) (Figure 4.3 D). 

Stated otherwise, with B. calyciflorus competition the highest Zn treatments was on 

average 2.2 times less toxic to the D. longispina juvenile abundances at higher 

temperatures. This is in contrast with our initial hypothesis that stated that higher Zn 

effects on the D. longispina abundances were expected under warm conditions 

[10,18,74], especially when the populations were under an increased food competition 

(dynamic energy budget theory [31]). However, this could potentially be explained by 

the fact that at the highest Zn treatment the B. calyciflorus were more numerous under 

cold conditions than under warmer conditions, indicating the importance of interspecific 

competition (Compare Figure 4.2B and 4.2D). 
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4.4 Conclusion 

In the present study, interspecific B. calyciflorus competition by itself had a limited 

effect on the Daphnia abundances but it significantly interacted with Zn, as revealed 

by consistent Zn (high) × competition interactions. For example, under cold condition 

the highest Zn treatment affected the juvenile abundance more negatively when 

simultaneously exposed to interspecific Brachionus competition. Possibly the 

competition for food reduced the amount of energy that could be used for (1) 

reproduction (dynamic energy budget theory [31]), resulting in fewer juveniles, or (2) 

to maintain enough energy to maintain normal body function when the metabolic costs 

increased due to Zn stress which could affect toxic effects observed at the population 

level. 

Additionally, our results show that the presence of B. calyciflorus can significantly affect 

the interactive effects between Zn and T. Without B. calyciflorus competition the 

highest Zn treatment had an increased negative effect on the D. longispina population 

(Total, adults and juveniles) at higher temperatures (= synergistic Zn (high) × T). With 

B. calyciflorus competition the highest Zn treatments had a reduced negative effect on 

the D. longispina juvenile abundances at higher temperatures (= antagonistic Zn (high) 

× T). However, this is probably due the fact that at the highest Zn treatment the B. 

calyciflorus were more numerous under cold conditions than under warmer conditions. 

No consistent interactive effects between Zn and T were observed for the D .longispina 

adults (or total abundance) when under Brachionus competition.  

The present study clearly illustrated the influence of T and Brachionus competition on 

Zn toxicity and should be considered for ERA. Not doing so may under-or overestimate 

risks in aquatic ecosystems.



 

5 

 

General conclusions and future research 

perspectives  
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5.1 Introduction 

One of the objectives the European Union ERA is to “determine the maximum 

environmental concentrations of chemicals that do not cause adverse effects on the 

ecosystem” [38]. De Laender and Janssen [38] and Van den Brink [12] stated that to 

achieve this goal, the ERA should become more ecologically realistic. At present ERA 

is mainly based on data obtained from standard ecotoxicity experiments. These 

experiments are typically conducted under standardised optimal conditions (e.g. 

temperature, food, etc.), at the species level and exposed to a single stressor at the 

time. However, this contrasts with natural conditions, where natural populations and 

communities are most often exposed to mixtures of multiple biotic (e.g. food shortage, 

predation) and abiotic (e.g. eutrophication, non-optimal temperature or water chemistry, 

metals) stressors. Thus, by ignoring ecological interactions and by not considering 

natural field conditions, single-species tests oversimplify the actual field situation and 

ERA may be over or under-protective. Including ecological interactions and (non-

chemical) environmental stressors in toxicity testing is only a logical step towards this 

objective. 

The aim of this PhD thesis was to investigate the combined effect of Zn with natural 

environmental stressors (P and/or T) in aquatic systems at different organization levels 

(population vs. community) in order to increase the realism of current ERA. Based on 

the three original research questions, the key findings of this PhD thesis are 

summarized in this chapter and future research perspectives are suggested. 
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5.2 Do environmental factors such as temperature and phosphorus 

affect Zn toxicity to a freshwater plankton community? 

5.2.1 Complex community (Zn, T and P) 

In chapter 3 we assessed in a complex microcosm study, how the toxicity of Zn is 

affected by temperature (T) and phosphorus supply (P) and how these T & P effects 

on Zn toxicity vary between the levels of organisation (population, functional group and 

community) and their endpoints in a community. During this study consistent 

interactions between Zn and the other factors (T and P) were rarely found at the 

species level while frequently found at the group, community composition and 

functional level. The majority of the consistent interactions were found between Zn and 

T, demonstrating that the Zn toxicity effects on the plankton community can be affected 

by temperature. These consistent Zn × T interactions were mainly found at the highest 

Zn treatment (HC50plankton) and were predominantly antagonistic, which suggests a 

less strong Zn effect at higher T for most taxa, groups and functions (e.g. total 

chlorophyll, DOC, DOnet).  

During our study, no clear indications were found that high P addition by itself 

significantly affected the overall Zn toxicity. Thus, high P addition by itself is concluded 

to have, at best, only slightly affected the overall Zn toxicity. Interestingly though, 90% 

of all the Zn × T interactions at the species, group and community composition level 

were found under high P addition. This strongly suggests that high P addition 

influenced the interactive effect between Zn and T. 

Additionally, in chapter 3, multivariate analyses (PRC) conducted on the different 

plankton group were used to calculate a NOECcommunity for each of the different 

environmental conditions. Under cold oligotrophic conditions and eutrophic conditions 
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(cold and warm) the plankton community composition was only significantly affected at 

the HC50plankton. However, under warm oligotrophic conditions the phytoplankton 

community structure was already consistently affected at the HC5plankton. This is 

possibly due to the negative effect of Zn on the D. longispina populations which 

indirectly affected the phytoplankton community. In addition to the effect on the 

plankton community, Zn, T and P also indirectly affected the chemical properties of the 

water over time and thereby the metal bioavailability. For instance, by lowering the 

DOC, Zn becomes more bioavailable and therefore more toxic (Box 5.1) [5,16]. 

 

Box 5.1 Indirect effect of Zn, T and P on HCX-plankton (Chapter 2 and 3) 

 

During the experiment the pH and DOC levels were not only affected by temperature 

and the P addition rate, but also by the Zn treatments. For example, DOC was lower 

in Zn treatments and thus Zn becomes more bioavailable and therefore more toxic. 

This can be observed very clearly when comparing the calculated HCxplankton 

throughout the experiment in chapter 3 (Annex D table 5.1). Throughout the 

experiment the HCxplankton in the warm controls were clearly lower in comparison with 

the colder ones (up to 1.7-fold) and warming induced a much steeper HCx-plankton 

decline during the first 3 weeks. At the end of the experiment clear differences in 

HC50plankton were observed between the controls and the high Zn treatment (cold low 

P: 1.5 times lower; cold high P: 1.4 times lower; warm low P: 1.2 times lower; warm 

high P: 1.3 times lower). For the HC5plankton a clear decreasing trend can only be 

observed between the control and the low Zn treatment under cold eutrophic 

conditions. Most likely temperature itself had a greater effect on the DOC than the 

lowest Zn concentration, which can explain why at higher T the calculated HC5plankton 

are similar at the different Zn concentrations.   
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5.2.2 Simple community (Zn and T) 

A simple community experiment (D. longispina + small rotifers; D. longispina + small 

rotifers + B. calyciflorus) was conducted in chapter 4 for assessing the combined 

effects of interspecific Brachionus competition (food competition), temperature and Zn. 

Without Brachionus competition the highest Zn treatment had an increased negative 

effect on the D. longispina population (adults, juveniles and total) at higher 

temperatures. With Brachionus competition no consistent interactive effects between 

Zn and T were observed for the D .longispina adults (or total abundance). However 

when under Brachionus competition, the highest Zn treatments had a reduced negative 

effect on the D. longispina juvenile abundances at higher temperatures. This is 

probably due the fact that at the highest Zn treatment the B. calyciflorus were more 

numerous under cold conditions than under warmer conditions. Our results show that 

T can have an effect on the Zn toxicity and that the presence of B. calyciflorus can 

significantly affect (most likely due to food competition) the interactive effects between 

Zn and T. 

 

5.2.3 Population (Zn and T) 

A simple population (or can be even defined as an extremely simple community) 

experiment (D. longispina + Desmodesmus sp.) was conducted in chapter 5 (see 5.4) 

for assessing the combined effects of Zn and T at lower biological organisation levels 

(See 5.4 for details). During this study consistent synergistic Zn (high) × T interactions 

were observed for the D. longispina population, indicating an increased negative Zn 

effect at higher temperature. 
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In conclusion: Collectively, our study suggests that temperature and phosphorus 

loading to freshwater systems should be accounted for in risk assessment of chemicals, 

as these factors may modify effects on aquatic communities. Not doing so may 

underestimate risks in some and overestimate risks in other systems, depending on 

their temperature and phosphorous loading. Additionally our results indicate that 

species interactions (food competition) can affect how temperature affects Zn toxicity.   

 

Further research perspectives: To our knowledge very few studies have been 

conducted to investigate the adverse effects of Zn on the whole plankton community 

and none of these studies have investigated the combined effect of Zn (or any other 

metal) with temperature and/or P addition. With the upcoming global change, and the 

predicted occurrence of more climate extremes, it is crucial that more studies are 

conducted that investigate the combined and interactive effects of chemical stressors 

and environmental factors like temperature and nutrient addition. Although most of the 

Zn × T interactions in chapter 3 were observed under high P loading conditions, we did 

not conduct any of our additional experiments under these conditions. Therefore it 

would be interesting to rerun the simple community experiments (chapter 4 and 5) 

under high P (eutrophic) conditions.  

Microcosm studies can be very time consuming (costly) and inherently complex to 

interpret. Furthermore, the huge amount of variables (biotic and abiotic) that could 

potentially influence how chemicals affect ecosystems makes it impossible to 

experimentally test each possible environmental scenario. Using models to a assess 

the effects of chemicals on communities under different scenarios could be a useful 
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tool for ERA. Some ecological models have already successfully been used to 

investigate and predict the effects of chemicals on communities [137] and ecosystems 

[112]. For example a recent theoretical, mechanistic fate and effect modelling study 

conducted by De Laender et al. (2015) [138] theoretically explored how direct and 

indirect chemical effects on an invertebrate pond community varied with changing 

ecological and exposure scenarios and he found that direct and indirect chemical 

effects are larger in mesotrophic systems than in oligotrophic systems. At present, 

correct model validation is one of the obstacles for creating realistic ecological models. 

This PhD dissertation provides an unique dataset that could be used to create new or 

validate existing ecological models (i.e. assess if the model accurately captures 

underlying processes). 

 

5.3 Do species interactions affect Zn toxicity effects on a 

freshwater plankton community? 

5.3.1 Complex community 

In Chapter 2 the direct and indirect effects of Zn on the structure and function of a 

freshwater plankton community were assessed. Based on the Species Sensitivity 

Distribution, constructed with data from chronic toxicity tests with 22 freshwater 

species [5], it was hypothesised that the phytoplankton taxa would be the most 

sensitive to Zn stress in a freshwater plankton community and that, as a consequence 

the zooplankton would be affected indirectly (by reduced resource availability). 

However, our results strongly suggest that at the highest Zn concentration a significant 

reduction in cladocerans (e.g. D. longispina) resulted in increase of rotifers and ciliate 

abundance. These indirect effects were likely the result of a reduced food competition. 
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Contrary to the SSD predictions, which identified phytoplankton as the most sensitive 

groups, only the total chlorophyll and two phytoplankton taxa were adversely affected 

at the highest Zn treatment. Most of the phytoplankton groups showed a significant 

increase in abundance throughout the experiment at the highest Zn treatment. In 

addition, the phytoplankton community shifted in dominance from grazing-resistant to 

edible species. The results from Chapter 2 indicate that species interactions may have 

an important effect on the global Zn toxicity effect on a plankton community.   

 

5.3.2 Simple community 

A simple community experiment (D. longispina + small rotifers; D. longispina + small 

rotifers + B. calyciflorus) was conducted in chapter 4 for assessing the combined 

effects of interspecific Brachionus competition (food competition) and Zn. Interspecific 

Brachionus competition by itself had a limited effect on the D. longispina abundances 

but it significantly interacted with the highest Zn concentration. For example, the 

highest Zn treatment affected the juvenile D. longispina abundance more negatively 

when simultaneously exposed to Brachionus competition.  

 

In conclusion: The results from chapter 2 and 4 strongly indicate that species 

interactions influence Zn effects on planktonic communities. This PhD thesis illustrates 

that a freshwater community is not just an aggregation of isolated entities but that 

species interact and that this can influence chemical effects. Thus, these interactiosn 

should be considered when assessing ecological risks of chemicals.  
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 Further research perspectives: During the experiment conducted in chapter 4, the 

B. calciflorus abundance declined sharply and the population eventually went extinct. 

Additionally, the occurrence of small rotifers made it more difficult to assess how the 

strength of the B. calciflorus competition altered the effect of Zn on the D. longispina 

abundance. It would be interesting to rerun the experiment while avoiding small rotifers 

occurrence and by trying to keep the B. calciflorus abundance more constant (by 

adding additional B. calciflorus) within the interspecific competition treatments.  

In chapter 4 we focused on the effects of interspecific food competition between D. 

longispina and B. calcyflorus. However, food competition is only one of the different 

species interactions that can affect chemical toxicity effects [9,26,27]. Predation for 

example is another major biotic interactions and can significantly modify the responses 

of organisms to toxicants [9,26,27]. At present very few studies have investigated the 

effects of species interaction on the toxic effects of chemicals and those studies were 

mainly focused on pesticides [26,27,32,35,37]. In order to increase the realism of 

current ERA of metals additional research is needed to investigate the effects of 

species interactions (especially predation) on metal effect on freshwater communities. 

Ecological models have been suggested as a one of the best options to improve effect 

assessment. Currently several initiatives have been taken to develop models for 

improving ERA by incorporating ecological interactions [15,26,138]. Although these 

models are available and can be used as a mechanistic basis to predict interactions 

between competition, predation and chemical toxicity, further steps (e.g.adding more 

complexity and testing) are needed before these models can be used for ERA to make 

accurate predictions [38]. The data generated in this PhD thesis could help validating 

existing ecological models. 
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5.4 Are the combined and interactive effects between Zn and 

temperature observed at the population level similar to the 

combined and interactive effects observed in more complex 

freshwater plankton communities?  

Microcosm and mesocosm studies are considered to be a high-tier approach to assess 

the effects of chemicals at the population and community level [9,29,82,115]. Although 

microcosm and mesocosm studies (high-tier experiments) provide more realistic risk 

assessments than lower-tier single-species tests, they are more time consuming, 

costly and more difficult to interpret [29,89]. 

Here we try to determine whether population level effects (single and interactions) of 

chemicals, observed in lower-tier experiments are similar to population level effects 

during high-tier experiments. Stated otherwise: can lower-tier results be extrapolated 

to higher-tier experiments or to natural aquatic ecosystems? For this purpose, a simple 

population jar study was conducted in which D. longispina populations (24 jars with 5 

adults and 5 juveniles) were exposed to three different zinc (Zn) treatments 

(background, HC5-plankton and HC50-plankton) and two different temperature regimes 

(cold: 16-19 °C and warm: 21-24 °C) varied in a full 3x2 factorial design. Afterwards 

the results from this experiment (Zn effects, interactions) were compared with the D. 

longispina population (further denoted D) results from a simple community (D. 

longispina and small rotifers [Lecane lunaris, Lepadella patella, Cephalodella sp. and 

Mytilina sp.] further denoted D + R: chapter 4), a less simple community (D. longispina, 

small rotifers and Brachionus calyciflorus or D + R + B : chapter 4) and a complex 

community (zooplankton, phytoplankton and protozoa or COM: chapter 2 and 3) 
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(Figure 5.1). Since our main focus was on the Zn and T effects we only used the D. 

longispina abundance result of the low P treatments of chapter 3. 

 

Figure 5.1: Schematic overview of 5.4. Are the Zn population effects observed at the high-tier 

similar to those at the lower-tier? Can the toxic effects of Zn observed at the lower-tier predict 

effects at the higher-tier? 

To limit the genetic variation and stochasticity the D. longispina populations and the 

medium used in all our studies originated from the same mesotrophic ditch located at 

the Sinderhoeve Experimental Field Station (Wageningen, The Netherlands).  
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Table 5.1: Comparision of the experimental conditions used in chapters 2 till 5.  

Experimental 
condition 

Chapter 2 & 3 Chapter 4 A Chapter 4B Chapter 5 

Biotic organisation complex community simple community simple community population 

Volume 14L 0.5L 0.5L 0.5L 

Initial density mean 28 (adults + juveniles) 5 adults + 5 juveniles 5 adults + 5 juveniles 5 adults + 5 juveniles 

D. longispina origin Wageningen Sinderhoeve Wageningen Sinderhoeve Wageningen Sinderhoeve Wageningen Sinderhoeve 

D. longispina 

sampling season 
Late spring Autumn + begin winter (mix) Autumn + begin winter (mix) Autumn 

Other organisms 
zooplankton, fytoplankton, protozoa, 
Mesostoma sp. 

small rotifers (Lecane lunaris, 
Lepadella patella, Cephalodella sp. 
and Mytilina sp.) 

small rotifers + Brachionus. calyciflorus / 

Food source phytoplankton Desmodesmus sp. (dead) Desmodesmus sp. (dead) Desmodesmus sp. (alive) 

Feeding / daily 1 g C/ml daily 1 g C/ml daily 1 g C/ml 

Temperature 16-19 °C and 21-24 °C 16-19 °C and 21-24 °C 16-19 °C and 21-24 °C 16-19 °C and 21-24 °C 

Zn treatments Control, HC5plankton, HC50plankton Control, HC5plankton, HC50plankton Control, HC5plankton, HC50plankton Control, HC5plankton, HC50plankton 

Medium change / Medium change 2 times a week Medium change 2 times a week Medium change 2 times a week 

Endpoints 
1 time a week the abundances of 
adults + juveniles counted 

2 times a week the abundances of the 
adults and juveniles were counted 

2 times a week the abundances of the 
adults and juveniles were counted 

2 times a week the abundances 
of the adults and juveniles were 
counted 

Exposure duration 35 days 21 days 21 days 21 days 
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5.4.1 Zn toxicity from lower-tier to high-tier 

Throughout all the studies in this thesis the D. longispina populations were exposed to 

the same Zn concentrations and two temperature (Table 5.1). Figure 5.2, table 5.2 and 

Appendix D (Table D2) shows the summary of the Zn effects and the Zn × T 

interactions of the D. longispina populations in the different tier experiments. At the 

highest Zn concentration the D. longispina populations were consistently adversely 

affected regardless of the complexity of the community. This was unexpected since 

the normalised NOEC (for reproduction) of D. longispina for the chronic Zn toxicity 

database [5], calculated for our different studies, were at least a factor 1.6 higher than 

the highest Zn concentration used in the different experiments (Chapter 3-5) and no 

effect of Zn was expected. Our data thus suggest that the used D. longispina 

populations in our studies were more sensitive to Zn than the isoclonal population (= 

lack of genetic variation) in the single-species ecotoxicity tests [5,107,108].  

Another important observation is the fact that the magnitude of the adverse high Zn 

effect during the different studies differs (Figure 5.2). For example, after 14 days of 

treatment the whole D. longispina population got extinct at the highest Zn treatment in 

the population (D) and COM experiment (Chapter 3 and 5), while D. longispina 

population within the simple D. longispina and small rotifers community (Chapter 4) 

never got extinct (Figure 5.2). This can possibly be explained by the genetic difference 

between the different Daphnia populations (e.g. different sampling season and 

sampling size) used in our study [5,107,108]. Daphnia populations that are 

characterized with a higher genetic diversity, generally express a higher genotypic 

variability in tolerance to chemical stress [108]. For example, when a natural population 

is exposed to a chemical, genotypes that are more tolerant to this chemical will be 

favoured (i.e. maintain higher fitness) and this may allow the population to genetically 
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adapt this chemical toxicant [108]. For our study however, it is difficult to estimate 

whether eco-evolutionary dynamics played a role since we don’t know the genotypic 

diversity of the inocula. To our knowledge, the D. longispina populations located at the 

Sinderhoeve Experimental Field Station ditch had never been exposed to high Zn 

stress prior to our experiments (natural, filtered Zn background concentration between 

3 and 4 µg Zn/L), which makes it unlikely that the population was genetically adapted 

or acclimated to high Zn concentrations. 

Table 5.2: Summary of the Zn effects and Zn ×T interactions on the different D. longispina 

populations: D. longispina population (D: chapter 5), D. longispina population in smaller rotifer 

community (D + R: Chapter 4), D. longispina population in smaller rotifer and B. calyciflorus 

community (D + R + B: chapter 4), D. longispina population in a natural, microcosm community 

(D + COM: chapter 2 and 3). Zn effects: no consistent effect (0), possitive effect (+), adverse 

effect (-).  

  Population Simple community Complex community 

  D D + R D + R + B D + COM 

Zn HC5 cold 0 + + 0 

Zn HC5 warm 0 + + - 

Zn HC5 × T No No No No 

Zn HC50 cold - - - - 

Zn HC50 warm - - - - 

Zn HC50 × T Yes Yes  No No 

 

At the lowest Zn concentration the Zn effects goes from no effect (D. longispina 

population), to a positive effect (“D. longispina + small rotifers” community and “D. 

longispina + B. calyciflorus + small rotifers” community) to a negative effect (D. 

longispina in complex plankton community) (Table 5.2 and figure 5.2). Although in the 

complex microcosm community experiment, the D. longispina populations were only 

significantly adversely affected at the lowest Zn concentration under warm conditions, 

their populations neared extinction at both temperatures (Chapter 2 and 3). One of the  
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Figure 5.2: Population dynamics of the total D. longispina populations of the different Zn 

treatments under the different temperature of the different experiments: D. longispina 

population (D: Chapter 5), D. longispina population in the small rotifer community (D + R: 

Chapter 4), D. longispina population in the small rotifer and B. calyciflorus community (D + R 

+ B: chapter 4), D. longispina population in a natural, microcosm community (COM: chapter 2 

and 3). Error bars represent the standard deviation. *: significant Zn effect vs control (p < 0.05). 
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possible explanations for this are biotic interactions. Biotic interactions like competition 

for food and predation can have a major effect on the responses of organisms to 

toxicants [15,26,27] (see also 5.3). These biotic interactions can be very complex, can 

be affected by temperature and can modify or even mask toxic effects of toxicants. In 

the complex community study (Chapter 2 and 3). For example, Mesostoma sp. 

predated selectively on the Daphnia populations, which greatly affected the D. 

longispina population. Gergs et al. (2013) [28] found that the combination of predation 

and another stressor (p-353-nonylphenol) could lead to the extinction of a Daphnia 

population, although the effects of the single stressors were only small. It is unclear if 

the D. longispina population declines, in Chapters 2-3, were induced by Zn toxicity, 

Mesostoma sp. predation, a combination of both or by inter- and intra-specific 

interactions which could have had an effect on the species sensitivity to toxicants. 

 

5.4.2 Zn × T: from lower-tier to high-tier 

In our study, no consistent Zn (low) × T interactions were observed for the D. longispina 

population in any of the experiments. Consistent synergistic Zn (high) × T interactions 

were observed for the population experiment and the D + R community, indicating an 

increased negative Zn effect at higher temperature. No consistent Zn × T interactions 

were observed for the D. longispina populations of the more complex communities 

(Table 5.2). One of the possible explanations for this are biotic interactions. Biotic 

interactions can be very complex, are affected by temperature and can modify or even 

mask toxic effects of toxicants [15,26,27] (Chapter 3, 4). Another possible explanation 

for the fact that we don’t observe consistent Zn × T interactions at the microcosm 

experiment is the difference in design (Table 5.1). In contrast to the other experiments, 

biology samples were only taken once a week during the complex community 
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experiment. By sampling only once a week temporally, short term (<1 week) 

interactions could not be observed. 

 

In conclusion: The results from chapter 5 demonstrate that the results (especially for 

the lowest Zn treatments) observed in the lower-tier experiments can be different from 

population level effects during high-tier experiments. In other words, the extrapolation 

of lower-tier toxicology results to make predictions at higher-tier systems is 

complicated due to biotic interactions. Conventional ERA is generally based on the 

extrapolation of single-species ecotoxicity data to natural populations and communities 

(e.g. SDD method). The results from this PhD thesis indicate the importance of species 

interactions on Zn toxicity effects. By ignoring biotic interactions ERA is in sharp 

contrast with natural conditions and the extrapolation of conventional ecotoxicological 

results from individuals to populations and ecosystems could be dubious. Therefor we 

believe that the combination of higher-tier experiments and ecological models (e.g. 

[15,138]) are crucial for correctly predicting effects of chemicals on populations and 

communities.  
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5.5 Overall contribution of this PhD thesis to the future of 

ecological risk assessment 

 

Currently, ERA is still mainly based on data obtained from standard ecotoxicity 

experiments, that are conducted under standardised optimal conditions, at the 

individual level and exposed to single stressors at the time. By ignoring biotic 

interactions and environmental conditions, ERA is in sharp contrast with natural 

conditions and the extrapolation of ecotoxicological results from individuals to 

populations and ecosystems could be dubious. This PhD thesis clearly illustrated that 

environmental factors, such as temperature and phosphorus, and biotic interactions 

can affect Zn toxicity effects on a freshwater community. Additionally, the results from 

this PhD thesis show that the results observed in the lower-tier experiments can be 

different from population level effects in high-tier experiments. A community is not just 

an aggregation of isolated entities but species interact and this can influence chemical 

exposure effects. In order to increase ecological realism, ERA should include 

temperature, phosphorus and biotic interactions in their assessment of chemicals, 

especially in the context of global change projections. 
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Tables 

 

Table A1: Chemical properties of the water of the inoculation water from Sinderhoeve ditch 

and mean (± standard deviation) of the microcosm water at the start of the experiment. 

Parameter Sinderhoeve 
Start 

experiment 

Na (mg/l 4.15 4.57 ± 0.10 

Mg (mg/l) 1.43 0.94 ± 0.05 

Al (µg/l) 11.66 40 ± 6 

P (µg/l) 10.95 12.2 ± 2.7 

K (mg/l) 0.54 1.93 ± 0.10 

Ca (mg/l) 20.12 20.89 ± 1.16 

Cr (µg/l) 0.03 0.13 ± 0.18 

Mn (µg/l) 34 5.6 ± 1.2 

Fe (µg/l) 194 74.8 ± 2.2 

Co (µg/l) 0.06 0.06 ± 0.03 

Ni (µg/l) 0.26 0.46 ± 0.22 

Cu (µg/l) 1.39 3.04 ± 0.89 

Zn (µg/l) 3.04 3.05 ± 0.49 

As (µg/l) 2.07 1.99 ± 0.11 

Mo (µg/l) 0.14 0.95 ± 0.04 

Cd (µg/l) 0.01 0.04 ± 0.01 

Pb (µg/l) 0.11 0.038 ± 0.06 

Mean pH 9.14 8.75 ± 0.21 

DOC (mg/l) 13.6 14.2± 0.4 

DIC (mg/l) 12.3 9.6 ± 0.7 

Conductivity (µS/cm) 141 159 ± 6 

 

 

 

 

 

 

 

 



  Appendix A 
 

149 
 

Tabel A2: Species list used by the Biotic ligand model for the calculation of the HC5-plankton and 

HC50-plankton and the geomean of the normalized No-observed-effect concentrations per species 

at the start of the experiment.  

Species Phylum Endpoints considered 
Geomean NOEC normalized 

 (µg Zn/L) 

    Algae       

Pseudokircheneriella supcapitata Chlorophyta Growth rate 73.07 

Chlorella sp. Chlorophyta Growth rate 135.03 

    Invertebrate    

Ceriodaphnia dubia Arthropoda Reproduction 299.21 

Daphnia magna Arthropoda Survival, reproduction 639.42 

Daphnia longispina Arthropoda Reproduction 742.10 

Hyalella aztecaa Amphipoda Survival, reproduction 343.13 

Anuraeopsis fissab Rotifera Population growth rate 562.55 

Branchionus rubensb Rotifera Population growth rate 562.55 

Brachionus calyciflorusb Rotifera Population growth rate 725.39 
a Taxon only used for HCx calculations for experimental design (setting target Zn concentrations). 

b Taxon only used for HCx calculations for risk assesment. 
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Table A3: No-observed-effect concentrations and taxa classification of the class 1 and 2 taxa 

based on Minimum Detectable Difference values according to Brock et al [89]. Treatments 

resulted in significant increases (↑) or reductions (↓). 

Taxa or endpoint Cat. -1 7 14 21 28 35 

Single cell diatom 1 ≥300(45) ≥300(47) 75↑(46) ≥300(60) ≥300(52) ≥300(61) 

Scenedesmus sp. 2 1 ≥300(98) ≥300(97) ≥300(98) ≥300(98) 75↑(95) 75↑(67) 

Chrysococcus sp. 1 ≥300(54) 75↓(41) 75↑(48) 75↑(44) 75↑(67) 75↑(60) 

Cryptophyta sp. 1 1 75↑(120) ≥300(98) 75↑(99) < 75↑(61) 75↑(92) < 75↑(93) 

Pseudanabaena sp. 1 ≥300(35) < 75↓(67) ≥300(71) ≥300(77) ≥300(86) 75↓(91) 

Aphanocapsa sp. 1 1 ≥300(37) ≥300(72) < 75↑(41) 75↑(66) ≥300(92) ≥300(86) 

# phytoplankton taxa 1 ≥300(21) ≥300(16) ≥300(31) 75↓(14) ≥300(36) ≥300(18) 

Bacillariophyceae 1 ≥300(45) ≥300(46) 75↑(45) ≥300(59) ≥300(52) ≥300(57) 

Chlorophyta 1 ≥300(31) ≥300(61) 75↑(34) 75↑(42) 75↑(60) 75↑(70) 

Chrysophyta 1 ≥300(54) 75↓(41) 75↑(49) 75↑(43) 75↑(67) 75↑(59) 

Cryptophyta 1 ≥300(61) ≥300(61) 75↑(76) 75↑(59) 75↑(91) < 75↑(90) 

Cyanobacteria 1 ≥300(33) ≥300(53) ≥300(58) ≥300(67) ≥300(79) ≥300(82) 

Euglenophyta 1 ≥300(65) ≥300(57) < 75↑(55) 75↑(65) 75↑(96) ≥300(93) 

Chydorus sphaericus 1 ≥300(104) ≥300(86) 75↓(69) 75↓(75) 75↓(86) < 75↓(88) 

Cyclopoida 1 ≥300(30) ≥300(26) ≥300(36) ≥300(61) ≥300(79) ≥300(87) 

Simocephalus vetulus  1 ≥300(110) ≥300(90) ≥300(65) < 75↓(55) < 75↓(80) 75↓(95) 

Daphnia longispina 1 ≥300(38) < 75↑(36) 75↓(47) 75↓(66) 75↓(95) 75↓(94) 

Colurella oblusa  1 ≥300(114) ≥300(72) ≥300(96) 75↑(91) ≥300(81) ≥300(95) 

Naupli  1 ≥300(34) ≥300(31) ≥300(64) 75↑(47) 75↑(41) ≥300(68) 

Lecane gr. luna  1 ≥300(n.c.) ≥300(98) < 75↑(72) < 75↑(61) 75↑(65) ≥300(75) 

Lecane gr. lunaris  1 ≥300(173) ≥300(93) < 75↑(65) 75↑(68) < 75↑(53) ≥300(68) 

# zooplankton taxa 1 ≥300(31) ≥300(11) ≥300(21) ≥300(13) 75↓(26) 75↓(18) 

cladocera 1 ≥300(36) < 75↑(27) < 75↓(33) 75↓(71) 75↓(84) 75↓(90) 

copepoda 1 ≥300(32) ≥300(24) ≥300(55) 75↑(46) 75↑(39) ≥300(62) 

rotifera 1 ≥300(31) ≥300(58) < 75↑(63) < 75↑(64) < 75↑(51) ≥300(62) 

# protozoa taxa 1 ≥300(21) ≥300(46) ≥300(44) ≥300(49) ≥300(55) ≥300(41) 

Unknown small flagellate  
(7-10µm) 2 ≥300(121) ≥300(n.c.) ≥300(n.c.) 75↓(35) ≥300(120) < 75↓(91) 

Tetraëdron minimun 2 ≥300(105) ≥300(99) 75↓(81) ≥300(97) ≥300(153) ≥300(120) 

Monoraphidium sp. 1 2 ≥300(74) ≥300(90) 75↑(112) ≥300(118) 75↑(213) ≥300(103) 

Monoraphidium sp. 2 2 ≥300(36) ≥300(87) < 75↑(113) 75↑(173) 75↑(99) ≥300(91) 

Desmodesmus sp. 2 ≥300(96) ≥300(92) 75↑(66) < 75↑(110) 75↑(91) 75↑(96) 

Radiococcus sp. 2 ≥300(65) ≥300(103) 75↑(103) ≥300(121) ≥300(95) ≥300(92) 

Green oval 2 ≥300(96) ≥300(64) ≥300(100) 75↑(74) ≥300(90) ≥300(119) 

Cosmarium sp. 2 ≥300(137) ≥300(138) 75↓(90) ≥300(100) ≥300(212) < 75↑(243) 

Oocystis sp. 2 ≥300(118) ≥300(103) 75↓(87) ≥300(97) ≥300(107) ≥300(105) 

Haematococcus sp. 2 ≥300() < 75↓(59) ≥300(n.c.) ≥300(105) 75↑(93) < 75↑(78) 

Mougeotia sp. 2 ≥300() ≥300(n.c.) ≥300(118) ≥300(107) < 75↓(72) ≥300(107) 

Uroglena sp. 2 ≥300(125) ≥300() ≥300(106) 75↓(97) < 75↓(88) ≥300(138) 

Cryptomonas sp. 2 ≥300(70) ≥300(106) 75↓(90) ≥300(118) ≥300(109) ≥300(102) 



  Appendix A 
 

151 
 

Taxa or endpoint Cat. -1 7 14 21 28 35 

Rodomonas sp. 2 ≥300(51) 75↑(n.c.) ≥300(112) ≥300(129) ≥300(175) ≥300(94) 

Cryptophyta sp. 3 2 ≥300() ≥300(100) ≥300() 75↑(72) ≥300(169) ≥300() 

Cryptophyta sp.4 2 ≥300() 75↓(39) ≥300(95) ≥300(94) ≥300(199) ≥300(108) 

Anabaena sp. 2 ≥300(97) 75↓(84) < 75↓(77) ≥300(147) ≥300(153) ≥300(163) 

Aphanocapsa sp.2 2 ≥300() ≥300(87) ≥300() ≥300(161) 75↓(97) ≥300() 

Chroococcus sp. 2 ≥300() ≥300(92) ≥300(106) ≥300(101) 75↓(94) ≥300(94) 

Peranema sp. 2 ≥300() ≥300(145) ≥300() 75↓(96) ≥300(n.c.) ≥300(115) 

Euglena sp. 2 75↑(119) ≥300(132) 75↑(92) ≥300(108) ≥300(104) ≥300(107) 

Euglenida 2 ≥300() ≥300(63) ≥300() ≥300(114) 75↑(97) ≥300(99) 

unknown phytoplankton 
taxa 2 ≥300(121) ≥300(n.c.) ≥300(165) 75↓(35) ≥300(120) ≥300(104) 

Aphanothece sp. 2 ≥300(95) 75↓(53) 75↑(79) 75↑(67) ≥300(95) ≥300(141) 

Tetraëdron caudatum 2 ≥300() ≥300() ≥300(n.c.) ≥300() 75↑(n.c.) ≥300(122) 

Scenedesmus acuminatus 2 ≥300() ≥300() ≥300() ≥300(n.c.) ≥300() 75↑(n.c.) 

Cryptophyta sp. 2 2 ≥300(n.c.) ≥300(110) < 75↑(n.c.) 75↑(122) 75↑(152) 75↑(n.c.) 

Merismopedia sp. 2 ≥300(n.c.) ≥300(152) 75↑(n.c.) ≥300(n.c.) ≥300() ≥300(n.c.) 

Cyanodictyon sp. 2 ≥300() ≥300(n.c.) ≥300() ≥300(119) 75↑(135) ≥300() 

Anisonema acinus 2 ≥300() ≥300(n.c.) ≥300() ≥300(126) ≥300(206) 75↑(n.c.) 

Chaetonotus sp. 2 ≥300(n.c.) ≥300(n.c.) ≥300(n.c.) ≥300(152) ≥300(108) 75↑(157) 

Cephalodella gibba  2 ≥300(56) ≥300(208) < 75↑(n.c.) 75↑(111) 75↑(175) ≥300(179) 

Trichocerca bicristata  2 75↑(107) ≥300(59) ≥300(93) ≥300(103) ≥300(140) ≥300(97) 

Lepadella patella  2 ≥300(99) ≥300(60) < 75↑(103) ≥300(98) 75↓(96) ≥300(161) 

Amoebina testacea sp. 2 75↓(100) ≥300(126) 75↓(98) ≥300() ≥300(123) ≥300(103) 

Amoeba sp. 2 ≥300(116) ≥300(97) ≥300(100) ≥300(98) ≥300(69) ≥300(n.c.) 

Difflugia sp. 2 ≥300() ≥300(119) ≥300(143) < 75↓(94) ≥300(n.c.) ≥300(148) 

Cyclidium sp. 2 ≥300(101) ≥300(102) 75↑(n.c.) 75↑(102) < 75↑(119) 75↑(97) 

Nassula sp. 2 ≥300() 75↓(99) ≥300() ≥300(102) ≥300(127) ≥300(136) 

Amoeba general 2 ≥300(100) ≥300(73) ≥300(98) ≥300(98) ≥300(65) ≥300(107) 

Ciliates general 2 ≥300(46) 75↓(95) 75↑(95) 75↑(97) < 75↑(102) 75↑(88) 

Bacterivorous ciliates 2 ≥300(52) ≥300(103) 75↑(99) 75↑(99) < 75↑(115) 75↑(98) 

Algivorous ciliates 2 ≥300() 75↓(99) ≥300() ≥300(102) ≥300(127) ≥300(136) 

Rimostrombidium 
brachykinetum  2 ≥300(99) ≥300() 75↑(107) ≥300(n.c.) < 75↑(n.c.) 75↑(135) 

Litonotus sp. 2 ≥300(n.c.) ≥300(119) ≥300(n.c.) 75↑(n.c.) ≥300(n.c.) ≥300(n.c.) 

Codosiga botrytis  2 ≥300() ≥300(124) ≥300(104) 75↑(103) 75↑(113) ≥300(103) 

heterotrophic flagellates 2 ≥300() ≥300(124) ≥300(105) 75↑(103) 75↑(103) ≥300(103) 
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Table A4: Biotic Ligand Model predicted No-observed-effect concentrations (NOECs) and 

observed community NOECS for Daphnia longispina and Auraeopsis fissa per sampling date. 

    NOEC BLM 
NOEC community (µg/l) 

Taxa Day  control  75 µg/L 300 µg/L 

Daphnia longispina -1 805 689 711 ≥300 

 7 575 470 450 <75↑ 

 14 463 379 279 75↓ 

 21 425 366 272 75↓ 

 28 385 342 283 75↓ 

 35 407 334 286 75↓ 

Auraeopsis fissa -1 610 523 539 ≥300 

 7 428 337 318 ≥300 

 14 336 266 183 ≥300 

 21 300 249 178 ≥300 

 28 265 230 186 ≥300 

  35 281 224 186 ≥300 

 

 

Table A5: Mean (± standard deviation) of the chemical properties of the microcosm water used 

for Biotic Ligand Model normalisation per sampling date. 

Treatment Day pH Ca (mg/l) Mg (mg/l) Na (mg/l) K (mg/l) SO4 (mg/l) Cl (mg/l) DIC mg/L DOC (mg/l) 

Control -1 8.9(±0.2) 20.3(±0.7) 0.9(±0) 4.6(±0.1) 2(±0.2) 18.9(±0.5) 17.1(±0.4) 9.1(±0.6) 14.4(±0.6) 

Control 7 8.4(±0.1) 20.8(±1.3) 0.9(±0.1) 4.6(±0.1) 2.4(±0.1) 19.2(±0.9) 17.4(±0.7) 10(±0.6) 13.1(±0.3) 

Control 14 8.2(±0.2) 21.7(±2.6) 0.9(±0.1) 4.6(±0.2) 3(±0.1) 19.8(±1.7) 17.9(±1.3) 12(±1.1) 11(±0.7) 

Control 21 8.2(±0.2) 21.7(±2.6) 0.9(±0.1) 4.6(±0.2) 3(±0.1) 19.8(±1.7) 17.9(±1.3) 12(±1.1) 11(±0.7) 

Control 28 8(±0.1) 23.4(±2.5) 0.9(±0.1) 4.6(±0.1) 3.6(±0.1) 20.9(±1.6) 18.7(±1.2) 6.5(±0.7) 11.2(±0.3) 

Control 35 7.9(±0.2) 28.8(±4.3) 1(±0.1) 4.6(±0.4) 4.6(±0.2) 24.1(±2.6) 21.1(±2) 12.9(±2.1) 11.3(±0.5) 

75 -1 8.6(±0.2) 21.5(±0.7) 1(±0) 4.6(±0) 2(±0.1) 19.7(±0.4) 17.8(±0.3) 10(±0.6) 14.3(±0.4) 

75 7 8(±0.3) 23.7(±4.5) 1(±0.2) 4.6(±0.2) 2.5(±0.3) 21(±2.8) 18.8(±2.1) 11.5(±2) 12.1(±0.9) 

75 14 8(±0.3) 24.7(±4.5) 1(±0.1) 4.5(±0.1) 3.2(±0.3) 21.7(±2.8) 19.3(±2.1) 12.4(±0.4) 9.2(±3.1) 

75 21 7.8(±0.1) 26.8(±7.1) 1(±0.2) 4.5(±0.1) 3.7(±0.1) 22.9(±4.2) 20.2(±3.2) 7(±1.3) 10.4(±0.9) 

75 28 7.7(±0) 29.3(±7.6) 1.1(±0.2) 4.5(±0.1) 4.2(±0.2) 24.4(±4.4) 21.3(±3.3) 13.7(±2.6) 9.7(±0.6) 

75 35 7.8(±0) 32.2(±7.8) 1.1(±0.2) 4.5(±0.3) 4.7(±0.2) 26.1(±4.4) 22.5(±3.2) 13.3(±2) 9.1(±0.9) 

300 -1 8.7(±0.2) 21.1(±1.9) 0.9(±0.1) 4.5(±0.1) 1.9(±0) 19.4(±1.2) 17.6(±0.9) 9.8(±0.9) 14(±0.1) 

300 7 8(±0.2) 24.1(±3.4) 1(±0.1) 4.7(±0.2) 2.4(±0.1) 21.3(±2.1) 19(±1.6) 11.5(±1.6) 12.1(±0.4) 

300 14 7.6(±0) 25.8(±2.8) 1(±0.1) 4.5(±0) 3(±0.1) 22.3(±1.7) 19.8(±1.3) 13.8(±1.3) 7.9(±1.5) 

300 21 7.7(±0) 29(±4.4) 1.1(±0.1) 4.4(±0.1) 3.6(±0.1) 24.3(±2.7) 21.2(±2) 8(±1) 7.1(±0.3) 

300 28 7.8(±0.2) 32.4(±5.3) 1.2(±0.1) 4.4(±0) 4.2(±0) 26.3(±3.1) 22.7(±2.3) 15.7(±2) 6.9(±0.2) 

300 35 7.7(±0.1) 35.6(±6) 1.2(±0.1) 4.3(±0.1) 4.6(±0.1) 28(±3.4) 24(±2.5) 12.3(±6.9) 7.2(±0.6) 
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Table A6: Mean (± standard deviation) of the chemical properties of the microcosm water per 

sampling date. 

See excel sheet: Physico-chemical water parameters Van de Perre et al. 2016 

 

Table A7: Species abundances per litre of the microcosms per sampling date. 

See excel sheet: Species abundances Van de Perre et al. 2016 

 

Table A8: Calculated HC5 per sampling day and treatment, based on the EU [5] and US [111] 

methodology. 

 Treatment -1 7 14 21 28 35 

HC5 EU (µg Zn/L) Control 156 126 97 97 89 82 
 75 145 96 72 72 63 62 
 300 146 96 49 46 47 46 

HC5 US (µg Zn/L) Control 155 182 163 163 173 179 
 75 182 186 144 162 153 150 

 300 169 186 121 115 118 123 
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Figures 

 

 

Figure A1: Cumulative probability plot of the normalized (to the water characteristics of 

microcosms at the start of the test) NOECs and fitted Species Sensitivity Distribution curve.  
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Figure A2: Population dynamics of the log abundances per treatment concentration of 

Mesostoma sp. (standard deviation as error bars). Calculated no-observed-effect 

concentrations are plotted above the figures. 

 

 

Figure A3: Interaction between the Daphnia and the small Cryptophyta species in the control 

microcosms. 
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Tables 

 

Table B1: Mean (± standard deviation) of the chemical properties of the microcosm water per 

sampling date. 

See excel sheet: Physico-chemical water parameters Van de Perre et al. 2017 

 

Table B2: No-observed-effect concentrations (NOECs) (Williams test, p < 0.05) and observed 

effect classes [16] per sampling date for community metabolism and chemistry endpoints in 

the cold and warm low P addition Zn control microcosms. The numbers of the preselected 

effect classes [16] refer to: 1= no effect; 2= slight effect; 3=clear short-term effects; 4: clear 

effect in short-term study; ↓= decrease; ↑= increase; ↑↓= increase and decrease on species 

and/or sampling date. Blank fields indicate that NOEC were equal to or higher than the highest 

tested temperature. 

    NOEC (µg/L) Treatment levels 

    -1 1 7 9 14 16 21 23 28 30 35 21-24°C 

DO                            

    morning — < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓  4↓ 

    afternoon  < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓   3↓ 

    max-min —   < 22↓ < 22↓ < 22↓ < 22↓    < 22↑  3↓(2↑) 

    mean   < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ < 22↓   3↓ 

pH               

    morning  < 22↓  < 22↓ < 22↓ < 22↓ < 22↓      3↓ 

    afternoon   < 22↓ < 22↓ < 22↓ < 22↓ < 22↓    < 22↑  3↓(2↑) 

    mean    < 22↓ < 22↓ < 22↓ < 22↓ < 22↓      3↓ 

N               

    NH3   — — — < 22↑ — — — — — < 22↓  3↓↑ 

    NO3 + NO2  — — — < 22↑ — — — — — < 22↑ 4↑ 

P               

    Total   — — —  — — — — —  1 

    SRP   — < 22↑ —  — < 22↑ —  —  2↑ 

DOC   —  — < 22↓ — < 22↓ — < 22↓ — < 22↓  4↓ 

Conductivity  — < 22↑ — < 22↑ — < 22↑ — < 22↑ — < 22↑ 4↑ 

BOD5     — < 22↑ — < 22↑ — < 22↑ —   — < 22↓ 3↑ (2↓) 
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Table B3: Observed effect classes (based on No-observed-effect concentrations per sampling 

date [89], see table B19, B20 and B21) for community metabolism and chemistry endpoints of 

the different treatment regimes. Treatments resulted in significant increases (↑) or reductions 

(↓).. 1= no effect; 2= slight effect; 3=clear short-term effects; 4: clear effect in short-term study 

    Cold Warm 

  ¨Low P* High P Low P High P 

    75 µg/L 300 µg/L 75 µg/L 300 µg/L 75 µg/L 300 µg/L 75 µg/L 300 µg/L 

DO            

    morning 1 3↓ 1 3↓ 2↑ 2↑ 1 2↑ 

    afternoon 3↓ 3↓ 2↓ 3↓ 2↓ 2↓ 2↓ 2↓ 

    max-min 3↓ 3↓ 2↓ 3↓ 1 1 2↓ 2↓ 

    mean  2↓ 3↓ 2↓ 3↓ 2↓ 2↓ 2↓ 2↓ 

pH           

    morning 2↓ 3↓ 1 3↓ 1 1 2↓ 3↓ 

    afternoon 2↓ 3↓ 2↓ 4↓ 2↓ 3↓ 2↓ 3↓ 

    mean  2↓ 3↓ 1 4↓ 1 3↓ 2↓ 3↓ 

N           

    NH3  1 1 4↑ 4↑ 2↑ 2↑ 1 2↑ 

    NO3 + NO2 1 1 1 1 1 1 1 1 

P           

    Total  1 2↓ 1 1 1 2↓ 1 1 

    SRP  1 1 1 1 1 2↓ 1 2↓ 

DOC  4↓ 4↓ 1 4↓ 1 2↓ 3↓ 4↓ 

Conductivity 1 3↑ 1 1 1 1 2↓ 2↓ 

BOD5   2↑↓ 4↓(3↑b) 3↓ (2↑a) 4↓ 2↓(2↑a) 3↓ 4↓ 4↓ 

a Effects observed only after 7 days of treatment; b: significant after 7 and 14 days of exposure  

* From Chapter 2 
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Table B4: No-observed-effect concentrations (NOECs) and observed effect classes per 

sampling date for the different plankton endpoints and species in the cold and warm low P 

addition Zn control microcosms. Only species that could be used to calculate a consistent 

NOEC are represented here. The numbers of the preselected effect classes [89] refer to: 1= 

no effect; 2= slight effect; 3=clear short-term effects; 4: clear effect in short-term study; ↓= 

decrease; ↑= increase; ↑↓= increase and decrease on species and/or sampling date. Blank 

fields indicate that NOEC were equal to or higher than the highest tested temperature.  

 
    NOEC (µg/L) Effect class 

Endpoint Taxa -1 7 14 21 28 35 21-24°C 

Zooplankton         

    PRC   < 22 < 22 < 22 < 22 < 22 4 

    Number of taxa      < 22↓ 2↓ 

    Cladocerans < 22↑ < 22↑     2↑ 
 Alonella nana    < 22↑ < 22↑  < 22↓ 3↑ (2↓) 
 Alona rectangula     < 22↑ < 22↑  3↑ 

    Copepods   < 22↓ < 22↓   3↓ 
 Cyclopoida    < 22↓ < 22↓   3↓ 

    Rotifers    < 22↑  < 22↓ < 22↓ 4↓ 
 Colurella oblusa   < 22↑ < 22↑ < 22↓ < 22↓ < 22↓ 3↑↓ 
 Lecane gr. Luna   < 22↑ < 22↑  < 22↓ < 22↓ 3↑↓ 
 Lecane gr. Lunaris   < 22↑ < 22↑ < 22↓ < 22↓ < 22↓ 3↑↓ 
 Lepadella patella     < 22↓ < 22↓  3↓ 

Phytoplankton         

    PRC   < 22 < 22 < 22 < 22  3 

    Number of taxa  < 22↑ < 22↑    3↑ 

    Total chlorophyll    < 22↓ < 22↓ < 22↓ 4↓ 

    Cyanobacteria  < 22↓ < 22↓   < 22↓ 3↓ 
 Pseudanabaena sp.  < 22↓ < 22↓ < 22↓ < 22↓ < 22↓ 4↓ 
 Aphanocapsa sp. 1  < 22↓ < 22↓    3↓ 

    Bacillariophyta  < 22↑  < 22↑   2↑ 

    Chlorophyta  < 22↓ < 22↑ < 22↑   3↑(↓a) 
 Desmodesmus sp.   < 22↑ < 22↑   3↑ 
 Haematococcus sp.  < 22↓  < 22↓ < 22↓  3↓ 

    Cryptophyta    < 22↑   2↑ 
 Cryptophyte sp. 4  < 22↓ < 22↓ < 22↑ < 22↑  3↓↑ 

    Chrysophyta    < 22↓ < 22↓ < 22↓ 4↓ 
 Chrysococcus sp.    < 22↓ < 22↓ < 22↓ 4↓ 

    Dinophyta       1 

    Euglenophyta    < 22↑   2↑ 

Protozoa          

    PRC   < 22     2 

    Number of taxa  < 22↓     2↓ 

    Ciliates   < 22↓     2↓ 

    Bacterivorous ciliates  < 22↓  < 22↓   2↓ 

    Algivorous ciliates    < 22↑   2↑ 

    Predaceous ciliates    < 22↓   2↓ 

    Amoeba   < 22↓     2↓ 

    Heterotrophic flagellates               
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Table B5: Species abundances per litre of the microcosms per sampling date. 

See excel sheet: Physico-chemical water parameters Van de Perre et al. 2017 

 

Table B6: No-observed-effect concentrations (NOECs) and observed effect classes per 

sampling date for the different plankton endpoints and species in the cold low P and high P 

addition Zn control microcosms. Only species that could be used to calculate a consistent 

NOEC are represented here. The numbers of the preselected effect classes [89] refer to: 1= 

no effect; 2= slight effect; 3=clear short-term effects; 4: clear effect in short-term study; ↓= 

decrease; ↑= increase; ↑↓= increase and decrease on species and/or sampling date. Blank 

fields indicate that NOEC were equal to or higher than the highest tested P addition. 

 
    NOEC (µg/L) Effect class 

Endpoint Taxa -1 7 14 21 28 35 High P 

Zooplankton         

    PRC        1 

    Number of taxa       1 

    Cladocerans       1 

    Copepods      < 200↓ 2↓ 

    Rotifers     < 200↑ < 200↑  3↑ 
 Trichotria pocillum   < 200↓ < 200↓    3↓ 
 Lecane gr. Luna     < 200↑ < 200↑  3↑ 

Phytoplankton         

    PRC   < 200   < 200 < 200 3 

    Number of taxa    < 200↑   2↑ 

    Total chlorophyll       1 

    Cyanobacteria     < 200↓  2↓ 

    Bacillariophyta   < 200↑    2↑ 

    Chlorophyta < 200↓     < 200↑ 2↑ 
 Oocystis sp.     < 200↑ < 200↑ 3↑ 

    Cryptophyta       1 

    Chrysophyta   < 200↑    2↑ 

    Dinophyta         

    Euglenophyta   < 200↑    2↑ 

Protozoa          

    PRC     < 200   2 

    Number of taxa   < 200↑   < 200↓ 2↑↓ 

    Ciliates    < 200↑ < 200↓   2↑↓ 

    Bacterivorous ciliates   < 200↑ < 200↑   3↑ 

    Algivorous ciliates  < 200↓  < 200↓   2↓ 

    Predaceous ciliates    < 200↓   2↓ 

    Amoeba       < 200↓ 2↓ 

    Heterotrophic flagellates               
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Table B7: Statistical significance (p values Three-way ANOVA) of the interactive effects of Zn 

and the different factors (P and T) of the different species of the different plankton groups. Only 

species that could be used to calculate a consistent interaction are represented here. 

    L H L H L H 

Plankton group Day Species N Zn × T Zn × T Zn × P Zn × P Zn × T × P Zn × T × P 

Zooplankton                   

 -1 Cephalodella gibba   0.458 0.127 0.090 0.730 0.991 0.180 

 7 Cephalodella gibba   0.029 0.162 0.937 0.813 0.516 0.080 

 14 Cephalodella gibba   0.032 0.003 0.511 0.238 0.771 0.880 

 21 Cephalodella gibba   0.484 0.104 0.580 0.369 0.863 0.183 

 28 Cephalodella gibba   0.642 0.367 0.623 0.124 0.947 0.272 

 35 Cephalodella gibba   0.580 0.313 0.176 0.017 0.860 0.099 

 -1 Lecane gr. luna   NA 0.350 NA 0.761 NA 0.798 

 7 Lecane gr. luna   0.502 0.082 0.758 0.225 0.061 0.844 

 14 Lecane gr. luna   0.322 0.042 0.027 0.140 0.191 0.102 

 21 Lecane gr. luna   0.662 0.215 0.001 0.033 0.536 0.022 

 28 Lecane gr. luna   0.508 0.151 0.067 0.364 0.941 0.056 

 35 Lecane gr. luna   0.413 0.868 0.552 0.404 0.819 0.553 

 -1 Cyclopoida sp.  0.053 0.864 0.556 0.514 0.776 0.053 

 7 Cyclopoida sp.  0.548 0.445 0.534 0.667 0.022 0.817 

 14 Cyclopoida sp.  0.005 0.282 0.087 0.158 0.003 0.395 

 21 Cyclopoida sp.  0.052 0.315 0.050 0.283 0.023 0.305 

 28 Cyclopoida sp.  0.358 0.092 0.708 0.312 0.667 0.215 

 35 Cyclopoida sp.  0.515 0.004 0.389 0.502 0.031 0.033 

 -1 Naupli   0.268 0.658 0.470 0.779 0.381 0.291 

 7 Naupli   0.563 0.005 0.631 0.450 0.614 0.682 

 14 Naupli   0.325 0.601 0.683 0.045 0.498 0.875 

 21 Naupli   0.577 0.094 0.117 0.956 0.321 0.656 

 28 Naupli   0.008 <0.001 0.759 0.643 0.323 0.921 

 35 Naupli   0.038 0.005 0.623 0.516 0.358 0.578 

 -1 Simocephalus vetulus   0.570 0.061 0.120 0.772 0.217 0.506 

 7 Simocephalus vetulus   0.176 0.112 0.186 0.819 0.044 0.515 

 14 Simocephalus vetulus   0.842 0.775 0.187 0.461 0.074 0.785 

 21 Simocephalus vetulus   0.961 0.026 0.891 0.906 0.441 0.944 

 28 Simocephalus vetulus   0.109 0.012 0.043 0.232 0.858 0.445 

 35 Simocephalus vetulus   0.736 0.470 0.265 0.536 0.780 0.261 

Phytoplankton          

 -1 Single cell diatoms  0.980 0.657 0.330 0.755 0.184 0.592 

 7 Single cell diatoms  0.175 0.016 0.015 0.006 0.237 0.133 

 14 Single cell diatoms  0.234 0.003 0.440 0.212 0.947 0.451 

 21 Single cell diatoms  0.083 0.008 0.567 0.470 0.672 0.277 

 28 Single cell diatoms  0.731 0.075 0.516 0.566 0.599 0.305 

 35 Single cell diatoms  0.138 0.012 0.049 0.427 0.258 0.587 

 -1 Cryptophyte sp. 1  0.378 0.052 0.625 0.039 0.350 0.774 
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    L H L H L H 

Plankton group Day Species N Zn × T Zn × T Zn × P Zn × P Zn × T × P Zn × T × P 

 7 Cryptophyte sp. 1  0.155 0.243 0.654 0.516 0.482 0.087 

 14 Cryptophyte sp. 1  0.768 0.617 0.262 0.896 0.588 0.760 

 21 Cryptophyte sp. 1  0.116 0.003 0.756 0.470 0.479 0.459 

 28 Cryptophyte sp. 1  0.879 0.009 0.144 0.047 0.075 0.178 

 35 Cryptophyte sp. 1  0.627 0.796 0.362 0.338 0.773 0.497 

 -1 Cryptophyte sp. 2  0.684 NA 0.091 NA 0.631 NA 

 7 Cryptophyte sp. 2  0.592 0.003 0.735 0.865 0.903 0.158 

 14 Cryptophyte sp. 2  0.110 0.012 0.384 0.723 0.431 0.806 

 21 Cryptophyte sp. 2  0.361 0.203 0.675 0.560 0.245 0.143 

 28 Cryptophyte sp. 2  0.777 0.074 0.423 0.339 0.326 0.178 

 35 Cryptophyte sp. 2  0.858 0.011 0.919 0.329 0.105 0.140 

 -1 Cryptophyte sp. 4  NA NA NA NA NA NA 

 7 Cryptophyte sp. 4  0.079 0.003 0.209 0.048 0.769 0.049 

 14 Cryptophyte sp. 4  0.011 0.012 0.040 0.117 0.289 0.689 

 21 Cryptophyte sp. 4  0.152 0.647 0.516 0.832 0.901 0.509 

 28 Cryptophyte sp. 4  0.352 0.180 0.221 0.781 0.311 0.615 

 35 Cryptophyte sp. 4  0.451 0.543 0.276 0.768 0.595 0.183 

 -1 Unknown small flagellate  0.109 0.580 0.183 0.619 0.181 0.723 

 7 Unknown small flagellate  0.175 0.752 0.014 0.292 0.105 0.971 

 14 Unknown small flagellate  0.214 NA 0.032 NA 0.779 NA 

 21 Unknown small flagellate  0.041 0.066 0.619 0.821 0.508 0.694 

 28 Unknown small flagellate  0.201 0.789 0.089 0.986 0.874 0.532 

 35 Unknown small flagellate  0.197 0.688 0.236 0.055 0.095 0.164 

 -1 Haematococcus sp.  NA NA NA NA NA NA 

 7 Haematococcus sp.  0.252 0.007 0.356 0.352 0.958 0.605 

 14 Haematococcus sp.  0.414 0.099 0.059 0.289 0.569 0.910 

 21 Haematococcus sp.  0.376 0.860 0.903 0.581 0.092 0.395 

 28 Haematococcus sp.  0.125 0.045 0.810 0.364 0.688 0.220 

 35 Haematococcus sp.  0.025 0.042 0.030 <0.001 0.768 0.273 

 -1 Scenedesmus acuminatus  NA NA NA NA NA NA 

 7 Scenedesmus acuminatus  NA NA NA NA NA NA 

 14 Scenedesmus acuminatus  NA NA NA NA NA NA 

 21 Scenedesmus acuminatus  NA 0.027 NA 0.175 NA 0.027 

 28 Scenedesmus acuminatus  NA 0.001 NA 0.094 NA 0.946 

 35 Scenedesmus acuminatus  NA 0.076 NA 0.021 NA 0.198 

 -1 Anisonema acinus   NA 0.513 NA 0.309 NA 0.015 

 7 Anisonema acinus   0.346 0.017 0.188 0.389 0.256 0.811 

 14 Anisonema acinus   NA NA NA NA NA NA 

 21 Anisonema acinus   0.560 0.996 0.121 0.593 0.313 0.534 

 28 Anisonema acinus   0.980 0.947 0.085 0.103 0.091 0.008 

 35 Anisonema acinus   NA 0.161 NA 0.160 NA 0.017 

Protozoa          

 -1 Cyclidium sp.  0.947 0.364 0.355 0.199 <0.001 0.314 

 7 Cyclidium sp.  0.757 0.016 0.290 0.441 0.742 0.998 
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    L H L H L H 

Plankton group Day Species N Zn × T Zn × T Zn × P Zn × P Zn × T × P Zn × T × P 

 14 Cyclidium sp.  0.963 0.138 0.756 0.301 0.900 0.538 

 21 Cyclidium sp.  0.073 0.028 0.032 0.459 0.296 0.625 

 28 Cyclidium sp.  0.283 0.161 0.032 0.477 0.588 0.282 

 35 Cyclidium sp.  0.607 0.402 0.371 0.703 0.885 0.958 

 -1 Nassula sp.  NA NA NA NA NA NA 

 7 Nassula sp.  0.085 0.480 0.441 0.002 0.477 0.044 

 14 Nassula sp.  0.353 0.077 0.225 0.289 0.084 0.013 

 21 Nassula sp.  0.360 NA 0.381 NA 0.037 NA 

 28 Nassula sp.  0.603 0.171 0.688 0.146 0.600 0.117 

 35 Nassula sp.  NA NA NA NA NA NA 

 -1 Rimostrombidium brachykinetum   0.666 0.336 0.331 0.206 0.231 0.086 

 7 Rimostrombidium brachykinetum   0.341 0.180 0.064 <0.001 0.840 0.032 

 14 Rimostrombidium brachykinetum   0.755 0.594 0.828 0.263 0.240 0.576 

 21 Rimostrombidium brachykinetum   0.462 0.016 0.462 0.007 0.101 0.016 

 28 Rimostrombidium brachykinetum   0.880 <0.001 0.025 0.454 0.429 0.454 

  35 Rimostrombidium brachykinetum    0.272 0.035 0.612 0.163 0.199 0.684 
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Table B8: Statistical significance (p values Three-and two-way ANOVA) and calculation of the 

interactive effects (Synergism: S; or antagonism: A) of Zn (Low Zn: L; High Zn: H) and the 

different factors (low P addition: O; high P addition: E; cold: C and warm: W) of the different 

plankton species at different treatment regimes. The interaction type is based on the observed 

and predicted effects based on De Coninck et al. (2013) [122]. Only species that could be used 

to calculate a consistent interaction are represented here. 

Taxa Day 
Treatment 

regime 
Interaction 

factors 
Zn 

treatment 
p 

Observed 
effect 

Predicted 
effect 

Interaction 
type 

Zooplankton         

Cyclopoida sp. 7 All Zn × T × P L 0.022    

 14 All Zn × T × P L 0.003    

 21 All Zn × T × P L 0.023    

 7 E Zn × T L 0.060    

 14 E Zn × T L 0.006 0.536 -0.138 S 

 21 E Zn × T L 0.001 0.687 0.129 S 

 7 W Zn × P L 0.100    

 14 W Zn × P L 0.018 -0.085 -0.097 A 

 21 W Zn × P L 0.030 -0.453 -0.278 S 

Naupli sp. 28 All Zn × T L 0.008    

 35 All Zn × T L 0.038    

 28 All Zn × T H 0.001    

 35 All Zn × T H 0.005    

 28 E Zn × T L 0.145    

 35 E Zn × T L 0.015 0.149 -0.153 S 

 28 E Zn × T H 0.001 0.140 0.063 S 

 35 E Zn × T H 0.001 0.192 -0.168 S 

Simocephalus vetulus 21 All Zn × T H 0.026    

 28 All Zn × T H 0.012    

 21 E Zn × T H 0.049 0.936 0.997 A 

 28 E Zn × T H 0.022 0.900 1.000 A 

Cephalodella gibba  7 All Zn × T L 0.029    

 14 All Zn × T L 0.032    

 7 O Zn × T L 0.015 0.413 -10.3 S 

 14 O Zn × T L 0.037 -2.89 -24.8 A 

Lecane gr. luna  14 All Zn × P L 0.027    

 21 All Zn × P L 0.001    

 14 C Zn × P L 0.042 0.051 -0.482 S 

 21 C Zn × P L 0.001 -0.109 -0.637 A 

Phytoplankton         

Single cell diatoms 7 All Zn × T H 0.016    

 14 All Zn × T H 0.003    

 21 All Zn × T H 0.008    

 7 E Zn × T H 0.048 -0.118 0.015 S 
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Taxa Day 
Treatment 

regime 
Interaction 

factors 
Zn 

treatment 
p 

Observed 
effect 

Predicted 
effect 

Interaction 
type 

 14 E Zn × T H 0.049 -0.094 -0.178 A 

 21 E Zn × T H 0.032 -0.028 -0.207 A 

Cryptophyte sp. 1 21 All Zn × T H 0.003    

 28 All Zn × T H 0.009    

 21 E Zn × T H 0.005 -0.529 -1.26 A 

 28 E Zn × T H 0.012 -0.279 -0.905 A 

Cryptophyte sp. 2 7 All Zn × T H 0.003    

 14 All Zn × T H 0.012    

 7 O Zn × T H 0.247    

 14 O Zn × T H 0.035 -8.11 -148 A 

 7 E Zn × T H 0.002 -0.427 0.981 S 

 14 E Zn × T H 0.145    

Cryptophyte sp. 4 7 All Zn × T H 0.003    

 14 All Zn × T H 0.012    

 7 E Zn × T H 0.011 -0.099 0.229 S 

 14 E Zn × T H 0.054 0.637 0.962 A 

Unknown small 
flagellate 

7 All Zn × P L 0.014    

 14 All Zn × P L 0.037    

 7 C Zn × P L 0.006 0.000 -33.3 S 

 14 C Zn × P L 0.088    

 7 W Zn × P L 0.531    

 14 W Zn × P L 0.195    

Haematococcus sp. 28 All Zn × T H 0.045    

 35 All Zn × T H 0.042    

 28 O Zn × T H 0.662    

 35 O Zn × T H 0.028 0.973 -0.193 S 

 28 E Zn × T H 0.001 -0.449 0.936 S 

 35 E Zn × T H 0.509    

Scenedesmus 
acuminatus 

21 All Zn × T H 0.027    

 28 All Zn × T H 0.001    

 21 O Zn × T H NA    

 28 O Zn × T H 0.001 -24.4 0.000 S 

 21 E Zn × T H 0.038 -3.570 0.784 S 

 28 E Zn × T H 0.099    

Anisonema acinus  28 All Zn × T × P H 0.008    

 35 All Zn × T × P H 0.017    

 28 W Zn × P H 0.007 0.235 0.867 A 

 35 W Zn × P H 0.182    

 28 O Zn × T H 0.084    

 35 O Zn × T H 0.020 0.000 -37.7 S 

 28 E Zn × T H 0.041 -3.17 0.791 S 

  35 E Zn × T H 0.418    
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Table S9: Statistical significance (p values Three-way ANOVA) of the interactive effects of Zn 

and the different factors (P and T) of the different functional groups of the different plankton 

groups. Only functional groups that could be used to calculate a consistent interaction are 

represented here. 

   L H L H L H 

Plankton group Day Group Zn × T Zn × T Zn × P Zn × P Zn × T × P Zn × T × P 

Zooplankton           

 -1 Copepoda 0.215 0.698 0.509 0.806 0.381 0.239 

 7 Copepoda 0.842 0.006 0.758 0.522 0.053 0.862 

 14 Copepoda 0.083 0.863 0.800 0.023 0.073 0.853 

 21 Copepoda 0.511 0.066 0.092 0.827 0.223 0.592 

 28 Copepoda 0.017 <0.001 0.771 0.260 0.377 0.474 

 35 Copepoda 0.043 <0.001 0.788 0.313 0.176 0.226 

 -1 Cladocera 0.638 0.359 0.548 0.557 0.295 0.678 

 7 Cladocera 0.947 <0.001 0.492 0.123 0.101 0.518 

 14 Cladocera 0.808 0.633 0.956 0.219 0.436 0.915 

 21 Cladocera 0.542 0.043 0.439 0.434 0.893 0.479 

 28 Cladocera 0.371 0.007 0.624 0.992 0.490 0.539 

 35 Cladocera 0.970 0.007 0.105 0.369 0.882 0.420 

Phytoplankton         

 -1 Bacillariophyceae  0.980 0.657 0.330 0.755 0.184 0.592 

 7 Bacillariophyceae  0.173 0.016 0.015 0.006 0.246 0.127 

 14 Bacillariophyceae  0.231 0.003 0.390 0.197 0.948 0.404 

 21 Bacillariophyceae  0.073 0.005 0.597 0.492 0.643 0.220 

 28 Bacillariophyceae  0.876 0.078 0.498 0.568 0.628 0.311 

 35 Bacillariophyceae  0.114 0.012 0.036 0.381 0.289 0.593 

 -1 Cryptophyta  0.531 0.934 0.538 0.638 0.051 0.470 

 7 Cryptophyta  0.098 <0.001 0.039 0.009 0.658 0.021 

 14 Cryptophyta  0.867 0.005 0.441 0.043 0.973 0.341 

 21 Cryptophyta  0.089 <0.001 0.752 0.849 0.663 0.561 

 28 Cryptophyta  0.902 0.004 0.154 0.043 0.112 0.190 

 35 Cryptophyta  0.398 0.996 0.142 0.182 0.665 0.667 

 -1 Chlorophyta  0.475 0.300 0.132 0.583 0.057 0.654 

 7 Chlorophyta  0.540 <0.001 0.108 0.039 0.002 0.277 

 14 Chlorophyta  0.336 0.540 0.270 <0.001 0.711 0.024 

 21 Chlorophyta  0.677 0.009 0.649 0.853 0.427 0.841 

 28 Chlorophyta  0.254 0.012 0.176 0.411 0.138 0.437 

 35 Chlorophyta  0.619 0.263 <0.001 <0.001 0.138 0.490 

 -1 Totale chlorofyl  0.557 0.907 0.798 0.290 0.102 0.818 

 7 Totale chlorofyl  0.402 0.482 0.287 0.059 0.334 0.911 

 14 Totale chlorofyl  0.636 0.655 0.184 0.927 0.193 0.495 

 21 Totale chlorofyl  0.259 0.054 0.604 0.714 0.018 0.529 

 28 Totale chlorofyl  0.926 0.053 0.928 0.864 0.003 0.027 
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   L H L H L H 

Plankton group Day Group Zn × T Zn × T Zn × P Zn × P Zn × T × P Zn × T × P 

 35 Totale chlorofyl  0.842 0.513 0.767 0.309 0.026 0.015 

Protozoa         

 -1 Ciliate  0.223 0.492 0.664 0.822 0.299 0.374 

 7 Ciliate  0.413 0.005 0.077 0.037 0.633 0.946 

 14 Ciliate  0.984 0.674 0.806 0.879 0.300 0.202 

 21 Ciliate  0.284 <0.001 0.485 0.061 0.611 0.268 

 28 Ciliate  0.751 0.031 0.019 0.315 0.740 0.851 

 35 Ciliate  0.286 0.029 0.098 0.901 0.278 0.619 

 -1 Bacterivorous ciliate 0.109 0.891 0.422 0.704 0.486 0.496 

 7 Bacterivorous ciliate 0.756 0.028 0.035 0.450 0.930 0.373 

 14 Bacterivorous ciliate 0.293 0.924 0.332 0.571 0.517 0.587 

 21 Bacterivorous ciliate 0.458 0.019 0.212 0.202 0.389 0.607 

 28 Bacterivorous ciliate 0.699 0.034 0.059 0.936 0.949 0.393 

 35 Bacterivorous ciliate 0.278 0.216 0.833 0.527 0.850 0.816 

 -1 Algivorous/bacterivorous ciliate NA NA NA NA NA NA 

 7 Algivorous/bacterivorous ciliate 0.085 0.480 0.441 0.002 0.477 0.044 

 14 Algivorous/bacterivorous ciliate 0.353 0.077 0.225 0.289 0.084 0.013 

 21 Algivorous/bacterivorous ciliate 0.360 NA 0.381 NA 0.037 NA 

 28 Algivorous/bacterivorous ciliate 0.603 0.171 0.688 0.146 0.600 0.117 

  35 Algivorous/bacterivorous ciliate NA NA NA NA NA NA 
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Table B10: Statistical significance (p values Three-and two-way ANOVA) and calculation of 

the interactive effects (Synergism: S; or antagonism: A) of Zn (Low Zn: L; High Zn: H) and the 

different factors (Low P addition: O; High P addition: E; cold: C and warm: W) of the different 

plankton groups at different treatment regimes and the total chlorophyll. The interaction type 

is based on the observed and predicted effects based on De Coninck et al (2013) [122]. Only 

groups that could be used to calculate a consistent interaction are represented here 

Taxa group Day 
Treatment 

regime 
Interaction 

factors 
Zn 

treatment 
p 

Observed 
effect 

Predicted 
effect 

Interaction 
type 

Zooplankton         

Copepoda 28 All Zn × T L 0.017    

 35 All Zn × T L 0.043    

 28 All Zn × T H 0.001    

 35 All Zn × T H 0.001    

 28 E Zn × T L 0.234    

 35 E Zn × T L 0.008 0.102 -0.226 S 

 28 E Zn × T H 0.001 0.147 -0.277 S 

 35 E Zn × T H 0.001 0.185 -0.297 S 

Cladocera 21 All Zn × T H 0.043    

 28 All Zn × T H 0.007    

 35 All Zn × T H 0.007    

 21 E Zn × T H 0.099    

 28 E Zn × T H 0.003 0.477 0.993 A 

 35 E Zn × T H 0.006 0.640 1.000 A 

Phytoplankton         

Bacillariophyceae  7 All Zn × T H 0.016    

 14 All Zn × T H 0.003    

 21 All Zn × T H 0.005    

 7 E Zn × T H 0.047 -0.116 0.014 S 

 14 E Zn × T H 0.048 -0.097 -0.178 A 

 21 E Zn × T H 0.020 -0.026 -0.211 A 

Cryphtophyta  7 All Zn × P H 0.009    

 14 All Zn × P H 0.043    

 7 All Zn × T H 0.001    

 7 W Zn × P H 0.001 -0.365 -0.012 S 

 14 W Zn × P H 0.040 -0.639 -0.297 S 

 14 All Zn × T H 0.005    

 21 All Zn × T H 0.001    

 28 All Zn × T H 0.004    

 7 O Zn × T H 0.086    

 14 O Zn × T H 0.009 -0.231 -0.681 A 

 21 O Zn × T H 0.032 -0.443 -0.904 A 

 28 O Zn × T H 0.220    

 7 E Zn × T H 0.002 -0.116 0.015 S 
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Taxa group Day 
Treatment 

regime 
Interaction 

factors 
Zn 

treatment 
p 

Observed 
effect 

Predicted 
effect 

Interaction 
type 

 14 E Zn × T H 0.194    

 21 E Zn × T H 0.001 -0.428 -1.058 A 

 28 E Zn × T H 0.007 -0.249 -0.820 A 

Chlorophyta 7 All Zn × P H 0.039    

 14 All Zn × P H 0.001    

 7 W Zn × P H 0.029 -0.263 -0.085 S 

 14 W Zn × P H 0.007 -0.228 0.036 S 

 21 All Zn × T H 0.009    

 28 All Zn × T H 0.012    

 21 E Zn × T H 0.074    

 28 E Zn × T H 0.014 -0.069 -0.308 A 

Total chlorophyll 21 All Zn × T × P L 0.018    

 28 All Zn × T × P L 0.003    

 35 All Zn × T × P L 0.014    

 21 O Zn × T L 0.030 0.078 0.360 A 

 28 O Zn × T L 0.034 0.350 0.520 A 

 35 O Zn × T L 0.123    

 21 E Zn × T L 0.316    

 28 E Zn × T L 0.042 0.435 0.205 S 

 35 E Zn × T L 0.117    

 28 All Zn × T × P H 0.027    

 35 All Zn × T × P H 0.015    

 28 O Zn × T H 0.013 0.406 0.611 A 

 35 O Zn × T H 0.013 0.515 0.649 A 

 28 W Zn × P H 0.062    

 35 W Zn × P H 0.010 0.117 -0.262 S 

Protozoa         

Ciliate  21 All Zn × T H 0.001    

 28 All Zn × T H 0.031    

 35 All Zn × T H 0.029    

 21 E Zn × T H 0.010 -15.3 -392 A 

 28 E Zn × T H 0.019 -0.397 -1.32 A 

 35 E Zn × T H 0.089    

Bacterivorous 
ciliate 

21 All Zn × T H 0.019    

 28 All Zn × T H 0.034    

 21 O Zn × T H 0.170    

 28 O Zn × T H 0.065    

 21 E Zn × T H 0.061    

  28 E Zn × T H 0.308    
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Table B11: Statistical significance (p values ANOVA based on the PCA sample scores) 

of the main effects of Zn and the different factors (P and T) at the community level of 

the different plankton groups. Significant (p < 0.05) are marked.  

    L H L H L H 

Day PCA score Zn Zn T T P P 

-1 Zooplankton 0.292 0.857 0.097 0.625 0.822 0.722 

7 Zooplankton 0.159 0.265 <0.001 <0.001 0.655 0.904 

14 Zooplankton 0.049 <0.001 <0.001 <0.001 0.453 0.243 

21 Zooplankton 0.188 <0.001 0.003 <0.001 0.158 0.349 

28 Zooplankton 0.378 0.028 <0.001 <0.001 0.086 0.066 

35 Zooplankton 0.046 0.001 <0.001 <0.001 0.021 0.552 

-1 Phytoplankton 0.561 0.799 0.115 0.324 0.760 0.655 

7 Phytoplankton 0.963 0.580 <0.001 0.563 0.045 0.003 

14 Phytoplankton 0.005 <0.001 0.429 0.102 0.174 0.106 

21 Phytoplankton 0.092 0.934 <0.001 <0.001 0.597 0.525 

28 Phytoplankton 0.052 <0.001 0.157 0.669 0.387 0.975 

35 Phytoplankton 0.173 <0.001 0.348 0.160 0.914 0.270 

-1 Protozoa 0.669 0.577 0.124 0.922 0.976 0.859 

7 Protozoa 0.536 0.141 0.041 0.921 0.033 0.010 

14 Protozoa 0.635 <0.001 0.376 0.292 0.014 0.062 

21 Protozoa 0.017 <0.001 0.016 0.645 0.100 0.734 

28 Protozoa 0.078 <0.001 0.081 0.291 0.387 0.010 

35 Protozoa 0.081 <0.001 0.643 0.276 0.976 0.249 
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Table B12: Observed effect classes (based on No-observed-effect concentrations per 

sampling date [89], see table B14, B15 and B16) for the different plankton endpoints and 

species of the different treatment regimes. Only species that could be used to calculate a 

consistent NOEC are represented here. The numbers of the preselected effect classes [89] 

refer to: 1= no effect; 2= slight effect; 3=clear short-term effects; 4: clear effect in short-term 

study; ↓= decrease; ↑= increase; ↑↓= increase and decrease on species and/or sampling date  

    Cold Warm 

  Low P* High P Low P High P 

Endpoint Taxa 
75 

µg/L 
300 
µg/L 

75 
µg/L 

300 
µg/L 

75 
µg/L 

300 
µg/L 

75 
µg/L 

300 
µg/L 

Zooplankton                 

    PRC  2 4 2 4 2 3 1 3 

    Number of taxa 1 4↓ 1 4↓ 2↓ 2↓ 1 2↓ 

    Cladocerans 2↓(↑a) 4↓ 1 4↓ 1 3↓ 1 2↓ 

 Daphnia longispina  2↑a 4↓ 1 4↓ 3↓ 3↓ 4↓ 4↓ 

 Chydorus sphaericus 2↓ 4↓ 1 4↓ 1 3↓ 1 2↓ 

 Simocephalus vetulus  3↓ 4↓ 1 4↓ 1 2↓ 1 1 

 Alonella nana  1 1 3↓ 3↓ 1 2↓ 1 1 

    Copepods 1 3↑ 2↑ 3↑ 1 3↑ 2↓ 4↓ (3↑b) 

 Nauplii 1 3↑ 2↑ 3↑ 1 3↓(3↑b) 4↓ 4↓ (3↑b) 

    
Rotifers 

 3↑ 3↑ 1 2↑ 2↑ 2↑ 1 1 

 Lecane gr. lunaris 2↑ 3↑ 1 2↑ 1 1 1 1 

 Lecane gr. luna 3↑ 3↑ 1 2↓ 2↓ 2↓ 1 1 

 Cephalodella gibba 2↑ 3↑ 1 2↑ 1 2↑ 1 1 

 Lepadella patella 2↑ 2↓↑ 1 1 1 1 2↓ 3↑(2↓) 

 Mytilina ventralis 1 1 1 1 1 1 1 3↑ 

Phytoplankton              

    PRC  2 4 2 3 4 4 2 4 

    Number of taxa 1 2↓ 2 3↓ 1 2↓ 1 2↑ 

    Total chlorophyll 1 4↓ 1 3↓ 2↑b 3↓ 1 2↓ 

    Cyanobacteria 1 1 1 2↓↑ 2↓ 2↑ 2↓ 2↓↑ 

 Anabaena sp. 2↓ 3↓ 1 3↓ 2↓ 2↓ 3↓ 3↓ 

 Aphanocapsa sp. 1 2↑ 3↑ 2↑ 3↑ 1 3↑ 1 2↑ 

 Aphanothece sp. 1 3(↓a)↑ 1 1 1 1 1 2(↓a)↑ 

 Chroococcus sp. 2↓ 3↓ 2↓ 3↓ 1 2↓ 2↑ 2↑ 

    Bacillariophyta 1 2↑ 3↑ 3↑ 1 4↓ 2↓ 2↓↑ 

 Single cell diatoms 1 2↑ 3↑ 3↑ 1 2↓ 2↓ 2↑(↓a) 

    Chlorophyta 1 4↑ 2↑ 3↑ 1 2↓ 4↓ 4↓ (3↑b) 

 Mougeotia sp. 2↓ 2↓ 3↓ 3↓ 3↓ 3↓ 4↓ 4↓ 

 Radiococcus sp. 1 2↑ 2↑ 3↑ 1 1 1 1 

 Scenedesmus sp. 2 1 4↑ 1 2↑ 1 1 1 2↑ 

 Scenedesmus 
acuminatus 

1 2↑ 1 1 1 4↑ 1 2↑ 
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 Haematococcus sp. 2(↓a)↑ 4↑ 2↑ 4↑ 2↑ 3↑ 1 4↑ 

 Desmodesmus sp. 2↑ 4↑ 1 4↑ 1 2↑ 1 3↑ 

 Monoraphidium sp. 1 2↓a 2↑(↓a) 1 4↑ 1 2↓ 1 3↑ 

 Monoraphidium sp. 2 2↑ 3↑ 1 4↑ 1 3↑ 1 3↑ 

 Chlamydomonas sp. 1 1 1 2↑ 2↑ 3↑ 1 2↑ 

 Tetraëdron minimun 1 2↓ 1 3↓ 1 2↓ 2↓ 2↓ 

 Oocystis sp. 1 2↑(2↓) 1 2↓ 1 2↑(2↓) 2↓(2↑) 3↓(2↑) 

    Cryptophyta 1 4↑ 2↑ 3↑ 4↑ 4↑ 2↑(2↓) 3↑(2↓) 

 Rodomonas sp. 2↑ 4↑ 2↑ (2↓) 3↑ 1 2↑ 1 3↑ 

 Cryptophyta sp. 1 2↑ 4↑ 2↑ 3↑ 4↑ 4↑ 2↑(2↓) 3↑(2↓) 

 Cryptophyta sp. 2 2↑ 4↑ 2↑ 2↑ 1 1 1 2↑ 

    Chrysophyta 1 4↑(↓a) 1 3↑ 1 1 1 2↑ 

 Uroglena sp. 2↓ 3↓ 2↓ 4↓ 3↓ 3↓ 2↓ 2↓ 

 Chrysococcus sp. 1 4(↓a)↑ 1 3↑ 1 1 1 2↑ 

    Dinophyta 1 1 1 2↓ 1 1 2↓ 2↓ 

    Euglenophyta 2↑ 3↑ 2↑a 3↓ 1 1 1 2↑ 

 Euglenida sp. 1 2↑ 1 3↓ 1 1 1 2↑ 

Protozoa               

    PRC  1 3 1 4 1 2 1 3 

    Number of taxa 1 1 2↑a 2↓ 1 1 1 2↑ 

    Ciliates  1 4↑(↓a) 1 3↑ 1 2↑ 1 3↑ 

    Bacterivorous ciliates 2↑ 4↑ 1 4↑ 1 2↑ 1 3↑ 

 R. brachykinetum  2↑ 4↑ 2↑a 4↑ 1 2↑ 1 2↑ 

 Cyclidium sp. 2↑ 4↑ 1 1 1 1 1 2↑ 

    Algivorous ciliates 1 1 1 2↑ 1 1 1 2↑ 

    Predaceous ciliates 1 1 2↑ 2↑ 1 2↑ 1 1 

    
Amoeba 

 1 1 1 2↑ 2↓(↑a) 2↓(↑a) 1 3↑ 

 Difflugia sp. 1 2↓ 1 2↓ 2↓ 2↓ 3↓ 3↓ 

 Amoeba sp. 1 1 1 2↑ 1 1 1 3↑ 

    Heterotrophic flagellates 1 3↑ 2↑ 2↑ 1 2↑ 2↑ 2↑ 

  Codosiga botrytis 1 3↑ 2↑ 2↑ 1 2↑ 2↑ 2↑ 

a Effects observed only after 7 days of treatment. b Effects observed only after 7 and 14 days of treatment. * From 

Chapter 2 
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Table B13: No-observed-effect concentrations (NOECs) (Williams test, p < 0.05) and observed 

effect classes per sampling date for the different plankton endpoints and species in the warm 

low P addition microcosms. Only species that could be used to calculate a consistent NOEC 

are represented here. The numbers of the preselected effect classes [89] refer to: 1= no effect; 

2= slight effect; 3=clear short-term effects; 4: clear effect in short-term study; ↓= decrease; ↑= 

increase; ↑↓= increase and decrease on species and/or sampling date. Blank fields indicate 

that NOEC were equal to or higher than the highest tested concentration (300 µg/L)  

    NOEC (µg/L) Effect class 

Endpoint Taxa -1 7 14 21 28 35 75 µg/L 300 µg/L 

Zooplankton          

    PRC   < 75 75   < 75 2 3 

    Number of taxa   < 75↓   75↓ 2↓ 2↓ 

    Cladocerans  75↓ 75↓   75↓ 1 3↓ 
 Daphnia longispina   75↓ 75↓ < 75↓ < 75↓  3↓ 3↓ 
 Chydorus sphaericus  75↓ 75↓   75↓ 1 3↓ 

    Copepods  75↑ 75↑    1 3↑ 
 Nauplii  75↑ 75↑  75↓ 75↓ 1 3↓↑ 

    Rotifers       < 75↑ 2↑ 2↑ 

Phytoplankton          

    PRC    < 75  < 75 < 75 4 4 

    Number of taxa  75↓     1 2↓ 

    Total chlorophyll  75↓ 75↓  < 75↑  2↑ 3↓ 

    Cyanobacteria   75↑  < 75↓  2↓ 2↑ 
 Aphanocapsa sp. 1  75↑ 75↑    1 3↑ 

    Bacillariophyta     75↓ 75↓ 1 4↓ 

    Chlorophyta < 75↓  75↓    1 2↓ 
 Mougeotia sp.   < 75↓ < 75↓ < 75↓  3↓ 3↓ 
 Scenedesmus acuminatus     75↑ 75↑ 1 4↑ 
 Haematococcus sp.  75↑ < 75↑  75↑  2↑ 3↑ 
 Chlamydomonas sp.   75↑ < 75↑   2↑ 3↑ 
 Monoraphidium sp. 2  75↑ 75↑  75↑  1 3↑ 

    Cryptophyta   75↑  < 75↑ < 75↑ 4↑ 4↑ 
 Cryptophyta sp. 1   75↑ < 75↑ < 75↑ < 75↑ 4↑ 4↑ 

    Chrysophyta       1 1 
 Uroglena sp.    < 75↓ < 75↓  3↓ 3↓ 

    Dinophyta 75↓      1 1 

    Euglenophyta       1 1 

Protozoa           

    PRC    75    1 2 

    Number of taxa       1 1 

    Ciliates    75↑    1 2↑ 

    Bacterivorous ciliates   75↑    1 2↑ 

    Algivorous ciliates       1 1 

    Predaceous ciliates    75↑   1 2↑ 

    Amoeba   < 75↑  < 75↓   2↓(↑a) 2↓(↑a) 

    Heterotrophic flagellates       75↑     1 2↑ 
a Effects observed only after 7 days of treatment. 
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Table B14: No-observed-effect concentrations (NOECs) (Williams test, p < 0.05) and observed 

effect classes per sampling date for the different plankton endpoints and species in the cold 

high P microcosms. Only species that could be used to calculate a consistent NOEC are 

represented here. The numbers of the preselected effect classes [89] refer to: 1= no effect; 2= 

slight effect; 3= clear short-term effects; 4: clear effect in short-term study; ↓= decrease; ↑= 

increase; ↑↓= increase and decrease on species and/or sampling date. Blank fields indicate 

that NOEC were equal to or higher than the highest tested concentration (300 µg/L) 

    NOEC (µg/L) Effect class 

Endpoint Taxa -1 7 14 21 28 35 75 µg/L 300 µg/L 

Zooplankton               

    PRC    < 75 75 75 75 2 4 

    Number of taxa     75↓ 75↓ 1 4↓ 

    Cladocerans   75↓ 75↓ 75↓ 75↓ 1 4↓ 
 Daphnia longispina    75↓ 75↓ 75↓ 75↓ 1 4↓ 
 Chydorus sphaericus    75↓ 75↓ 75↓ 1 4↓ 
 Simocephalus vetulus     75↓ 75↓ 75↓ 1 4↓ 
 Alonella nana     < 75↓ < 75↓  3↓ 3↓ 

    Copepods   < 75↑ 75↑ 75↑  2↑ 3↑ 
 Nauplii   < 75↑ 75↑ 75↑  2↑ 3↑ 

    Rotifers  75↓  75↑    1 2↑ 

Phytoplankton          

    PRC    < 75 75  < 75 2 3 

    Number of taxa 75↓  75↓ < 75↓ 75↓  2 3↓ 

    Total chlorophyll   75↓ 75↓ 75↓  1 3↓ 

    Cyanobacteria    75↑  75↓ 1 2↓↑ 
 Anabaena sp.  75↓ 75↓    1 3↓ 
 Aphanocapsa sp. 1   75↑ < 75↑   2↑ 3↑ 
 Chroococcus sp.   75↓ 75↓ < 75↓  2↓ 3↓ 

    Bacillariophyta 75↓ < 75↑ < 75↑ 75↑   3↑ 3↑ 
 Single cell diatoms 75↓ < 75↑ < 75↑ 75↑   3↑ 3↑ 

    Chlorophyta   < 75↑ 75↑ 75↑  2↑ 3↑ 
 Mougeotia sp.    < 75↓ < 75↓  3↓ 3↓ 
 Radiococcus sp.   < 75↑ 75↑ 75↑  2↑ 3↑ 
 Haematococcus sp.    < 75↑ 75↑ < 75↑ 2↑ 4↑ 
 Desmodesmus sp. 75↓    75↑ 75↑ 1 4↑ 
 Monoraphidium sp. 1     75↑ 75↑ 1 4↑ 
 Monoraphidium sp. 2   75↑  75↑ 75↑ 1 4↑ 
 Tetraëdron minimun    75↓ 75↓  1 3↓ 

    Cryptophyta   75↑ < 75↑ 75↑  2↑ 3↑ 
 Cryptophyta sp. 1   75↑ < 75↑ 75↑  2↑ 3↑ 
 Rodomonas sp.   75↓  75↑ < 75↑ 2↑ (2↓) 3↑ 

    Chrysophyta   75↑ 75↑ 75↑  1 3↑ 
 Uroglena sp.    75↓ < 75↓ 75↓ 2↓ 4↓ 
 Chrysococcus sp.   75↑ 75↑ 75↑  1 3↑ 

    Dinophyta      75↓ 1 2↓ 

    Euglenophyta   75↓ 75↓  < 75↑ 2↑a 3↓ 
 Euglenida sp.    75↑ 75↑  1 3↓ 

Protozoa           

    PRC  75  75 75 75 75 1 4 

    Number of taxa   75↓   < 75↑ 2↑a 2↓ 

    Ciliates    75↑ 75↑  75↑ 1 3↑ 

    Bacterivorous ciliates   75↑ 75↑ 75↑ 75↑ 1 4↑ 
 R. brachykinetum    75↑ 75↑ 75↑ < 75↑ 2↑a 4↑ 

    Algivorous ciliates 75↓    75↑  1 2↑ 

    Predaceous ciliates    < 75↑   2↑ 2↑ 

    Amoeba     75↑   1 2↑ 

    Heterotrophic flagellates   < 75↑   75↑     2↑ 2↑ 
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Table B15: No-observed-effect concentrations (NOECs) (Williams test, p < 0.05) and observed 

effect classes per sampling date for the different plankton endpoints and species in the warm 

high P microcosms. Only species that could be used to calculate a consistent NOEC are 

represented here. The numbers of the preselected effect classes [89] refer to: 1= no effect; 2= 

slight effect; 3=clear short-term effects; 4: clear effect in short-term study; ↓= decrease; ↑= 

increase; ↑↓= increase and decrease on species and/or sampling date. Blank fields indicate 

that NOEC were equal to or higher than the highest tested concentration (300 µg/L) 

    NOEC (µg/L) Effect class 

Endpoint Taxa -1 7 14 21 28 35 75 µg/L 300 µg/L 

Zooplankton          

    PRC   75 75    1 3 

    Number of taxa   75↓   75↓ 1 2↓ 

    Cladocerans  75↓     1 2↓ 
 Daphnia longispina   75↓ < 75↓ 75↓ < 75↓ < 75↓ 4↓ 4↓ 

    Copepods  75↑ 75↑  75↓ < 75↓ 2↓ 4↓ (3↑b) 

 Nauplii  75↑ 75↑  < 75↓ < 75↓ 4↓ 4↓ (3↑b) 

    Rotifers        1 1 

 Lepadella patella  75↑ 75↑  < 75↓  2↓ 3↑(2↓) 
 Mytilina ventralis   75↑ 75↑   1 3↑ 

Phytoplankton          

    PRC   75 75 < 75 75 < 75 2 4 

    Number of taxa     75↑  1 2↑ 

    Total chlorophyll      75↓ 1 2↓ 

    Cyanobacteria  75↑    < 75↓ 2↓ 2↓↑ 

 Anabaena sp.   < 75↓ < 75↓   3↓ 3↓ 

    Bacillariophyta  75↑    < 75↓ 2↓ 2↓↑ 

    Chlorophyta  75↑ 75↑  < 75↓ < 75↓ 4↓ 4↓ (3↑b) 
 Mougeotia sp.   75↓ < 75↓ < 75↓ < 75↓ 4↓ 4↓ 
 Desmodesmus sp. 75↑ 75↑ 75↑    1 3↑ 
 Oocystis sp.  75↓ 75↓ < 75↓ < 75↑ < 75↓ 2↓(2↑) 3↓(2↑) 
 Haematococcus sp.  75↑ 75↑  < 75↑ 75↑ 1 4↑ 
 Monoraphidium sp. 1   75↑ 75↑   1 3↑ 
 Monoraphidium sp. 2  75↑ 75↑ 75↑   1 3↑ 

    Cryptophyta  75↑ 75↑ < 75↑ < 75↓ < 75↑ 2↑(2↓) 3↑(2↓) 
 Cryptophyte sp. 1  75↑ 75↑ < 75↑ < 75↓ < 75↑ 2↑(2↓) 3↑(2↓) 
 Rodomonas sp.    75↑ 75↑  1 3↑ 

    Chrysophyta < 75↓ 75↑  75↑   1 2↑ 

    Dinophyta      < 75↓ 2↓ 2↓ 

    Euglenophyta  75↑     1 2↑ 

Protozoa           

    PRC   75 75   75 1 3 

    Number of taxa     75↑  1 2↑ 

    Ciliates   75↑ 75↑    1 3↑ 

    Bacterivorous ciliates  75↑ 75↑    1 3↑ 

    Algivorous ciliates   75↑    1 2↑ 

    Predaceous ciliates 75↑      1 1 

    Amoeba      75↑ 75↑ 1 3↑ 
 Difflugia sp.   < 75↓ < 75↓   3↓ 3↓ 
 Amoeba sp.     75↑ 75↑ 1 3↑ 

    Heterotrophic flagellates       < 75↑   < 75↑ 2↑ 2↑ 

b Effects observed only after 7 and 14 days of treatment. 
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Table B16: Statistical significance (p values Three-way ANOVA) of the interactive effects of 

Zn (Low: L and high:H) and the different factors (P and T) of the total chlorophyll, pHmean, 

Dissolved organic carbon (DOC), dissolved oxygen (DO), net primary production (DOnet: 

DOevening day x - DOmorning day x) and Biological oxygen demand after 5 days (BOD5).  

 
  L H L H L H 

Day Parameter Zn × T Zn × T Zn × P Zn × P Zn × T × P Zn × T × P 

-1 Total chlorophyll 0.557 0.076 0.798 0.021 0.102 0.198 

7 Total chlorophyll 0.402 0.907 0.287 0.290 0.334 0.818 

14 Total chlorophyll 0.636 0.482 0.184 0.059 0.193 0.911 

21 Total chlorophyll 0.259 0.655 0.604 0.927 0.018 0.495 

28 Total chlorophyll 0.926 0.054 0.928 0.714 0.003 0.529 

35 Total chlorophyll 0.842 0.053 0.767 0.864 0.026 0.027 

-1 BOD5 0.877 0.457 0.212 0.701 0.006 0.355 

7 BOD5 0.260 <0.001 0.773 <0.001 0.910 <0.001 

14 BOD5 0.992 <0.001 0.762 0.055 0.146 0.443 

21 BOD5 0.810 0.130 0.006 0.002 0.174 0.051 

28 BOD5 0.360 0.994 0.992 0.969 0.426 0.768 

35 BOD5 0.428 0.789 0.775 0.285 0.001 0.862 

-1 DOC 0.942 0.224 0.739 0.102 0.765 0.277 

7 DOC 0.047 <0.001 0.545 0.058 0.034 <0.001 

14 DOC 0.146 0.717 0.786 0.259 0.108 0.570 

21 DOC 0.148 0.007 0.403 0.475 0.020 0.061 

28 DOC 0.198 0.006 0.505 0.850 0.012 0.025 

35 DOC 0.052 <0.001 0.076 0.131 0.002 0.104 

-1 pHmean 0.921 0.727 0.431 0.659 0.054 0.336 

7 pHmean 0.568 0.855 0.131 0.174 0.261 0.119 

14 pHmean 0.234 <0.001 0.741 0.796 0.730 0.443 

21 pHmean 0.322 0.002 0.046 0.651 0.467 0.726 

28 pHmean 0.850 0.842 0.371 0.437 0.760 0.364 

35 pHmean 0.138 0.058 0.641 0.257 0.620 0.923 

-1 DOmean 0.269 0.602 0.210 0.875 0.608 0.620 

7 DOmean 0.114 0.919 0.120 0.430 0.063 0.033 

14 DOmean 0.218 <0.001 0.384 0.651 0.640 0.237 

21 DOmean 0.770 0.024 0.025 0.889 0.462 0.553 

28 DOmean 0.590 0.116 0.052 0.786 0.751 0.443 

35 DOmean 0.250 0.768 0.524 0.547 0.660 0.787 

-1 DOnet 0.489 0.158 0.860 0.685 0.552 0.165 

7 DOnet 0.108 0.074 0.955 0.276 0.125 0.098 

14 DOnet 0.053 0.004 0.913 0.702 0.650 0.855 

21 DOnet 0.112 <0.001 0.030 0.190 0.003 0.008 

28 DOnet 0.940 0.324 0.618 0.503 0.433 0.237 

35 DOnet 0.464 0.045 0.782 0.847 0.396 0.800 
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Table B17: No-observed-effect concentrations (NOECs) and observed effect classes [89] per 

sampling date for community metabolism and chemistry endpoints cold low P addition and 

high P addition Zn control microcosms. The numbers of the preselected effect classes [89] 

refer to: 1= no effect; 2= slight effect; 3=clear short-term effects; 4: clear effect in short-term 

study; ↓= decrease; ↑= increase; ↑↓= increase and decrease on species and/or sampling date. 

Blank fields indicate that NOEC were equal to or higher than the highest tested P addition. 

              

    NOEC (µg/L) Treatment levels 

    -1 1 7 9 14 16 21 23 28 30 35 High P addition 

DO              

morning — <200↓ <200↓         3↓ 

afternoon   <200↓ <200↑   <200↓  <200↓   2↓(2↑) 

max-min —   <200↑  <200↓ <200↓  <200↓   3↓(2↑) 

mean    <200↓     <200↓   2↓ 

pH              

morning   <200↓    <200↓ <200↓     3↓ 

afternoon   <200↓    <200↓ <200↓ <200↓   3↓ 

mean    <200↓    <200↓ <200↓   3↓ 

N             3↓ 

NH3   — — — <200↓ — — — — — <200↓ 3↓ 

NO3 + NO2   — — — <200↑ — — — — — 200↑ 4↑ 

P             

Total   — — — <200↑ — — — — — <200↑  

SRP   — <200↑ — <200↑ — <200↑ — <200↑ — <200↑ 4↑ 

DOC   — <200↓ —  — <200↓ — <200↓ — <200↓ 4↓ 
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Table B18: No-observed-effect concentrations (NOECs) (Williams test, p < 0.05) and observed 

effect classes [89] per sampling date for community metabolism and chemistry endpoints in 

microcosms in the warm low P addition microcosms. The numbers of the preselected effect 

classes [89] refer to: 1= no effect; 2= slight effect; 3=clear short-term effects; 4: clear effect in 

short-term study; ↓= decrease; ↑= increase; ↑↓= increase and decrease on species and/or 

sampling date. Blank fields indicate that NOEC were equal to or higher than the highest tested 

concentration (300 µg/L) 

    NOEC (µg/L) Treatment levels 

    -1 1 7 9 14 16 21 23 28 30 35 75 µg/L 300 µg/L 

DO                             

    morning  — < 75↑        75↑  2↑ 2↑ 

    afternoon            < 75↓ 2↓ 2↓ 

    max-min  —           1 1 

    mean            < 75↓ 2↓ 2↓ 

pH                

    morning             1 1 

    afternoon      75↓ 75↓     < 75↓ 2↓ 3↓ 

    mean      75↓ 75↓     75↓ 1 3↓ 

N                

    NH3   — — —  — — — — — < 75↑ 2↑ 2↑ 

    NO3 + NO2   — — —  — — — — —  1 1 

P                

    Total   — — — 75↓ — — — — —  1 2↓ 

    SRP   —  — 75↓ —  —  —  1 2↓ 

DOC   —  — 75↓ —  —  —  1 2↓ 

Conductivity   —  —  —  —  —  1 1 

BOD5     — < 75↑ —   — 75↓ — < 75↓ —   2↓(↑a) 3↓ 

a Effects observed only after 7 days of treatment. 
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Table B19: No-observed-effect concentrations (NOECs) (Williams test, p < 0.05) and observed 

effect classes [89] per sampling date for community metabolism and chemistry endpoints in 

microcosms in the cold high P addition microcosms. The numbers of the preselected effect 

classes [89] refer to: 1= no effect; 2= slight effect; 3=clear short-term effects; 4: clear effect in 

short-term study; ↓= decrease; ↑= increase; ↑↓= increase and decrease on species and/or 

sampling date. Blank fields indicate that NOEC were equal to or higher than the highest tested 

concentration (300 µg/L) 

    NOEC (µg/L) Treatment levels 

    -1 1 7 9 14 16 21 23 28 30 35 75 µg/L 300 µg/L 

DO                             

    morning —    75↓ 75↓  75↓   75↓ 1 3↓ 

    afternoon    75↓ 75↓ 75↓ 75↓    < 75↓ 2↓ 3↓ 

    max-min —   < 75↓ 75↓  75↓     2↓ 3↓ 

    mean      75↓ 75↓  75↓   < 75↓ 2↓ 3↓ 

pH                

    morning     75↓ 75↓ 75↓ 75↓ 75↓  75↓ 1 3↓ 

    afternoon     75↓ 75↓ 75↓  75↓ 75↓ < 75↓ 2↓ 4↓ 

    mean      75↓ 75↓ 75↓  75↓ 75↓ 75↓ 1 4↓ 

N                

    NH3   — — — < 75↑ — — — — — < 75↑ 4↑ 4↑ 

    NO3 + NO2  — — —  — — — — —  1 1 

P                

    Total   — — —  — — — — —  1 1 

    SRP   —  —  —  —  —  1 1 

DOC   —  — 75↓ — 75↓ — 75↓ — 75↓ 1 4↓ 

Conductivity  —  —  —  —  —  1 1 

BOD5     — < 75↑ —   — < 75↓ — < 75↓ — 75↓  (2↑a)3↓ 4↓ 

a Effects observed only after 7 days of treatment. 
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Table B20: No-observed-effect concentrations (NOECs) (Williams test, p < 0.05) and observed 

effect classes [89] per sampling date for community metabolism and chemistry endpoints in 

microcosms in the warm high P microcosms. The numbers of the preselected effect classes 

[89] refer to: 1= no effect; 2= slight effect; 3=clear short-term effects; 4: clear effect in short-

term study; ↓= decrease; ↑= increase; ↑↓= increase and decrease on species and/or sampling 

date. Blank fields indicate that NOEC were equal to or higher than the highest tested 

concentration (300 µg/L) 

    NOEC (µg/L) Treatment levels 

    -1 1 7 9 14 16 21 23 28 30 35 75 µg/L 300 µg/L 

DO                             

    morning  — 75↑          1 2↑ 

    afternoon            < 75↓ 2↓ 2↓ 

    max-min  — 75↓  < 75↓     75↓   2↓ 2↓ 

    mean            < 75↓ 2↓ 2↓ 

pH                

    morning    75↓       75↓ < 75↓ 2↓ 3↓ 

    afternoon    75↓ < 75↓       < 75↓ 2↓ 3↓ 

    mean    75↓ 75↓       < 75↓ 2↓ 3↓ 

N                

    NH3   — — —  — — — — — 75↑ 1 2↑ 

    NO3 + NO2   — — —  — — — — —  1 1 

P                

    Total   — — —  — — — — —  1 1 

    SRP   — 75↓ —  —  —  —  1 2↓ 

DOC   — 75↓ — 75↓ — < 75↓ — < 75↓ — 75↓ 3↓ 4↓ 

Conductivity   —  —  —  — < 75↓ —  2↓ 2↓ 

BOD5     —   — 75↓ — < 75↓ — < 75↓ — < 75↓ 4↓ 4↓ 
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Table B21: Statistical significance (p values Three-and two-way ANOVA) and calculation of 

the interactive effects (Synergism: S; or antagonism: A) of Zn (Low Zn: L; High Zn: H) and the 

different factors (low P: O; high P: E; cold: C and warm: W) of the community metabolism at 

different treatment regimes. The interaction type is based on the observed and predicted 

effects based on De Coninck et al (2013) Only groups for which at least one consistent 

interaction was found are represented here. 

Parameter Day 
Treatment 

regime 
Interaction 

factors 
Zn 

treatment 
p 

observed 
effect 

Predicted 
effect 

Interaction 
type 

BOD5 7 O Zn × T H 0,009 -0.57 -1.46 A 

 14 O Zn × T H 0,005 -1.97 -14.50 A 

 7 E Zn × T H <0,001 0.18 -2.02 S 

 14 E Zn × T H 0,007 0.50 -4.09 S 

DOC 21 O Zn × T H 0,006 0.37 0.53 A 

 28 O Zn × T H 0,005 0.33 0.58 A 

 35 O Zn × T H <0,001 0.42 0.59 A 

 21 E Zn × T H 0,486    

 28 E Zn × T H 0,597    

 35 E Zn × T H 0,025 0.40 0.49 A 

 21 O Zn × T L 0,566    

 28 O Zn × T L 0,285    

 35 O Zn × T L 0,002 0.32 0.48 A 

 21 E Zn × T L 0,002 0.38 0.07 S 

 28 E Zn × T L 0,025 0.37 0.13 S 

 35 E Zn × T L 0,328    

 21 C Zn × P L 0,041 0.02 0.14 A 

 28 C Zn × P L 0,006 0.02 0.21 A 

 35 C Zn × P L 0,010 0.09 0.29 A 

 21 W Zn × P L 0,099    

 28 W Zn × P L 0,259    

 35 W Zn × P L 0,116    

pHmean 14 O Zn × T H 0,011 0.08 0.13 A 

 21 O Zn × T H 0,024 0.03 0.06 A 

 14 E Zn × T H 0,007 0.06 0.14 A 

 21 E Zn × T H 0,049 0.02 0.04 A 

Domean 14 O Zn × T H 0,035 0.27 0.34 A 

 21 O Zn × T H 0,019 0.17 0.22 A 

 14 E Zn × T H 0,009 0.23 0.38 A 

 21 E Zn × T H 0,138    

DOnet 14 O Zn × T H 0,026 0.92 1.00 A 

 21 O Zn × T H <0,001 0.71 0.96 A 

 14 E Zn × T H 0,062    

 21 E Zn × T H 0,072    
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Figures 

 

 

Figure B1: Measured dissolved Zn concentrations (µg/L) of the cold high P addition (A), warm 

low P addition (B) and warm high P addition (C) before and after spiking. Error bars are 

standard deviations. 



Appendix B 
 

184 
 

 

Figure B1: Measured dissolved Zn concentrations (µg/L) of the cold high P addition (A), warm 

low P addition (B) and warm high P addition (C) before and after spiking. Error bars are 

standard deviations. 
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Figure B2: Measured total dissolved phosphorus (TDP) (µg P/L) of the cold low P addition (A), 

cold high P addition (B), warm low P addition (C) and warm high P addition (D) microcosm. 

Error bars are standard deviations. 
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Figure B3: Principal response curve (PRC), resulting from the analysis of the zooplankton (A), 

phytoplankton (B) and protozoa data (C) indicating the effects of temperature in the low P 

addition microcosms without added Zn (16-19 °C: Ctr; 21-24 °C: Ctr T). The vertical axis 

represents the differences in community structure of the treatments compared to the controls 

expressed as regression coefficients (Cdt). The affinity of a taxon to the PRC is expressed as 

the species weight (bk). Species with a low bk (between 0.5 and -0.5) are not shown. *: 

significant difference in community structure from the control (p < 0.05, Monte Carlo 

permutation test). Calculated Monte Carlo permutation test p values are plotted above the 

figures. 
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Figure B3: Principal response curve (PRC), resulting from the analysis of the zooplankton (A), 

phytoplankton (B) and protozoa data (C) indicating the effects of temperature in the low P 

addition microcosms without added Zn (16-19 °C: Ctr; 21-24 °C: Ctr T). The vertical axis 

represents the differences in community structure of the treatments compared to the controls 

expressed as regression coefficients (Cdt). The affinity of a taxon to the PRC is expressed as 

the species weight (bk). Species with a low bk (between 0.5 and -0.5) are not shown. *: 

significant difference in community structure from the control (p < 0.05, Monte Carlo 

permutation test). Calculated Monte Carlo permutation test p values are plotted above the 

figures. 
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Figure B4: Principal response curve (PRC), resulting from the analysis of the zooplankton (A), 

phytoplankton (B) and protozoa data (C), indicating the effects of high P addition the cold 

microcosms without added Zn (Low P addition: Ctr; High P addition: Ctr P). The vertical axis 

represents the differences in community structure of the treatments compared to the controls 

expressed as regression coefficients (Cdt). The affinity of a taxon to the PRC is expressed as 

the species weight (bk). Species with a low bk (between 0.5 and -0.5) are not shown. *: 

significant difference in community structure from the control (p < 0.05, Monte Carlo 

permutation test). Calculated Monte Carlo permutation test p values are plotted above the 

figures. 
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Figure B4: Principal response curve (PRC), resulting from the analysis of the zooplankton (A), 

phytoplankton (B) and protozoa data (C), indicating the effects of high P addition the cold 

microcosms without added Zn (Low P addition: Ctr; High P addition: Ctr P). The vertical axis 

represents the differences in community structure of the treatments compared to the controls 

expressed as regression coefficients (Cdt). The affinity of a taxon to the PRC is expressed as 

the species weight (bk). Species with a low bk (between 0.5 and -0.5) are not shown. *: 

significant difference in community structure from the control (p < 0.05, Monte Carlo 

permutation test). Calculated Monte Carlo permutation test p values are plotted above the 

figures. 
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Figure B5: Principal response curve (PRC), resulting from the analysis of the zooplankton of 

the warm low P (A), cold high P addition (B) and warm high P (C) microcosms, indicating the 

effects of the different Zn treatments. The vertical axis represents the differences in community 

structure of the treatments compared to the controls expressed as regression coefficients (Cdt). 

The affinity of a taxon to the PRC is expressed as the species weight (bk). *: significant 

difference in community structure from the control (p < 0.05, Monte Carlo permutation test). 

Calculated Monte Carlo permutation test p values are plotted above the figures. 
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Figure B5: Principal response curve (PRC), resulting from the analysis of the zooplankton of 

the warm low P (A), cold high P (B) and warm high P (C) microcosms, indicating the effects of 

the different Zn treatments. The vertical axis represents the differences in community structure 

of the treatments compared to the controls expressed as regression coefficients (Cdt). The 

affinity of a taxon to the PRC is expressed as the species weight (bk). *: significant difference 

in community structure from the control (p < 0.05, Monte Carlo permutation test). Calculated 

Monte Carlo permutation test p values are plotted above the figures. 
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Figure B6: Principal response curve (PRC), resulting from the analysis of the phytoplankton 

of the warm low P (A), cold high P (B) and warm high P (C) microcosms, indicating the effects 

of the different Zn treatments. The vertical axis represents the differences in community 

structure of the treatments compared to the controls expressed as regression coefficients (Cdt). 

The affinity of a taxon to the PRC is expressed as the species weight (bk). *: significant 

difference in community structure from the control (p < 0.05, Monte Carlo permutation test). 

Calculated Monte Carlo permutation test p values are plotted above the figures. 
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Figure B6: Principal response curve (PRC), resulting from the analysis of the phytoplankton 

of the warm low P (A), cold high P (B) and warm high P (C) microcosms, indicating the effects 

of the different Zn treatments. The vertical axis represents the differences in community 

structure of the treatments compared to the controls expressed as regression coefficients (Cdt). 

The affinity of a taxon to the PRC is expressed as the species weight (bk). *: significant 

difference in community structure from the control (p < 0.05, Monte Carlo permutation test). 

Calculated Monte Carlo permutation test p values are plotted above the figures. 
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Figure B7: Principal response curve (PRC), resulting from the analysis of the protozoa of the 

warm low P (A), cold high P(B) and warm high P (C) microcosms, indicating the effects of the 

different Zn treatments. The vertical axis represents the differences in community structure of 

the treatments compared to the controls expressed as regression coefficients (Cdt). The affinity 

of a taxon to the PRC is expressed as the species weight (bk). *: significant difference in 

community structure from the control (p < 0.05, Monte Carlo permutation test). Calculated 

Monte Carlo permutation test p values are plotted above the figures. 
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Figure B7: Principal response curve (PRC), resulting from the analysis of the protozoa of the 

warm low P (A), cold high P (B) and warm high P (C) microcosms, indicating the effects of the 

different Zn treatments. The vertical axis represents the differences in community structure of 

the treatments compared to the controls expressed as regression coefficients (Cdt). The affinity 

of a taxon to the PRC is expressed as the species weight (bk). *: significant difference in 

community structure from the control (p < 0.05, Monte Carlo permutation test). Calculated 

Monte Carlo permutation test p values are plotted above the figures. 
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Tables 

Table C1: Mean (± standard deviation) of the chemical properties of the jar water per sampling 

date. 

Excel file Van de Perre et al. 2017 

 

Table C2: Species abundances per litre of the jars per sampling date. 

Excel file Van de Perre et al. 2017 

 

Table C3: Statistical significance (p values Three-way ANOVA) of the main effects and 

interactions of the lowest Zn treatment and the different factors (competition and temperature) 

on the Branchionus calyciflorus and small rotifers abundance at the different samplings. 

Significant (p < 0.05) values are flagged and consistent interactions in bold.  

    Independent variable Day after first treatment 

      4 7 11 14 18 21 

B. calyciflorus Zn low (Zn L) 0.234 0.102 0.187 0.498 0.116 NA 
  Competition (compa) 0.082 <0.001 0.009 0.046 0.116 NA 
  Temperature (T) 0.967 0.225 0.762 0.622 0.116 NA 
  Zn L x Compa 0.205 0.003 0.224 0.274 0.116 NA 
  Zn L x T 0.071 0.124 0.168 0.634 0.116 NA 
  Zn L x Compa x T 0.675 0.941 0.118 0.033 0.116 NA 

Small rotifers Zn low (Zn L) 0.557 0.107 0.894 0.711 0.128 0.216 
  Competition (compb) 0.816 0.703 <0.001 0.002 0.003 0.199 
  Temperature (T) 0.732 0.003 <0.001 <0.001 <0.001 0.096 
  Zn L x Compb 0.773 0.845 0.958 0.872 0.618 0.297 
  Zn L x T 0.858 0.056 0.199 0.167 0.453 0.443 

    Zn L x Compb x T 0.205 0.646 0.871 0.761 0.813 0.767 
a: “Daphnia longispina + small rotifers” competition; b: “Daphnia longispina + B. calyciflorus” 

competition 
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Table C4: Statistical significance (p values Three-way ANOVA) of the main effects and 

interactions of the highest Zn treatment and the different factors (competition and temperature) 

of the Branchionus calyciflorus and small rotifers at the different samplings. Significant (p < 

0.05) values are flagged and consistent interactions in bold.  

    Independent variable Day after first treatment 

      4 7 11 14 18 21 

B. calyciflorus Zn high (Zn H) 0.100 0.024 0.549 0.409 0.116 NA 
  Competition (comp)a 0.024 <0.001 0.001 0.019 0.116 NA 
  Temperature (T) 0.669 0.130 0.657 0.971 0.116 NA 
  Zn H x Compa 0.452 0.091 0.605 0.480 0.116 NA 
  Zn H x T 0.138 0.064 0.487 0.985 0.116 NA 
  Zn H x Compa x T 0.445 0.196 0.673 0.889 0.116 NA 

Small rotifers Zn high (Zn H) 0.365 0.111 0.148 0.254 0.057 0.012 
  Competition (compb) 0.840 0.920 0.004 0.009 0.291 0.747 
  Temperature (T) 0.337 0.004 0.119 <0.001 <0.001 0.881 
  Zn H x Compb 0.889 0.770 0.433 0.400 0.139 0.931 
  Zn H x T 0.436 0.030 0.308 0.191 0.573 0.305 

    Zn H x Compb x T 0.093 0.587 0.140 0.687 0.734 0.171 
a: Daphnia longispina + small rotifers competition; b: Daphnia longispina + B. calyciflorus competition 
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Tables 
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Table D1: Mean (± standard deviation) calculated HC5-plankton (µg Zn/L) and HC50-plankton (µg Zn/L) per sampling day and treatment, taking into 

account chronic Zn toxicity data for plankton species (Chapter 2 [5,121]). 

    Cold (16-19°C) Warm (21-24°C) 

  Low P* High P Low P High P 

Treatment level Day HC5 HC50 HC5 HC50 HC5 HC50 HC5 HC50 

Control -1 85  ± 4 351  ± 31 89 ± 4 339 ± 36 92 ± 3 334 ± 30 90 ± 2 332 ± 37 
 7 83  ± 4 271  ± 15 75 ± 4 221 ± 18 75 ± 2 215 ± 20 71 ± 4 193 ± 15 
 14 69  ± 7 216  ± 32 65 ± 4 205 ± 29 52 ± 2 149 ± 6 52 ± 4 147 ± 10 
 21 69  ± 4 201  ± 13 60 ± 5 174 ± 15 45 ± 5 141 ± 16 50 ± 6 150 ± 17 
 28 64  ± 3 181  ± 8 54 ± 6 156 ± 14 39 ± 5 134 ± 13 41 ± 7 133 ± 20 
 35 65  ± 3 189  ± 13 55 ± 5 166 ± 14 38 ± 3 147 ± 10 36 ± 3 139 ± 12 

75 -1 87  ± 2 316  ± 20 88 ± 4 365 ± 43 91 ± 2 337 ± 23 91 ± 2 311 ± 15 
 7 74  ± 11 222  ± 40 77 ± 3 227 ± 18 87 ± 14 245 ± 39 70 ± 5 189 ± 17 
 14 56  ± 21 174  ± 64 64 ± 6 190 ± 22 57 ± 3 163 ± 6 48 ± 3 139 ± 9 
 21 61  ± 9 172  ± 17 66 ± 2 182 ± 6 45 ± 12 137 ± 37 36 ± 2 114 ± 7 
 28 55  ± 6 158  ± 8 61 ± 1 172 ± 8 38 ± 3 128 ± 9 34 ± 4 112 ± 12 
 35 51  ± 8 151  ± 12 58 ± 3 164 ± 7 41 ± 2 136 ± 10 35 ± 1 123 ± 11 

300 -1 84  ± 1 320  ± 21 89 ± 2 343 ± 37 90 ± 2 335 ± 42 94 ± 8 342 ± 24 
 7 74  ± 4 214  ± 16 77 ± 4 224 ± 21 68 ± 8 183 ± 27 46 ± 1 124 ± 1 
 14 46  ± 7 129  ± 18 42 ± 11 114 ± 24 40 ± 6 115 ± 18 34 ± 2 102 ± 6 
 21 41  ± 3 122  ± 4 41 ± 1 115 ± 2 39 ± 4 122 ± 12 36 ± 1 112 ± 1 
 28 38  ± 3 122  ± 6 41 ± 1 117 ± 5 40 ± 11 131 ± 28 32 ± 2 104 ± 7 

  35 40  ± 5 124  ± 6 42 ± 1 120 ± 4 36 ± 5 121 ± 16 34 ± 2 109 ± 7 
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Table D2: Summary of the p values (ANOVA) of the Zn effects and Zn ×T interactions on the 

different D. longispina populations: D. longispina population (D: chapter 5), D. longispina 

population in smaller rotifer community (D + R: Chapter 4), D. longispina population in smaller 

rotifer and B. calyciflorus community (D + R + B: chapter 4), D. longispina population in a 

natural, microcosm community (D + COM: chapter 2 and 3). Significant (p < 0.05) values are 

flagged and consistent interactions in bold.  

Experiment   Independent variable Day after first treatment 

      4 7 11 14 18 21 28 35 

Low Zn                     

   D  Zinc Low 0.703 0.144 0.274 0.669 0.905 0.621 NA NA 

  Temperature 0.110 0.953 0.972 0.820 0.515 0.654 NA NA 

  Interaction 0.661 0.320 0.865 0.507 0.218 0.020 NA NA 

   D + R  Zinc Low 0.323 0.637 0.003 <0.001 <0.001 <0.001 NA NA 

  Temperature <0.001 0.127 0.255 0.074 0.275 0.029 NA NA 

  Interaction 0.879 0.638 0.552 0.940 0.156 0.005 NA NA 

   D + R + B  Zinc Low 0.823 0.020 0.002 0.002 <0.001 0.025 NA NA 

  Temperature 0.831 0.240 0.905 0.470 0.070 0.140 NA NA 

  Interaction 0.851 0.094 0.117 0.149 0.936 0.404 NA NA 

   COM  Zinc Low NA 0.524 NA 0.312 NA 0.04 0.077 0.171 

  Temperature NA 0.279 NA 0.069 NA 0.017 0.900 0.975 

  Interaction NA 0.140 NA 0.570 NA 0.520 0.743 0.765 

High Zn           

   D  Zinc High 0.033 <0.001 <0.001 <0.001 <0.001 <0.001 NA NA 

  Temperature 0.509 <0.001 <0.001 0.510 0.195 0.051 NA NA 

  Interaction 0.065 <0.001 <0.001 0.510 0.195 0.051 NA NA 

   D + R  Zinc High 0.597 0.131 <0.001 <0.001 <0.001 <0.001 NA NA 

  Temperature 0.016 0.053 <0.001 <0.001 0.012 <0.001 NA NA 

  Interaction 0.268 0.002 <0.001 0.002 0.116 0.045 NA NA 

   D + R +B  Zinc High 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 NA NA 

  Temperature <0.001 0.260 0.425 0.714 0.312 0.914 NA NA 

  Interaction 0.010 0.070 0.038 0.236 0.858 0.452 NA NA 

   COM  Zinc High NA 0.076 NA <0.001 NA <0.001 0.011 0.012 

  Temperature NA 0.097 NA 0.115 NA 0.285 0.912 0.843 

    Interaction NA 0.008 NA 0.445 NA 0.285 0.912 0.843 
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Table D3: Mean (± standard deviation) of the average filterd Zn concentrations of the 

microcosm water before and after changing medium. 

    New medium (µg Zn/L) Before medium change (µg Zn/L) Average mean (µg Zn/L) 

Zn low  53 ± 5 19 ± 13 37 ±  20 

Zn high   169 ± 10 50 ± 22 109 ± 62 

 

Throughout the experiment the dissolved Zn concentrations in the high and low Zn 

fluctuated greatly and Zn losses between medium changes could reach up to about 

70% (Table 5.2). On average the concentrations of the lowest Zn treatment were 16% 

below target concentration and 23% lower from the highest Zn target concentration. 

The average dissolved Zn concentrations (± standard deviation) in the controls were 

3.7 ± 2.8 µg/L. The average dissolved oxygen concentration throughout the experiment 

was 13.3 mg/L ± 1.6 and the average pH (9.1 ± 0.4), DOC (5.5 mg/L ± 0.5) and TOC 

(5.7 mg/L ± 0.7). 
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