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Abstract 

Pavlovian aversive conditioning is an evolutionarily well-conserved adaptation enabling 

organisms to learn to associate environmental stimuli with biologically aversive events. 

However, mechanisms underlying preferential (or enhanced) Pavlovian aversive conditioning 

remain unclear. Previous research has suggested that only specific stimuli that have threatened 

survival across evolution (e.g., snakes and angry faces) are preferentially conditioned to threat. 

Here, we challenge this view by showing that positive stimuli with biological relevance (baby 

faces and erotic stimuli) are likewise readily associated with an aversive event (electric 

stimulation) during Pavlovian aversive conditioning, thereby reflecting a learning bias to these 

stimuli. Across three experiments, our results reveal an enhanced persistence of the conditioned 

response to both threat-relevant and positive relevant stimuli compared with the conditioned 

response to neutral stimuli. These findings support the existence of a general mechanism 

underlying preferential Pavlovian aversive conditioning that is shared across negative and 

positive stimuli with high relevance to the organism, and provide new insights into the basic 

mechanisms underlying emotional learning in humans. 

 

Keywords: Pavlovian conditioning; Emotion; Learning; Positive stimuli; Relevance detection  
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Enhanced Pavlovian aversive conditioning to positive emotional stimuli 

In Pavlovian conditioning, a conditioned stimulus acquires a predictive and emotional 

value through a single or repeated contingent pairing with a biologically potent stimulus. This 

learning process represents a fundamental evolutionarily well-conserved adaptation enabling 

organisms to predict and detect stimuli in the environment, and shape appropriate responses to 

them. Pavlovian conditioning has substantially contributed to our understanding of the 

psychological and neurobiological underpinnings of learning, memory, and emotion (e.g., 

Büchel, Morris, Dolan, & Friston, 1998; LaBar & Cabeza, 2006; LaBar, Gatenby, Gore, 

LeDoux, & Phelps, 1998; LeDoux, 2000, 2012, 2014; Phelps, Delgado, Nearing, & LeDoux, 

2004; Phelps & LeDoux, 2005; Schiller et al., 2010). Research on Pavlovian conditioning has 

essentially focused on unveiling the general principles of learning (Pavlov, 1927), delineating in 

particular the central role of prediction error (i.e., the discrepancy between the predicted and the 

actual outcome) and stimulus’ associability (i.e., the degree to which the stimulus reliably 

predicts and easily enters into association with the outcome) in associative learning (see, e.g., 

Niv & Schoenbaum, 2008; Pearce & Hall, 1980; Rescorla & Wagner, 1972). However, this line 

of research has generally omitted to consider the relative importance of the stimuli at stake for 

the organism. Apart from this trend, preparedness theory (Seligman, 1970, 1971) posits that 

certain classes of “evolutionarily prepared” threat stimuli are preferentially associated with 

aversive events based on biological predispositions shaped by evolution. Consistent with this 

view, a series of empirical studies have shown that evolutionary threat-relevant stimuli – such as 

snakes, angry faces, or outgroup faces – are more readily associated with an aversive outcome 

than threat-irrelevant stimuli – such as flowers, happy faces, or ingroup faces (e.g., Öhman & 

Dimberg, 1978; Öhman, Fredrikson, Hugdahl, & Rimmö, 1976; Öhman & Mineka, 2001; 
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Olsson, Ebert, Banaji, & Phelps, 2005; but see Mallan, Lipp, & Cochrane, 2013, for a review of 

evidence showing that threat conditioned to social threat-relevant stimuli is more malleable than 

threat conditioned to animal threat-relevant stimuli). Extending preparedness theory, Öhman and 

Mineka (2001) proposed the existence of an evolved fear module centered on the amygdala in 

the human brain dedicated to processing threat-relevant stimuli from phylogenetic origin, thus 

subserving the preferential processing of, and the learning bias to, evolutionarily prepared threat 

stimuli. 

In contrast, we suggest that preferential emotional learning is not specific to threat-related 

stimuli but extends to all stimuli that are relevant to the organism’s concerns (Frijda, 1988). This 

alternative model holds that such preferential learning is driven by a general mechanism of 

relevance detection that is not specific to threat. Relevance detection is conceptualized as a rapid 

process, which enables the organism to detect and continuously appraise stimuli as a function of 

their affective relevance in relation to the organism’s concerns (Pool, Brosch, Delplanque, & 

Sander, 2016; Sander, Grafman, & Zalla, 2003; Sander, Grandjean, & Scherer, 2005). A stimulus 

is therefore detected and appraised as relevant if “it increases the probability of satisfaction or 

dissatisfaction toward a major concern of the individual” (Sander, 2013, p. 22). Concerns refer to 

affective representations of psychological and physiological motives, needs, goals, and values 

that are of major importance to the organism (Frijda, 1988; Pool, Brosch, et al., 2016). 

According to this model, phylogenetically threat-relevant stimuli lead to preferential processing 

and learning because they are highly relevant to the organism’s survival. More specifically, the 

relevance detection hypothesis predicts that stimuli detected as relevant to the organism benefit 

from enhanced processing (Brosch, Sander, Pourtois, & Scherer, 2008; Pool, Brosch, et al., 

2016) and preferential learning regardless of their valence. If the organism does preferentially 
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learn associations involving highly relevant stimuli irrespective of their valence, this implies – 

even if it might seem counterintuitive – that positive stimuli with high relevance to the organism 

should be likewise readily associated with an aversive outcome, as is the case for threat-relevant 

stimuli. 

Here, we therefore assessed whether positive relevant stimuli are readily associated with 

a biologically significant stimulus in Pavlovian aversive conditioning, thus reflecting a learning 

bias. Such learning bias can be characterized by a faster acquisition of a conditioned response, 

the acquisition of a larger conditioned response, and/or enhanced resistance to extinction of that 

conditioned response (Öhman & Mineka, 2001). Although all of these different indicators are 

considered as inherently valid, preferential emotional learning has been most consistently 

evidenced in humans as an enhanced persistence of the learned threat response to threat-relevant 

stimuli, whereas the learned threat response to threat-irrelevant stimuli generally extinguishes 

rapidly (Öhman & Mineka, 2001). According to preparedness and fear module theories, 

evolutionarily prepared threat-relevant – but not positive relevant – stimuli are readily associated 

with an aversive event. These theories would therefore imply that a conditioned response to 

positive relevant stimuli should hence be similarly, or even more quickly, extinguished than a 

conditioned response to neutral stimuli (Öhman & Dimberg, 1978; Öhman & Mineka, 2001). 

Conversely and congruently with the predictions of the relevance detection model, we predicted 

that the conditioned response to both threat-relevant and positive relevant stimuli would be more 

persistent than the conditioned response to neutral stimuli with less relevance.  

To test this competing hypothesis, we conducted three experiments examining whether, 

similar to threat-relevant stimuli, positive stimuli with biological relevance to the organism 

likewise induce a learning bias during Pavlovian aversive conditioning. In each experiment, we 
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manipulated the conditioned stimuli’s valence in a differential aversive conditioning paradigm 

by using three distinct conditioned stimulus categories: negative biologically relevant stimuli 

(angry faces in Experiments 1 and 2, and snakes in Experiment 3), positive biologically relevant 

stimuli (baby faces in Experiments 1 and 2, and erotic stimuli in Experiment 3), and neutral, less 

relevant stimuli (neutral faces in Experiments 1 and 2, and neutral colored squares in Experiment 

3). This set of experiments thereby is key in order to test the hypothesis that preferential 

emotional learning is driven by a relevance detection mechanism, without being selective to 

negative threatening stimuli. 

 

EXPERIMENTS 1 AND 2 

In Experiments 1 and 2, we investigated whether angry faces and baby faces are 

preferentially conditioned to threat relative to neutral faces. Experiment 2 consisted of a direct 

replication of Experiment 1 with the aim of establishing the observed effects’ reproducibility and 

robustness within an even more highly powered experiment. Baby faces were selected as positive 

relevant conditioned stimuli (CSs) because they represent a prototypical instance of stimuli being 

positive and highly biologically relevant for the survival of the species (Brosch et al., 2008; 

Kringelbach, Stark, Alexander, Bornstein, & Stein, 2016; Pool, Brosch, et al., 2016; see also 

Lorenz, 1943). In agreement with this view, baby faces have been shown to elicit positive 

evaluations (e.g., Brosch, Sander, & Scherer, 2007), to be readily prioritized for access to 

attentional resources (Brosch et al., 2007, 2008; Kringelbach et al., 2016; Pool, Brosch, et al., 

2016), and to hold high motivational salience and a high reward value (Parsons, Young, Kumari, 

Stein, & Kringelbach, 2011), all of these characteristics serving as evolutionarily adaptive traits 

for promoting caregiving behaviors in adults and ultimately infant survival (Kringelbach et al., 
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2016; Lorenz, 1943). In both experiments, the differential aversive conditioning procedure 

comprised three contiguous phases, following standard methodology (see Lonsdorf et al., 2017). 

During the initial habituation phase, all CSs were presented without being reinforced. In the 

subsequent acquisition phase, one stimulus (reinforced stimulus, CS+) from each CS category 

was systematically paired with a mild electric stimulation (unconditioned stimulus, US) using a 

partial reinforcement schedule, while the other stimulus (unreinforced stimulus, CS-) from each 

category was never associated with the electric stimulation. During the extinction phase that 

followed, no electric stimulation was delivered. Skin conductance responses (SCRs) were 

measured during all the phases. The conditioned response (CR) was operationalized as the 

differential SCR to the CS+ minus CS- from the same CS category (see, e.g., Olsson et al., 2005) 

and used as an index of learning. Our prediction was that the CR to both angry faces and baby 

faces would be more resistant to extinction than the CR to neutral faces. 

 

Method 

Participants 

In Experiment 1, 52 participants were recruited at the University of Geneva. They 

provided informed consent prior to the start of the experiment, which was approved by the 

Faculty of Psychology and Educational Sciences Ethics committee at the University of Geneva, 

and received either partial course credit or monetary compensation (20 Swiss francs) for their 

participation. Twelve participants were excluded from the analyses due to technical problems (n 

= 8), for displaying virtually no SCRs (n = 2), or for failing to acquire a CR to at least one of the 

three CSs predictive of the US delivery (n = 2). These exclusion criteria are commonly applied in 

the contemporary human conditioning literature (e.g., Olsson et al., 2005; Olsson & Phelps, 
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2004; Phelps et al., 2004; Stussi, Brosch, & Sander, 2015) and were determined prior to data 

collection. The final sample comprised 40 participants (31 women and 9 men), aged between 18 

and 52 years old (mean age = 23.85 ± 6.18 years). The sample size was determined based on a 

power analysis conducted with G*Power 3 (Faul, Erdfelder, Lang, & Buchner, 2007). The 

analysis revealed that a total sample of 34 participants would be required to obtain a power of 

80% to detect a moderate effect (d = 0.5) as reported in a previous study (Stussi et al., 2015). For 

counterbalancing purposes, we aimed to recruit a sample of 40 participants exhibiting differential 

conditioning to at least one of the three CS categories and stopped collecting data when we 

ascertained that the required number of participants had been reached. 

In Experiment 2, 88 undergraduate psychology students from the University of Geneva 

were tested. None of them took part in Experiment 1. They provided informed consent prior to 

the start of the experiment, which was approved by the Faculty of Psychology and Educational 

Sciences Ethics committee at the University of Geneva, and received partial course credit for 

their participation. Twenty-eight participants were excluded from the analyses due to technical 

problems (n = 7), for displaying virtually no SCRs (n = 8), or for failing to acquire a CR to at 

least one of the three CSs predictive of the US delivery (n = 13). The final sample consisted of 

60 participants (46 women and 14 men), aged between 19 and 50 years old (mean age = 23.03 ± 

6.25 years). The sample size was determined based on a power analysis, which indicated that at 

least 54 participants would be required to achieve a power of 95% to detect a moderate effect (d 

= 0.5). We therefore aimed to recruit a sample of 60 participants who were conditioned to at least 

one of the three CS categories and stopped data collection once this sample had been reached. 

Stimuli and apparatus 
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The CSs consisted of six different (male) faces divided into three categories: two adult 

faces with an angry expression, two adult faces with a neutral expression, and two baby faces. 

The four adult faces were taken from the Radboud Faces Database (model numbers 23 and 46 for 

the angry faces, and model numbers 15 and 25 for the neutral faces; Langner et al., 2010). The 

baby faces were selected from a set of infant faces used in previous studies (Coppin et al., 2014; 

Van Duuren, Kendell-Scott, & Stark, 2003). The selected faces were cut out from their original 

background and placed on a solid, gray background. All stimulus images were grayscale-

transformed. Quantitative analyses (see Delplanque, N’diaye, Scherer, & Grandjean, 2007) 

confirmed that the angry, neutral, and baby stimulus images did not differ statistically in terms of 

luminance, apparent contrast, or mean energy in spatial-frequency bands. Each face served both 

as a CS+ and a CS-, counterbalanced across participants. An independent rating study (N = 63; 

see supplemental materials) in which the stimuli used in Experiments 1 and 2 were evaluated on 

a visual analog scale (VAS) ranging from 0 (very unpleasant) to 100 (very pleasant) 

substantiated that the angry faces were evaluated as negative (M = 30.17, SE = 2.07), the neutral 

faces as neutral (M = 50.71, SE = 1.53), and the baby faces as positive (M = 72.12, SE = 2.08). In 

Experiment 1, the US consisted of a mild electric stimulation (200-ms duration, 50 pulses/s) 

delivered to the participants’ right wrist through a Grass SD9 stimulator (Grass Medical 

Instruments, West Warwick, Rhodes Island) charged by a stabilized current. In Experiment 2, the 

US was a mild electric stimulation (10-ms duration) delivered to the participants’ right wrist 

through a unipolar pulse electric stimulator (STM200; BIOPAC Systems, Inc., Goleta, CA). 

In Experiment 1, the CR was assessed through SCR measured with two pre-gelled 

disposable Ag-AgCl electrodes (11-mm contact diameter). In Experiment 2, the CR was assessed 

through SCR measured with two Ag-AgCl electrodes (6-mm contact diameter) filled with 0.5% 
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NaCl electrolyte gel. In both experiments, the electrodes were attached to the distal phalanges of 

the second and third digits of the participants’ left hand. The SCR data was continuously 

recorded with a sampling rate of 1000 Hz through a BIOPAC MP150 system (Santa Barbara, 

California). SCR was analyzed offline with AcqKnowledge software (version 4.2 in Experiment 

1, and version 4.4 in Experiment 2; BIOPAC Systems Inc., Goleta, California). 

Procedure 

Before conditioning, a work-up procedure was conducted to individually set the 

stimulation intensity (M = 36.75 V, SE = 1.27 in Experiment 1, and M = 34.88 V, SE = 0.96 in 

Experiment 2) to a level reported as “uncomfortable, but not painful” by the participant (e.g., 

Lonsdorf et al., 2017; Olsson et al., 2005). The initial habituation phase of the differential 

aversive conditioning procedure comprised two unreinforced presentations of each of the six 

CSs. During the acquisition phase, each CS was presented seven times. This phase always started 

with a reinforced CS+ trial. Five of the seven presentations of each CS+ co-terminated with the 

US delivery, while the presentations of each CS- were never paired with the US. We used a 

partial reinforcement schedule to potentiate the CR resistance to extinction, with the aim of 

optimizing the investigation of the differences in the persistence of learned emotional responses 

between the three CS categories used. The final extinction phase consisted of six unreinforced 

presentations of each CS. During all the conditioning phases, the CSs were presented for 6 s with 

an intertrial interval ranging from 12 to 15 s. The CSs’ order of presentation was 

pseudorandomized into eight different orders to systematically counterbalance the associations 

between the face stimuli and CS type (CS+ vs. CS-) across the three CS categories (Anger vs. 

Baby vs. Neutral).  
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After the extinction phase, participants completed subjective ratings of CS-US 

contingency and CS liking as manipulation checks in order to assess their awareness of the 

reinforcement contingencies and the CSs’ pleasantness, respectively. In this procedure, the CSs 

were presented again, accompanied by a VAS. For the CS-US contingency ratings, participants 

were asked to rate to what extent the CS was predictive of the delivery of an electric stimulation, 

the VAS ranging from 0 (never) to 100 (always). For the CS liking ratings, participants were 

asked to rate to what extent the CS was unpleasant or pleasant, the VAS ranging from 0 (very 

unpleasant) to 100 (very pleasant). The order of the CS presentations and the questions was 

randomized across participants. 

Response definition 

SCR was measured for each trial as the peak-to-peak amplitude difference in skin 

conductance of the largest response starting in the 0.5 to 4.5 s temporal window following CS 

onset. The minimal response criterion was 0.02 μS. Responses below this criterion were scored 

as ‘0’ and remained in the analyses. The SCR data was low-pass filtered (Blackman -92 dB, 

cutoff frequency = 1 Hz). SCRs were detected automatically with AcqKnowledge software as 

well as checked manually for artifacts and response detection. Trials containing artifacts 

influencing the coding of event-related SCRs or containing loss of SCR signal (1.78% in 

Experiment 1, and 0.003% in Experiment 2) were removed from the analyses. The raw SCR 

scores were square-root-transformed to normalize the distributions and scaled according to each 

participant’s mean square-root-transformed unconditioned response (UR). The UR was scored as 

the peak-to-peak amplitude difference in skin conductance of the largest response starting in the 

0.5 to 4.5 s temporal window following the US delivery, and the mean UR was calculated across 

all USs for each participant (see supplemental materials). The habituation means included the 
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first two presentations of each CS (see Figure 1). To examine the CR acquisition speed, the 

acquisition means were separated into an early (i.e., the first three presentations of each CS 

following the first association of the CS+ with the US; trials 4 to 6, see Figure 1) and a late (the 

subsequent three presentations of each CS; trials 7 to 9, see Figure 1) phase (see, e.g., Lonsdorf 

et al., 2017; Stussi et al., 2015). The first acquisition trial for each CS was omitted from the 

analyses because the CSs+ were predictive of the US only after their first association with the 

electric stimulation. The extinction means comprised the last six presentations of each CS (i.e., 

trials 10 to 15, see Figure 1). The analyses of the conditioning data were performed on the CR, 

which was calculated by subtracting the SCR to the CS- from the SCR to the CS+ from the same 

CS category (e.g., Olsson et al., 2005). This procedure permits to reduce the confounding role of 

preexisting differences in the CS categories’ emotional salience (Olsson et al., 2005) and to 

specifically control for learning within participant. 

Statistical analyses 

As it is standardly done in the human conditioning literature (see, e.g., Lonsdorf et al., 

2017), the SCR data was analyzed separately for the habituation, acquisition, and extinction 

phases. One-way repeated measures analyses of variance (ANOVAs) with CS category (Anger 

vs. Baby vs. Neutral) as a within-participant factor were used to analyze the habituation and 

extinction data, while a two-way repeated measures ANOVA with CS category (Anger vs. Baby 

vs. Neutral) and Time (Early vs. Late) as within-participant factor was used for the acquisition 

data. One-sample t-tests were conducted to assess whether differential conditioning occurred to 

angry, baby, and neutral faces across the whole acquisition phase. To specifically test our a priori 

hypothesis, we performed a planned contrast analysis comparing the CR to both angry (contrast 

weight: +1) and baby (contrast weight: +1) faces vs. neutral faces (contrast weight: -2) in 
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extinction. Following this main contrast, three further contrasts were conducted to examine more 

closely whether the CR would be more persistent to (i) angry (contrast weight: +1) vs. neutral 

(contrast weight: -1) faces and (ii) baby (contrast weight: +1) vs. neutral (contrast weight: -1) 

faces, and to assess the possible differences between (iii) angry (contrast weight: +1) and baby 

(contrast weight: -1) faces. Since these contrasts were non-orthogonal, a Holm-Bonferroni 

sequential procedure (Holm, 1979) was applied to correct for multiple comparisons. Specifically, 

the alpha level of the contrast with the lowest p-value was set as α = .05/4 = .0125, the alpha 

level of the contrast with the second lowest p-value as α = .05/3 = .0167, the alpha level of the 

contrast with the second highest p-value as α = .05/2 = .025, and the alpha level of the contrast 

with the highest p-value as α = .05. An alpha level of α = .05 was adopted for all the other 

statistical analyses performed. For each contrast, we additionally computed the Bayes factor 

(BF10) quantifying the likelihood of the data under the alternative hypothesis relative to the 

likelihood of the data under the null hypothesis (see, e.g., Dienes, 2011; Rouder, Speckman, Sun, 

Morey, & Iverson, 2009), using a Cauchy prior width of 0.5. For instance, a BF10 of 4 indicates 

that the data is four times more likely to be observed under the alternative hypothesis than under 

the null hypothesis. A BF10 larger than 3 (moderate evidence), larger than 10 (strong evidence), 

or larger than 30 (very strong evidence) is considered to provide evidence in favor of the 

alternative hypothesis relative to the null hypothesis, whereas a BF10 smaller than 0.333 

(moderate evidence), smaller than 0.100 (strong evidence), or smaller than 0.033 (very strong 

evidence) is considered to provide evidence in favor of the null hypothesis over the alternative 

hypothesis (Jeffreys, 1961). We performed one-sided testing to test our a priori, theory-driven 

directional hypotheses (one-sample t-tests, main contrast and contrasts i and ii), while two-sided 

testing was used when we did not have a directional prediction (contrast iii). 
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The CS-US contingency and CS liking ratings were each analyzed with a two-way 

repeated measures ANOVA with CS type (CS+ vs. CS-) and CS category (Anger vs. Baby vs. 

Neutral) as within-participant factors. Significant effects were followed up with a multiple 

comparison procedure using Tukey’s HSD tests when applicable. 

We report either partial η2 or Hedges’ gav as estimates of effect size (see Lakens, 2013) 

and their 90% or 95% confidence interval (CI), respectively. Huynh-Feldt adjustments of degrees 

of freedom were applied when appropriate. 

 

Results 

Figure 1 displays the mean SCR magnitudes to angry, baby, and neutral faces throughout 

the habituation, acquisition, and extinction phases separately for the CS+ and the CS-. The 

conditioned response to angry, baby, and neutral faces during acquisition and extinction is 

depicted in Figure 2. 

Experiment 1 

Skin conductance response. In the habituation phase, no preexisting difference in 

differential SCRs to the CS categories was found, F(2, 78) = 0.64, p = .533, partial η2 = .016, 

90% CI [.000, .069]. Similarly, no statistical difference between the CS categories emerged 

during acquisition, F(2, 78) = 0.44, p = .643, partial η2 = .011, 90% CI [.000, .057]. Moreover, 

the CR did not statistically differ between the early and late phases of acquisition, F(1, 39) = 

0.05, p = .816, partial η2 = .001, 90% CI [.000, .054]. No statistically significant interaction 

effect of CS category and Time was observed, F(2, 78) = 1.75, p = .180, partial η2 = .043, 90% 

CI [.000, .120], which indicates that there was no statistical difference in the speed of the CR 

acquisition across the CS categories. Further analyses revealed however a reliably greater SCR to 
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the CS+ than CS- for angry (t(39) = 2.31, p = .013 (one-tailed), gav = 0.507, 95% CI [0.061, 

0.967]), baby (t(39) = 3.05, p = .002 (one-tailed), gav = 0.669, 95% CI [0.214, 1.141]), and 

neutral (t(39) = 2.61, p = .006 (one-tailed), gav = 0.571, 95% CI [0.122, 1.036]) faces, indicating 

successful differential conditioning to all three CS categories (see Figure 2a). Central to our 

hypothesis, analysis of the extinction phase showed that the CS categories differentially affected 

the persistence of the CR, F(2, 78) = 4.51, p = .014, partial η2 = .104, 90% CI [.012, .204]. As 

predicted by the relevance detection hypothesis, the CR to both angry and baby faces was more 

resistant to extinction than the CR to neutral faces, t(39) = 3.04, p = .002 (one-tailed), gav = 

0.598, 95% CI [0.191, 1.021], BF10 = 19.154 (see Figure 2a). Direct comparisons revealed a 

more persistent CR to angry faces compared with neutral faces, t(39) = 2.43, p = .010 (one-

tailed), gav = 0.472, 95% CI [0.076, 0.881], BF10 = 5.348 (see Figure 2a). Importantly, the CR to 

baby faces was likewise more persistent than the CR to neutral faces, t(39) = 2.73, p = .005 (one-

tailed), gav = 0.569, 95% CI [0.141, 1.014], BF10 = 9.679, whereas there was no statistical 

difference in the resistance to extinction of the CR to angry faces compared with baby faces, 

t(39) = -0.64, p = .524 (two-tailed), gav = -0.132, 95% CI [-0.545, 0.278], BF10 = 0.279 (see 

Figure 2a). 

Subjective ratings. The CS-US contingency ratings showed that the CSs+ were deemed 

more likely to be associated with the US than the CSs-, F(1, 39) = 75.25, p < .001, partial 

η2 = .659, 90% CI [.495, .745], while there was no interaction between CS type and CS category, 

F(2, 78) = 0.73, p = .485, partial η2 = .018, 90% CI [.000, .075]. Moreover, the CS categories 

differentially influenced the CS-US contingency ratings, F(1.69, 66.00) = 7.97, p = .001, partial 

η2 = .170, 90% CI [.045, .291]. Follow-up analyses revealed that angry faces were rated as more 

likely to be predictive of the US than both baby faces (p = .011, gav = 0.621, 95% CI [0.108, 
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1.151]) and neutral faces (p < .001, gav = 0.878, 95% CI [0.399, 1.381]), whereas there was no 

statistical difference in the CS-US contingency ratings for baby faces relative to neutral faces (p 

= .681, gav = 0.225, 95% CI [-0.196, 0.652]) (see Figure 3a). 

The CS liking ratings revealed that the CSs- were more liked than the CSs+, F(1, 39) = 

5.75, p = .021, partial η2 = .128, 90% CI [.011, .289], a significant main effect not qualified by an 

interaction with CS category, F(2, 78) = 0.25, p = .780, partial η2 = .006, 90% CI [.000, .040]. 

The CS liking ratings were also modulated by the CS categories, F(1.78, 69.23) = 68.92, p < 

.001, partial η2 = .639, 90% CI [.514, .710]. Follow-up analyses showed that baby faces were 

rated as more pleasant than angry faces (p < .001, gav = 2.505, 95% CI [1.792, 3.302]) and 

neutral faces (p < .001, gav = 1.386, 95% CI [0.918, 1.898]), and that neutral faces were rated as 

more pleasant than angry faces (p < .001, gav = 1.310, 95% CI [0.796, 1.863]) (see Figure 3b). 

Experiment 2 

Skin conductance response. During habituation, there was no statistical difference in 

differential SCRs to the different CS categories, F(1.80, 105.96) = 0.76, p = .459, partial η2 

= .013, 90% CI [.000, .057]. Likewise, the CR did not statistically differ across the three CS 

categories during the acquisition phase, F(1.84, 108.67) = 1.72, p = .186, partial η2 = .028, 90% 

CI [.000, .087]. No statistically significant main effect of Time was found, F(1, 59) = 0.02, p = 

.881, partial η2 = .0004, 90% CI [.000, .016]. The interaction between CS category and Time did 

not yield statistical significance either, F(1.78, 104.89) = 1.53, p = .222, partial η2 = .025, 90% 

CI [.000, .083], which suggests that the CR acquisition speed did not differ across the CS 

categories. As in Experiment 1, one-sample t-tests showed a greater SCR to the CS+ than CS- 

for angry (t(59) = 4.80, p < .001 (one-tailed), gav = 0.865, 95% CI [0.482, 1.264]), baby (t(59) = 

4.45, p < .001 (one-tailed), gav = 0.801, 95% CI [0.422, 1.195]), and neutral (t(59) = 1.96, p = 
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.027 (one-tailed), gav = 0.353, 95% CI [-0.007, 0.720]) faces,1 reflecting successful differential 

conditioning to all three CS categories (see Figure 2b). Analysis of the extinction phase revealed 

that the CS categories differentially modulated the CR resistance to extinction, F(2, 118) = 4.93, 

p = .009, partial η2 = .077, 90% CI [.012, .153]. Replicating results from Experiment 1, the CR to 

both angry and baby faces was more persistent than the CR to neutral faces, t(59) = 3.21, p = 

.001 (one-tailed), gav = 0.444, 95% CI [0.162, 0.735], BF10 = 31.123 (see Figure 2b). Direct 

comparisons showed that the CR to angry faces was more resistant to extinction relative to 

neutral faces, t(59) = 2.45, p = .009 (one-tailed), gav = 0.352, 95% CI [0.063, 0.647], BF10 = 

5.363 (see Figure 2b). Critically, the CR to baby faces was also more resistant to extinction than 

the CR to neutral faces, t(59) = 2.99, p = .002 (one-tailed), gav = 0.451, 95% CI [0.144, 0.765], 

BF10 = 17.861, while the CR persistence to angry faces did not statistically differ from the CR 

persistence to baby faces, t(59) = -0.57, p = .571 (two-tailed), gav = -0.094, 95% CI [-0.423, 

0.233], BF10 = 0.225 (see Figure 2b).2 

Subjective ratings. The CS-US contingency ratings indicated that the CSs+ were rated as 

being more predictive of the US than the CSs-, F(1, 59) = 108.15, p < .001, partial η2 = .647, 

90% CI [.518, .724] (see Figure 3c), whereas the interaction between CS type and CS category 

did not reach statistical significance, F(2, 118) = 1.12, p = .331, partial η2 = .019, 90% CI [.000, 

.065]. In contrast to Experiment 1, no main effect of CS category was found, F(2, 118) = 1.47, p 

= .235, partial η2 = .024, 90% CI [.000, .076]. 

 The CS liking ratings revealed a main effect of CS type, F(1, 59) = 4.55, p = .037, partial 

η2 = .072, 90% CI [.002, .191], and a main effect of CS category, F(1.66, 98.16) = 196.77, p < 

.001, partial η2 = .769, 90% CI [.701, .810]. These main effects were however qualified by the 

higher-order interaction between CS type and CS category, F(2, 118) = 3.37, p = .038, partial 
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η2 = .054, 90% CI [.002, .122]. Follow-up analyses showed that baby faces were rated as more 

pleasant than angry faces (all ps < .001, 2.41 < gavs < 2.96) and neutral faces (all ps < .001, 1.02 

< gavs < 1.80), while neutral faces were rated as more pleasant than angry faces (all ps < .001, 

1.59 < gavs < 1.81). Furthermore, whereas the CS- was evaluated as more pleasant than the CS+ 

for baby faces (p = .021, gav = 0.397, 95% CI [0.068, 0.734]), there was no statistical difference 

in rated pleasantness between the CS- and the CS+ for angry faces (p = .997, gav = -0.072, 95% 

CI [-0.323, 0.179]) and neutral faces (p = .711, gav = 0.270, 95% CI [-0.080, 0.626]) (see Figure 

3d). 

 

Discussion 

In line with the relevance detection model’s prediction, Experiments 1 and 2 revealed that 

both angry faces and baby faces produced a learning bias during Pavlovian aversive 

conditioning, as shown by the enhanced conditioned response persistence to angry faces and 

baby faces compared with neutral faces. While the results for angry faces replicate previous 

findings (e.g., Öhman & Dimberg, 1978; Öhman & Mineka, 2001), the greater resistance to 

extinction of the conditioned response to baby faces expands the existing human conditioning 

literature, and suggests that positive stimuli with biological relevance can likewise be 

preferentially conditioned to threat, thereby demonstrating that preferential Pavlovian aversive 

conditioning is not specific to threat-related stimuli. 

In contrast, we found no evidence for faster or stronger acquisition of the conditioned 

response to angry or baby faces relative to neutral faces. Such absence of differences across 

conditioned stimulus categories during acquisition is however not surprising when considering 

the human conditioning literature, which has generally shown a lack of experimental support for 
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faster or stronger aversive conditioning to specific stimulus classes, such as threat-relevant 

stimuli (see McNally, 1987; Öhman & Mineka, 2001, for reviews). Although enhanced 

resistance to extinction has been frequently demonstrated to threat-relevant stimuli (Öhman & 

Mineka, 2001), evidence for faster or larger aversive conditioning to threat-relevant stimuli 

remains by comparison very scarce (Ho & Lipp, 2014; Öhman, Eriksson, & Olofsson, 1975). A 

potential explanation for this absence of significant effect relates to the use of a relatively high 

reinforcement rate whereby the CSs+ reliably predicted the US, which may have entailed rapid 

aversive conditioning to all the conditioned stimulus categories within a few pairings between 

the CSs+ and the US, and consequently led to ceiling effects in the conditioned response 

acquisition readiness, thereby potentially obscuring the emergence of differences in learning 

patterns among the stimulus categories (see Ho & Lipp, 2014; Lissek, Pine, & Grillon, 2006). 

Further, it should also be noted that the pattern of skin conductance responses in 

Experiment 1 was somewhat unusual at the descriptive level in comparison with what is 

generally observed in human aversive conditioning studies. Whereas the difference between the 

CS+ and the CS- is usually evident at the end of acquisition and at the onset of extinction, there 

seemed to be no such difference at the last acquisition trial and first extinction trial for angry 

faces (see Figure 1a) and baby faces (see Figure 1b). It could be speculated that this pattern may 

be due to the use of a within-participant design using six different conditioned stimuli, instead of 

a between-participant design (e.g., Öhman & Dimberg, 1978; Öhman et al., 1976) or a within-

participant design including only two to four conditioned stimuli (e.g., Ho & Lipp, 2014; Olsson 

et al., 2005), which might have entailed a stronger habituation of skin conductance responses to 

the CS+ than commonly observed. The subsequent reemergence of differences between the CS+ 

and the CS- could then have been induced by the change of contingency between the CS+ and 
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the US, thus possibly leading to dishabituation effects. However, it remains unclear why this 

relative lack of evident CS+/CS- differentiation at the last acquisition trial and first extinction 

trial was observed for angry faces and baby faces but not for neutral faces, and why it was 

observed in Experiment 1, but not in Experiment 2, which suggests that it may otherwise simply 

reflect noise in the data. 

It is also noteworthy that the observed enhanced resistance to extinction effects might be 

interpreted as reflecting selective sensitization, a nonassociative process, in addition to – or 

rather than – a conditioning process (Lovibond, Siddle, & Bond, 1993). Selective sensitization 

has been proposed as a putative mechanism responsible for enhanced responding to threat-

relevant CSs+ during extinction, emerging as a result of the activation of preexisting response 

tendencies to these stimuli under certain conditions, such as threat or a state of arousal (e.g., 

Lovibond et al., 1993). In the present case, it could then be argued that the angry and the baby 

face CSs+ may have led to a greater resistance to extinction of the conditioned response than the 

neutral face CS+ because of their inherent potential to elicit enhanced responses in a state of 

arousal (i.e., induced by threat of electric stimulation). Even though we cannot completely rule 

out this possibility, it is unlikely that selective sensitization was the sole factor accounting for our 

results. Selective sensitization, as a relatively short-lived phenomenon (e.g., Lipp, Cronin, 

Alhadad, & Luck, 2015), has been suggested to be insufficient to explain the long-lasting effects 

classically observed in human aversive conditioning studies using threat-relevant stimuli (Öhman 

& Mineka, 2001). Furthermore, analyses of the SCRs during the habituation phase in 

Experiments 1 and 2 provided no support for a selective sensitization to angry and baby faces 

compared with neutral faces,3 thereby suggesting that the enhanced resistance to extinction to 

angry and baby faces primarily resulted from an associative learning process.  
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In Experiments 1 and 2, subjective ratings showed that the CS+ was evaluated as being 

more likely to be predictive of the US delivery than the CS- across the three stimulus categories, 

indicating that, overall, participants were aware of the contingencies. In Experiment 1, angry 

faces were deemed more predictive of the US than baby and neutral faces, which might suggest 

that negative threat-relevant stimuli are more likely to be associated with an aversive outcome at 

the explicit level irrespective of the actual contingencies (Davey, 1992; Tomarken, Mineka, & 

Cook, 1989). However, this interpretation should be considered with caution as subjective 

ratings were collected exclusively after extinction but not after acquisition. Moreover, this effect 

did not replicate in Experiment 2, highlighting that the boundary conditions of such potential 

expectancy or covariation bias remain to be determined. As anticipated, baby faces were 

evaluated as more pleasant than neutral and angry faces, and neutral faces were rated as more 

pleasant than angry faces after the extinction phase in both experiments, thus reflecting an 

efficient manipulation of the conditioned stimuli’s valence. In Experiment 1, aversive 

conditioning had a similar effect on the CS+’s and the CS-’s rated pleasantness across the three 

stimulus categories; however, the CS- was evaluated as statistically significantly more pleasant 

than the CS+ only for baby faces in Experiment 2. Although not central to the present study’s 

aims, these results likely stem from the fact that the electric stimulation was shorter in 

Experiment 2 than in Experiment 1 (10-ms vs. 200-ms duration), thus being less aversive and 

perceived as less intense,4 which might have induced less robust evaluative conditioning effects 

(see Hofmann, De Houwer, Perugini, Baeyens, & Crombez, 2010). 

In sum, the occurrence of a Pavlovian learning bias to both angry faces and baby faces 

supports the view that preferential emotional learning is underlain by a relevance detection 

mechanism rather than a threat- or valence-specific mechanism, such as a fear module (Öhman 
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& Mineka, 2001). Nonetheless, we only used a single instance of positive relevant stimuli in both 

experiments, thus entailing the possibility that the observed effects are selective to baby faces.  

The relevance detection model however predicts that positive biologically relevant stimuli 

induce a learning bias during Pavlovian aversive conditioning, this learning bias thereby not 

being confined to baby faces. Findings showing that other categories of positive relevant stimuli 

are preferentially conditioned to threat as well would hence provide additional empirical 

evidence in favor of this model. Therefore, we tested in Experiment 3 whether an enhanced 

Pavlovian aversive conditioning to positive relevant stimuli also occurs in response to another 

category of positive emotional stimuli that are relevant to the organism, namely erotic stimuli 

(see, e.g., Bradley, Codispoti, Cuthbert, & Lang, 2001; Panksepp, 1998; Sennwald et al., 2016). 

 

EXPERIMENT 3 

In Experiment 3, we aimed to replicate and extend the findings from Experiments 1 and 2 

with different categories of stimuli. More specifically, we investigated whether both snakes and 

erotic stimuli are preferentially conditioned to threat in comparison with neutral stimuli. To this 

end, we used a differential aversive conditioning procedure, in which snake images, erotic 

images, and colored squares were presented as CSs. Erotic stimuli were selected as positive 

biologically relevant CSs because they are typically positive and rewarding, and hold high 

relevance for the species’ reproduction and survival, thereby being biologically and 

motivationally relevant to the organism (Berridge & Kringelbach, 2015; Bradley et al., 2001; 

Georgiadis & Kringelbach, 2012; Panksepp, 1998; Pool, Brosch, et al., 2016; Sander et al., 2003; 

Schultz, 2015; Sennwald et al., 2016). Snakes were selected as negative biologically relevant 

CSs because they constitute the prototypical instance of negative threat-relevant stimuli from 
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phylogenetic origin that have threatened the survival of the species (see, e.g., Öhman & Mineka, 

2001). The differential aversive conditioning procedure was identical to the one used in 

Experiments 1 and 2. After the habituation phase, during which all CSs were presented without 

being reinforced, the CS+ from each CS category was systematically paired with a mild electric 

stimulation (US) using a partial reinforcement schedule during acquisition, while the CS- from 

each category was never associated with the electric stimulation. In the subsequent extinction 

phase, the electric stimulation was no longer delivered. As in Experiments 1 and 2, the CR was 

operationalized as the differential SCR to the CS+ minus CS- from the same CS category (see, 

e.g., Olsson et al., 2005) and used as an index of learning. Our prediction was that the CR to both 

snake images and erotic images would be more resistant to extinction than the CR to neutral 

colored squares. 

 

Method 

Participants 

Fifty-five male volunteers were recruited at the University of Geneva. They provided 

informed consent prior to the start of the experiment, which was approved by the Regional 

Research Ethics Committee in Geneva, and received monetary compensation (20 Swiss francs) 

for their participation. As visual sexual stimuli are primarily tailored for men, who are 

accordingly thought to be generally more interested in such stimuli than women (e.g., Hamann, 

Herman, Nolan, & Wallen, 2004; but see, e.g., Rupp & Wallen, 2008, for a discussion of the role 

of the stimulus materials used), only men were included in the experiment. Fifteen participants 

were excluded from the analyses due to technical problems (n = 2), for displaying virtually no 

SCRs (n = 4), for failing to acquire a CR to at least one of the three CSs predictive of the US 
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delivery (n = 6), or for withdrawing from the experiment early (n = 3). The final sample 

consisted of 40 men aged between 19 and 42 years old (mean age = 24.80 ± 5.43 years). The 

sample size was established on the basis of a power analysis (see Experiment 1) with the aim of 

recruiting a sample of 40 participants exhibiting differential conditioning to at least one of the 

three CS categories. We stopped collecting data when the required number of participants had 

been reached. 

Stimuli and apparatus 

The CSs were selected individually for each participant among a set of 12 snake images 

taken from the International Affective Picture System5 (IAPS; Lang, Bradley, & Cuthbert, 2008), 

24 erotic images (12 images of nude or partially nude men and 12 images of nude or partially 

nude women; Sennwald et al., 2018), and 12 colored squares. Based on each participant’s 

ratings, the two most disliked snake images, the two most liked erotic images, and the two most 

neutral colored squares were used as CSs. In the event that several images had identical liking 

ratings within a CS category, the two most arousing images were selected for the snake and 

erotic CS categories, respectively, whereas the two least arousing colored squares were selected 

for the neutral CS category. If the liking and arousal ratings were identical for several images 

within a CS category, the images that had been the most recently presented were chosen. The 

attribution of the CS+ and CS- roles to the two selected stimuli for each CS category was 

counterbalanced across participants. The rationale for the CSs’ selection procedure was to take 

into account individual differences in response to erotic stimuli, the responses to such stimuli 

being notoriously highly variable, by adequately considering individual preferences (see Kagerer 

et al., 2014; Sennwald et al., 2018). This way we could ensure that the erotic stimuli were 

rewarding, thereby increasing the chances of these stimuli to be motivationally relevant for the 
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participants’ sexual concerns (see Sennwald et al., 2018). The selection procedure was likewise 

applied to the snake and neutral CSs to ensure the equal treatment of each CS category, as well 

as to ensure that the snake CSs were deemed negative and the neutral CSs neutral. The US was a 

mild electric stimulation (200-ms duration, 50 pulses/s) delivered to the participants’ dominant 

wrist through a Grass SD9 stimulator (Grass Medical Instruments, West Warwick, Rhodes 

Island) charged by a stabilized current. 

The CR was assessed through SCR measured with two Ag-AgCl electrodes (6-mm 

contact diameter) filled with 0.5% NaCl electrolyte gel. The electrodes were attached to the 

distal phalanges of the second and third digits of the participants’ non-dominant hand. The SCR 

data was continuously recorded with a sampling rate of 1000 Hz through a BIOPAC MP150 

system (Santa Barbara, California). SCR was analyzed offline with AcqKnowledge software 

(version 4.2; BIOPAC Systems Inc., Goleta, California). 

Questionnaires 

The Sexual Desire Inventory 2 (SDI-2; Spector, Carey, & Steinberg, 1996) and a 

questionnaire on sexual orientation were used in this experiment. The SDI-2 consists of a 14-

item inventory indexing dyadic (summed score from 0 to 62) and solitary sexual desire (summed 

score from 0 to 23), as well as general sexual desire (summed score from 0 to 109). It was used 

to examine whether there might be an association between participants’ sexual desire and their 

CR to erotic stimuli during the acquisition and extinction phases of the aversive conditioning 

procedure (see supplemental materials). Participants reported a mean dyadic sexual desire of 

42.05 (SE = 1.02, range = [27, 60]), a mean solitary sexual desire of 10.70 (SE = 0.88, range = 

[0, 23]), and a mean general sexual desire of 66.08 (SE = 1.69, range = [47, 93]). The sexual 

orientation questionnaire was used to establish participants’ sexual orientation using the Kinsey 
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scale (Kinsey, Pomeroy, & Martin, 1948) on four different aspects of sexual orientation (i.e., 

sexual attraction, sexual behavior, sexual fantasies, and sexual identity).  

Procedure 

Prior to the experiment, participants were asked to fill out the SDI-2 and the sexual 

orientation questionnaire. Subsequently, they were asked to rate the 48 stimulus images 

according to their liking and felt arousal. The liking ratings measured how much participants 

liked seeing the displayed image on a VAS ranging from 0 (not at all) to 100 (extremely), while 

the arousal ratings measured how much participants felt physiologically aroused by the displayed 

image on a VAS ranging from 0 (very weakly) to 100 (very strongly). The stimulus images’ 

presentation order was randomized across participants. 

Once the CSs’ selection procedure was completed, participants first underwent a work-up 

procedure in order to individually set the electric stimulation intensity (M = 29.75 V, SE = 1.16), 

and then the differential aversive conditioning procedure. Finally, participants completed 

subjective ratings of CS-US contingency and CS liking as manipulation checks to assess their 

awareness of the reinforcement contingencies and the CSs’ pleasantness, respectively. All these 

procedures were identical to the ones used in Experiments 1 and 2. 

Response definition 

Response definition was strictly the same as in Experiments 1 and 2. Trials containing 

artifacts influencing the coding of event-related SCRs (0.005%) were removed from the 

analyses. 

Statistical analyses 

We performed repeated measures ANOVAs with CS type (CS+ vs. CS-) and CS category 

(Snake vs. Erotic vs. Neutral) as within-participant factors on the liking and arousal ratings 
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collected during the CSs’ selection procedure to ensure (1) that there were no preexisting 

differences in the liking and arousal ratings between the selected CS+ and CS- within each CS 

category, and (2) that the selected erotic images were more liked than the selected snake images 

and the selected neutral colored squares, and that the selected neutral colored squares were more 

liked than the selected snake images. A multiple comparison procedure using Tukey’s HSD tests 

was applied to follow up significant effects when applicable. Statistical analyses of the SCR data 

and the subjective ratings (i.e., CS-US contingency and CS liking ratings) were identical to the 

ones used in Experiments 1 and 2. 

As in Experiments 1 and 2, we report either partial η2 or Hedges’ gav as estimates of 

effect size (see Lakens, 2013) and their 90% or 95% CI, respectively. Huynh-Feldt adjustments 

of degrees of freedom were applied when appropriate. 

 

Results 

Figure 4 displays the mean SCR magnitudes to snake, erotic, and neutral stimuli across 

the habituation, acquisition, and extinction phases separately for the CS+ and the CS-. The 

conditioned response to snake, erotic, and neutral stimuli during acquisition and extinction is 

shown in Figure 5. 

Conditioned stimuli’s evaluation. Table 1 shows the mean liking and arousal ratings of 

the CSs selected for each CS category. No main effect of CS type was found for the liking 

ratings of the selected CSs, F(1, 39) = 0.73, p = .397, partial η2 = .018, 90% CI [.000, .132]. 

Likewise, the interaction between CS type and CS category was not statistically significant, 

F(1.79, 69.77) = 0.31, p = .710, partial η2 = .008, 90% CI [.000, .053]. These results indicate that 

the selected CS+ and CS- did not statistically differ in terms of rated liking within each CS 
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category. As expected, a significant main effect of CS category for the liking ratings was 

observed, F(2, 78) = 284.71, p < .001, partial η2 = .880, 90% CI [.835, .902]. Follow-up analyses 

confirmed that the selected erotic images were more liked than the selected snake images (p < 

.001, gav = 5.769, 95% CI [4.494, 7.260]) and the selected neutral colored squares (p < .001, gav 

= 3.560, 95% CI [2.699, 4.548]), while the selected colored squares were more liked than the 

selected snake images (p < .001, gav = 1.932, 95% CI [1.329, 2.598]). 

Similarly to the liking ratings, the main effect of CS type for the arousal ratings of the 

selected CSs was not statistically significant, F(1, 39) = 1.03, p = .316, partial η2 = .026, 90% CI 

[.000, .148], and no interaction effect between CS type and CS category was found, F(2, 78) = 

0.25, p = .779, partial η2 = .006, 90% CI [.000, .040], reflecting that the selected CS+ and CS- 

did not statistically differ in terms of rated arousal within each CS category. As expected, the CS 

categories differentially influenced the arousal ratings of the selected CSs, F(2, 78) = 75.45, p < 

.001, partial η2 = .659, 90% CI [.548, .723]. Follow-up tests showed that the selected snake 

images were rated as more arousing than the selected neutral colored squares (p < .001, gav = 

0.843, 95% CI [0.410, 1.301]), and that the selected erotic images were rated as more arousing 

than the selected colored squares (p < .001, gav = 3.249, 95% CI [2.441, 4.172]). In addition, the 

selected erotic images were evaluated as more arousing than the selected snake images (p < .001, 

gav = 1.523, 95% CI [1.017, 2.076]).6  

Skin conductance response. In the habituation phase, no preexisting difference in 

differential SCRs to the CS categories was observed, F(2, 78) = 1.06, p = .353, partial η2 = .026, 

90% CI [.000, .091]. In the acquisition phase, the CR did not statistically differ across the CS 

categories either, F(2, 78) = 0.03, p = .967, partial η2 = .001, 90% CI [.000, .017], and there was 

no statistically significant main effect of Time, F(1, 39) = 1.41, p = .243, partial η2 = .035, 90% 
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CI [.000, .164]. Similarly, no statistically significant interaction effect of CS category and Time 

was found, F(1.73, 67.50) = 0.20, p = .789, partial η2 = .005, 90% CI [.000, .043], reflecting that 

there was no statistical difference in the CR acquisition speed among the CS categories. Further 

analyses revealed that the SCR to the CS+ was greater than to the CS- for snake images (t(39) = 

2.50, p = .008 (one-tailed), gav = 0.547, 95% CI [0.099, 1.010]), erotic images (t(39) = 2.29, p = 

.014 (one-tailed), gav = 0.502, 95% CI [0.056, 0.962]), and neutral colored squares (t(39) = 2.46, 

p = .009 (one-tailed), gav = 0.540, 95% CI [0.092, 1.002]), indicating successful differential 

conditioning to all three CS categories (see Figure 5). Analysis of the extinction phase showed 

that the CR persistence was differentially affected by the CS categories, F(1.73, 67.62) = 4.68, p 

= .016, partial η2 = .107, 90% CI [.012, .218]. As predicted by the relevance detection model, the 

CR to both snake and erotic images was more persistent than the CR to neutral colored squares, 

t(39) = 2.62, p = .006 (one-tailed), gav = 0.496, 95% CI [0.109, 0.898], BF10 = 7.777 (see Figure 

5). Pairwise comparisons revealed that the CR to snake images was more resistant to extinction 

than colored squares, t(39) = 2.52, p = .008 (one-tailed), gav = 0.432, 95% CI [0.082, 0.794], 

BF10 = 6.397. The CR to erotic images was likewise more resistant to extinction compared with 

the CR to colored squares, t(39) = 2.38, p = .011 (one-tailed), gav = 0.504, 95% CI [0.072, 

0.950], BF10 = 4.815, whereas no statistical difference in CR resistance to extinction emerged 

between snake images and erotic images, t(39) = -0.51, p = .610 (two-tailed), gav = -0.095, 95% 

CI [-0.466, 0.274], BF10 = 0.261 (see Figure 5). 

Subjective ratings. The CS-US contingency ratings showed that the CSs+ were more 

likely to be associated with the US than the CSs-, F(1, 39) = 26.62, p < .001, partial η2 = .406, 

90% CI [.203, .547], while the interaction between CS type and CS category did not reach 

statistical significance, F(2, 78) = 2.66, p = .076, partial η2 = .064, 90% CI [.000, .152]. 
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Moreover, the CS-US contingency ratings were differentially modulated by the CS categories, 

F(2, 78) = 3.55, p = .034, partial η2 = .083, 90% CI [.004, .178]. Follow-up tests indicated that 

erotic images were rated as being more predictive of the US compared with colored squares (p = 

.038, gav = 0.479, 95% CI [0.055, 0.917]), but not relative to snake images (p = .890, gav = 0.093, 

95% CI [-0.309, 0.497]), whereas snake images were not evaluated as more predictive of the US 

than colored squares (p = .109, gav = 0.388, 95% CI [0.037, 0.750]) (see Figure 6a). 

The CS liking ratings revealed that the CSs- were not deemed more pleasant than the 

CSs+ after the extinction phase, F(1, 39) = 0.56, p = .459, partial η2 = .014, 90% CI [.000, .122]. 

Expectedly, a main effect of CS category was found, F(2, 78) = 135.20, p < .001, partial 

η2 = .776, 90% CI [.697, .818]. This main effect was not qualified by an interaction with CS 

type, F(2, 78) = 0.22, p = .801, partial η2 = .006, 90% CI [.000, .037]. Follow-up analyses 

showed that erotic images were evaluated as more pleasant than snake images (p < .001, gav = 

3.801, 95% CI [2.879, 4.860]) and colored squares (p < .001, gav = 2.654, 95% CI [1.963, 

3.438]), while colored squares were rated as more pleasant than snake images (p = .001, gav = 

0.797, 95% CI [0.337, 1.279]) (see Figure 6b). 

 

Discussion 

Experiment 3 replicated and extended the key findings of Experiments 1 and 2 by 

demonstrating that, like threat-relevant stimuli, positive stimuli with biological relevance to the 

organism are preferentially conditioned to threat, and, in particular, that these findings generalize 

beyond baby faces. Results indeed showed that the conditioned response to snake images was 

more resistant to extinction than the conditioned response to neutral colored squares, which 

concurs with previous research in the human conditioning literature (e.g., Öhman et al., 1976; 
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Öhman & Mineka, 2001). Of critical importance, the conditioned response to erotic images was 

likewise more resistant to extinction relative to neutral colored squares, thereby reflecting that 

both snake and erotic stimuli induced a learning bias during Pavlovian aversive conditioning. 

Of note, previous studies by Hamm and colleagues (Hamm, Greenwald, Bradley, & 

Lang, 1993; Hamm & Stark, 1993; Hamm & Vaitl, 1996) have also used erotic stimuli as 

conditioned stimuli in a differential aversive conditioning procedure. Although these studies 

showed a greater responding in SCR to the CS+ than the CS- across the various stimulus 

categories used (e.g., threatening animals, mutilations, household objects, and nature scenes) 

during extinction, none of them seemed to suggest an enhanced resistance to extinction to erotic 

stimuli, thus contrasting with the current findings. Nonetheless, it is important to note that these 

studies did not take into account individual preferences for erotic stimuli, and thereby did not 

directly consider erotic stimuli’s affective relevance for the individual’s sexual concerns, which 

may potentially account for the discrepancy between their results and ours. 

In line with prior reports in the human conditioning literature (see McNally, 1987; 

Öhman & Mineka, 2001, for reviews), we observed no reliable differences among the 

conditioned stimulus categories during the acquisition phase, thus providing no evidence for 

faster or larger acquisition of a conditioned response to snake images and erotic stimuli 

compared with neutral stimuli. As for Experiments 1 and 2, this absence of effect might be 

explained by the specifics of the experimental paradigm used here, in which the various CSs+ 

predicted relatively unambiguously the US, thereby possibly masking the emergence of 

differences in the conditioned response acquisition readiness across the conditioned stimulus 

categories (Ho & Lipp, 2014; Lissek et al., 2006). 
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Overall, the conditioned stimuli’s ratings during the conditioned stimuli’s selection 

procedure confirmed that the selected snake stimuli were deemed negative, the selected neutral 

stimuli neutral, and the selected erotic stimuli positive. The selected erotic and snake stimuli 

were additionally rated as more arousing than the selected neutral stimuli, whereas the erotic 

stimuli were also rated as more arousing than the snake stimuli. This latter effect might be due to 

the fact that some participants may have misinterpreted the notion of physiological arousal as 

sexual arousal, thus entailing a possible undervaluation of the actual snake stimuli’s arousal 

value. Importantly, there was however no statistical difference between the selected CS+ and the 

selected CS- within each stimulus category in the liking and arousal ratings, thereby reflecting an 

appropriate selection of the conditioned stimuli for each stimulus category.  

Subjective ratings collected after extinction revealed that the CSs+ were evaluated as 

more predictive of the US than the CSs- across the three stimulus categories, indicating that, 

overall, participants were aware of the contingencies. Moreover, erotic stimuli were deemed 

more likely to be associated with the US than neutral stimuli regardless of the actual 

contingencies. This might suggest that expectancy (Davey, 1992) and/or covariation (Tomarken 

et al., 1989) biases are not selective to associations involving negative threat-relevant stimuli, but 

can also encompass certain associations between positive biologically relevant stimuli and 

aversive outcomes. However, this interpretation should be considered with caution since we 

collected subjective ratings only after extinction, but not after acquisition. In addition, the fact 

that we did not find such an effect either in Experiment 1 or 2 highlights that further research is 

needed to explore its determinants, along with its reproducibility and robustness. The CS liking 

ratings confirmed that erotic stimuli were still evaluated as more pleasant than neutral and snake 

stimuli after extinction, while neutral stimuli were still rated as more pleasant than snake stimuli. 
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In contrast to Experiments 1 and 2 as well as previous reports in the human conditioning 

literature (e.g., Hamm et al., 1993; Hamm & Vaitl, 1996), no resistant-to-extinction evaluative 

effects were observed in this experiment. A potential explanation for this discrepancy could be 

that the addition of CSs’ prior ratings during the CSs’ selection procedure may have biased 

participants’ postextinction ratings of the same CSs, leading to reduced evaluative conditioning 

effects (see Lipp & Purkis, 2006). 

In brief, Experiment 3 aligns with Experiments 1 and 2 in suggesting that preferential 

aversive conditioning is not selective to threat-related stimuli, but extends to positive 

biologically relevant stimuli as well. Experiment 3 thus provides further evidence supporting the 

hypothesis that stimuli that are relevant to the organism’s concerns benefit from preferential 

emotional learning independently of their valence. 

 

General discussion 

In the present study, we aimed at directly testing the predictions of two competing models 

of emotion with respect to emotional learning; more specifically, we aimed to test the appraisal-

based hypothesis that preferential emotional learning is driven by a relevance detection 

mechanism that is not selective to threat, an hypothesis that is opposed to the fear module 

hypothesis according to which preferential emotional learning is driven by a fear-specific 

mechanism that is selective to threat. In order to do so, we investigated whether, similar to 

threat-relevant stimuli, positive stimuli that are biologically relevant to the organism are likewise 

preferentially conditioned to threat. In three experiments, we used a differential aversive 

conditioning paradigm, in which negative biologically relevant stimuli (angry faces, snakes), 

positive biologically relevant stimuli (baby faces, erotic stimuli), and neutral, less relevant 
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stimuli (neutral faces, colored squares) were used as conditioned stimuli. Taken together, results 

demonstrate a preferential Pavlovian aversive conditioning to both threat-relevant and positive 

relevant stimuli. 

The enhanced persistence of the learned threat response to threat-relevant stimuli 

compared with neutral stimuli replicates the basic finding of preferential emotional learning to 

threat-relevant stimuli consistently reported in the human conditioning literature (e.g., Öhman & 

Dimberg, 1978; Öhman et al., 1976; Öhman & Mineka, 2001; Olsson et al., 2005; see also 

Mallan et al., 2013). More importantly, our findings showing an enhanced persistence of the 

conditioned response to positive relevant stimuli relative to neutral stimuli reflect that positive 

stimuli with biological relevance are likewise readily associated with a biologically significant 

event during Pavlovian aversive conditioning, even if this event is naturally aversive. In 

contradiction to the fear module theory, and somewhat counterintuitively, our hypotheses-driven 

findings therefore demonstrate that preferential aversive conditioning is not limited to negative 

stimuli carrying threatening information, but can be extended to positive stimuli that are 

biologically relevant to the organism. In this respect, our results concur with prior empirical 

findings in the field of emotional attention, which have shown that attention is not exclusively 

biased toward negative threatening stimuli, but also orients preferentially and quickly toward 

positive relevant stimuli (Brosch et al., 2008; Pool, Brosch, et al., 2016). In addition, our data 

also align with neurobiological evidence suggesting the existence of shared mechanisms across 

negative and positive valence. Indeed, the encoding and processing of negative and positive 

stimulus’ values has been shown to rely on overlapping brain structures (e.g., Canli, Sivers, 

Whitfield, Gotlib, & Gabrieli, 2002; Janak & Tye, 2015; Jin, Zelano, Gottfried, & Mohanty, 

2015; Namburi et al., 2015; Paton, Belova, Morrison, & Salzman, 2006; Seymour, Daw, Dayan, 
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Singer, & Dolan, 2007; Shabel & Janak, 2009) and neurotransmitter systems (e.g., Matsumoto & 

Hikosaka, 2009). However, the occurrence of a learning bias to threat-relevant and positive 

relevant stimuli strongly contrasts with previous research suggesting that preferential aversive 

conditioning is restricted to specific classes of stimuli that have provided threats to the survival 

of our ancestors across evolution (Öhman & Dimberg, 1978; Öhman et al., 1976; Öhman & 

Mineka, 2001; Olsson et al., 2005; Seligman, 1970, 1971). Our findings challenge the view that 

threat-relevant stimuli are readily associated with an aversive event because they have been 

correlated with threat through evolution, and alternatively suggest that the key factor underlying 

preferential emotional learning to threat-relevant stimuli in humans is their high affective 

relevance to the organism. Our study thereby provides strong support for the existence of a 

general relevance detection mechanism underlying emotional learning in humans that is common 

across negative and positive stimuli with biological relevance to the organism. 

Nonetheless, it might be proposed that the enhanced persistence of the conditioned 

response to both threat-relevant and positive relevant stimuli was driven by their a priori 

negative and positive valence, respectively. Such an account appears nevertheless unlikely since 

learned threat to happy faces, which represent a typical instance of highly positive stimuli with a 

relatively low level of general relevance to the organism (Brosch et al., 2008; Pool, Brosch, et 

al., 2016) and the processing of which is likely to be sensitive to individual differences (Canli et 

al., 2002), has been shown to rapidly extinguish (e.g., Öhman & Dimberg, 1978; Rowles, Lipp, 

& Mallan, 2012).  

As negative and positive biologically relevant stimuli are typically highly arousing, it 

could be possible that our findings were mediated by the stimuli’s arousal value, the respective 

contributions of relevance detection and arousal to enhanced aversive conditioning being 
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difficult to disentangle from one another (Montagrin & Sander, 2016; Pool, Brosch, et al., 2016; 

Sander, 2013). In fact, appraisal theories (e.g., Sander et al., 2003, 2005) posit that stimuli that 

are appraised as relevant to the organism’s concerns also very often elicit a motivational state, 

which is reflected in a consequent physiological state of arousal that may be felt consciously 

(Pool, Brosch, et al., 2016). However, the relevance detection and arousal accounts 

fundamentally differ in terms of the hypothesized psychological mechanisms underlying 

preferential emotional learning. Whereas the arousal account suggests that the stimulus’ arousal 

value directly drives learning bias, the relevance detection hypothesis explicitly states that the 

stimulus’ affective relevance to the organism’s concerns determines learning bias. Accordingly, 

the mechanism responsible for enhanced emotional learning lies in the emotion elicitation 

process for the relevance detection account; by contrast, it lies in one component of the 

emotional response for the arousal account. Indirect evidence in favor of the relevance detection 

hypothesis comes from a recent meta-analysis on attentional bias for positive stimuli (Pool, 

Brosch, et al., 2016), which has demonstrated that, while both arousal and affective relevance 

modulated the attentional bias magnitude, only affective relevance remained a significant 

predictor of the magnitude of the attentional bias when the contributions of arousal and affective 

relevance were tested by statistically controlling their respective variances, thus implying that 

relevance detection is more likely to constitute the key mechanism underlying biases in 

emotional attention than arousal. Additional evidence challenging the arousal account can also 

be found in studies by Hamm and colleagues (Hamm et al., 1993; Hamm & Stark, 1993; Hamm 

& Vaitl, 1996), which have shown that highly arousing positive and negative stimuli, without 

considering their affective relevance to the organism’s concerns, did not lead to enhanced 

resistance to extinction compared with stimuli with a lower arousal level. These results hence 
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indicate that arousal alone might not be sufficient for triggering enhanced Pavlovian aversive 

conditioning, thereby suggesting that relevance detection provides a more appropriate and 

plausible mechanism to account for our findings. 

Alternatively, it could be argued that preferential emotional learning to threat-relevant 

stimuli relies on a fear module on the one hand, while preferential emotional learning to positive 

relevant stimuli is triggered by another module dedicated to processing positive, appetitive, or 

reward-related stimuli with high relevance on the other hand. However, increasing converging 

evidence shows that the amygdala, which plays a fundamental role in emotional learning (e.g., 

Büchel et al., 1998; Janak & Tye, 2015; LaBar et al., 1998; LeDoux, 2000, 2012; Phelps & 

LeDoux, 2005) and was historically conceived as a fear module (Öhman & Mineka, 2001), is not 

specifically involved in the processing of threat-relevant stimuli, but in the processing of stimuli 

that are relevant to the organism (Cunningham & Brosch, 2012; Pessoa & Adolphs, 2010; Sander 

et al., 2003; Sergerie, Chochol, & Armony, 2008), including positive or rewarding stimuli 

(Gottfried, O’Doherty, & Dolan, 2003; Sergerie et al., 2008). Furthermore, the amygdala has 

been shown to be a core brain structure of the motivational neural circuits underlying 

reinforcement learning, directly contributing not only to aversive but also to appetitive 

reinforcement learning (Averbeck & Costa, 2017). In particular, the amygdala is implicated in 

the computation of both prediction error (Boll, Gamer, Gluth, Finsterbusch, & Büchel, 2013) and 

stimulus’ associability (Boll et al., 2013; Li, Schiller, Schoenbaum, Phelps, & Daw, 2011), 

which are fundamental determinants of associative learning in computational models of 

Pavlovian conditioning (e.g., Li et al., 2011; Niv & Schoenbaum, 2008; Pearce & Hall, 1980; 

Rescorla & Wagner, 1972). In light of this evidence, we argue that relevance detection 
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constitutes a parsimonious and plausible account of the learning bias to both threat-relevant and 

positive relevant stimuli during Pavlovian aversive conditioning in humans. 

A wider consideration of computational models of Pavlovian conditioning (e.g., Li et al., 

2011; Pearce & Hall, 1980; Rescorla & Wagner, 1972) however raises the question as to whether 

the existence of a learning bias to negative and positive stimuli with biological relevance is 

adequately captured, and can be characterized, by such Pavlovian learning models. Given the 

critical role of prediction error and stimulus’ associability in associative learning, it could be 

hypothesized that stimulus’ biological relevance may bias Pavlovian conditioning by altering 

such learning signals. A potential computational learning mechanism whereby the influence of 

stimulus’ biological relevance may operate is stimulus salience, which constitutes a key 

parameter determining the learning rate and ultimately affecting the impact of prediction error 

and associability in a number of computational models of conditioning (e.g., Pearce & Hall, 

1980; Rescorla & Wagner, 1972).  

Stimulus salience traditionally refers to a bottom-up perceptual process based on the 

stimulus’ physical properties (see, e.g., Öhman & Mineka, 2001; Parkhurst, Law, & Niebur, 

2002; Pearce & Hall, 1980). Although more salient or intense stimuli – in the sense of physical 

or perceptual salience – have been shown to be more easily conditioned than less salient or 

intense stimuli (e.g., Pearce & Hall, 1980; Rescorla, 1988; Rescorla & Wagner, 1972), it has 

been demonstrated that neutral stimuli with a high perceptual salience do not produce enhanced 

resistance to extinction compared with neutral stimuli with a low perceptual salience (Öhman et 

al., 1976), thereby reflecting that physical salience alone provides an insufficient and unlikely 

explanation for the effects observed in our three experiments (see also McNally, 1987; Öhman & 

Mineka, 2001). However, stimulus salience has not solely been discussed in the literature as a 



ENHANCED AVERSIVE CONDITIONING TO POSITIVE STIMULI 40 

mere characteristic of the stimulus, but has also been discussed in terms of motivational 

contingencies relating to the organism’s needs and goals (see Cunningham & Brosch, 2012; 

Öhman & Mineka, 2001; Rescorla, 1988). In this respect, various stimuli can be considered as 

motivationally salient, such as the threat-relevant and positive relevant stimuli used in our study 

(see, e.g., Öhman & Mineka, 2001; Parsons et al., 2011; Schultz, 2015). It has been argued that 

the process of incentive salience is conceptually very closely related to the construct of relevance 

detection as used in appraisal theories of emotion (see Pool, Sennwald, Delplanque, Brosch, & 

Sander, 2016; Sennwald, Pool, & Sander, 2017). For instance, it has been suggested that the 

human amygdala is the key brain system involved in relevance detection (Sander et al., 2003), an 

idea that is conceptually very similar to the proposal that the amygdala is the key region involved 

in motivational salience (Cunningham & Brosch, 2012). Of course, the constructs of relevance 

detection and motivational salience have different conceptual historical roots, and are used in 

different research traditions, but share a fundamental aspect underlying why a post-hoc 

explanation of our results in terms of motivational salience would closely mirror our a priori 

prediction in terms of relevance detection: Both constructs suggest that the key factor responsible 

for our results stems from the interaction between the stimulus and the organism’s current 

concerns.  

Critically, our findings of enhanced resistance to extinction of the learned emotional 

response to both threat-relevant and positive relevant stimuli are however in stark contrast with 

the predictions of the influential Rescorla-Wagner (Rescorla & Wagner, 1972) and Pearce-Hall 

(Pearce & Hall, 1980) models of Pavlovian conditioning, as well as previous empirical data from 

animal research (e.g., Kamin & Gaioni, 1974; Kremer, 1978; Taylor & Boakes, 2002). While 

these models predict and account for the accelerated acquisition of the conditioned response to 
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more salient stimuli during conditioning (e.g., Pearce & Hall, 1980; Rescorla, 1988; Rescorla & 

Wagner, 1972), they also predict that, all else being equal, the conditioned response to more 

salient stimuli will extinguish faster than the conditioned response to less salient stimuli (see 

Siddle & Bond, 1988; see also Kamin & Gaioni, 1974; Kremer, 1978; Taylor & Boakes, 2002, 

for studies in rats providing either direct or indirect support for this prediction). A salience 

parameter as implemented in the Rescorla-Wagner and Pearce-Hall models therefore does not 

seem to provide a plausible computational learning mechanism that is able to adequately capture 

and characterize the influence of the type of stimulus’ biological relevance that we investigated 

in our series of experiments. In line with this view, additional computational analyses of our data 

using simple reinforcement learning models (Li et al., 2011; Pearce & Hall, 1980; Rescorla & 

Wagner, 1972; see supplemental materials) suggest that the influence of both negative and 

positive biologically relevant stimuli, relative to neutral stimuli with less relevance, might be 

specifically characterized by a lower learning rate for negative prediction error (i.e., when the 

expected outcome is omitted or when the outcome is less than predicted) that biases inhibitory 

learning – which includes, without being limited to, extinction learning (Dunsmoor, Niv, Daw, & 

Phelps, 2015) – through a reduced impact of negative prediction error on associative strength, 

thus potentially accounting for the enhanced persistence of the conditioned response. 

Nonetheless, the computational mechanisms by which the influence of stimulus’ affective 

relevance on Pavlovian conditioning operates remain yet to be better elucidated and 

characterized. 

In conclusion, this series of three experiments suggests that relevance detection drives 

Pavlovian aversive conditioning in humans. Relevance detection constitutes a rapid (e.g., 

Grandjean & Scherer, 2008) and flexible (e.g., Moors, 2010) mechanism that enables the 
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organism to adaptively and dynamically trigger the preferential processing and learning of 

stimuli that are detected as highly relevant. Importantly, the relevance detection account also 

allows for the accommodation and reinterpretation of existing evidence on preferential aversive 

conditioning to evolutionary threat stimuli, as these stimuli are a highly relevant signal for the 

organism. However, a relevance detection mechanism should trigger preferential emotional 

learning not only to biologically relevant stimuli but also to stimuli that are relevant to the 

organism’s concerns independently of their evolutionary status per se. Primary evidence of this 

point still remains inconclusive. Some studies have shown a similar persistence of learned threat 

to threatening stimuli from both phylogenetic (i.e., snakes) and ontogenetic (i.e., pointed guns) 

origin (Flykt, Esteves, & Öhman, 2007; Hugdahl & Johnsen, 1989), while other studies have 

reported a greater persistence of learned threat to phylogenetically threat-relevant stimuli 

compared with ontogenetically threat-relevant stimuli (Cook, Hodes, & Lang, 1986; Hugdahl & 

Kärker, 1981). Further research will thus have to pinpoint whether preferential emotional 

learning is limited to evolutionary relevant stimuli or extends to stimuli with high relevance to 

the organism beyond biological and evolutionary considerations. As neural circuits underlying 

threat-related responses and behaviors have been shown to respond differently to actual threats 

posed by predators as opposed to standard aversive conditioning paradigms commonly used in 

laboratory settings (Mobbs & Kim, 2015), another interesting and important avenue for future 

research will be to investigate whether the role of relevance detection generalizes across more 

ethologically valid paradigms (e.g., using virtual reality) mirroring the ecological conditions 

under which threats and rewards typically occur in the organism’s natural environment. By 

postulating a common mechanism of emotional learning not only across negative and positive 

stimuli but also across aversive and appetitive contingencies, the relevance detection approach 
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offers a new perspective that may contribute to a better understanding of the functioning of 

human emotional learning, as well as its alteration in specific disorders. Although the generality 

of a relevance detection mechanism remains to be determined in appetitive conditioning, our 

study provides new insights into the basic mechanisms underlying emotional learning in humans. 

Context of the research 

The present set of experiments originates from a research program that aims to 

investigate the links between the appraisal processes involved in emotion elicitation and the 

basic mechanisms underlying learning in humans. In this research program, we seek to challenge 

the dominant view that only threat-related stimuli induce preferential emotional learning by 

offering an alternative theoretical framework based on appraisal theories of emotion (e.g., Sander 

et al., 2003, 2005), which holds that emotional learning is driven by a process of relevance 

detection that is not specific to threat. Our goal is therefore to systematically test the theoretical 

prediction that stimuli that are detected as highly relevant to the organism’s concerns benefit 

from enhanced Pavlovian conditioning, independently of their intrinsic valence. In this 

perspective, the findings reported here provide initial evidence for the existence of a relevance 

detection mechanism underlying emotional learning in humans, and suggest that appraisal 

theories may offer a promising framework to foster better insights into the understanding of 

human emotional learning. Ultimately, this framework might also be valuable to account for the 

high flexibility and large inter-individual differences typically observed in emotional learning 

across varying contexts and situations, as well as some impairments in this process preceding or 

following the onset and maintenance of specific emotional disorders. Accordingly, future 

research will focus on expanding the current findings with the aim of further establishing and 

characterizing the role of relevance detection in emotional learning. 
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Footnotes 

1 The descriptively less robust aversive conditioning to neutral faces across the 

acquisition phase in Experiment 2 was mainly driven by the presence of an outlier (-4.77 SD 

from the mean conditioned response to neutral faces), who strongly conditioned to the neutral 

face CS-. The one-sample t-test excluding this outlier indeed revealed a stronger differential 

conditioning to neutral faces, t(58) = 3.26, p < .001 (one-tailed), gav = 0.593, 95% CI [0.221, 

0.975]. However, since we had no a priori reason to exclude this outlier, we kept it in the 

analyses. 

2 Given the nature of the stimuli used, we also analyzed the SCR data of Experiments 1 

and 2 including a gender factor (Men vs. Women) to explore potential gender differences during 

conditioning. In Experiment 1, this analysis revealed that men exhibited a greater conditioned 

response than women across CS categories during the habituation phase, as shown by a main 

effect of gender, F(1, 38) = 5.03, p = .031, partial η2  = .117, 90% CI [.006, .278]. No other main 

effect or interaction effect of gender reached statistical significance (all Fs < 2.65, all ps > .07). 

In Experiment 2, no statistically significant main effect or interaction effect of gender was found 

(all Fs < 0.79, all ps > .45). These results thus suggest that no gender difference emerged among 

the CS categories during conditioning. 

3 In order to examine whether angry and baby faces elicited enhanced sensitization in 

comparison with neutral faces, we performed a repeated measures ANOVA with CS type (CS+ 

vs. CS-) and CS category (Angry vs. Baby vs. Neutral) as within-participant factors on SCR 

during the habituation phase both in Experiment 1 and 2. Although our experiments were not 

explicitly designed to assess selective sensitization effects, such analysis allows for a test thereof 

when an electric stimulation workup procedure preceding habituation is included, this workup 
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procedure being supposedly sufficient to induce sensitization (see Lipp et al., 2015). The 

outcome of these analyses revealed no main effect of CS category either in Experiment 1, F(2, 

78) = 1.41, p = .250, partial η2 = .035, 90% CI [.000, .107], or in Experiment 2, F(2, 118) = 0.77, 

p = .468, partial η2 = .013, 90% CI [.000, .053], thus failing to provide evidence for the 

occurrence of selective sensitization to angry and baby faces. 

4 A Welch’s t-test for unequal sample sizes supported this interpretation by showing that 

the mean square-root-transformed unconditioned response in Experiment 2 (M = 0.72, SE = 

0.04) was overall smaller than in Experiment 1 (M = 1.48, SE = 0.08), t(62.04) = 8.78, p < .001, 

gs = 1.923, 95% CI [1.451, 2.418], suggesting that the unconditioned stimulus was indeed less 

intense in Experiment 2 than in Experiment 1. 

5 IAPS numbers of the snake images used in Experiment 3: 1022, 1026, 1033, 1040, 

1050, 1051, 1052, 1070, 1090, 1113, 1114, 1120. 

6 A repeated measures ANOVA with CS type (CS+ vs. CS-) and CS category (Snake vs. 

Erotic vs. Neutral) as within-participant factors on SCR during the habituation phase however 

showed no main effect of CS category, F(1.54, 59.96) = 0.31, p = .676, partial η2 = .008, 90% CI 

[.000, .064], indicating there was no statistical difference between the different CS categories in 

terms of physiological arousal as measured by SCR. Similarly, no main effect of CS type (F(1, 

39) = 0.41, p = .528, partial η2 = .010, 90% CI [.000, .111]) or interaction effect between CS type 

and CS category (F(2, 78) = 1.06, p = .353, partial η2 = .026, 90% CI [.000, .091]) were found. 

Of note, the absence of a statistically significant main effect of CS category also did not provide 

evidence for the occurrence of selective sensitization to snakes and erotic stimuli relative to 

neutral colored squares.  
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Table 1 

Mean ratings (and standard errors) of the selected conditioned stimuli in Experiment 3. 

 Snake Erotic Neutral 

CS type Liking Arousal Liking Arousal Liking Arousal 

CS+ 
13.66 

(2.48) 

47.36 

(5.33) 

93.21 

(1.75) 

86.85 

(2.22) 

43.72 

(2.70) 

22.76 

(4.11) 

CS- 
12.53 

(2.58) 

49.35 

(5.30) 

91.99 

(1.87) 

86.93 

(2.13) 

43.84 

(2.56) 

24.97 

(3.89) 
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Figure 1. Mean scaled skin conductance response (SCR) to the conditioned stimuli as a function 

of the conditioned stimulus type (CS+ vs. CS-) across trials in (a-c) Experiment 1 and (d-f) 

Experiment 2. Mean scaled SCR to (a, d) angry faces, (b, e) baby faces, and (c, f) neutral faces. 

Errors bars indicate ± 1 SEM adjusted for within-participant designs (Morey, 2008).  
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Figure 2. Mean conditioned response (scaled differential SCR) as a function of the conditioned 

stimulus category (Anger vs. Baby vs. Neutral) during (early and late) acquisition and extinction 

in (a) Experiment 1 and (b) Experiment 2. Errors bars indicate ± 1 SEM adjusted for within-

participant designs (Morey, 2008). Asterisks indicate statistically significant differences between 

conditions (**p < .01, one-tailed) and n.s. indicates a statistically non-significant difference.  
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Figure 3. Mean subjective ratings as a function of the conditioned stimulus type (CS+ vs. CS-) 

and the conditioned stimulus category (Anger vs. Baby vs. Neutral) in (a-b) Experiment 1 and (c-

d) Experiment 2. Mean (a, c) CS-US contingency ratings and (b, d) CS liking ratings. Errors bars 

indicate ± 1 SEM adjusted for within-participant designs (Morey, 2008).  
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Figure 4. Mean scaled skin conductance response (SCR) to the conditioned stimuli as a function 

of the conditioned stimulus type (CS+ vs. CS-) across trials in Experiment 3. Mean scaled SCR 

to (a) snake stimuli, (b) erotic stimuli, and (c) neutral stimuli. Errors bars indicate ± 1 SEM 

adjusted for within-participant designs (Morey, 2008).  
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Figure 5. Mean conditioned response (scaled differential SCR) as a function of the conditioned 

stimulus category (Snake vs. Erotic vs. Neutral) during (early and late) acquisition and extinction 

in Experiment 3. Errors bars indicate ± 1 SEM adjusted for within-participant designs (Morey, 

2008). Asterisks indicate statistically significant differences between conditions (**p < .01, *p < 

.05, one-tailed) and n.s. indicates a statistically non-significant difference.  
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Figure 6. Mean subjective ratings as a function of the conditioned stimulus type (CS+ vs. CS-) 

and the conditioned stimulus category (Snake vs. Erotic vs. Neutral) in Experiment 3. Mean (a) 

CS-US contingency ratings and (b) CS liking ratings. Errors bars indicate ± 1 SEM adjusted for 

within-participant designs (Morey, 2008). 


