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Abstract: Photoassimilate distribution inside leaves is less studied than photosynthesis, and yet the 

topic is important as it gives insights into the vital roles played by leaves in plant survival. We 

combined greenhouse measurements of light response curves with 11C-labelling using leaves of 3-

year-old potted Maesopsis eminii Engl. trees to improve our understanding of its leaf carbon 

physiology. This fast-growing pioneer tree species showed low photosynthetic rates for a common 

tropical pioneer during well-watered reference conditions (5.0 ± 0.7 µmol m−2 s−1), which further 

decreased in response to drought. 11C-autoradiography indicated active phloem loading and/or 

rapid phloem transport rates. Active loading is uncommon in tree species, but might be related to 

deciduousness traits and continuous investment in growth, like in herbaceous active loaders. Active 

loading involves higher carbon allocation to growth, which might explain why low photosynthetic 

rates were observed in this fast-growing species. These findings suggest that examining 

photoassimilate distribution and transport may be critical for understanding the role tree 

physiology plays in terrestrial carbon cycling. 

Keywords: African tropical tree; 11C autoradiographs; drought; light response curve; Maesopsis 

eminii Engl.; photoassimilate distribution; leaf carbon balances; leaf photosynthesis and respiration 

 

1. Introduction 

Changes in temperature, precipitation, CO2, and evapotranspiration are already eminent in 

African tropical rainforests, affecting their ecological processes [1]. These effects have gained 

increasing attention [2–10] as the biome represents 15% of worldwide forests, and dominates inter-

annual carbon cycling with 50% [11,12]. Concerned stakeholders are calling for investigative studies 

on the impact of climate change on carbon cycling processes in this terrestrial ecosystem [11–14]. 

Carbon-related studies carried out thus far entail measurements of photosynthesis, respiration and 

plant carbon budgets [11,13,15–21], and modeling that is often used to simulate and predict carbon 

budgets on large spatial scale [13,14]. Research seldom illustrates how photoassimilates are 

distributed inside the leaf, and are subsequently transported into the phloem, despite these being 

important plant functional characteristics [22]. Furthermore, there is a demand for more data for the 

African tropics [13,14] to improve CO2 flux modeling [23,24]. Evidence is increasing that considerable 

uncertainties exist in assessing tropical carbon stocks [25–27], feeding the debate on how to 
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implement tropical biomass models [28]. This points to the relevance of increasing our knowledge on 

the ecophysiological mechanisms underlying carbon sequestration. 

Photosynthesis, respiration, carbon transport and allocation are closely linked [22,28–31], and 

important to understand plant carbon balances [22]. Moreover, the impact of water status on these 

physiological processes is manifold [22,32–36], pointing to the importance of an adequate 

understanding of plant drought responses for their application and up scaling into large scale models 

[37–39]. Besides photosynthesis, distribution of photoassimilate inside the leaf and their transport out 

of the leaf into the phloem are hence important aspects to consider when assessing plant carbon fluxes 

and growth rates [22,40]. 

Annually, trees in the tropics are subjected to drought resulting from a dry season. Tropical trees 

have different drought coping mechanisms or strategies. Some trees lose their leaves, some are semi-

deciduous and others are evergreen. While an evergreen strategy may lead to more carbon gain with 

increasing growing season, deciduous species are expected to benefit during droughts associated 

with climate change [41]. To increase knowledge on species-specific carbon cycling, we have chosen 

Maesopsis eminii Engl., which is a widespread pioneer drought-deciduous tree species, mainly 

occurring in African tropical rainforests, and which has shown species-specific responses to drought. 

M. eminii has considerable nocturnal sap flow [42,43], which according to Caird [44] might enhance 

photosynthetic activity, and might be related to stem photosynthesis [45]. Furthermore, Van Camp 

et al. [43] found that during initial drought, root pressure mitigated drought effects on stem water 

storage, and Epila et al. [46] showed a substantial hydraulic capacitance in M. eminii that contributes 

to the redistribution of leaf water from more drought affected to healthier leaves in order to support 

survival during drought [46]. Because seedlings and saplings have an important ecological role 

[47,48], this study investigated leaves of 3-year-old M. eminii plants under well-watered and drought 

conditions.  

To quantify M. eminii’s photosynthesis, respiration, photoassimilate distribution and phloem 

loading strategy we used a combination of techniques: (i) light response curves to assess M. eminii’s 

leaf photosynthetic performance during drought, shortly after re-watering, and after a long recovery 

period of 4 months (which represents well-watered reference conditions) [49–51]; (ii) 13C stable 

isotope analysis to determine its metabolic pathway for carbon fixation [52,53]; and (iii) 11C-

autoradiography to map carbon distribution and phloem loading by exposing leaves to 11CO2 [35,54–

56]. Our specific working hypothesis were: (i) the pioneer M. eminii will have high photosynthetic 

rates to accommodate its fast growth, which will result in a substantially higher amount of fixed to 

respired carbon; and (ii) being a tree, passive loading of sugars into the phloem is expected, with 11C-

autoradiographs depicting a relatively uniform distribution of tracer in the mesophyll and a low 

accumulation of carbon tracer in the vascular bundle. 

2. Materials and Methods 

2.1. Site Description 

The study was conducted between 5 May and 9 September 2015 in a tropical greenhouse (6.4 m 

wide, 9.6 m long and 4.75 m high) of Ghent University, Belgium (50°59.58′ N, 3°47.04′ E). Light within 

the greenhouse was supplied by natural solar radiation in combination with nine Philips bulbs of 200 

W. A 14-h photoperiod was used, with lights turned on between 07:00 and 21:00. During the 

photoperiod, an average photosynthetic active radiation (PAR) of 708 ± 27 µmol m−2 s−1 and an 

average daily maximum PAR of 1563 ± 39 µmol m−2 s−1 were recorded (N = 92). The light intensities 

were within the range reported (resp. 672 ± 55 µmol m−2 s−1 and 1727 ± 31 µmol m−2 s−1, N = 115) for a 

study conducted on 15-months-old M. eminii trees in Uganda [42]. Air temperature ranged between 

18 °C and 35 °C, and relative humidity of the air was set at 70%. A HortiMaX MT/MTV sensor unit 

(HortiMaX, Maasdijk, The Netherlands) measured the interior microclimate. 
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2.2. Experimental Set-Up 

Fifteen 3-year-old Maesopsis eminii Engl. trees were used in this study, which had a height of 2.3 

± 0.4 m at the start of the experiment and a stem diameter of 21 ± 5 mm, measured at 40 cm above the 

root collar. The trees were grown in 35-L bottom-perforated pots containing peat soil, and were 

germinated from randomly picked seeds of unselected parent plants thriving in Mabira forest, 

Uganda (0°23.357′ N, 33°0.344′ E). Trees were randomly distributed on tables raised to a height of 

0.75 m and during drought periods round plastic pot saucers were used to prevent any water uptake 

from the tables. During periods with irrigation, trees were irrigated three times a day for four minutes 

using an automatic flood-table irrigation system to ensure unstressed reference conditions with 

ample soil water. Irrigation water consisted of a mix of rainwater and soluble fertilizer (N:P:K:Mg 

ratio: 19:8:16:4, boron (0.02%), copper (0.03%), iron (0.038%), manganese (0.05%), molybdenum 

(0.02%) and zinc (0.01%)) that resulted in a solution pH of 5.7. 

The experiment started with a two-week drought period, which was the consequence of an 

irrigation malfunctioning during this period. Photosynthesis measurements were taken at the final 

day of this accidental drought period, after a short time of recovering and after a 4-month recovering 

window, which we assumed as fully recovered, because new leaves were then mature, and the trees 

had grown as ample water was provided. This experiment was performed in controlled greenhouse 

conditions, but could be used as a proxy of tropical trees’ behavior during the dry season and their 

recovery in the wet season. 

2.3. Photosynthesis Measurements 

Light response curves were measured after two weeks of drought, on 19 May 2015 (Tdrought), three 

weeks after rewatering, on 10 June 2015, to evaluate the state of recovery (Trecovering), and 16 weeks 

after rewatering, on 9 September 2015, when new leaves had emerged and were full-grown for 

several weeks, to assess well-watered reference conditions (Twell-watered). Net photosynthesis (Pn) was 

measured for all fifteen trees on fully matured leaves exposed to the sun, and comparable in size, 

with a leaf chamber fluorometer (2 cm2 leaf area) of a portable photosynthesis system (LI-6400; LI-

COR Biosciences, Lincoln, NE, USA). Irradiance was gradually increased from 0 to 2000 µmol m−2 s−1 

in five steps (0, 50, 100, 1250 and 2000 µmol m−2 s−1), each at least lasting 3 min, and leaf gas exchange 

was determined, while keeping the atmospheric CO2 concentration at 400 µmol CO2 m−2 s−1 and block 

temperature at 24 °C. All light response curves were measured between 10 h and 16 h. At 0 µmol 

PAR m−2 s−1 the dark respiration rate was measured, and at 2000 µmol PAR m−2 s−1 maximum 

photosynthetic rate was assessed. For all dark respiration measurements, leaves were enclosed in the 

cuvette for at least 5 min before the actual measurement. Stomatal conductance data were excluded 

for analysis as the duration of measurements was optimized for light response curves [57]. 

2.4. Light Response Curves 

Light response curves were fitted based on the non-rectangular hyperbola model ([58]; Equation 

(1)):  

𝑃n(𝐼)  =  
α𝐼 + 𝑃max − √(α𝐼 + 𝑃max)2 − 4𝐼α𝜃𝑃max

2𝜃
− 𝑅d (1) 

with Pn(I) (µmol CO2 m−2 s−1) the net photosynthetic rate, I the light intensity (µmol PAR m−2 s−1), α 

the initial quantum efficiency (µmol CO2 (µmol PAR)−1), Pmax the maximum gross photosynthetic rate 

(µmol CO2 m−2 s−1), Rd the dark respiration rate (µmol CO2 m−2 s−1), and θ the dimensionless or 

sharpness parameter fixed to a value of 0.5 (e.g., [51,59]). Maximum net photosynthetic rate (Pn,max) 

was calculated by subtracting Rd from Pmax. 

In addition, the light compensation point (Ic) (Equation (2); Fang et al. [58]) and the light 

saturation point (Ls) at 70% Pn,max (δ = Pn/Pn,max = 0.7) (Equation (3); Wang et al. [49]) were calculated 

for each measurement day: 
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𝐼c  =  
𝑅d(𝑃n,max + 𝑅d(1 − 𝜃))

α𝑃n,max

 (2) 

𝐿s  =  
𝛿𝑃n,max

α
(

δ − 𝜃

1 − 𝛿
+ 𝜃(1 + 𝛿)) + 𝐼c (3) 

2.5. 11CO2 Leaf Labeling and Positron Autoradiography 

Three reference M. eminii trees were taken to INFINITY (INnovative Flemish IN vivo Imaging 

TechnologY), the pre-clinical imaging lab of Ghent University, Belgium, to carry out 11C-labeling and 

autoradiography. To avoid disturbance effects caused by transport [55], trees were transported one 

day before the measurements. A preliminary experiment was performed to assess if tracer transport 

from leaves to branches still occurred after branch excision. The amount of tracer observed in the 

branch was similar when comparing cut and uncut branches, and also tracer distribution displayed 

similar patterns. Two labeling experiments were performed on uncut branches and one on a cut 

branch. For the latter experiment, a primary branch (~50 cm in length, with 3–5 side-branches) was 

cut under water to avoid cavitation, shortly before labeling, and was kept in a sealed container with 

water. In all experiments, the distal end of one of the side-branches (~40 cm in length) was inserted 

into an air-tight custom-made transparent cylindrical cuvette (20 cm length and 15 cm diameter). A 

series of red and blue light emitting diodes (LEDs) were positioned inside the cuvette to supply 250 

µmol PAR m−2 s−1 to stimulate photosynthesis. Leaves of the primary branch that remained outside 

the cuvette were irradiated with a similar PAR intensity. The cuvette was tubed (inner diameter 4.0 

mm and outer diameter 5.6 mm) to a LI-6400 (LiCor Biosciences, Lincoln, NE, USA), which provided 

an inflow (± 0.8 L min−1) with constant humidity and 400 ppm CO2 concentration, and the outflow 

was directed to a container with KOH base to trap all 11CO2 exiting the cuvette. The set-up was 

checked for leakages by ensuring an equal in- and outflow rate. Additionally, the cuvette had a thin 

inlet tube (inner diameter 0.9 mm and outer diameter 1.5 mm) for administering radioactive 11CO2 

isotope tracer gas, with a half-life of 20.4 minutes. About 370 MBq initial label activity was transferred 

into the leaf cuvette. During injection, no air flow was present and the leaves were exposed to the 

tracer for 10 min. Thereafter, air flow was switched on again to remove all 11CO2 from the air 

surrounding the leaves. The leaves were left in the cuvette for an additional hour before excision and 

autoradiograph imaging. 
11C is an unstable carbon isotope that will emit positrons upon decay. These positrons travel a 

small distance (on average 1.1 mm, with a maximum of 4 mm, in aqueous medium and much more 

in air) before colliding with an electron and annihilating into two antiparallel high-energy gamma-

rays. Distribution of labeled carbon was imaged by exposing the distal branch part to a multi-

sensitive imaging phosphor plate (Perkin Elmer, Waltham, MA, USA), which in case of 11C is mainly 

sensitive to the emitted positrons. The phosphor plate was positioned on top of the adaxial side of 

the leaves. Because of the short half-life time of the carbon isotope, fresh samples were used, which 

implies that we needed to take into account additional factors. Tissue thickness through which 

positrons must travel can strongly influence their probability of annihilation, which may prevent 

them of being detected by the autoradiographic plate [60,61]. For autoradiographs, the positron needs 

to “escape” the leaf in order to be measured by the phosphor screen. The plate was digitally scanned 

after 10 minutes exposure using a Cyclone Plus Phosphor imager (Perkin Elmer, Waltham, MA, USA) 

and OptiQuant software (Perkin Elmer, Waltham, MA, USA). These images were further processed 

with Fiji, an image processing software [62]. 

2.6. Stable δ 13C Isotope Analysis 

To determine M. eminii’s metabolic pathway for carbon fixation, natural abundance of the stable 

carbon isotope 13C was measured on a sample of thirty randomly selected old and young Twell-watered 

leaves. These were pre-weighed and oven-dried at 80 °C for five days until constant dry mass was 

achieved as in [63]. Thereafter, they were ground to fine powder using a ball mill (ZM200, Retsch, 
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Haan, Germany). δ 13C was determined using an Elemental Analyzer (ANCA-SL, SerCon, Crewe, 

UK) coupled to an Isotope Ratio Mass Spectrometer (20–20, SerCon, Crewe, UK) (EA-IRMS). Baking 

flour with a δ 13C value of −27.01‰ (certified by IsoAnalytical, Crewe, UK) was used as a laboratory 

reference, and all δ 13C are expressed relative to Vienna Pee Dee Belemnite (VPDB). 

2.7. Vein Anatomy 

Because annihilation probabilities of positrons originating from 11C can be strongly influenced 

by the amount of overlying tissues, anatomical cross-sections of major veins of the phenologically 

oldest autoradiographically imaged leaf were analysed. Stored leaf segments, excised in such a way 

that sections perpendicular to the veins of the first, secondary and tertiary order could be made, were 

therefore rehydrated overnight in 1% (v/v) Aerosol OT (Cytec) and 25% (v/v) methanol. After rinsing 

in demineralised water, samples were embedded in 7% (w/v) agarose (Sigma Aldrich, St. Louis, MO, 

USA). Blocks of agarose containing leaf segments were glued onto the vibratome stage using 

superglue (Roticoll, Carl Roth). 40 µm thick sections, prepared with a vibrating microtome (HM 650 

V, ThermoScientific, Waldorf, Germany), were stained with 0.5% w/v astra blue, 0.5% w/v chrysoidine 

and 0.5% w/v acridine red and mounted in Euparal after dehydration in isopropyl alcohol. Slides 

were observed with a Nikon Ni-U microscope (Nikon, Tokyo, Japan) and images were recorded 

using a Nikon DS-Fi1c camera (Nikon, Tokyo, Japan). Length measurements were performed with 

Fiji [62] on the cross-section. 

2.8. Data Analysis and Statistics 

For each set of measurement points a light response curve was fitted according to the non-

rectangular hyperbola model. The R2 was determined to assess the correspondence between 

measured and modeled data points, and modeled curves with a R2 < 0.9 were not retained for further 

analysis. This resulted in at least ten light response curves per measurement day used in the analysis. 

Parameter values were estimated for each individual light response curve and averaged per 

measurement day. After testing homogeneity of variances (Levene’s test, p > 0.05), a one-way 

ANOVA (analysis of variance) was performed, followed by the Tukey’s HSD (honest significant 

difference) post-hoc multiple comparison test, used to analyze significance levels for differences 

between the three measurement days. For all statistical tests performed, the significance level (P) was 

set at 5%. Results in text are noted as average ± standard error. 

3. Results 

3.1. M. eminii’s Photosynthetic Performance 

Under drought, measured P2000 was 2.0 ± 0.3 µmol m−2 s−1 (N = 10), which more than doubled to 

5.0 ± 0.7 µmol m−2 s−1 (N = 10) under reference conditions (Twell-watered) (Figure 1; Table 1). Measured 

averaged P2000 and Rd were both lowest during drought (Tdrought) (Table 1). In general, relatively large 

variation was observed between individuals, which reduced the likelihood of measurement 

differences. Drought Pn,max significantly differed from Pn,max after re-watering, and Pn,max obtained 

under reference conditions (Tdrought < Trecovering ≈ Twell-watered; Tdrought − Trecovering (p < 0.05), Tdrought − Twell-

watered (p < 0.05), Trecovering − Twell-watered (p > 0.05)). Rd values only significantly differed between drought 

and three weeks after rewatering (Tdrought − Trecovering (p < 0.001), Tdrought − Twell-watered (p > 0.05), Trecovering − 

Twell-watered (p > 0.05)). Initial quantum efficiency (α) reduced under drought (Tdrought − Trecovering (p < 0.05), 

Tdrought − Twell-watered (p < 0.05), Trecovering − Twell-watered (p > 0.05)). Other photosynthetic parameters were 

not significantly affected by drought. Overall, measured light response curves retained for analysis 

showed close agreement with their corresponding individually fitted non-rectangular hyperbola 

model (average value of R2 per fitted curve: Tdrought; R2 = 0.964, Trecovering; R2 = 0.990, Twell-watered; R2 = 

0.992). Measured leaves of Tdrought and Trecovering initially survived the drought treatment, while part of 

the total leaf mass was shed as immediate response to drought. All leaves that initially survived 

drought were ultimately shed by the time Twell-watered measurements were carried out. These Twell-watered 

measurements were performed on newly sprouted leaves, fully mature at the time of measurement. 

https://www.google.ch/search?client=firefox-b-ab&dcr=0&q=St+Louis+Missouri&stick=H4sIAAAAAAAAAOPgE-LUz9U3sLC0SK5U4gAxzcoryrW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQDMHhGVQwAAAA&sa=X&ved=0ahUKEwja_-u_ycDZAhXGxqQKHT4pDhAQmxMIwgEoATAT
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Figure 1. Measured leaf light response curves per potted Maesopsis eminii Engl. were individually run 

in the non-rectangular hyperbola model [58] to obtain average model parameters from which an 

average light response curve per measurement day was developed. Net photosynthesis (Pn, µmol CO2 

m−2 s−1) increases with increasing light intensity (I, µmol m−2 s−1). Tdrought (after 2 weeks of drought), 

Trecovering and Twell-watered (respectively, 3 and 16 weeks after rewatering) are depicted in red, green and 

blue, respectively. Points were obtained by averaging all measurement points of the same 

measurement day exposed to the same amount of light. Error bars are standard error of the average 

values (with N = 10, 12, and 10 for Tdrought, Trecovering, Twell-watered, respectively). 

Table 1. Averages of measured and modeled light response curve values per measurement day with 

standard errors based on N light response curves depicting measured net photosynthetic rate P2000 at 

a light intensity of 2000 µmol m−2 s−1 and dark respiration rate Rd values, in addition to non-

rectangular hyperbolic model predicted values of P2000, Rd, maximum net photosynthetic rates Pn, 

photosynthetic efficiency or slope (α), light saturation point Ls, light compensation point Ic, and R2 

values describing the correlation coefficient between measured points and their individually fitted 

light response curves. Letters in superscript denote significantly differing values based on a p-value 

of 0.05. 

 Measured Values Non-Rectangular Hyperbola Model Predicted Values  

Measurement 

Day 
N P2000 Rd P2000 Rd Pn,max α 

Ls at 70% 

Pn,max 
Ic R2 

  µmol CO2 m−2 s−1 µmol CO2 m−2 s−1 
µmol CO2 

(µmol PAR)−1 
µmol PAR m−2 s−1  

Tdrought 10 1.9 ± 0.4 a 1.0 ± 0.1 a 1.8 ± 0.3 a 1.0 ± 0.2 a 1.9 ± 0.3 a 0.042 ± 0.008 a 80 ± 20 50 ± 13 0.964 

Trecovering 12 4.0 ± 0.9 b 2.0 ± 0.2 b 4.5 ± 1.0 b 2.1 ± 0.2 b 4.8 ± 1.0 b 0.069 ± 0.005 b 71 ± 14 33 ± 6 0.990 

Twell-watered 10 4.9 ± 0.6 b 1.4 ± 0.2 a,b 4.8 ± 0.7 b 1.5 ± 0.2 a,b 4.9 ± 0.7 b 0.074 ± 0.009 b 27 ± 7 27 ± 7 0.992 

3.2. Estimated Diel Carbon Fluxes and Leaf Carbon Balances 

Differences in diel carbon fluxes between drought, recovery and well-watered conditions were 

assessed by simulating the corresponding photosynthetic rates for a 7-day reference period (using 

PAR-values of a sunny week from 7 till 13 June 2015 as input in the corresponding light response 

curves fitted with the non-rectangular hyperbolic model) (Figure 2). Simulated courses were 

integrated to obtain day- and nighttime as well as total carbon exchange rates (Figure 3). Albeit a 

simplified approach because fluxes are projected from specific light response curves instead of 
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continuously measured, it can give a rough estimation of how drought and recovery affect the 

potential carbon assimilation of leaves. For each water status (i.e., drought, recovery, well-watered), 

positive daily carbon exchange values were calculated (Figure 3). Significant differences existed 

between daily carbon exchange after drought and when fully recovered (Tdrought − Twell-watered, p < 0.05). 

Daily assimilation differed between Tdrought − Trecovering (p < 0.05), and Tdrought − Twell-watered (p < 0.05) and 

nightly respiration differed between Tdrought − Trecovering (p < 0.01) and Trecovering − Twell-watered (p ≈ 0.05). 

Drought-treated leaves lost 34 ± 10% of their fixed carbon during the day because of nighttime 

respiration (ratio nighttime respiration and daytime assimilation). Three weeks into recovery, this 

was 32 ± 8%, but after 16 weeks of rewatering, and being fully recovered, this ratio decreased to 18 ± 4% 

(Figure 3). 

 

Figure 2. Means of simulated photosynthetic rates (µmol CO2 m−2 s−1) for a 7-day reference week using 

individual light response curves measured for (A) Tdrought (red); (B) Trecovering (green) and (C) Twell-watered 

(blue). Error bands were based on the standard error on the mean of the individually ran simulation 

curves (with N = 10, 12 and 10 for Tdrought, Trecovering, Twell-watered, respectively). 

 

Figure 3. Conversion of simulated photosynthetic rates (Figure 2) into leaf carbon exchange 

represented as night respiration and daytime photosynthesis, and yielding daily net carbon uptake. 

Error bars were obtained as standard error of the means (N = 10, 12, and 10 for Tdrought, Trecovering, Twell-

watered, respectively) from the individually ran simulation curves in Figure 2. 
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3.3. 11C Autoradiographs and 13C Stable Isotope 

Autoradiographs displayed a high correspondence with venation (Figure 4). In younger leaves, 

the signal is nearly equally distributed across the leaf blade, whereas in the older leaves the signal 

accumulated more around the primary and secondary veins. Tracer detection in the veins was lower, 

which may be attributed to a higher amount of annihilations taking place in the thicker layer of 

overlying tissues present in the major veins. 

 

Figure 4. Positron autoradiographs of Maesopsis eminii leaves from the distal end of a secondary 

branch arranged from younger to older (left to right) leaves, showing the distribution of 11C, 1 h after 
11CO2 was administered to an excised branch. The adaxial side of the leaves was exposed to the 

phosphor plate. Brighter regions reflect higher 11C accumulation. Younger leaves have a uniform 

carbon distribution across the leaf blade, while older leaves show a higher accumulation around the 

primary and secondary veins. Some leaves show larger areas that are less bright, which is attributed 

to shading of these areas by other leaves. 

M. eminii’s stable carbon isotope signature (δ 13C) was −27.8 ± 0.2 ‰ (N = 20), pointing to C3-

metabolism [64]. 

3.4. Anatomy of the Main, Secondary and Tertiary Veins 

Vascular bundles of the main and secondary veins were located above halfway the leaf cross-

section, whereas in tertiary veins these were found below halfway the section (Figure 5). Secondary 

veins showed a layer of parenchymatic cells beneath the vascular bundle, whereas an entire 

parenchymatic bundle sheath was observed around tertiary veins. These parenchyma cells did not 

contain chloroplasts. Leaf thickness was measured to assess the effect of increased probability of 

annihilation when moving from smaller to larger veins. Distances were measured between points in 

the vascular bundle and the adaxial side of the leaf (i.e., the side that was exposed to the phosphor 

plate) to derive average distances that positrons had to travel before reaching the phosphor plate. 

These distances were 206 ± 23 µm, 88.0 ± 5.4 µm, and 67.41 ± 0.92 µm (N = 8 each) for the main, 

secondary and tertiary vein, respectively. Leaf thickness was on average 123 ± 14 µm (N = 12). For the 

mesophyll it is uncertain where in the leaf 11C would be mainly found. Probably, most is found in the 

photosynthetically active palisade cells close to the adaxial side. Average distance between palisade 

cells and the adaxial edge of the leaf was 28.0 ± 2.4 µm (N = 8). When assuming 11C tracer to be 

positioned in the palisade tissue when in the mesophyll, and in the vascular bundle when in the 

veins, the reduction in positron escape and thus detected signal can be calculated, according to [36]. 

Following this approach, a reduction in detected signal of 3%, 4% and 12% was calculated for tertiary, 

secondary and primary veins, respectively. These corrections should be used indicatively, but when 

applied, resulted in similar intensities in the major veins and in the adjacent tissue (Figure 4). 
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Figure 5. Anatomical cross-section of (A) the major vein; (B) a secondary vein and (C) a tertiary vein 

from the oldest autoradiographically imaged leaf in Figure 4. A parenchymatic layer is visible under 

the vascular bundle of the secondary vein and a parenchymatic sheath around the tertiary vein. 

Images were used to determine the distance between the phloem in the vascular bundle and the 

adaxial side of the leaf (top of the image), which was exposed to the phosphor screen for 

autoradiography. Scale bar is 50 µm. 

4. Discussion 

As expected, drought lowered M. eminii’s average reference Pn,max (by 60%, Figure 1; Table 1). 

Koller et al. [65] reported a similar reduction in photosynthesis of about 60% after three weeks of 

withholding water in three evergreen Quercus spp. comparable in height with our study trees. Varone 

et al. [66] investigated several Mediterranean species and observed a photosynthetic reduction of 50% 

in less than a week after imposing drought. This reduction in photosynthesis is usually linked with 

stomatal closure in response to a depleting soil water status (e.g., [29,30,65,67–70]). 

Three weeks into re-watering (Trecovering) M. eminii reached Pn,max values similar to those of the 

well-watered reference period (Twell-watered), but Rd was considerably higher, indicating a metabolic 

cost for recovery (Figure 1, Table 1). The high Rd values measured after three weeks of recovery can 

be attributed to a biphasic response, which occurs in some species [30]. During drought, Pn,max 

decreased, accompanied by a decrease in Rd, as is observed in many species. After rewatering, leaves 

needed to recover from the negative drought-induced effects. This increased the energy demand for 

maintenance and repair, resulting in higher respiration rates [29,30]. Higher respirational rates can 

also indicate higher vulnerability to drought as was observed by Peguero-Pina et al. [71] in 

Mediterranean oaks. In their study, Quercus suber L. showed higher respirational rates than Q. 

coccifera L. and Q. ilex ssp. ballota (Desf.) Samp under intense drought, with data suggesting that Q. 

suber was less able to withstand highly xeric conditions. M. eminii leaves showed higher respirational 

rates during drought recovery, but in the long run all leaves that had experienced drought were shed, 

indicating that these leaves were susceptible to drought. Resprouting of new leaf material occurred 

shortly after rewatering, which might be a more efficient strategy: trading drought-stressed leaves 

with high respirational demands (Rd in Trecovering) through leaf shedding, for new leaves with lower 

respirational demands (Rd in Twell-watered). The ecological significance of drought-deciduousness or 

evergreenness strongly depends on the prevailing climate, with climate change being expected to 

induce a shift towards drought-deciduous communities [41]. 

Measurements of photosynthetic rates in pioneers typically yield high Pn,max values under well-

watered conditions. Despite its pioneering trait, M. eminii showed relatively low Pn,max values (5.0 ± 

0.7 µmol m−2 s−1: Figure 1, Table 1). Earlier greenhouse studies on tropical pioneer species reported 

typical Pn,max values of 10 µmol m−2 s−1 and higher, which is substantially higher than M. eminii’s Pn,max 

(e.g., [72–74]). Also field measurements of Pn,max in tropical pioneers are typically higher than M. 

eminii’s values. In their photosynthetic study on several tree species in the Cameroonian rainforest, 

Meir et al. [75] found pioneers to have Pn,max values within the range 6–13 µmol CO2 m−2 s−1. An older 

study in a Nigerian rainforest reported photosynthetic rates of about 5–7 µmol CO2 m−2 s−1, and 

although measured at lower PAR-levels (around 800 µmol m−2 s−1), this study indicates that other 

tropical pioneer species also may show low Pn values [76]. In Panama, Ellis et al. [77] conducted a 
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study on a variety of tropical trees to conclude that pioneer species had significantly higher Pn,max 

values compared to non-pioneer species with an average Pn,max of 16 µmol CO2 m−2 s−1. Another study 

conducted by Domingues et al. [78] in an African savanna and semi-deciduous dry forest reported 

values higher than 7 µmol CO2 m−2 s−1. Despite its relatively low Pn and high Rd rates, M. eminii was 

simulated to be a carbon sink during all conditions (Figures 2 and 3). 

Current vegetation models typically use photosynthesis as a determinant for plant growth [22]. 

Our results suggest a potential mismatch between leaf photosynthetic rates and the pioneering, fast-

growing behavior of M. eminii. Fatichi et al. [22] discussed possible elements causing the decoupling 

between photosynthesis and growth rates, including the effects of nutrient availability, meristematic 

processes, the role of carbon reserves (accumulation and depletion of non-structural carbon pools) or 

the multiple impacts of water on many physiological processes [38]. Not only source activity 

determines plant growth, but entire source-sink relationships need to be considered [22]. M. eminii’s 

behavior during dry conditions in terms of substantial stem water storage and buffered water 

potentials might explain its ability to sustain high growth rate despite the measured low 

photosynthetic rates [42]. 

As a woody tree species, M. eminii was found to be C3 (−27.8 ± 0.2‰) in nature, with C3 plants 

having a δ 13C range of −21 to −35‰, and C4 from −9 to −20‰ [64]. Pulse-labeling experiments with 

both 11CO2 and 14CO2 on leaves have been performed in the past, but mainly focused on quantification 

of the continuous export of label out of the leaf. In this study, we focused on imaging tracer 

distribution inside the leaf, relatively shortly after labeling (one hour) [79–81]. 11CO2 pulse-labeling 

performed by Jahnke et al. [80] on young Fraxinus excelsior L. and Sorbus aucuparia L. trees showed a 

continuous and constant export of carbon tracer out of the leaves for at least two hours. Based on 

these observations, it was assumed that M. eminii exports carbon at a constant rate between the time 

of pulse-labeling and imaging. Under such steady-state conditions, autoradiographic carbon patterns 

display carbon distribution inside the leaf. Commonly, trees use a passive loading strategy, 

characterized by a higher concentration of sugars in the mesophyll and a lower concentration in the 

veins (e.g., [32,40,82,83]). Previous 14C labeling experiments have evaluated loading strategies of 

species and reported that active loaders showed higher tracer accumulation in the veins and passive 

loaders in the mesophyll [32,82,83]. In older leaves of M. eminii, tracer intensity was elevated near the 

main and secondary veins, whereas in active loaders a higher presence of tracer is expected inside 

the veins. With our approach of using fresh leaf material and 11C, quantification of tracer activity is 

complicated by the difference in thickness between main and secondary veins in comparison to 

mesophyll, and potential differences in water content. The layers overlying the major veins reduce 

the amount of detected tracer signal (Figure 5), explaining why major veins are less bright on the 

autoradiographs. After tissue thickness correction, the same tracer accumulation was observed as in 

the brighter adjacent tissue (Figure 4). A distinct difference in tracer amount was found in the 

mesophyll with an accumulation pattern directed towards the major veins. According to studies by 

Rennie and Turgeon [82] and Fu et al. [83] this indicates an active loading strategy. Alternatively, this 

distribution pattern could be due to rapid export of tracer out of the mesophyll, with most of the 

tracer already within the major veins after pulse-labeling, which still indicates active loading. 14CO2 

autoradiographs of Nicotiana tabacum L., an active loader with high export rates, also showed elevated 

tracer amounts in the major veins, with a lower evenly distributed amount of tracer in the mesophyll, 

measured one hour after labeling [84]. The active phloem loading strategy has been linked to (i) an 

increased carbon export from leaves to sinks (e.g., shoots and roots) [32,40,85]; (ii) an improved 

efficiency of sugar transport [58]; and (iii) an increased growth potential [40]. Active transport is less 

common in woody tree species, but not unique [83]. Turgeon [40] investigated why active loading is 

commonly found in herbaceous species, and passive loading in tree species. He concluded that 

continuous investment in growth by herbaceous species favored active loading while passive loading 

is more favorable for trees that require investment in storage inventories used during leafless periods 

(e.g., in winter) and growth flushes. M. eminii, like many tropical species, is only deciduous in 

response to drought [86], which is also a common trait for herbaceous species. According to Turgeon 

[40], the lower leaf carbon inventory of active loaders has a significant effect on the plant’s growth 



Forests 2018, 9, 109  11 of 15 

 

potential, which might explain M. eminii’s low photosynthetic rate but rapid growth. As in the tropics 

most trees are drought-deciduous or evergreen, more research on how tropical tree species load 

carbohydrates into the phloem is warranted. Large studies investigating phloem loading strategies 

show that available data on tropical species is limited [79,80,83]. Younger leaves in our study showed 

a relatively uniform tracer distribution throughout the mesophyll (Figure 4). Since thickness effect on 

positron annihilation probability can be ignored in thin objects, such as young leaves with thin veins, 

their distribution pattern might indicate passive sugar loading into the phloem, or import of tracer 

from the older leaves, because young leaves are often net carbon importers, rather than exporters 

[70]. 

5. Conclusions 

M. eminii is a pioneer with fast growth, expected to show a high photosynthetic rate, but this 

was not confirmed by our measurements. The mismatch between photosynthesis and growth 

indicated that M. eminii might use other features to obtain fast growth. 11C-autoradiographic tracer 

patterns in mature leaves suggested an active phloem loading strategy, which can be related to fast 

growth. This study hence illustrated that, besides photosynthesis, photoassimilate distribution and 

phloem loading may be important in the assessment of leaf and tree carbon balances. This has been 

previously acknowledged by Fatichi et al. [22], and highlights the need for more measurements, 

which will pave the way for a better understanding of the ecophysiology of tropical trees. This is 

necessary if we aspire to predict how tropical trees and forests will cope with climatic changes and 

how this will feedback to global carbon and water cycling (e.g., [38,82,83,87,88]). 
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