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Abstract—A novel curl splitting technique is proposed which
makes the leapfrog ADI-FDTD method better equipped for
configurations requiring a higher resolution in only one or two
dimensions. The proposed method, which is given the name
“leapfrog ADHIE-FDTD”, hybridizes implicit and explicit update
equations such that the time step is solely bounded by the spatial
steps in preferred dimensions. This weak conditional stability is
rigorously proven and numerically validated.

I. INTRODUCTION

The quest for Finite-Difference Time-Domain (FDTD)
solvers that are able to tackle large multiscale problems in a
reasonable time span, comes down to finding clever tricks to
overcome the notorious Courant stability limit, which relates
the maximum allowed time step to the cell size. Thererto,
numerous (partially) implicit methods have been developed,
one of the most successful being the Alternating-Direction-
Implicit (ADI) method, which requires the solution of a set of
low-rank tridiagonal systems that scale with only one dimen-
sion. The traditional ADI method has evolved from a split-step
update scheme [1] to a more efficient one-step leapfrog update
scheme [2], but the core of the algorithm has always relied on
a smart way to split the curl trying not to break the occurring
symmetry. Typically, this curl splitting is used to construct
an unconditionally stable method, i.e. without intrinsic time
step bound. Here, we propose a new type of curl splitting that
results in a so-called Hybrid Implicit-Explicit (HIE) scheme,
which is typically used to resolve structures that are fine in
only one or two dimensions. Compared to the conventional
FDTD method, this leapfrog ADHIE-FDTD method features a
less stringent stability limit thanks to the implicitization of the
densely discretized dimension(s). Compared to the traditional
leapfrog ADI method, explicit update equations are used for
the coarsely discretized dimension(s), which, apart from a
speed-up, also give rise to increased accuracy.

II. FORMULATION

Suppose we want to eliminate the x-dependence from the
Courant limit because we need to resolve an object that is
thin along the x-axis. To do so, the curl C = C0 + C1 + C2

is split into three parts

C0 =

[
0 −∂z ∂y

∂z 0 0

−∂y 0 0

]
C1 =

[
0 0 0

0 0 0

0 ∂x 0

]
C2 =

[
0 0 0

0 0 −∂x

0 0 0

]
(1)

The occurring derivatives are discretized by central differences
on the conventional Yee lattice. The proposed leapfrog ADHIE
scheme is then given by
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where σ is the electrical conductivity, Z = (µ/ε)1/2 the wave
impedance, ∆τ = c∆t the time step rescaled by the phase
velocity c = (µε)−1/2, and α ∈ ]0, 1[ a tunable parameter.
In the extreme case that α is infinitely large, (2) is the
conventional FDTD method. The smaller α, the larger the
perturbation introduced by the ADI method and the larger the
numerical error. However, as we will see in the next section,
a smaller α yields a larger maximum allowed time step. Note
that C1C

T
1 and CT2 C2 are tridiagonal matrices which only

contribute to the updates of ez and hz . In other words, the
actual implementation of (2) comprises:

1) the explicit update of hx and hy
2) the implicit update of hz
3) the explicit update of ex and ey
4) the implicit update of ez

where steps 1 and 2 as well as steps 3 and 4 can be performed
simultaneously. In contrast to conventional HIE methods, the
leapfrog ADHIE method preserves stencils that scale with
only one dimension, no matter how many dimensions are
implicitized. Also, if it would be applied locally, e.g. in a
nonuniform grid or in a subgrid, the system that needs to
be solved does not blow up if two implicitized regions with
implicitization along different axes cross each other. Compared
to the traditional leapfrog ADI method, C1C

T
1 and CT2 C2 are

sparser, making the leapfrog ADHIE method more accurate.

III. STABILITY

Our stability analysis strongly relies on the state-space-
based approach described in [3]. The update matrices A and
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B are decomposed into a symmetric contribution E and a
skew-symmetric contribution F as follows

A = E + F B = E − F , (3)

with

E =

[
I+
(
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2α

)2
C1C

T
1 −∆τ

2 C

−∆τ
2 CT I+

(
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2α

)2
CT2 C2

]
(4)

F =

[
σZ∆τ

2 I −∆τ
2 C

∆τ
2 CT 0

]
(5)

As thoroughly explained in [3], our method is stable if and
only if E is positive definite and F + FT is positive semi-
definite. The latter is trivially true if σ ≥ 0. For the former,
note that E can be written as E = GTG+H with

G =

[
α I −∆τ

2α C2

−∆τ
2α C

T
1 α I

]
(6)

H =

[
(1−α2)I −∆τ

2 C0

−∆τ
2 CT0 (1−α2)I

]
(7)

Since the sum of positive definite matrices remains positive
definite, the positive definiteness of H is a sufficient condition
for numerical stability. Using the insights of [3], it should be
clear that for the curl splitting (1) the condition H > 0 is
satisfied if

∆τ <
(1− α2)√

1
∆y2 + 1

∆z2

α ∈ ]0, 1[ . (8)

No ∆x occurs in (8). If both ∆x and ∆y need to be eliminated
from the stability limit, the curl is split as follows:

C0 =

[
0 −∂z 0

∂z 0 0

0 0 0

]
C1 =

[
0 0 ∂y

0 0 0

0 ∂x 0

]
C2 =

[
0 0 0

0 0 −∂x

−∂y 0 0

]
(9)

and (8) is translated to

∆τ < (1− α2)∆z α ∈ ]0, 1[ . (10)

If the time step needs to be independent of the spatial lattice,
the traditional leapfrog ADI method is used, which has α = 1
and C0 = 0 such that H = 0, and further splits the curl into

C1 =

[
0 0 ∂y

∂z 0 0

0 ∂x 0

]
C2 =

[ 0 −∂z 0

0 0 −∂x

−∂y 0 0

]
. (11)

Finally, note that (8) and (10) are sufficient conditions. Numer-
ical examples have shown that they can heavily underestimate
the maximum allowed time step. Also, by rewriting E as

E =

[
I −∆τ

2 C

−∆τ
2 CT I

]
+
(
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)2

[
C1C

T
1 0

0 CT2 C2

]
, (12)

it is clear that stability is ensured if the first matrix is positive
definite, which is the case if

∆τ <
1√

1
∆x2 + 1

∆y2 + 1
∆z2

α ∈ ]0,∞[ , (13)

such that the 3D Courant limit is always a valid upper bound
for the leapfrog ADHIE method, independent of the curl
splitting or the value of α.
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Fig. 1: Time evolution of the electric field Ex in a vacuum cavity.

TABLE I: Total CPU time, number of iterations, and time step.

CPU time [s] iterations ∆t [ps]
FDTD 133.07 100000 0.0667
ADHIE-1d 5.23 1885 3.5379
ADI 10.65 1885 3.5379
ADI 5.27 1000 6.6705

IV. NUMERICAL VALIDATION

Consider a vacuum cavity divided into 30 × 30 × 60
cells that are uniformly spaced with steps ∆x = 20µm and
∆y = ∆z = 2 mm. A magnetic dipole source Jm

z with a
bandwidth of 10 GHz is placed close to one corner and the
electric field component Ex is recorded close to the opposite
corner. The simulation bridges a physical time of 6.67 ns, part
of which is shown in Fig. 1. The conventional, fully explicit
FDTD method with time step equal to the 3D Courant limit
(13) serves as a reference. The leapfrog ADHIE method with
α = 0.5 and time step given by (8) is compared to the
leapfrog ADI method in terms of CPU time (Table I) and
accuracy (Fig. 1). For identical time steps, the leapfrog ADI
method, which has to solve six linear systems instead of two,
is about two times slower. For a time step about twice as
large, the CPU times become comparable. As expected, the
traditional leapfrog ADI method is in both cases less accurate
than the proposed leapfrog ADHIE method. In conclusion,
the proposed leapfrog ADHIE-FDTD method is found to be
a powerful tool to tackle multiscale problems such as the
cavity example given above. Future work focuses on building
a subgridding scheme based on this technique, which has one
global time step specified by the coarse part of the grid.
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