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The Implicit Relational Assessment Procedure (IRAP) has been used to assess the probability 

of arbitrarily applicable relational responding or as an indirect measure of implicit attitudes. 

To date, IRAP effects have commonly been quantified using the DIRAP scoring algorithm, 

which was derived from Greenwald, Nosek and Banaji’s (2003) D effect size measure. In the 

article, we highlight the difference between an effect size measure and a scoring algorithm, 

discuss the drawbacks associated with D, and propose an alternative: a probabilistic, 

semiparametric measure referred to as the Probabilistic Index (Thas, De Neve, Clement, & 

Ottoy, 2012). Using a relatively large IRAP dataset, we demonstrate how the PI is more 

robust to the influence of outliers and skew (which are typical of reaction time data). Finally, 

we conclude that PI models, in addition to producing point estimate scores, can also provide 

confidence intervals, significance tests, and afford the possibility to include covariates, all of 

which may aid single subject design studies. 

 Keywords: implicit measure; IRAP; effect size; D score; probabilistic index model  
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The first purpose of the current paper is to consider the relative benefits of effect size 

measures when scoring data from the Implicit Relational Assessment Procedure (IRAP: 

Barnes-Holmes, Barnes-Holmes, Stewart, & Boles, 2010), a reaction time task that is 

frequently employed within research related to Relational Frame Theory (RFT: Hayes, 

Barnes-Holmes, & Roche, 2001). The second purpose is to propose a probabilistic, 

semiparametric measure referred to as the Probabilistic Index (Thas, De Neve, Clement, & 

Ottoy 2012) for use with the IRAP, which appears to provide some advantages over the 

currently most widely used measure (i.e., the D-IRAP score). On balance, it is not our 

intention to argue that the PI is a replacement for the D score, but provides an alternative 

measure that may be particularly useful when the response-time distributions are skewed and 

the potential for outliers and extreme scores are present. Before proceeding, however, it seems 

important to provide a brief overview of the IRAP, as an RFT-based methodology, to 

contextualize the current work. 

Historical and conceptual background to the IRAP 

Much of the early research in RFT consisted of demonstration studies to test the 

theory’s basic assumptions and core ideas. One of the defining features of this research was a 

dichotomous approach to arbitrarily applicable relational responding (AARRing), which is a 

central idea within the account of human language and cognition provided by RFT (see 

Hughes & Barnes-Holmes, 2016, for an accessible overview). That is, laboratory studies in 

RFT often focused on showing that particular patterns of AARRing were either present or 

absent. Within a few years of the publication of the 2001 RFT book (Hayes et al., 2001), 

however, the need to develop procedures that could, in principle, provide a measure of 

AARRing that was non-dichotomous became increasingly apparent. The initial response to 

this need was the development of what came to be known as the IRAP. Specifically, the IRAP 
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was a response to the question, “How can we capture relational frames in flight”, which 

essentially is a question about the relative strength of AARRing in the natural environment. 

In developing the IRAP, two separate methodologies were combined. The first of 

these was an RFT-based procedure for training and testing multiple stimulus relations, the 

Relational Evaluation Procedure (REP: Cullinan, Barnes, & Smeets, 1998) and the second 

was the Implicit Association Test (IAT: Greenwald, McGhee, & Schwartz, 1998). The REP 

presents participants with two stimuli and requires them to provide a relational response (e.g., 

“same” or “different”). The IAT was developed by social-cognition researchers as a method 

for measuring what are frequently conceptualized as associative strengths in memory by 

comparing the relative speed of categorization of stimuli. The IRAP combined features from 

these two tasks by requiring participants to provide one relational response in some blocks 

(e,g., “same”) and another in other blocks (e.g., “different”), and comparing the relative speed 

of relational responding between block types. The IRAP was therefore conceptualized as a 

procedure for measuring the relative strength of AARRing in a non-dichotomous manner (see 

Barnes-Holmes, Hayden, Barnes-Holmes, & Stewart, 2008).  

It has been argued that due to its close connection to the IAT research with the IRAP 

quickly became dominated by studies focused on so-called implicit attitudes and implicit 

cognition more generally (Barnes-Holmes, Barnes-Holmes, Hussey, & Luciano, 2016). On 

the one hand, this strategy was very useful because it provided a means by which to assess the 

validity of the IRAP as a measure of natural verbal relations (see Vahey, Nicholson, & 

Barnes-Holmes, 2015). On the other hand, it also served as a distraction from a focus on RFT 

and AARRing per se (Barnes-Holmes, Barnes-Holmes, Barnes-Holmes, Luciano, & 

McEnteggart, 2017). Furthermore, the historical connection between the IRAP and IAT was 

instrumental in developing a version of the IAT D1 score, which is used to analyze the 

response latency data from the IAT. The IRAP version, the DIRAP algorithm, is described later 
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in the current article, but as was pointed out by Barnes-Holmes et al. (2010) the DIRAP 

algorithm should not be seen as prescriptive or necessarily the “best way” to analyze IRAP 

data.” (p.533). Consistent with this view, and the ongoing development of the IRAP as an 

RFT-based method for analyzing human language and cognition, the current article presents 

another  algorithm for analyzing IRAP data that appears to offer a number of advantages over 

the DIRAP algorithm. 

A brief description of the IRAP 

The IRAP is a computer-based task on which an individual responds to a series of 

trials, each of which usually presents pairs of stimuli on screen (although see Kavanagh, 

Hussey, McEnteggart, Barnes-Holmes, & Barnes-Holmes, 2016, for an alternative format 

using natural language statements). To illustrate, we use an IRAP that was designed to assess 

gender stereotypes. (see Cartwright, Hussey, Roche, Dunne, & Murphy, 2017 for similar 

IRAPs and discussion of the topic). Subsequently, data collected using this IRAP will then be 

presented. On each trial a label stimulus appears at the top of the screen, such as either “Men 

are” or “Women are”. Target stimuli appear in the middle of the screen, such as 

stereotypically masculine traits (witty, competitive, decisive, and charismatic) or feminine 

traits (nurturing, gentle, affectionate, and sensitive). Two response options are also provided 

on each trial, such as “true” and “false”. The IRAP operates by requiring opposite patterns of 

responding across successive blocks of trials. For example, “men are-masculine” trials would 

require participants to respond with “true” on one block and “false” on the next block. If the 

correct response is emitted the task simply continues to the next trial, but if the incorrect 

response is emitted a red X appears on screen and the next trial is not presented until the 

correct response option is provided. The IRAP thus involves presenting four trial types within 

each block and participants are required to emit opposing patterns of responding across 

successive blocks of trials. The four trial-types for the example of the IRAP described above 
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may be summarized as: men-masculine, men-feminine, women-masculine, and women-

feminine. For half of the blocks of trials, participants would be required to respond as if men 

are masculine and women are feminine (consistent trials1; i.e., men-masculine/true; men-

feminine/false; women-masculine/false; women-masculine/true), and for the remaining blocks 

to respond as if men are feminine and women are masculine (inconsistent trials; i.e., men-

masculine/false; men-feminine/true; women-masculine/true; women-masculine/false). 

Finally, it is worth noting that the IRAP typically involves allowing the participant to 

complete a number of pairs of consistent and inconsistent blocks until they reach mastery 

criteria (e.g., for each block in a pair, median latency < 2000 ms and accuracy > 80%), 

followed by a static number of test blocks pairs (usually 3) from which data are analyzed. 

This was the case for the gender IRAP dataset used in the current paper (for paper length 

discussions of the task see Barnes-Holmes et al., 2010; Hussey, Thompson, McEnteggart, 

Barnes-Holmes & Barnes-Holmes, 2015).  

Broadly speaking, the IRAP is usually scored by subtracting the mean response 

latency for one pattern of responding from the mean response latency of the opposite pattern 

of responding; the difference score is typically normalized (i.e., the DIRAP algorithm). The 

difference score thus reflects a response bias in one direction or the other, such as responding 

“True” more quickly than “False” across blocks of trials when presented with the men-

masculine trial-type. Specific response biases are usually predicted based on the behavioral 

                                                      
1 We employ the terms “consistent” and “inconsistent” here based on their usage in the literature. However, we 

recognize that these terms are potentially confusing. Given that Barnes-Holmes et al. (2010) stated that the 

faster/more probable response is by definition consistent with an individual’s learning history, one could argue 

that a block of trials should only be designated as “consistent” for that individual after the fact (i.e., as an 

outcome) based on which block was faster, rather than a priori. As such, consistent and inconsistent are typically 

used in two ways: to note the (in)congruence between an individual’s learning history and which block  produces 

faster RTs, and as a label to differentiate the two types of blocks within the IRAP as the researcher sees them 

(likely influenced by social-normative expectations). These meanings will not always overlap, leading to 

occasional confusion. Here, we employ the latter sense of the words. For this reason, some researchers have 

referred to the blocks using arbitrary designations such as “A” and “B”  (e.g., Hussey, Barnes-Holmes, & Booth, 

2016) or as “pro” versus “anti” the domain of interest targeted by the IRAP (as in pro- and anti-spider; e.g., 

Nicholson & Barnes-Holmes, 2012) 
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histories of the participants. In the case of the current example, participants who report 

strongly gender-stereotypical biases would, for example, be expected to produce a larger men-

masculine response bias. To put it simply, the original basic hypothesis behind the IRAP is 

that, all things being equal, mean response latencies should be shorter across blocks of trials 

that are consistent with a participant’s behavioral history relative to those blocks of trials that 

require responses that are inconsistent with that history (see Barnes-Holmes, Finn, 

McEnteggart, & Barnes-Holmes, in press, for a recent and more sophisticated approach to 

explaining IRAP effects). In what follows, we will explain why the focus on the mean or 

average latency, which are used to calculate DIRAP scores, may be problematic and outline an 

another analytic method for the IRAP. We will start by considering the general issue of 

scoring reaction time measures, and making an important distinction between the concept of a 

“scoring algorithm” and an “effect size measure”. 

 

Scoring reaction time measures 

 Since the introduction of the IRAP, IRAP scores have most frequently been calculated 

using the DIRAP scoring algorithm. A scoring algorithm typically contains a set of consecutive 

steps that a researcher follows in order to obtain a final score, or scores, for each participant. 

For instance, a scoring algorithm might specify which trials should be taken into account, how 

to treat errors, how to treat response latencies that are deemed to be excessively short or long, 

and how to calculate the final score(s). Calculating the final score(s) usually involves 

adopting a particular effect size measure, which may be defined as the mathematical formula 

used to calculate the quantity reflecting the magnitude of the difference in performance 

between conditions (e.g., between blocks of consistent and inconsistent trials). A specific 

scoring algorithm thus includes the type of effect size measure that should be used to obtain 

the score, or scores, in addition to other steps such as data exclusions. For instance, the DIRAP 
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scoring algorithm requires that all RTs > 10000 ms are discarded and then, for each trial-type 

for each pair of consistent and inconsistent blocks, a D effect size measure should be 

calculated. The means of the obtained D scores (calculated across the block pairs) serves as 

the final DIRAP score for each trial type. Other DIRAP scoring algorithms could propose similar 

steps, but include more stringent exclusion criteria than simply removing RTs > 10000ms, 

such as removing entire data sets for participants who failed to maintain a mean response 

latency < 2000ms on one or more of the four trial-types. Of course, other scoring algorithms 

could employ a different effect size measure. In the current article we propose one such 

measure: a semi-parametric probabilistic index. 

Before proceeding, it should be noted that the decision to employ a particular effect 

size measure may be based in part on the stringency of the exclusion criteria. For example, if 

particularly stringent exclusion criteria are adopted for removing relatively long latencies, 

using an effect size measure that aims to reduce the impact of such latencies may be of little 

benefit. The basis for deciding how stringent the exclusion criteria should be is a highly 

complex issue, a discussion of which is beyond the scope of the current article. For present 

purposes, we will focus on a situation in which the exclusion criterion for response latencies 

is relatively relaxed (i.e., > 10000ms). As we shall see, when such a relaxed criterion is 

adopted, relatively long response latencies (e.g., lying somewhere between the mean response 

latency plus 2.5 standard deviations and 10000ms) may introduce unwanted “noise” into the 

dataset and thus it may be wise to adopt an effect size measure that will reduce the effects of 

such “noise”2. In what follows, we will begin by providing a concise overview of different 

types of effect size measures and discuss how appropriate these are to answer the main 

question: “is an individual faster (or slower) to respond on consistent trials compared to 

inconsistent trials?”  

                                                      
2 We intentionally use quotes to indicate that extreme values in the context of some research questions may not 

be considered “noise” but constitute data points that have important theoretical significance, and should not, 

therefore, be removed from the dataset.  
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Non-standardized effect size measures  

Non-standardized effect size measures summarize differences between distributions in 

the same unit as the unit of measurement. For instance, we can estimate the mean response 

time (RT, in milliseconds, ms) across consistent trials and the mean RT (also in ms) across 

inconsistent trials. The difference between these two means expresses the differences in ms 

between the “typical” RT for each block of consistent and inconsistent trials. Because RT 

distributions are typically right-skewed, other measures of central tendency are sometimes 

used, such as the median. Another way to deal with skewness is by transforming RTs using a 

log-, square root- and/or reciprocal transformation (e.g., the C-measures originally used for 

the IAT: Greenwald et al., 1998).  

Non-standardized effect size measures have the advantage that they are easy to 

interpret, particularly when the unit of measurement (e.g., such as the RT rather than a 

difference score) is important. A serious limitation, however, is that effects tend to correlate 

with general responding speed (GRS); that is, participants responding slower during a task 

show typically larger effects compared to participants with faster responses (Fazio, 1990; 

Faust, Balota, Spieler, & Ferraro, 1999; Greenwald et al., 2003). Relatedly, O’Toole and 

Barnes-Holmes (2009) reported that raw latency and difference scores from the IRAP 

correlated with intelligence scores. This makes it difficult, or even impossible, to make 

meaningful comparisons of non-standardized effect sizes among participants, and even among 

different experiments.  

Standardized effect size measures  

Standardized effect size measures may be seen as “canceling out” the unit of 

measurement. Perhaps the most well-known of these is the standardized mean difference, or 

Cohen’s d. Because the difference between the means is divided by the pooled standard 
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deviation, Cohen’s d can be interpreted as the difference relative to the variability on RTs 

between conditions3.  

In their original article, Greenwald and colleagues. (2003, p. 201) explicitly draw a 

link between the D effect size measure and Cohen’s d, both in terms of their calculation and 

interpretation (Cohen, 1988). However, it is important to note that D is, in actuality, 

mathematically more comparable to a different standardized effect size measure: the point-

biserial correlation (rpb) coefficient (see Ruscio, 2008). As will be discussed below, this 

categorization may be important when considering the disadvantages associated with different 

classes of effect size measures. Point-biserial correlations are expressed as the correlation 

between the RTs of both condition and a dummy variable indicting to which condition the RT 

belongs (0 for consistent responses; 1 for inconsistent responses). If the number of trials are 

equal in both conditions (𝑛1 = 𝑛2), the D can be considered as a scaled point-biserial 

correlation coefficient: 𝑟𝑝𝑏 = 𝐷 ×  √
𝑛1𝑛2

𝑁2−𝑁
 , with 𝑁 = 𝑛1 + 𝑛2. In contrast to Cohen’s d, the 

D effect size measure is obtained by dividing the difference of the means by the standard 

deviation of the pooled sample of RTs (i.e., the standard deviation of RTs independent of 

condition; in the case of the IRAP, this means calculating single standard deviations across 

pairs of blocks of consistent and inconsistent trials). Broadly speaking, as measures of effect 

size, both d and rpb can both be interpreted as a signal to noise ratio (i.e., in the differences in 

mean RTs between consistent and inconsistent blocks proportionate to the variance in those 

RTs). 

Both d and rpb effect size measures are popular, and both appear to reduce the 

unwanted correlation between effect sizes and GRS. However, they also have disadvantages 

                                                      
3 Note, that some researchers divide the difference between the means by the standard deviation of a reference 

group. This standardized effect size measure is known as Glass d (dG) and should not be confused by Cohen’s d.  
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in common (see Ruscio, 2008). First, rpb seems to be sensitive to base rates. That is, when the 

number of trials substantially differs among conditions, rpb will decrease in value if the 

difference in number of trials increases. In those cases where heterogeneity exists, the same 

observation is made for Cohen’s d. Second, both measures are sensitive to violations of 

parametric assumptions such as normality and heterogeneity of variances. For example, Cliff 

(1993) argued that it is not guaranteed that if the mean of a first distribution is larger than the 

mean of a second distribution, the majority of scores of the first distribution will be larger 

compared to the second one. For instance, this could be the case when the mode of a right 

heavy-tailed distribution is smaller compared to the mode of another (see also McGraw & 

Wong, 1992). Nonlinear data transformations, such as log-, square root-, and/or reciprocal 

transformations, have often been suggested as a way to correct for the non-normal distribution 

of RT data. Third, both Cohen’s d and rpb are sensitive to nonlinear transformations of the 

data. As such, different values might be obtained when one of the aforementioned 

transformations was used prior to the calculation of effect sizes. Fourth, both effect size 

measures are very sensitive to the presence of outliers. Finally, rpb has the disadvantage that it 

is difficult to interpret, especially for non-experts.  

At this point, let us focus on the potential impact of outliers and how we might deal 

with them in a set of IRAP data (as noted earlier, RT distributions are typically skewed to the 

right and this makes it difficult to decide which observations may be considered outliers). The 

data were taken from an unpublished IRAP study that was designed to examine gender 

stereotyping. In our sample (N = 188), we observed that 85% (81%) of the distributions of the 

consistent (inconsistent) trials show a skew to the right (here, we defined skewness when the 

Pearson's moment coefficient of skewness > 1.00). To test if the variances of the consistent 

block significantly (with alpha set to .05) differ from the variance of the inconsistent block, 

we performed F-ratio tests. Our results suggest that in 45% of the cases, unequal variances 
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were observed (i.e., heterogeneity of variances). Next, we counted the number of outliers for 

each participant and for each type of block (i.e., consistent versus inconsistent). Here, any 

observation that differs at least 2.5 standard deviations from the mean (within participant, 

within block) is considered an outlier4. Our results show that at least one trial out of 24 trials 

can be identified as an outlier in 85% (79%) of the participants for the consistent 

(inconsistent) trials. In total, 3.8% of the trials were considered as outliers5.  

From these results, and in light of the aforementioned limitation of Cohen’s d and 

rpb/D effect size measures, it should be clear that there are potential problems in using either 

as effect size measures to reflect the difference between conditions. To illustrate, for each 

participant we calculated a D score based on the full data set (Dfull) and a second D score 

based on the set of trials after excluding outliers (Dexcl). That is, we implemented the D effect 

size measure within two different scoring algorithms that differed in how they deal with 

outliers. For illustrative purposes, we will only consider the data from one of the IRAP’s four 

trial-types, the men-masculine trial type (and not men-feminine, women-masculine, or 

women-feminine trial types). Although Dfull and Dexcl correlate highly (r = .93), the mean 

absolute difference between these scores was found to equal M = .12, with SD = .11. As 

illustrated in Figure 1a, deviations between Dfull and Dexcl can be as extreme as .53. From this 

figure, we observe that for 5% of participants in our sample, the deviation between the two 

versions of D was larger than the standard deviation of the Dfull scores in the sample (SD = 

.34). That is, the data points for 10 participants fell outside the dotted lines on the graph. 

Outlier data points therefore may have an unwanted influence on the scored data. This is 

especially problematic given that extremity is defined by arbitrary rules that may differ among 

researchers. 

                                                      
4 We fully recognize that 2.5 SD is an arbitrary choice to define outliers (as is excluding RTs > 10000 ms in the 

DIRAP algorithm). However, this is a common practice to detect outliers in psychological research (Leys, Ley, 

Klein, Bernard, & Likata, 2013). Importantly, our goal here is just to illustrate the presence of “extreme 

observations”.  
5 Under normality and using the 2.5 SD criterion, 1.24% of the trials would be identified as outliers. 
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Figure 1. Left Panel: Figure 1a; Scatterplot of the obtained D scores using the full dataset (Dfull) or after 

excluding outliers (Dexcl). Right Panel: Figure 1b; Scatterplot of the obtained PI scores using the full dataset 

(PIfull) or after excluding outliers (PIexcl). Solid lines represent equal scores, dotted lines represent plus or minus 

one standard deviation of the sample scores (using the full datasets). 

 

The PI: An alternative standardized effect size measure 

Thas, et al., (2012) recently introduced a new class of semiparametric regression 

models called Probabilistic Index Models (PIMs). In the current context, a Probabilistic Index 

(PI) can be interpreted as the probability that a randomly selected inconsistent trial has a 

larger RT than a randomly selected consistent trial. As an expression of probability, the PI can 

therefore range between 0 and 1, where; 0 would refer to situations where RTs for all 

consistent trials were faster than all inconsistent trials, 1 refers to situations where RTs for all 

inconsistent trials are faster than all consistent trials, and 0.50 refers to situations where there 

is no systematic difference between the two. Importantly, the PI treats data as ordinal rather 

than interval, thus “faster” here refers to the fact that one reaction time (e.g., 1000) is (simply) 

“faster” than another (e.g., 1100), rather than being “faster by 100 ms”. This is the key 

difference from other effect size measures that serves to minimize the influence of outliers. 

In the context of the IRAP, the PI can be calculated in an easy way that immediately 

illustrates its interpretation (see Table 1); the reader is referred to Appendix 1 for a 
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mathematical definition of the PI and its application to the IRAP. Suppose we observed three 

RTs related to consistent trials (500, 600, 700) and three RTs related to inconsistent trials 

(550, 650, 750). By creating the set of “pseudo-observations” (i.e. all possible pairs between 

consistent and inconsistent trials, in this case 3x3 = 9), we count the number of RTs faster for 

consistent trials compared to inconsistent trials. In this example, there are 6 pairs for which 

the RTs of consistent trials are faster (thus smaller). Dividing this sum by the total number of 

comparisons, it follows that PI = 6/9 = 0.67. We would therefore conclude that the probability 

that inconsistent trials have larger RTs than consistent trials was 0.67. As such, we would 

reformulate the original basic hypothesis of the IRAP as the probability of observing faster 

reaction times on trials that are consistent with a participant’s behavioral history when 

compared to reaction times on trials that are inconsistent with that history. 

 

Table 1. Calculation of the PI in a simple setting using a set of pseudo-observations for three consistent trials 

(500, 600, 700) and three inconsistent trials (550, 650, 750).  

 

RT Consistent RT Inconsistent Inconsistent > Consistent? 

(if Yes = 1; If No = 0) 

500 550 1 

500 650 1 

500 750 1 

600 550 1 

600 650 0 

600 750 0 

700 550 1 

700 650 1 

700 750 0 

  Sum = 6 

Number of pairs = 9 

PI = 6/9 = 0.67 

 

 

To illustrate the impact of using the PI, instead of the D score, with the IRAP we 

calculated the PI for each participant from the gender stereotyping dataset. Here again, the PI 

is calculated only for the men-masculine trial type. We calculated scores from both the full 

data set (PIfull) and from the dataset after removing outliers using the same criteria as before 
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(PIexcl). Note that the latter is included only to explore the influence of outliers on the PI, and 

not as a recommendation that outliers should generally be defined and excluded when 

calculating the PI. As illustrated in Figure 1b, the mean absolute difference between these 

score equals M = 0.014 with SD = 0.012. More specifically, this graph illustrates that, for the 

PI, there were no participants whose PIfull and PIexcl scores deviated from the regression line 

(maximum deviation = 0.062) by more than the standard deviation of the PIfull score (SD = 

0.105). Additionally, PIfull and PIexcl were found to correlate almost perfectly (r = .99), which 

was significantly higher than the correlation between Dfull and Dexcl (r = .93, rdif = 0.06, 

95%CI = [.05, .09]). As such, the PI was demonstrated to be less influenced by outlier data - 

and thus the arbitrariness of the rules to define outliers - than D. As we have previously 

discussed, this may be particularly important when working with reaction time data, in which 

outliers are very common. 

Lastly, to assess the presence of a linear relation between scores and general 

responding speed (GRS), which is, itself, often correlated with spurious variables such as age, 

we calculated the correlation between the absolute mean difference between consistent and 

inconsistent blocks and GRS (r = .55), Dfull and GRS (r = .01) and PIfull and GRS (r = .01). 

Clearly, both Dfull and PIfull reduce the unwanted correlation between the non-standardized 

effect size measures and the general response speed, as is typically desirable. In sum, the 

preceding analyses therefore suggest that the PI effect size measure is more robust to outlier 

data than is the D score. 

An additional scoring algorithm for the IRAP: PIIRAP 

In the previous section we introduced an alternative standardized effect size measure 

for expressing the difference in performance on consistent and inconsistent trials. In this 

section, we will propose a new scoring algorithm making use of the PI. Readers familiar with 

the classic DIRAP scoring algorithm will notice that the PIIRAP scoring algorithm does not differ 
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in many aspects from previously proposed measures (see for instance Barnes-Holmes et al., 

2010; Hussey et al., 2015). For example, we chose to calculate one PIIRAP score for each pair 

of test blocks and then combine them (i.e., rather than calculate a single PIIRAP using all 

consistent blocks vs all inconsistent blocks). This is purposeful, given that the primary aim of 

the current article is to consider an additional effect size measure rather than its 

implementation within particular scoring algorithms, which is beyond the scope of the current 

article. We propose the following steps in calculating the PIIRAP scores: (1) Use only RTs 

from test blocks; (2) Remove those participants with at least 10% response latencies faster 

than 300ms; (3) Calculate for each participant four PIIRAP scores, one PIIRAP for each of the 

four trial types (e.g., men-masculine, men-feminine, women-masculine, and women-

feminine). Each PIIRAP is calculated by defining a set of pseudo-observations, conditional on 

the block pairs. That is, all consistent trials are compared with all inconsistent trials from the 

same pair of test blocks. The final set combines these three different sets of pseudo-

observations of the three pairs of consistent and inconsistent test blocks into one single set, 

and P(𝑌 < 𝑌′ | 𝑋 = 0, 𝑋′ = 1), with X = 0 for consistent trials and X = 1 for inconsistent 

trials, is calculated. Note that we do not exclude any outlier observations prior to the 

calculations. 

To illustrate a number of points regarding the two algorithms, the DIRAP scores and 

PIIRAP scores obtained for the men-masculine trial type from all participants in the dataset are 

presented in Figure 2. To take some specific examples, a PIIRAP = 0.75 is obtained for the 

men-masculine trial type for participant 1. Thus, when selecting a random consistent trial and 

a random inconsistent trial, it is more likely that the RTs from the inconsistent trial is larger 

(probability = 0.75). Participant 1’s DIRAP score = 0.82. Thus, the ratio between the difference 

in average RTs between the blocks and the variance of the pooled reaction times was 0.82. 

Participant 3 represents a second example, whose PIIRAP score for the men-masculine trial 
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type = 0.32. For this participant, it is more likely that larger RTs are observed for consistent 

trials compared to inconsistent trials (probability = 0.68, i.e., 1.0 – 0.32). This participants 

DIRAP score = -0.42, which is the ratio between the difference in average RTs between the 

blocks and the variance of the pooled reaction times.  

Interestingly, the direction of the scores sometimes differs. For instance, for 

participant 19 it is more likely that the RTs from the inconsistent trial is larger (probability = 

0.65), while the difference in average RTs between blocks is negative (DIRAP score = -0.21, 

indicating a larger average RT for consistent trials compared to the average RT for 

inconsistent trials).  At this point, it should also be apparent that the interpretation of the 

PIIRAP score is therefore clearer than that of the DIRAP score in terms of our original question 

regarding probabilistic responding speeds. 

Although the direction and magnitude of individual scores might differ depending on 

which effect size measure is used, we do not expect large differences in the patterns observed 

at the group level. For instance, although substantial differences between DIRAP scores and 

PIIRAP scores are observed, for the current data set the two scores correlate highly (r = .88).  

Nevertheless, due to its relative insensitivity to outlier data, the PIIRAP should also 

demonstrate higher internal reliability. We therefore split our dataset in two halves (subsets) 

based on an odd/even (trial index) split and calculated Cronbach’s alpha.6 A modest 

improvement is observed for the PIIRAP scoring algorithm (αPI = .37) compared to the DIRAP 

scoring algorithm (αD = .29). 

Finally, it is also useful to note that quantifying data using a PIM allows for the 

calculation of more than just a single point estimate (i.e., PIIRAP). For example, we can easily 

obtain a 95% confidence interval for each individual score. For instance, a PIIRAP = 0.75 is 

                                                      
6 Spearman-Brown corrections, rather than Cronbach’s alpha, are sometimes reported in IRAP publications, but 

essentially they yield the same results (Bentler, 2009). 
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obtained for the men-masculine trial type for participant 1. Here, the 95% confidence interval 

is given by [0.59, 0.86]. Additionally, the PIM allows us to test an alternative hypothesis 

Ha: PIIRAP ≠ 50% (i.e., presence of an IRAP effect) against a null hypothesis H0: PIIRAP =

50% (i.e., no IRAP effect). In this case, we can reject the null hypothesis with p = 0.003. That 

is, one can easily determine, without the need to simulate (as would be required with the 

DIRAP score), whether individual participants produced statistically significant PIIRAP effects, 

as well as the magnitude and confidence interval of these effects. This may be useful for, 

among other things, single case designs. Relatedly, PIMs also allow the researcher to add 

covariates to the PI formula. Among other things, this may be useful for examining the 

influence of specific stimuli on the IRAP effect. 

 

 

Figure 2. Scatterplot of the DIRAP and PIIRAP scores respectively for the entire sample. Three data points are 

highlighted for illustration using their participant numbers rather than a circle: “1” indicates the scores for 

Participant 1 and “3” indicates the scores for Participant 3, and “19” indicates the scores for Participant 19. The 

linear trend between DIRAP and PIIRAP is illustrated by a regression line. 

 

Discussion and conclusion 

In this article, we have introduced the PI as an alternative effect size measure to the 

frequently used D effect size measure, and then implemented it within (one possible version) 
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of the PIIRAP scoring algorithm for use with the IRAP. Although PIIRAP and DIRAP share 

similar steps, they do differ at their core: the proposed effect size measure. While the DIRAP 

scoring algorithm defines a scaled point-biserial correlation coefficient to reflect the 

difference in reaction times between consistent and inconsistent trials as a proportion of the 

variance in all reaction times, the PIIRAP expresses this difference in performance as the 

probability that reaction times are higher in one context (inconsistent blocks) relative to 

another (consistent blocks). 

As illustrated, reaction time data tends to be both heavily skewed to the right and also 

include outliers. Statistics, such as the sample mean and sample variance are sensitive to 

outliers, or as formulated by Greenwald and colleagues (1998) they “distort means and inflate 

variances” (p.1467). Using the sample mean and the sample variance might not be the best 

option, even when response latencies larger than 10000ms are omitted. In contrast, the 

proposed PIM-framework is much more robust to deviations from normality and to outliers. 

By analyzing the men-masculine trial type of the gender IRAP dataset, we have shown that 

(1) Substantial differences were observed between individual DIRAP scores and PIIRAP scores; 

(2) A high correlation between DIRAP and PIIRAP scores of the entire sample was obtained; and 

(3) A (moderately) higher reliability estimate was recorded. 

In order to aid researchers in implementing the PI generally and PIIRAP more 

specifically, we have included R code for a minimal implementation of the PI in Appendix II. 

Additionally, we produced an R Shiny web app that researchers can use to calculate PIIRAP 

scores, which can be accessed at http://datapp.ugent.be/shiny/irap/. The source code for this 

app, and all code employed within the current article, can also be found on the Open Science 

Framework (http://osf.io/4cmsm). 

We recognize that other measures for calculating effects for reaction time measures 

that are robust to heterogeneity and the presence of outliers have been proposed (see Richetin, 

http://datapp.ugent.be/shiny/irap/
http://osf.io/4cmsm
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Costantini, Perugini, & Schönbrodt, 2015). For instance, the Gaussian rank latency difference, 

or G score, offered by Sriram, Nosek, and Greenwald (2006) is closely related to the PI. 

However, the two differ with respect to their interpretation. While the PI is a direct 

probability, G scores reflect scores on a Gaussian distribution obtained by transforming 

fractional ranks. As such, the PI is arguably easier to interpret. In addition, given that the PI is 

a model-based measure, it allows researchers to calculate PIIRAP scores but also confidence 

intervals, p values, and the inclusion of additional covariates (e.g., the impact of specific 

stimuli). In our opinion, these properties make the PIIRAP, and PIM models more broadly, an 

interesting and highly useful choice among effect size measures that may be of use in future 

research.  

We should reiterate that the current article has focused on the choice of effect size 

measure (i.e., D vs. PI), but has not addressed broader questions concerning other aspects of 

the scoring algorithm beyond the effect size measure. In contrast, Greenwald et al. (2003) 

made comparisons between six scoring algorithms that employ the D effect size measure (i.e., 

D1 to D6), but which adjust other aspects of the algorithm. Future research should therefore 

compare variations in PIIRAP scoring algorithms that implement the PI effect size measure. 

 Finally, in closing it is important to recognize that it would, of course, be premature to 

conclude on the basis of one article, which employed only one data set and did not address the 

issue of predictive validity, that the PIIRAP should now be used instead of the DIRAP. Working 

out the strengths and weaknesses of specific scoring algorithms for RT measures is a complex 

and difficult task (e.g., Richetin, et al., 2015), and it would be unwise for researchers to adopt 

the PIIRAP scoring method based simply on a “knee-jerk” reaction to the limited set of 

analyses we have presented here. Furthermore, we would advise against adopting a one-size-

fits-all approach to selecting a scoring algorithm. Indeed, this may be particularly important 

for the IRAP because it has been used in fundamentally different ways (e.g., as a measure of 
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implicit attitudes, as a measure of the relative strength of arbitrarily applicable relational 

responding, and even as a method for training and testing flexibility in relational responding). 

 Indeed, one might object to the use of the PI if the magnitude of the effect in 

milliseconds is of interest and if it is to be used as a proxy for a psychological construct. For 

example, if latency differentials are seen as a direct mapping onto the relative strength of 

association between two representations in memory (i.e., longer latency differentials 

indicating weaker associations), then a dichotomous interpretation of the PI will be 

problematic. On balance, if a researcher assumes that the probability that scores in one 

condition are larger than in another condition provides a proxy for the relative strength of 

association between representations in memory the problem disappears. As such, the 

preference for or against the PI, in this regard, appear to depend upon quite abstract 

theoretical assumptions that a researcher wishes to make about the relationship between 

latency differentials and underlying psychological constructs. In any case, the key purpose of 

the current work was simply to alert researchers to some of the benefits of the PIIRAP relative 

to the DIRAP effect size measure in dealing with the influence of outliers and skew effects. 
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Appendix I 

 

Mathematical definition of the PI and its application to the IRAP 

 

The PI is defined as P(Y < Y′), where Y and Y’ denote two independent responses 

associated with one or more covariates. In the presence of ties a modified definition of the PI 

can be used. A PIM models the PI as a function of covariates. In contrast to the previously 

discussed effect size measures, the PI does not reflect a difference in terms of the mean. To 

illustrate how PIMs can be used in the context of the IRAP, let us consider the PIM with logit 

link and expit as the inverse of the logit function (expit = exp(𝑥) /[1 + exp (𝑥)]): P(𝑌 ≤

𝑌′ |𝑋, 𝑋′) =  expit[𝛽1(X′ − X)], where X is a dummy variable, with X = 0 for consistent trials 

and X = 1 for inconsistent trials. The equation can now be written as: P(𝑌 < 𝑌′ |𝑋 = 0, 𝑋′ =

1) =  expit(𝛽1). For a detailed discussion of PIMs, the reader is referred to Thas et al. (2012) 

and De Neve (2013). 
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Appendix II 

 

R code for a minimalist implementation of the PI effect size using the pim library.  

 

## dependencies 
#install.packages("pim") 
library(pim) 
 
# acquire data 
rt = c(1000, 1001, 2004, 1003, 1004, 2000, 2001, 2002, 2003, 1004)  
block_type = as.factor(c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2) ) 
my_data = data.frame(rt, block_type) 
 
## PI 
# 1. returns one overall PI, not separated by trial type 
# 2. assumes that my_data is in long format, with the columns rt and block_type 
 
# define pim model 
pim_model <- pim(rt ~ block_type,  
                 data = my_data) 
 
# calculate PI 
PI <- plogis(coef(pim_model)) 
 
# return PI 
PI 
 
# returns 
#>0.78  
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