
Assessment of Long-Term Spatio-

Temporal Radiofrequency 

Electromagnetic Field Exposure 

Sam Aerts1, Joe Wiart2, Luc Martens1, and Wout Joseph1 

1Department of Information Technology, Ghent University / imec, Ghent, Belgium 

2Institut Mines-Telecom Telecom ParisTech, LTCI, Chaire C2m, Paris, France 

Abstract 

As both the environment and telecommunications networks are inherently dynamic, our 

exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) at an arbitrary 

location is not at all constant in time. In this study, more than a year’s worth of measurement data 

collected in a fixed low-cost exposimeter network distributed over an urban environment was 

analysed and used to build, for the first time, a full spatio-temporal surrogate model of outdoor 

exposure to downlink Global System for Mobile Communications (GSM) and Universal Mobile 

Telecommunications System (UMTS) signals. Though no global trend was discovered over the 

measuring period, the difference in measured exposure between two instances could reach up to 

42 dB (a factor 12,000 in power density). Furthermore, it was found that, taking into account the 

hour and day of the measurement, the accuracy of the surrogate model in the area under study 

was improved by up to 50% compared to models that neglect the daily temporal variability of the 

RF signals. However, further study is required to assess the extent to which the results obtained 

in the considered environment can be extrapolated to other geographic locations. 
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I Introduction 

Wireless telecommunications technologies have become an indispensable and ubiquitous part of 

our everyday life. As these technologies continue to grow more diverse and complex, in order to 

satisfy our evermore increasing desire for connectivity, so does the range of radiofrequency (RF) 

electromagnetic fields (EMF) used to carry the signals. Although ambient levels of RF-EMF 

generally encountered in everyday circumstances remain well below established scientific limits 

(ICNIRP, 1998), their relentless presence in our society raises concerns that long-term exposure 

at low levels may be associated with various non-specific physical symptoms (Baliatsas et al., 

2015)  and ecological effects on fauna and flora (Cucurachi, 2013). 

Over the last decades, a number of studies have aimed at characterising the environmental RF-

EMF exposure using either personal or spot measurements performed during the day. However, 

while our exposure to environmental RF-EMF is not at all constant in time due to environmental 

changes and variations in the number of active users (as well as the nature of their activity) in 

telecommunications networks (Joseph et al., 2009; Joseph and Verloock, 2010), these studies 

tend to neglect the temporal dimension (e.g., Frei et al., 2009; Aerts et al., 2013a; 2013b; 2017; 

Beekhuizen et al., 2013). 

In spite of RF-EMF monitoring systems installed in various cities in Europe, such as in Greece 

(Gotsis et al., 2008), Italy (Troisi et al., 2008), and Portugal (Oliveira et al., 2007), published 

temporal analyses are scarce: the short-term variability of environmental RF-EMF – i.e., the 

variation between day and night-time as well as between the different days of the week – has 

been studied by e.g., Joseph et al. (2009), Joseph and  Verloock (2010), Manassas et al. (2012), 

Mahfouz et al. (2012, 2013), Miclaus et al. (2013), Vermeeren et al. (2013), and Verloock et al. 

(2014), while long-term analyses have been performed by e.g., Rowley and Joyner (2012), 

Urbinello et al. (2014), and Tomitsch and Dechant (2015), using repeated measurements instead 

of monitoring networks. More importantly, detailed temporal information has yet to be included 

in RF-EMF surrogate modelling (Aerts et al., 2013a; 2013b; 2017).  

In this paper, the impact of the temporal variability of telecommunications signals on outdoor RF-

EMF exposure characterization is investigated. During more than a year, measurements of three 

downlink telecommunications signals – i.e., from base station to user device – were collected in a 

low-cost exposimeter network within an urban setting. First, the potential errors of using 

measurements at single instances were determined. Next, from this vast set of data, for the first 

time, a full spatio-temporal surrogate model could be built. And finally, global profiles of the daily 

variation of the signals were composed, which were used to quantify the improvement of adding 

the temporal dimension to established RF-EMF surrogate modelling techniques. 



II Materials & Methods 

Long-term measurements of downlink telecommunications signals (i.e., the signals from base 

stations to personal devices) were gathered in a monitoring network comprising a number of 

fixed exposimeters. The analysis consisted in (a) calculating the variability of the signals over the 

entire measuring period in order to quantify the possible errors induced in surrogate models by 

assuming the downlink signal strength is constant in time; (b) determining the average variation 

of the signals during a single day (i.e., from 00:00 to 23:59); and (c) using this information to scale 

measurements taken at different times during the day (mimicking a real-life measurement 

campaign) to a single time instance in order to obtain an accurate surrogate model of the RF 

exposure at that single instance. 

II.1 Monitoring Network 

In the city of Santander, Spain, an Internet-of-Things (IoT) platform (SmartSantander; 

http://smartsantander.eu/) has been deployed consisting of a network of IoT nodes which 

continuously measure various environmental parameters, such as temperature and CO2. The area 

covered by the SmartSantander platform has a size of 0.4 km by 1.4 km. Recently, in the EU-FP7 

LEXNET project, RF-EMF exposimeters have been added to this IoT platform (Diez et al., 2014), 

attached to masts at a height of 3 m. These devices were specifically designed to measure the 

environmental exposure (quantified by the electric field strength E, in V/m) induced by the three 

most-used telecommunications technologies (i.e., Global System for Mobile Communications 

(GSM) at 900 MHz (GSM900) and 1800 MHz (GSM1800), and Universal Mobile 

Telecommunications System (UMTS) at 2100 MHz). Moreover, they were developed for large-

scale deployment, thus as cost-efficiently as possible. Frequency bands specifically used by fourth 

generation (4G) Long Term Evolution (LTE) were not included, as this technology was not yet in 

use when the exposimeters were installed in 2014 (Diez et al., 2014). 

II.2 Exposimeter Measurements 

A measurement of a certain frequency band was performed by sampling the output voltage (0 V 

to 3.3 V) and then calculating the median or maximum value of the acquired samples to obtain a 

single output value. The treatment and number of samples depended on the band, and was 

determined based on the calibration process (Diez et al., 2014).  Then, this output value was 

converted to an electric-field strength within the range 5 mV/m to 5 V/m, using the exposimeter's 

antenna factor (AF) (Diez et al., 2014). Each of the considered frequency bands were alternately 

selected using an RF switch, and the nominal sample collection time (one value for each band) 



was either 5 or 10 minutes, depending on the specific exposimeter. This study focused on the 

telecommunications bands and also calculated the total electric-field strength as,  

𝐸𝑡𝑜𝑡𝑎𝑙 = √𝐸𝐺𝑆𝑀900
2 + 𝐸𝐺𝑆𝑀1800

2 + 𝐸𝑈𝑀𝑇𝑆
2 , (1) 

with 𝐸𝑖  the electric-field strength measured in band i (GSM900, GSM1800, or UMTS – all 

downlink). 

Finally, the data used in this study were collected during 14 months – between 9th of December, 

2015, and the 15th of February, 2017. 

II.3 Analysis of the Measurements 

II.3.1 Temporal variability 

At every exposimeter measurement position, the variability of the considered signals over the 

entire measuring period was determined. More specifically, the maximum (Vmax) and 90-percent 

variability (V90) were determined, using 

𝑉𝑚𝑎𝑥(𝑇) = 20 log10 (
max
𝑡∈𝑇

(𝐸(𝑡))

min
𝑡∈𝑇

(𝐸(𝑡))
), (2) 

𝑉90(𝑇) = 20 log10 (

p95
𝑡∈𝑇

(𝐸(𝑡))

p5
𝑡∈𝑇

(𝐸(𝑡))
) , (3) 

where max(E) and min(E) are the maximum and minimum, and px(E) the x-th percentile of the 

electric-field values collected in a specific frequency band during the considered measuring 

period T. 

Vmax and V90 provide estimates of the error induced by neglecting the temporal dimension, which 

is useful for instantaneous, non-repeated measurements with a similar device. 

II.3.2 Temporal profiles 

The next step consisted in identifying the average trends of the signal strength over a certain 

period of time, which, in this case, was either a day (i.e., the variation of the signal between 00:00 

and 23:59, averaged over all measurement days) or a week (i.e., the daily variation depending on 

the day of the week). 

In order to obtain a smoother profile, and because the median time between measurements was 

not the same for all exposimeters, hour-aggregated averages E(h) (with h a year-month-day-hour 

instance, for example ‘2016-12-24 19:00’) were used in this analysis – i.e., the mean of the values 

collected between HH:00 and HH:59 (with HH = 00 to 23) on the same day d. 



Furthermore, to rule out any potential bias due to long-term variations in the signal (e.g., due to 

changes in the network infrastructure), the relative variation 𝜂 of the signal compared to the daily 

average was calculated, 

𝜂(ℎ) =
𝐸(ℎ)2

mean
ℎ∈𝑑

(𝐸(ℎ)2)
 (4) 

Finally, by aggregating and averaging all these relative values per time slot, defined as (a) hour 

(HH, with HH = 00 to 23), or (b) day-hour (DDD-HH, with DDD = MON to SUN, or Monday to 

Sunday), temporal profiles were created.  

II.4 Spatio-Temporal Exposure Maps 

In the final step, the possibility was investigated of creating, at any instance of time h, a spatial 

surrogate model of the RF-EMF exposure using a subset of size N of the collected measurements, 

i.e., the electric-field values E(hi, Xi) (i = 1 … N) collected at instances hi and locations Xi. Within 

this subset, the same instances as well as the same locations can occur multiple times, though not 

simultaneously, mimicking a real-life measurement campaign using multiple measurement 

devices (of the same type) at the same time and possibly returning to the same locations at 

different instances. By rescaling the samples E(hi, Xi) to the considered time instance h according 

to the identified temporal profiles and subsequently interpolating them over the study area using 

ordinary Kriging (Matheron, 1963), a surrogate model at h can be obtained. Random samples 

taken at the same location were averaged to retain only one value, and each surrogate model was 

built 100 times using different random subsets. 

To assess the validity of this spatio-temporal modelling, first, the ‘correct’ spatial model at h was 

constructed using the exact information available at that instance, by interpolating the spatial 

measurements taken at time instance h at every available location, thus creating reference slices.  

Then, three types of models were built from subsets E(hi, Xi): a non-adjusted model (no rescaling), 

an hour-adjusted model (rescaling according to the hour profile), and a day-hour-adjusted model 

(rescaling according to the day-hour profile). All three types were compared to the reference 

slices by calculating the temporal bias  (i.e., the relative error of the model compared to the 

reference slice), defined as 

𝛽𝑚𝑜𝑑𝑒𝑙(ℎ) = mean
𝑿∈𝒂𝒓𝒆𝒂

(
𝐸𝑚𝑜𝑑𝑒𝑙(ℎ, 𝑿)

2 − 𝐸𝑟𝑒𝑓(ℎ, 𝑿)
2

𝐸𝑟𝑒𝑓(ℎ, 𝑿)
2

), (5) 

where X represents an interpolation grid point, Emodel the electric-field strength predicted by the 

surrogate model constructed using the random set of (non-)adjusted measurement values taken 

at different moments, and Eref the electric-field strength predicted by the ‘correct’ model or 

reference slice, built from the exact information at time instance h. 



III Results & Discussion 

III.1 Analysis of the Exposimeter Network Measurements 

The SmartSantander exposimeter network consisted of 36 exposimeters that were active during 

any period of time between 09-12-15 and 15-02-17. A summary of the measuring periods and 

measurement results is given in Supplementary Materials – Table 1. Unfortunately, none of the 

exposimeters worked consistently. For all further analysis, only the exposimeters with an 

adequate amount of measurements were retained to create temporal profiles (i.e., 50 days, or 

nm = 14,400 or 7,200 at respective measurement collection times of 5 min and 10 min) and 

removed the (four) malfunctioning devices from the analysis. The locations and IDs 

(corresponding to Supplementary Materials – Table 1) of the 32 considered exposimeters of the 

network considered in this study are shown in Figure 1. 

 

 

Figure 1: The (X,Y)-locations and IDs of the exposimeters considered in this study (see Supplementary Materials – Table 1 
for a summary of the measurements). 

Across all measurement devices, the largest number of samples collected was 93,768 (‘64', in 

Figure 1), which accounted for 326 days. Averaged over the exposimeters' active measuring 

periods, Esignal varied between 8 mV/m (‘78', UMTS) and 371 mV/m (‘82', GSM1800) 

(Supplementary Materials – Table 1). The average electric-field strengths measured over the 

entire study area and measuring period (09-12-15 and 15-02-17) were 61 mV/m for GSM900, 99 

mV/m for GSM1800, and 64 mV/m for UMTS. It should be noted, though, that only one electric-

field component (vertical one) was measured by the exposimeter (Supplementary Materials –

Table 1), so these values are underestimations. 

It should be noted that, due to the nature of these measurements, compliance with ICNIRP 

reference levels could not be assessed. 



III.1.1  Temporal variability of the signals 

Figure 2 shows the ranges of the variability of the telecommunications (downlink) signals over 

the total assessment time of 14 months and over all 32 measurement locations. The maximum 

variability – and thus the potential error of a single exposimeter measurement, i.e., a 

measurement at one time instance as the proxy for the exposure at this location – was rather high, 

with median Vmax of 16 to 21 dB (and 13 dB for Etotal), and maximum Vmax of up to 30 to 42 dB. The 

median 90% variability, on the other hand, was of the order of 10 times lower and quite the same 

for all signals (6 to 7 dB for the individual signals, and 5 dB for Etotal). However, the range of 

variability was much broader for GSM1800 than for both GSM900 and UMTS, and overall, the 

values were higher for this band, with up to 37 dB even for V90. 

  

(a) Vmax (b) V90 

Figure 2: (a) Maximum and (b) 90-percent temporal variability of the signals over the total assessment period (i.e., 09-12-
2015 to 15-02-2017). 

III.1.2 Temporal profiles 

To illustrate the short-term temporal variation in the measured electric-field strength, in 

Figure 3(a), the relative total electric-field strength total (i.e., the ratio of the measured Etotal to 

Etotal,avg, the average electric-field strength measured over the day) measured at one location (‘99') 

for a week (01-12-16 to 07-12-16) was plotted, and in Figure 3(b) total at the same location for 

one specific day (01-12-16).  

In this specific case, a measurement at a single moment during this week could be off by -64% 

(total = 0.36; hour-aggregated: 0.40) up to +422% (total = 5.22; hour-aggregated: 2.83) compared 

to the average electric-field strength at that location, depending on the time and day of the 

measurement. 



In order to mitigate this error induced by performing measurements at different time instances, 

temporal profiles were constructed. In Figure 4, the location-aggregated day-hour profiles , i.e., 

the variation of  per hour and day of the week averaged over all measurement devices, were 

plotted for each of the measured frequency bands, and in Figure 5, the location-aggregated hour 

profiles (for which the day of the week was disregarded) were plotted. 

The daily variation in the UMTS band was the highest (Figures 4 and 5), although the extreme 

variations  were quite small (0.60 – 1.40). For GSM1800, as well as GSM900 and the total field, 

the electric-field strength hovered between 20% of the daily average. Comparing weekdays, 

Monday to Thursday appeared to be fairly similar (Figure 4), though Friday (orange, Figure 4), 

Saturday (red), and Sunday (dark green) all boasted distinct variations. Furthermore, the 

weekend nights boasted higher variations , the weekend mornings and afternoons lower . Once 

again, these trends were more outspoken for UMTS than for the other signals. 

The fact that the variation  remains so close to 1, in contrast to the high variability observed in 

the previous section, emphasizes the potential errors inherent to single, momentaneous 

measurements and justifies the use of hour-aggregated values in further analysis. 



 

(a) 

 

(b) 

Figure 3: Relative total electric-field strength ηtotal, measured during (a) one week (01-12-16 to 07-12-16) and (b) one day 
(01-12-16). 

 



  

(a) GSM900. (b) GSM1800. 

  

(c) UMTS. (d) Total. 

Figure 4: Location-aggregated day-hour profiles (used at all measurement locations). 

  

(a) GSM900. (b) GSM1800. 

  

(c) UMTS. (d) Total. 

Figure 5: Location-aggregated hour profiles (used at all measurement locations). 



III.2 Spatio-Temporal Interpolation 

For the final step of this study, a period of time was selected during which the majority of the 

exposimeters measured nearly continuously, namely from 01-12-16 (Thursday) to 07-12-16 

(Wednesday). First, hourly models were constructed at each time instance (‘reference slices’).  

For illustration, in Figure 6, a few slices for GSM900 are shown. To better illustrate the spatio-

temporal variations, the electric-field strength is in log scale (dB V/m). Though the positions of 

local features (i.e., the regions of higher and lower levels) within the spatial distribution of EGSM900 

remained fairly stable through time, the levels and the shape of the overall distribution clearly 

changed. This indicates that while the methodology introduced in Aerts et al. (2013b) is solid to 

locate hotspots, the overall accuracy of the exposure levels also depends on the time of 

measurement in comparison to the time of assessment. For example, an assessment of the 

exposure at 14:00 on Sunday will be inaccurate using measurements at 09:00 on Friday 

(Figure 6). 

From this week, random sets of 100 hour-averaged measurement values were used to build 

surrogate models at each time instance h between 01-12-16 00:00 and 07-12-16 23:00, using (i) 

the non-adjusted values, (ii) the location-aggregated day-hour-adjusted values, and (iii) the 

location-aggregated hour-adjusted values. To quantify the usefulness of the introduced temporal 

profiles, for each time-instant h, the hourly models (reference slices) were subsequently 

compared with the (non-)adjusted surrogate models. The cumulative distribution functions 

(CDFs) of the introduced temporal bias are shown in Figure 7, and the median temporal biases 

listed in Table 1. 



 

 

 

 

 

Figure 6: Surrogate models at different time instances (or reference slices) for GSM900 (downlink). The black squares 
indicate exposimeter locations (see Figure 1). 

 



 

  

(a) GSM900. (b) GSM1800. 

  

(c) UMTS. (d) Total. 

Figure 7: CDFs of the temporal bias  introduced in the interpolation models for three telecommunications downlink 
signals (+ the total field) by using non-adjusted, day-hour-adjusted, or hour-adjusted measurement values 

Table 1: Median temporal bias  introduced in the interpolation model using non-, hour-, and day-hour adjusted 
measurement values. 

Signal 
Temporal bias  (-) 

Non-adjusted Hour-adjusted Day-hour-adjusted 

GSM900 0.10 0.08 0.06 

GSM1800 0.13 0.09 0.07 

UMTS 0.25 0.15 0.12 

Total 0.14 0.09 0.06 

Average 0.16 0.10 0.08 

It is clear that using temporal profiles to rescale measurements to the correct time significantly 

reduced the temporal bias introduced in the model. In Figure 7, the CDFs of the temporal bias for 

adjusted models are shifted to the left, indicating the higher probability of lower bias. For 



example, for UMTS, the median bias  is reduced from 0.25 (non-adjusted) to 0.15 (hour-

adjusted) to 0.12 (day-hour-adjusted) (Table 1). The day-hour-adjusted models clearly offer the 

best results (on average 50% improvement; see also Figure 7 and Table 1), though using the hour 

profiles offered a reasonable improvement as well (on average 38% improvement; see also 

Figure 7 and Table 1). Of the three signals, the temporal bias as well as the potential reduction 

was the highest for UMTS, which follows the observation that the average variation of EUMTS over 

a day was larger than those of the GSM bands. This behaviour indicates a larger dependency on 

the UMTS network, especially during peak hours (around noon and 7pm – Figures 4 and 5). 

III.3 Strengths & Limitations 

For this study, a tremendous amount of spatio-temporal RF-EMF measurement data were 

collected in a relatively small area. As it is unlikely for measurement-based studies to have such 

a wealth of information at this spatio-temporal resolution, the temporal profiles were averaged 

over all measurement locations, and it was found that this location-aggregated profile was 

already useful. Moreover, even though measurements were optimally adjusted for both the hour 

and the day of the week (improvement of up to 50%), using mere hour-adjusted values reduced 

the bias by at least 20% and up to 40%, indicating that a simple adjustment for the measurement 

hour can result in a more accurate spatio-temporal model of the RF-EMF exposure. 

All measurements were performed outdoors and only telecommunications downlink bands were 

considered. As discussed in previous studies (Aerts et al., 2013a; 2013b; 2016), a large part of the 

human RF-EMF exposure coming from indoor and personal devices was disregarded, as well as 

broadcast antennas. However, in (Manassas et al., 2012), the short-term temporal variation of 

environmental RF-EMF due to broadcast antennas was found to be about 40% lower, and in 

(Aerts et al., 2013a), it was observed that EMF from broadcast networks contributed significantly 

less to the total environmental exposure compared to telecommunications downlink signals. 

Furthermore, the antenna in the measurement device used in this study is a vertically polarized 

monopole, meaning that the exposimeter measured only one component of the electric field. 

Moreover, additional uncertainty resulted from averaging the captured values over one-hour 

intervals. However, this study focused less on the absolute value of the exposure, but rather on 

the relative improvement of the exposure model when rescaling the used values based on their 

measurement instant. In addition, an averaging interval of one hour was used here as per 

practical considerations. In future research, an optimal averaging interval will be determined 

using a data set of higher temporal resolution. 

Next to a dedicated sensor network such as presented in (Diez et al., 2014), there exist a few other 

measurement setups that can be used for temporal RF measurements, e.g., an exposimeter, worn 



by a test subject (Frei et al., 2009; Bolte and Eikelboom, 2012; Urbinello et al., 2014) or placed at 

a certain location (Vermeeren et al., 2013), a broadband field meter with logging capability, 

secured to a tripod, or a spectrum analyser setup (Verloock et al., 2014; Joseph and Verloock, 

2010). Though the measurement accuracy of these setups (especially with an SA) would be 

higher, all of them have to be supervised or placed indoors, which is a huge burden or their 

applicability. 

Finally, although the authors are confident of the overall usefulness of temporal profiles for 

resource-poor spatio-temporal exposure characterization, it is challenging to extrapolate the 

band-specific results to other geographic areas, as networks and frequency band use are very 

likely to differ. For example, frequency bands that were initially used for traditional second 

generation (2G) technology (GSM) may now have been ‘refarmed’ to accommodate LTE bands. 

IV Conclusions 

Due to short-term variation over a day or over a week in environmental RF-EMF, measurements 

performed at different moments during this time can introduce a temporal bias in surrogate 

models of the RF-EMF exposure such as created in the previous chapters. To help mitigate this 

bias, temporal profiles can be created, i.e., average trends of the electric-field strength over a 

certain period of time, and used to rescale the available samples to the correct moment of 

assessment. In this study, a tremendous amount of spatio-temporal measurement data in three 

frequency bands used for telecommunications (GSM900, GSM1800, and UMTS) was analysed that 

was gathered in the SmartSantander Internet-of-Things network. The temporal variation of the 

signals within the area was contained in either day-hour profiles (i.e., a different profile for each 

weekday) or simple hour profiles. 

It was found that, by rescaling measurements taken at different moments to the same instance of 

time, a reduction of the temporal bias by up to 40% can be achieved when adjusting only for the 

hour, and 52% when also adjusting for the day of the week (both for UMTS). The mitigation 

worked best for UMTS because of its smoother and more outspoken temporal variation during a 

day. Finally, the work presented in this study indicates that the methodologies used in previous 

studies (Aerts2013a, Aerts2013b) should include time, either as a fully-fledged extra dimension 

(next to x and y) which is brought into the smart-sampling methodology, or through long-term 

temporal measurements at one or more locations within the area to obtain an area-averaged 

temporal profile. This as well as the validation of the findings reported here in other cities and 

environments will be the subject of future research. 
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