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Abstract

We propose a novel curl splitting technique to enhance the alternating-direction
finite-difference time-domain (ADI-FDTD) method, as such allowing for a higher resol-
ution in one or two dimensions. As our advocated approach leverages a hybrid implicit-
explicit (HIE) update scheme it is named “leapfrog ADHIE-FDTD”. The hybridization
yields a time step that is solely bounded by the spatial steps in preferred dimensions.
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1 Formulation

The standard leapfrog ADI-FDTD method relies on a smart way to split the curl in Maxwell’s

equations without breaking the symmetry [1, 2]. Here, we propose a new type of curl split-

ting, resulting in a HIE scheme. Compared to ADI-FDTD, the novel scheme allows resolving

structures that are fine in one or two dimensions, whilst explicit updating is used for the re-

maining coarsely discretized dimension(s), leading to increased accuracy and computational

speed-up. Compared to the standard leapfrog Yee-FDTD and owing to the implicitization,

the ADHIE-FDTD features a less stringent stability limit, rendering it computationally very

efficient.

Suppose we want to resolve an object that is thin along the x-axis. Then, we propose to
eliminate the x-dependence from the Courant limit by splitting the curlC = C0 +C1 +C2 into

the following three components:
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The occurring derivatives are discretized by central differences on the conventional Yee lattice.

The novel leapfrog ADHIE-FDTD update scheme is given by[ (
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where σ is the electrical conductivity, Z = (μ/ϵ)1/2 the wave impedance, Δτ = cΔt the time

step rescaled by the phase velocity c = (ϵμ)−1/2, and α is a tunable parameter.

It can be proven, following the reasoning described in [3], that a sufficient condition for

numerical stability of the proposed scheme is given by

Δτ <
1 − α√
1
Δy2 +

1
Δz2

, α ∈]0, 1[ . (3)

Owing to the curl splitting (1), Δx has been eliminated from the stability limit (3). From (2)

and (3), it is now clear that the parameter α controls the trade-off between accuracy and

simulation speed. One the one hand, the smaller α , the larger the perturbation introduced by

ADI and the larger the numerical error will be. On the other hand, a smaller α yields a larger

maximum allowed time step Δτ .

2 Results

To test the advocatedmethod, we simulate the shielding effectiveness (SE) [4] of a thinmetallic

sheet of infinite dimensions placed in the yz-plane. The sheet has a thickness of 10 μm in the

x-dimension and a conductivityσ = 107. It is illuminated by a z-oriented electric dipole placed
at a distance of 150 mm before the shield. The simulation domain is terminated by means of

perfectly matched layers (PML) and the grid contains 16 × 16 × 164 cells. In ADHIE-FDTD,

the cell size is given by Δx = Δy = Δz = 1.875 mm everywhere, except in the thin sheet,

where Δxsheet = 0.15873 μm. Consequently, locally, the refinement ratio along the x-axis is
very large, i.e. Δx/Δxsheet > 104.

When sweeping the parameter α from 0.25 to 0.90, we observe that the relative accuracy

on the SE at a frequency of 10 GHz varies from 5% to a few tens of one percent, where standard

Yee-FDTD was used as a reference method. This validates the accuracy of our technique.

Moreover, whereas in Yee-FDTD, the time step has to be chosen at cΔt = 159 nm to resolve the

thin sheet, in our ADHIE-FDTD this time step can be chosen between 0.1 mm up to 1 mm. As

the required CPU time scales as 1/Δt , the novel scheme is clearly much faster than traditional

methods.
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