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Abstract

We propose a novel curl splitting technique to enhance the alternating-direction
finite-difference time-domain (ADI-FDTD) method, as such allowing for a higher resol-
ution in one or two dimensions. As our advocated approach leverages a hybrid implicit-
explicit (HIE) update scheme it is named “leapfrog ADHIE-FDTD”. The hybridization
yields a time step that is solely bounded by the spatial steps in preferred dimensions.
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1  Formulation

The standard leapfrog ADI-FDTD method relies on a smart way to split the curl in Maxwell’s
equations without breaking the symmetry [1, 2]. Here, we propose a new type of curl split-
ting, resulting in a HIE scheme. Compared to ADI-FDTD, the novel scheme allows resolving
structures that are fine in one or two dimensions, whilst explicit updating is used for the re-
maining coarsely discretized dimension(s), leading to increased accuracy and computational
speed-up. Compared to the standard leapfrog Yee-FDTD and owing to the implicitization,
the ADHIE-FDTD features a less stringent stability limit, rendering it computationally very
efficient.

Suppose we want to resolve an object that is thin along the x-axis. Then, we propose to
eliminate the x-dependence from the Courant limit by splitting the curl C = Cy + C; + C; into
the following three components:

0 -0z 0y 0 0 0 00 O
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The occurring derivatives are discretized by central differences on the conventional Yee lattice.
The novel leapfrog ADHIE-FDTD update scheme is given by
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where o is the electrical conductivity, Z = (u/€)'/? the wave impedance, At = cAt the time
step rescaled by the phase velocity ¢ = (ey)"/?, and « is a tunable parameter.

It can be proven, following the reasoning described in [3], that a sufficient condition for
numerical stability of the proposed scheme is given by

1_
Ar< ——% , a€]o,1]. (3)
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Owing to the curl splitting (1), Ax has been eliminated from the stability limit (3). From (2)
and (3), it is now clear that the parameter a controls the trade-off between accuracy and
simulation speed. One the one hand, the smaller «, the larger the perturbation introduced by
ADI and the larger the numerical error will be. On the other hand, a smaller « yields a larger
maximum allowed time step Ar.

2 Results

To test the advocated method, we simulate the shielding effectiveness (SE) [4] of a thin metallic
sheet of infinite dimensions placed in the yz-plane. The sheet has a thickness of 10 ym in the
x-dimension and a conductivity ¢ = 10’. It is illuminated by a z-oriented electric dipole placed
at a distance of 150 mm before the shield. The simulation domain is terminated by means of
perfectly matched layers (PML) and the grid contains 16 X 16 X 164 cells. In ADHIE-FDTD,
the cell size is given by Ax = Ay = Az = 1.875 mm everywhere, except in the thin sheet,
where Axgpeet = 0.15873 pm. Consequently, locally, the refinement ratio along the x-axis is
very large, i.e. AX/AXgheer > 10%.

When sweeping the parameter o from 0.25 to 0.90, we observe that the relative accuracy
on the SE at a frequency of 10 GHz varies from 5% to a few tens of one percent, where standard
Yee-FDTD was used as a reference method. This validates the accuracy of our technique.
Moreover, whereas in Yee-FDTD, the time step has to be chosen at cAt = 159 nm to resolve the
thin sheet, in our ADHIE-FDTD this time step can be chosen between 0.1 mm up to 1 mm. As
the required CPU time scales as 1/At, the novel scheme is clearly much faster than traditional
methods.
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