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A B S T R A C T

Myofibrillary myopathies (MFM) are hereditary myopathies histologically characterized by degeneration of
myofibrils and aggregation of proteins in striated muscle. Cardiomyopathy is common in MFM but the patho-
physiological mechanisms are not well understood. The BAG3-Pro209Leu mutation is associated with early onset
MFM and severe restrictive cardiomyopathy (RCM), often necessitating heart transplantation during childhood.
We report on a young male patient with a BAG3-Pro209Leu mutation who underwent heart transplantation at
eight years of age. Detailed morphological analyses of the explanted heart tissue showed intracytoplasmic in-
clusions, aggregation of BAG3 and desmin, disintegration of myofibers and Z-disk alterations. The presence of
undegraded autophagosomes, seen by electron microscopy, as well as increased levels of p62, LC3-I and WIPI1,
detected by immunohistochemistry and western blot analyses, indicated a dysregulation of autophagy. Parkin
and PINK1, proteins involved in mitophagy, were slightly increased whereas mitochondrial OXPHOS activities
were not altered. These findings indicate that altered autophagy plays a role in the pathogenesis and rapid
progression of RCM in MFM caused by the BAG3-Pro209Leu mutation, which could have implications for future
therapeutic strategies.

1. Introduction

Myofibrillar myopathies (MFM) are a group of progressive heredi-
tary neuromuscular disorders, which typically have a late onset and are
frequently associated with cardiac involvement [1]. Pathogenic muta-
tions in several different genes were found to be associated with MFM,
including DES (desmin), CRYAB (αB-crystallin, also known as HSPB5,
heat shock family B member 5), MYOT (myotilin), LDB3 (LIM domain
binding 3, also known as ZASP, Z-band alternatively spliced PDZ con-
taining protein), FLNC (filamin C), FHL1 (four and a half LIM domains
1), TTN (titin), and BAG3 (bcl-2 associated athanogene 3). These pro-
teins are located at the Z-disks and pathogenic mutations affecting them
can result in protein aggregation and disintegration of myofibrillar ar-
chitecture [2–10]. In some instances, the protein aggregates show
specific morphologic characteristics indicative of the underlying

mutation [11].
Mutations in BAG3 are a rare cause of MFM. A proline to leucine

mutation in the second IPV domain of BAG3 (BAG3-Pro209Leu) is as-
sociated with rapidly progressive restrictive cardiomyopathy (RCM),
often requiring heart transplantation during childhood. Additional
symptoms such as proximal myopathy, neuropathy, rigid spine and
ventilatory insufficiency may precede or succeed the clinical signs of
RCM [12–17] (Table 1). In some patients with Pro209Leu mutation,
light microscopic examination showed intracytoplasmatic inclusions in
skeletal muscle containing the Z-disk proteins desmin and αB-crystallin,
and electron microscopic examination revealed disintegration and dis-
array of myofibrils with aggregates of degraded filaments and electron
dense material [13,14,16].

Autophagy in striated muscle is a complex process that involves
different pathways and is crucial for protein homeostasis during
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tension-induced stress [22–24]. The autophagy cascade can be upre-
gulated due to various forms of cellular stress and is dysregulated in
different diseases [20,25,26]. BAG3 plays a key role in selective mac-
roautophagy. Although expressed in various tissues, BAG3 is particu-
larly abundant in mechanically strained skeletal and cardiac muscle
cells [18]. It is necessary for the Z-disk integrity and is important for
autophagy of damaged or misfolded protein in striated myocytes
[19–21]. BAG3 is upregulated under mechanical stress and induces the
formation of a multicomponent heat shock machinery at the Z-disk
involving heat shock protein (Hsp70) and small heat shock proteins
(HSPBs), necessary for delivery of targeted proteins to autophagosomes
[27–35]. In addition, BAG3 regulates local mTORC1 function and is
involved in filamin protein synthesis [22,36]. In the heart, it protects
cardiomyocytes against proteotoxic stress and mutation in the BAG3
gene has been associated with sarcomere disarray and reduced con-
traction power in cardiomyocytes, as well as with dilated cardiomyo-
pathy [21,37].

Taking into account the multiple functions of BAG3 in controlling
protein homeostasis and autophagy in striated muscle, a mutation in
the gene may result in a defect of myocyte function. In line with this
notion, Bag3-deficient mice develop fulminant myofibrillar myopathy
with early lethality [18,38]. In zebrafish, overexpression of the mutant
BAG3-Pro209Leu results in aggregate formation, while loss of wild type
BAG3 causes myofibrillar disintegration [39].

In contrast to skeletal muscle, morphologic alterations in cardiac
tissue have not been analyzed in detail [12], thereby limiting the pa-
thophysiological understanding of the BAG3-Pro209Leu-related RCM
and impeding the development of new therapeutic strategies. Here, we
performed comprehensive morphological and biochemical analyses in
explanted heart tissue from a patient with RCM caused by the BAG3-
Pro209Leu mutation, focusing on the assessment of protein aggrega-
tion, myofibrillar structure and autophagy.

2. Methods

2.1. Cardiac muscle analysis

This work was approved by the Ethics Committee of the University
of Giessen and a written informed consent was obtained from all par-
ents. Tissue samples from the patient's explanted heart (P) and from two
controls were analyzed. One control tissue was from an eight-year-old
child with pulmonary atresia with intact ventricular septum (in-
traoperative biopsy) (C1), and one was an explanted heart from a one-
year-old child with hypoplastic left heart syndrome (C2).

2.2. Next generation sequencing

To identify the causative gene, next-generation sequencing of genes
in which pathogenic variants had previously been associated with
neuromuscular diseases (in total 483 genes, 1370 kb) was performed.
The panel for congenital and distal myopathies was analyzed in detail,
due to the patient's clinical diagnosis. Details of panel design, library
preparation, capture sequencing and variant calling have been pub-
lished previously [41].

2.3. Histochemical, immunohistochemical and immunofluorescence
microscopy

Unfixed heart tissue was snap frozen and 6 μm cryosections were
stained with hematoxylin and eosin (HE), cytochrome oxidase (COX)
and succinate dehydrogenase (SDH), according to standard procedures
for analyzing skeletal muscle biopsies. From formalin fixed tissue, 3 μm
sections were stained with H&E, Masson trichrome and congo red.
Immunohistochemical analysis was performed on cryosections and
paraffin sections using a Bench Mark XT automatic staining platform
(Ventana, Heidelberg, Germany) with the following primary antibodies:

mouse monoclonal anti-desmin (M076029-2, Agilent, 1:1000, Santa
Clara, US); mouse monoclonal anti-LC3 (0231-100/LC3-5F10,
nanoTools, 1:100, Teningen, Germany); mouse monoclonal anti-p62
(610832, BD Biosciences, 1:500, Franklin Lakes, US); mouse mono-
clonal anti-αB-crystallin (MONX10736, Monosan, 1:75, Uden, The
Netherlands); rabbit polyclonal anti-ubiquitin (Z0458, DAKO, 1:300,
Glostrup, Denmark). The following primary antibodies were used for
immunofluorescence staining: mouse monoclonal anti-desmin
(M076029-2, Agilent, 1:100, Santa Clara, US); rabbit polyclonal anti-
BAG3 (10599-1-AP, Proteintech, 1:500, Manchester, UK). The sec-
ondary antibodies were: Alexa Fluor 568 goat anti-rabbit IgG (Life
Technologies, 1:100, Carlsbad, US) and Alexa Flour 488 goat anti-
mouse (Life Technologies, 1:500, Carlsbad, US). The sections were
mounted with Fluoroshield mounting medium with DAPI (Abcam) and
examined using a Nikon Eclipse 80i or Leica DM2000 fluorescence
microscopes.

2.4. Transmission electron microscopy (TEM)

Small biopsies were fixed with 6% glutaraldehyde/0.4 M phosphate
buffered saline (PBS) and were processed with a Leica EM TP tissue
processor. For electron microscopy, ultrathin sections were contrasted
with 3% lead citrate trihydrate with a Leica EM AC20 (Ultrastain kit II)
and were examined using a Zeiss EM 109 transmission electron mi-
croscope.

2.5. Determination of protein expression in heart tissue

Unfixed heart tissue samples were lysed in 10 mM Tris HCl pH 7.5,
2% SDS, 2 mM EGTA, 20 mM NaF and homogenized using a mechanical
homogenizer (T10 Ultra-Turrax, IKA, Staufen, Germany) and an ultra-
sound sonifier (Sonopuls Bandelin, Berlin, Germany). Protein con-
centration was determined using the DC protein assay (Bio-Rad,
Munich, Germany). Equal amounts of total protein (30 μg of each
sample) were loaded on an SDS-PAGE gel, transferred to a PVDF-
membrane (Thermo Fisher Scientific, Dreieich, Germany, #88518) and
analyzed using the following primary antibodies: rabbit polyclonal anti-
BAG3 (10599-1-AP, Proteintech, 1:100.000, Manchester, UK); mouse
monoclonal anti-desmin (M076029-2, Agilent, 1:1000, Santa Clara,
US); mouse monoclonal anti-p62 (610832, BD Biosciences, 1:500,
Franklin Lakes, US); mouse monoclonal anti-LC3 (0231-100/LC3-5F10,
nanoTools, 1:1:1000, Teningen, Germany); mouse monoclonal anti-
WIPI (ST1505, Merck Millipore, 1:500); rabbit polyclonal anti-ubiquitin
(Z0458, DAKO, 1:1000, Glostrup, Denmark); mouse monoclonal anti-
HSP70 (ADI-SPA-810-D, Enzo Life Science, 1:1000 Farmingdale, New
York), mouse anti-αB-crystallin (HSPB5, MONX10736, Monosan,
1:250, Uden, The Netherlands); rabbit monoclonal anti-HSP6 (HSP20,
ab184161, Abcam, 1:10,000, Cambridge, UK), rabbit monoclonal anti-
HSP7 (cvHSP, ab150390, Abcam, 1:5000, Cambridge, UK), rabbit
polyclonal anti-HSPB8 (HSP22, ab96837, Abcam, 1:1000, Cambridge,
UK), rabbit polyclonal anti-parkin (ab15954, Abcam, 1:10.000,
Cambridge, UK); rabbit monoclonal anti-PINK1 (6946T, Cell Signaling
Technology, 1:500, Danvers, USA), mouse monoclonal anti-TOMM20
(ab56783, Abcam, 1:500, Cambridge, UK); rabbit monoclonal anti-
BNIP3L (NIX, 12396S, Cell Signaling Technology, 1:500, Danvers,
USA); rabbit polyclonal anti-pan-actin (4968, Cell Signaling, 1:1000,
Danvers, US). Protein amounts were quantified by densitometric mea-
surement of integrated band intensities using ImageJ/Fiji [42] and
normalized to the levels of the house-keeping gene (pan-actin).

2.6. Quantitative reverse transcription (RT)-PCR

The tissue was lysed using a mechanical homogenizer (Precellys 24,
Bertin Technologies, Rockville, US), RNA was isolated with an RNeasy
Mini Kit (Qiagen, Hilden, Germany #74106) and reverse transcribed
using iScript cDNA Synthesis kit (Biorad, Germany, #170–8891). cDNA
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was amplified using the ABsolute QPCR SYBR Green Mix (Thermo
Fisher Scientific, Dreieich, Germany, #AB1162/b) and a StepOnePlus
real-time PCR system (Applied Biosystems). The primers used for BAG3
quantification were: hBAG3 For: CCCCGTTCAGGTCATCTGTC and
hBAG3 Rev: AGGTGCAGTTTCTCGATGGG. The difference in the
threshold number of cycles between the gene of interest and hypox-
anthine phosphoribosyltransferase 1 (HPRT), used a “house-keeping”
gene and amplified with primers HPRT1 For: TATGGCGACCCGCAG
CCC and HPRT1 Rev: GCAAGACGTTCAGTCCTGTCCAT, was normal-
ized relative to the standard chosen for the experiment and converted
into x-fold difference.

2.7. Analysis of mitochondrial enzyme activities

The activities of citrate synthase and the complexes I (NADH-CoQ
reductase), II (succinate CoQ oxidoreductase), II + III (succinate cyto-
chrome c reductase) and IV (cytochrome c oxidase) were measured by
spectrophotometric analysis as described previously [43–45]. The en-
zyme activities in the patient and two controls were analyzed in the
same run. The enzyme activities in the patient were compared with the
activities in two controls and with historical control data (n = 22).
Enzyme activities are expressed as nmol/min/mg protein. For enzyme
ratios the Z-score in brackets is calculated from the logarithm of OX-
PHOS activity divided by the logarithm of citrate synthase activity.
Values lower than −1.96 are significantly different (P < 0.05) from
control samples and indicate deficient activities. Control sample ratios
are given as mean ± SD.

3. Results

3.1. Case history

The patient is the second child born to healthy non-consanguineous
German parents. At age four years, a heart murmur was noticed. A
subsequent echocardiogram was suggestive of restrictive cardiomyo-
pathy, later confirmed by MRI (Fig. 1) and endomyocardial biopsy. The
patient's cardiac function remained stable until age six years, when he

started complaining about dyspnea during minor exertion. In addition,
nocturnal hypoxemia and hypercapnia were detected, necessitating
non-invasive assisted ventilation overnight. The patient's cardiac func-
tion further deteriorated, ultimately leading to heart transplantation at
age 8½ years.

Since the patient's physical endurance did not improve as expected
and nocturnal hypoventilation persisted, a detailed neurological ex-
amination was performed at age nine years, revealing mild scoliosis and
proximal muscle weakness. Serum creatinine kinase (CK) values were
slightly increased (227 U/l; normal < 180 U/l). His vital capacity was
substantially reduced (850 ml; 53% of the expected normal value).
Electromyography of the right deltoid muscle disclosed a myopathic
pattern, while electroneurography demonstrated a combined demyeli-
nating and axonal polyneuropathy.

As the patient had a combination of RCM, skeletal myopathy and
polyneuropathy, next generation sequencing was performed, targeting
genes associated with cardiomyopathy and skeletal myopathy, which
revealed a heterozygous Pro209Leu mutation in BAG3 [39]. Both par-
ents did not carry the mutation.

3.2. The pathology of BAG3-Pro209Leu mutant cardiac tissue is
characterized by abundant intracytoplasmic inclusions and myofibrillar
disintegration with Z-disk alterations

Histological and histochemical analyses of BAG3-mutant cardiac
tissue (Fig. 2 E-L) compared to cardiac tissue from control 1 (Fig. 2A-D)
showed variation of cardiomyocyte diameter, hyperchromatic nuclei
and focal fibrosis, which are morphological findings consistent with
hypertrophic cardiomyopathy in the patient (Fig. 2E, F). In-
tracytoplasmic inclusions were abundant and strongly visible in many
fibers with different staining (H&E, Masson trichrome, Gomori Tri-
chrome, Congo red, Fig. 2E, F, J). Using enzymatic stains (SDH), the
inclusions were presented as empty spaces similar to hyaline bodies,
while the blue-stained myofibrils were displaced to the borders, sug-
gesting myofibrillar disintegration (Fig. 2G). COX negative fibers were
not visible (data not shown). Immunohistochemical staining disclosed
that the intracytoplasmic inclusions contained different proteins such as

Fig. 1. Cardiac MR images of a ten-year-old control (A, B)
and the patient (C, D) before transplantation during systole
(A, C) and diastole (B, D). Four chamber views depict only
minimal changes of the right and left chamber diameter
from systole to diastole, distinctly enlarged atria, and
moderate left ventricular wall thickening in the patient,
consistent with a restrictive hypertrophic cardiomyopathy.
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desmin, ubiquitin and αB-crystallin (Fig. 2H, K, L).
Ultrastructural findings in control and patient tissue are shown in

Fig. 3. In the patient, strong myofibrillar disintegration and Z-disk al-
teration are visible (Fig. 3D). Disrupted Z-disks with Z-disk streaming
and electron dense thick bundles, apparently originating from the Z-
disks, were present in many fibers (Fig. 3E). Additional thick electron
dense filamentous bundles were observed, partly surrounded by empty
vacuoles, and vacuoles containing “myelin bodies” (Fig. 3G, H) and
masses of partly subsarcolemmally located granulo-filamentous mate-
rial (data not shown). Empty vacuoles and vacuoles filled with glycogen
or electron dense material were frequent in the patient's cardiomyo-
cytes (Fig. 3D, G–I), but not in control tissue (Fig. 3A). In the patient,
the mitochondria showed mild abnormalities such as focal aggregation,
polymorphic shape, and some focal lipofuscin droplets (Fig. 3F).

3.3. Altered expression of desmin and BAG3 in cardiac muscle of the patient
with BAG3-Pro209Leu mutation

To assess the levels of BAG3 and desmin in BAG3-mutant cardiac
tissue, we performed western blot analysis. This showed slightly in-
creased desmin levels as compared to control samples (Fig. 4A, B),
consistent with the large number of desmin positive aggregates de-
tected by immunohistochemistry and immunofluorescence analysis
(Fig. 2H). BAG3 protein levels in BAG3-mutant cardiomyocytes were
similar or slightly higher than those in the control samples (Fig. 4A, B).
The level of BAG3 mRNA was not increased (Fig. 4C). Further im-
munofluorescence studies revealed that both desmin and BAG3 were
strongly expressed at Z-disks and intercalated disks in control cardio-
myocytes (C1) (Fig. 4D–I). By contrast, both proteins were focally di-
minished at Z-disks in BAG3-mutant cardiac tissue, but strongly

enriched in aggregates (Fig.4J–O). While some of the abundant protein
aggregates contained either desmin or BAG3 (Fig. 4J–O), others showed
co-localization of desmin and BAG3 (Fig. 4L, O).

3.4. Impaired autophagy in BAG3-Pro209Leu mutant cardiac muscle

Since BAG3 has been shown to be involved in autophagy, we tested
whether this process is altered in BAG3-mutant cardiac tissue.
Immunohistochemical staining showed many p62- and LC3-positive
inclusions in the patient's cardiomyocytes (Fig. 5C, F). Electron mi-
croscopic examination showed vacuoles delimited by a double mem-
brane separated by a cleft as characteristic of undegraded autophago-
somes, containing cellular debris [46] (Fig. 5I). No such vacuoles were
observed in the control samples (Fig. 5G, H).

We next examined by western blot the total levels of p62 and LC3,
as well as of WD repeat domain phosphoinositide-interacting protein 1
(WIPI1), a marker of nascent autophagosomes. This revealed greatly
increased expressions of p62, LC3-I, and WIPI1, but not of LC3-II in the
cardiac tissue of the BAG3-Pro209Leu mutant tissue compared to the
control samples (Fig. 6A, B). Furthermore, total levels of ubiquitinated
proteins were considerably higher in the patient than in the controls.

BAG3 associates with heat shock protein 70 (HSP70), acting as a co-
chaperone, and has also been shown to bind members of the small heat
shock protein family (HSPBs [47,48]). Moreover, a complex of BAG3
with HSP70 and/or HSPB8 was reported to play a role in the selective
degradation of misfolded or damaged proteins by macroautophagy
[20,21,27–29]. Therefore, we assessed the levels of these heat shock
proteins. While there was no change in HSP70 expression, we observed
increased levels of all members of the small HSPs, especially HSPB6, in
the patient (Fig. 6C, D).

Fig. 2. Histological analyses of the patient's explanted heart (E-L) compared to control tissue (A–D). The patient's cardiac tissue reveals increased variability of fiber diameter with
hyperchromatic nuclei (E) and endomyocardial fibrosis (*) (F). Many fibers contain intracytoplasmic inclusions (arrows), which are eosinophilic in H&E (E) and in Masson trichrome (F),
dark in Gomori trichrome (I) and congophilic (J). Cryosections stained with SDH show large pale intracytoplasmic inclusions surrounded by focally displaced dark blue myofibrils (G).
Immunohistochemical analyses demonstrate desmin positive (arrow) and desmin negative inclusions (*) (H) and accumulation of various proteins, including αB-crystallin (K) and
ubiquitin (L). (Frozen sections: A, C, G, H; paraffin sections: B, D, F, J, H). Scale bars: 50 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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3.5. Normal mitochondrial enzyme activities but potential alteration of
mitophagy in BAG3-Pro209Leu mutant cardiac muscle

As alterations of mitochondrial function have been described pre-
viously in skeletal muscle biopsies from patients with MFM [49–51], we
investigated mitochondrial function and mitophagy in BAG3 mutant
cardiac tissue using histological, ultrastructural, western blotting and
biochemical analyses. In the patient's heart tissue, COX-negative fibers
were not detected (data not shown). Spectrophotometric measurements
of oxidative phosphorylation (OXPHOS) enzyme activities did not re-
veal significant differences between the patient, two control samples
(C1, C2) and historical controls (n = 22) (Table 2). With TEM, many
BAG3-mutant cardiomyocytes showed some focal accumulations of
mitochondria with moderate polymorphic appearance (Fig. 3F).

Mitochondria can undergo morphological and functional alterations
even under physiological conditions. Degrading these altered mi-
tochondria through a form of autophagy termed mitophagy is an im-
portant step in cellular homeostasis [52]. One of the possible functions
of BAG3 is to promote mitophagy, as reduction of functional BAG3
protein was shown to be associated with impaired clearance of da-
maged mitochondria [53]. Using western blot analysis, we tested the
abundance of Parkinson's disease (PD) associated proteins parkin and
PTEN-induced putative kinase 1 (PINK1), key components of mi-
tochondrial quality control [54–56], and of BCL2 interacting protein 3
like (BNIP3L)/NIX, a regulator of nonselective mitophagy during hy-
poxia [57,58]. In addition, we analyzed the mitochondrial import re-
ceptor subunit TOMM20, as a marker for mitochondrial load.

We found a slight increase in the levels of parkin and PINK1 in
BAG3-mutant cardiac tissue compared to control samples, whereas
BNIPlL/NIX was slightly decreased (Fig. 7A, B). The levels of TOMM20
were also slightly lower in patient tissue, suggesting that there was no
increase in mitochondrial load (Fig. 7A, B). These data are in line with

the normal activity of citrate synthase found in the patient's cardiac
muscle (Table 2). Immunofluorescence staining with antibodies against
SOD2 showed an irregular distribution of the mitochondria in the pa-
tient's cardiomyocytes (data not shown).

4. Discussion

Myofibrillar myopathies (MFM) are a subgroup of progressive
neuromuscular disorders characterized morphologically by typical in-
tracytoplasmic inclusions, containing proteins associated with myofibril
disintegration, and by Z-disk alterations [2,4,7,9,59]. Similar morpho-
logical features have been described in patients with MFM caused by
the BAG3-Pro209Leu mutation. However, the clinical symptoms in the
latter differ from those seen in other forms of MFM, as the BAG3-
Pro209Leu-related MFM usually has an early onset and can be asso-
ciated with severe cardiomyopathy [12–17] (Table 1). Clinical findings
such as proximal myopathy, polyneuropathy, rigid spine, early re-
spiratory failure, and restrictive cardiomyopathy as the predominant
clinical feature in our patient with BAG3-Pro209Leu mutation were
consistent with those described in the literature for other individuals
harboring this specific genetic defect. We performed a detailed mor-
phological and biochemical analysis of the patient's explanted heart in
an attempt to better understand the pathogenic mechanism leading to
his cardiomyopathy. Our findings suggest that autophagic dysfunction
may play a role in the pathogenesis and rapid progression of MFM as-
sociated with the BAG3-Pro209Leu mutation.

BAG3 has multiple functions in health and disease. It is expressed
particularly abundantly in skeletal and cardiac muscle tissues, and is
upregulated under mechanical stress [20,21,24,26,29–32]. We found
that BAG3 was localized at the Z-disks and intercalated disks together
with desmin in control cardiac tissue, consistent with the assumed role
of BAG3 in maintaining Z-disk integrity. By contrast, both BAG3 and

Fig. 3. Ultrastructural findings in control 1 (A–C) and
BAG3-mutant cardiac tissue (D-I). In BAG3-mutant tissue,
the cardiomyocytes show severe myofibrillar disintegration
with strong variation of diameter and atrophic cells with
vacuoles (D). Z-disk alterations are frequent and electron
dense material originating from the Z-disks is abundant (E).
Focal accumulation of mitochondria with some lipofuscin
droplets are also visible (F). Electron dense thick bundles,
partly surrounded by vacuoles containing electron dense
material, are frequent (G, H). In addition, empty vacuoles
and vacuoles filled with glycogen or electron dense mate-
rial are located between myofibrillar bundles (I). Scale bars:
A, D, G: 2.5 μm; B, C, E, F, H, I: 0.5 μm.
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desmin expression was diminished in the Z-disks of the patient's cardiac
muscle. This was accompanied by Z-disk disruption at the ultra-
structural level, severe damage of myofibrillar architecture, and high
variation of muscle fiber diameter, compatible with a severe form of
cardiomyopathy. These findings are in line with histological abnorm-
alities seen in skeletal muscle biopsies from other patients with various
forms of MFM, including subjects harboring the BAG3-Pro209Leu mu-
tation [2–4,11,14].

The morphological findings in our patient also match results from in
vitro studies and in vivo experiments in animal models with loss of BAG3

function [21,31,38,39]. In particular, our findings are in perfect con-
gruence with the presence of protein aggregates at the end stage of
disease in Bag3-deficient mice, which develop a fulminant myofibrillar
myopathy [18].

The underlying etiopathogenic mechanisms of MFM are still not
sufficiently understood. Recent findings suggest that the accumulation
of protein aggregates is not due to increased protein production, but is
rather caused by failure of protein degradation [27,60–63]. Indeed,
altered autophagy has been reported in MFM. In skeletal muscle fibers
of MFM patients, protein aggregations showed increased expression of

Fig. 4. Assessment of desmin and BAG3 levels, and localization of these proteins in cardiac tissue. A, B, western blot analysis of BAG3 and desmin levels in cardiac tissue from the controls
C1 and C2, and from the BAG3-Pro209Leu mutant patient (P). Equal amounts of total protein were loaded and probed with the indicated antibodies; pan-actin served as a loading control
(A). The amount of signal was densitometrically quantified and normalized to the level of pan-actin (B). BAG3 mRNA expression was determined using quantitative RT-PCR and
normalized to the expression level of C1 (C). Immunofluorescence staining shows localization of desmin and BAG3 at the Z-disks and intercalated discs in healthy cardiomyocytes (D–I),
whereas desmin and BAG3 are focally diminished at Z-disks and enriched in aggregates in cardiac tissue from the patient (J–O). BAG3 positive aggregates are frequent in the patient and
are focally surrounded by desmin (J–O). Scale bars: D–F, J–L, 50 μm, G–I, M–O, 20 μm.
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proteins involved in proteasomal and autophagic degradation, in-
cluding BAG3 and ubiquitin [62–64]. In line with this, we detected
aggregates expressing BAG3 surrounded by desmin in some cardio-
myocytes, as well as an overall increase of the amount of BAG3 and
desmin in our patient. These findings are in congruence with studies in
a zebrafish model, which have reported an increased aggregation pro-
pensity of the BAG3-Pro209Leu mutant protein together with Z-disk
proteins such as filamin C [39]. This work has suggested that the BAG3-
Pro209Leu mutation leads to a toxic gain of function, by promoting the
co-aggregation of mutant and wild-type BAG3, eventually resulting in
BAG3 insufficiency and myofibrillar disintegration. Desmin positive
aggregates, as seen in our patient's cardiac tissue, have also been de-
scribed in the skeletal muscle of patients with MFM due to BAG3-
Pro209Leu mutation [14,17]. But since desmin upregulation was also
described in compensated and decompensated heart failure due to
cardiomyopathy [65], we cannot rule out a BAG3-independent desmin
upregulation in our patient.

Autophagy is a complex process necessary for removal, recycling
and repair of intracellular components. Different types of autophagy
exist in muscle, which share common molecular components. Damaged
proteins aggregating during contraction (e.g filamin) have to be de-
graded to maintain Z-disk integrity. BAG3-containing chaperone com-
plexes have been shown to play a crucial role in these removal pro-
cesses via selective macroautophagy. Impairment of BAG3-mediated
autophagy has been related to Z-disk disintegration
[22,24,27–30,33,34,36].

Autophagy can be analyzed morphologically by electron micro-
scopy, and biochemically by determining the levels of autophagic

markers such as p62, LC3 and WIPI by western blotting [46,66]. An
important early event in autophagosome formation is the production of
phosphatidylinositol 3-phosphate in the membrane of the phagophore.
The generated phosphatidylinositol 3-phosphate is bound by proteins of
the WIPI family, which are required to promote LC3 lipidation. An in-
crease in WIPI may reflect autophagy induction, but may also result
from a blockade of autophagic flux [67]. Microtubule associated pro-
tein 1 light chain 3 (LC3) is implicated in macroautophagy and shows
two different bands in immunoblotting, the cytosolic form LC3-I and
the phosphatidylethanolamine conjugated form LC3-II. An increase of
LC3-II, necessary to recruit autophagosomal membranes, indicates an
induction of autophagosome formation and subsequent lysosomal fu-
sion and degradation, whereas an increase of LC3-I indicates defective
autophagy [68,69]. P62, also known as sequestosome-1 (SQSTM1) or
zeta interacting protein (ZIP), is essential for the clearance of ubiqui-
tinated and non-ubiquitinated proteins. It is degraded during autophagy
and its level usually inversely correlates with autophagy. Suppression of
autophagy leads to accumulation of p62 which further inhibits autop-
hagy by activating MTORC1 [70–74]. In our patient's cardiac tissue, we
detected a substantially increased levels of autophagy receptor p62,
WIPI1, and LC3-I when compared to control tissues, whereas LC3-II was
not altered. Collectively, these findings suggest a defective autophagy
in BAG3-Pro209Leu mutated cardiac tissue. In line with this, the total
amount of ubiquitinated proteins was higher in the BAG3-mutant tissue
than in the control samples, indicating that the marked proteins are not
being efficiently degraded.

BAG3 serves as a co-chaperone/nucleotide exchange factor for
HSP70 [20] and interacts with proteins of the small heat shock protein

Fig. 5. Morphological analysis of autophagy by immunohistochemistry and TEM. There is no significant expression of p62 and LC3 in the cardiomyocytes of the controls (A, B, D, E),
whereas LC3 and p62 positive inclusions are frequent in the patient's cardiomyocytes (C, F). Undegraded autophagosomes, delimited by a double membrane and separated by a cleft,
which contain cellular debris, are visible in BAG3-mutant cardiac tissue (I), but not in control samples (G, H). Scale bars: 50 μm (A–F), 2.5 μm (G–I).
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family (HSPBs [47,48]). Moreover, a complex of BAG3 and HSPB8
mediates degradation of mutant and aggregation-prone huntingtin
protein by macroautophagy [29]. In addition, BAG3 coordinates the
activity of HSP70/HSC70 and HSPB8 for degradation of damaged
proteins by selective macroautophagy, which is essential for muscle
maintenance in Drosophila [27]. We therefore examined the levels of
HSP70 and a set of HSPB proteins in the BAG3-Pro209Leu mutant
cardiac tissue. While HSP70 levels were not altered, we found moderate
to marked increases of all HSPB proteins tested in the patient's cardi-
omyocytes. This increment was greatest for HSPB6, which is known to
bind BAG3 with high affinity [48]. Interestingly, the Pro209Leu mu-
tation lies within a region of BAG3, which contributes to HSPB protein
binding [48], and thus, alters the affinity for HSPBs. This could result in
a decreased turnover of HSPBs in cells with mutant BAG3, thereby
explaining the elevated levels of these proteins found in our study.

Alternatively, compromised binding of BAG3 to HSPBs may induce
their accumulation through aggregation. Indeed binding to BAG3 has
been shown to promote de-oligomerisation of HSPB1 [48]. This hy-
pothesis is supported by the findings of the present study, demon-
strating αB-crystallin (HSPB5) aggregates in the BAG3 mutant cardiac
tissue. Furthermore, an altered interaction of BAG3 with HSPBs and/or
HSP70 may contribute to the dysregulated autophagy which we ob-
served in our patient.

The role of BAG3 and of the Pro209Leu mutant in the pathogenic
mechanism of the skeletal myopathy has been analyzed in several cell
culture-based and animal models [18,21,31,39] but the hypothesis that
altered autophagy contributes to disease onset has not been tested in
human tissue so far. Our data corroborate the notion that the BAG3-
Pro209Leu mutation leads to reduced capacity for autophagy of protein
aggregates formed during mechanical stress in cardiac muscle [75–78].

Fig. 6. Western blot analysis of autophagy markers and heat shock proteins in the patient's cardiac muscle (P) compared to control tissue (C1, C2). Equal amounts of total protein were
loaded and probed with the indicated antibodies, pan-actin served as a loading control. The autophagic markers p62, LC3-I, WIPI1, as well as the total levels of ubiquitinated proteins are
strongly increased in the patient compared to controls, while LC3-II was not altered (A, B). HSP70 expression is not changed in the patient, while small heat shock proteins (HSPB5-8), in
particular HSPB6, are upregulated (C, D). The amount of signal was densitometrically quantified and normalized to the level of pan-actin (B, D).

Table 2
Mitochondrial enzyme activities in the cardiac muscle of the patient and controls. Enzyme activities are expressed as nmol/min/mg protein. The Z-score shown in brackets is calculated
from the logarithm of OXPHOS complex activity divided by the logarithm of the citrate synthase activity. Values lower than−1.96 are significantly different (P < 0.05) from the control
samples. Historical control sample ratios are given as mean ± SD.

Complex Complex Complex Complex Complex Citrate synthase

I/CS II/CS II + III/CS III/CS IV/CS

Control 1 81 [−0.13] 78 [−0.87] 67 [−0.95] 262 [0.72] 416 [0.73] 627
Control 2 92 [−0.26] 105 [−0.51] 109 [−0.17] 210 [−0.02] 623 [1.20] 814
Patient 89 [−0.06] 99 [−0.34] 114 [0.24] 321 [0.92] 488 [0.94] 691
Controls (historical) (n = 22) 97 ± 28 139 ± 40 126 ± 36 208 ± 33 448 ± 103 869 ± 200

CS = citrate synthase.
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Therefore, stimulation of autophagy may contribute to enhanced
clearance of aggregates [64] and represents a potential therapeutic
strategy for RCM in patients with a BAG3-Pro209Leu mutation.

Cardiomyocytes contain large numbers of mitochondria that can
become damaged under conditions of cardiac stress. Autophagy of de-
fective mitochondria (mitophagy) is an important mechanism for re-
cycling and rejuvenation of mitochondria [79]. Mitochondrial ab-
normalities have been described in skeletal muscle biopsy samples from
patients with MFM [50,51,80] and recent findings suggest a role of
BAG3 in mitochondrial quality control in cardiomyocytes [53]. In our
patient's heart explant, we found normal citrate synthase activities and
unchanged OXPHOS enzyme activities, indicating that there was no
substantial change in mitochodrial number or respiratory function. On
the other hand, focal mitochondrial accumulations with enhanced
polymorphia and some condensed mitochondria were observed at the
ultrastructural level (Fig. 3F). Together with the slight decrease in
TOMM20 levels (Fig. 7), these observations are compatible with some
degree of mitochondrial impairment. Similarly, the modestly increased
expression of parkin and PINK1, which play a critical role in mitophagy
by mediating proteasomal degradation of mitochondrial outer mem-
brane proteins [81,82], might be indicative of impairment of mi-
tochondrial function or clearance [53,54], which can be an additional
factor in the cardiac pathogenesis elicited by the BAG3-Pro209Leu
mutation. In future studies, it will be interesting to assess the involve-
ment of autophagy and mitophagy in the skeletal muscle pathogenesis
in patients with BAG3-Pro209Leu mutation.

5. Conclusions

In conclusion, we present the first detailed morphological and bio-
chemical characterization of cardiac tissue in a patient with severe
MFM caused by the BAG3-Pro209Leu mutation. BAG3-mutant cardiac
tissue showed protein aggregates and myofibrillar disintegration typical
for MFM. The morphological alterations were similar, but more severe
than those described in skeletal muscle samples, and are consistent with
a severe cardiomyopathy. Our results support the hypotheses that
dysregulation of autophagy is an important factor contributing to the
pathophysiology of RCM in patients with the BAG3-Pro209Leu muta-
tions.
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