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1.  Introduction to micromagnetism

1.1.  Historical overview of micromagnetism

Micromagnetism is the theory which describes magnetiza­
tion on the intermediate scales above those where individual 
atomic spins have to be taken into account, but below the 
macroscopic scale on which entire domains are observed [1]. 
So, micromagnetism is a continuum theory of magnetic mat­
erials at the picosecond timescale and nanometer to microm­
eter length scale. The first step towards this theory was taken 
by Weiss in 1907 [2], by investigating why some magnetic 
materials do not display net magnetization: he conjectured 
that a ferromagnetic material could contain several uniformly 
magnetized domains, in which the magnetization points in 
different directions. Furthermore, knowing that the magneto­
static field is not strong enough to explain the alignment of the 
magnetic moments within these domains [3], he attributed this 
to an unknown field which he called the Weiss molecular field, 
which later was shown to result from the quantum-mechanical 
Heisenberg–Dirac exchange interaction [4].

In 1919, Barkhausen observed that when a magnet is 
brought in the vicinity of another magnetic material, the mag­
netization of the latter changes in discrete jumps, leading to 
Barkhausen noise [5], which he attributed to switching of the 
individual domains. Barkhausen associated and explained his 
observations with domain theory, already twelve years before 
domains were first visualized by Bitter [6]. However, his 
explanation was not entirely correct: while investigating the 
reversal of magnetic wires [7], Sixtus and Tonks concluded 
that the domains themselves do not switch direction, but the 
domain boundaries move and thus enlarge the domains with 
an energetically favorable magnetization direction.

Bloch was the first to investigate domain walls theor­
etically [8] and calculated the size and shape of the bound­
ary in between domains, taking only material anisotropy and 
the exchange interaction into account. This work was further 
improved upon in 1935 by Landau and Lifshitz [9] by tak­
ing all the energy terms into account. Their insights not only 
advanced the understanding of domain walls but laid, in fact, 
the basis for all of the micromagnetism by deriving the (now 
famous) Landau–Lifshitz equation. This equation  describes 
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the dynamics of magnetic moments while minimizing all of 
the energy terms. Following the work of Döring [10], the 
last step towards a complete framework of micromagnetism 
as it is still used today was performed by Gilbert [11]. He 
investigated a more physical description of damping in fer­
romagnetic materials and reformulated the Landau–Lifshitz 
equation as the Landau–Lifshitz–Gilbert equation (LLG).

This demonstrates that the theory of micromagnetism 
gradually grew during a time span of several decades. In the 
sixties, the elements for this complete framework were com­
bined in a comprehensive overview [1] by Brown. Due to the 
complexity of the micromagnetic equations, only (relatively) 
simple problems can be solved analytically. The best-known 
example is still the domain wall calculation of Landau and 
Lifshitz [9]. Although it is possible to tackle complex sys­
tems by carefully analyzing and simplifying the micromagn­
etic equations (e.g. the 1D-model for domain wall motion by 
Schryer and Walker [12]), the field of micromagnetism did not 
advance very quickly. Only when increasingly faster comp­
uters became available did it become possible to numerically 
solve micromagnetic problems and compare their solutions to 
the corresponding analytical counterparts. Ever since, the field 
of micromagnetism has taken flight. Recently, the possibility 
to calculate on graphics cards [13, 14] has further increased 
the possibilities to perform faster, larger and more complex 
simulations.

1.2.  Micromagnetic theory

In the micromagnetic formalism, the magnetization of a 
magnetic material is described by a continuous vector field M. 
Usually, the norm of the magnetization vector at each point is 
assumed to be constant and equal to the saturation magnetiza­

tion, Ms. Therefore, the reduced magnetization m = M
Ms

, with 

‖m‖ = 1, is introduced to describe the direction of the magn­
etic moment at each point in space.

At the heart of micromagnetism lies the Landau–Lifshitz–
Gilbert equation, which describes the spatial and temporal 
evolution of magnetization: a precession around and damp­
ing towards the local effective field, whose main contributions 
are described in section 1.2.1. In the absence of damping, the 
magnetization will indefinitely precess around the effective 
field,

Ṁ = −γM × µ0Heff,� (1)

with a precession frequency equal to

f =
γ0Heff

2π
≈ µ0Heff 28 GHz T−1� (2)

where γ0 = 2.21 × 105 m As−1 is the product of the vacuum 
permeability µ0 and the gyromagnetic ratio

γ =
ge

2me
� (3)

where e and me are the charge and mass of the electron, respec­
tively, and g ≈ 2 is the Landé factor.

In reality, however, energy is dissipated by, e.g. eddy cur­
rents and phonon excitations via the spin-lattice coupling. 

Landau and Lifshitz [9] took this damping into account by 
adding a phenomenological torque to equation  (1) which 
slowly directs the magnetization towards the effective field. 
The Landau–Lifshitz equation thus reads

ṁ = −γ0m × Heff − λm × (m × Heff).� (4)

In 1955, Gilbert [11] introduced a different approach to 
describe the damping. Also phenomenologically, but physi­
cally more intuitive, he assumed that the damping is propor­
tional to the time derivative of the magnetization ṁ, with α 
(the Gilbert damping parameter) as the proportionality con­
stant. Typically, an α of 0.01 is measured in permalloy, but 
this value can be as high as 0.3 in materials with perpendicular 
magnetic anisotropy.

Using Gilbert’s approach, the Landau–Lifshitz equa­
tion can be written in its Gilbert form (also called the Landau–
Lifshitz–Gilbert equation)

ṁ = −γ0m × Heff + αm × ṁ.� (5)

Although equations (4) and (5) look different, they can eas­
ily be transformed into one another by substituting λ and γ0 in 
the Landau–Lifshitz equation by γ0α

1+α2 and γ0
1+α2, respectively.

1.2.1.  Effective field contributions.  The effective field can be 
written as the derivative of the magnetic energy densities to 
the magnetization

Heff = − 1
µ0

dE
dM

,� (6)

where the different energies are calculated as a volume int­
egral of the local energy densities E over the total considered 
volume V

E =
dE
dV

.� (7)

When one is interested only in statics (as opposed to dynamics 
which concerns itself with the time evolution of the magneti­
zation), the equilibrium magnetization state can be found by 
minimizing the total energy Etotal of the system.

A list of the most commonly considered energy terms con­
tributing to the effective field is given below.

1.2.2.  Zeeman energy.  The Zeeman energy is the energy due 
to an externally applied magnetic field Hext , and is minimal 
when the magnetization is aligned with this field. The energy 
density is given by

EZeeman = −µ0M · Hext.� (8)

1.2.3.  Exchange energy.  The exchange interaction tries to 
align neighboring spins. It has a quantum-mechanical ori­
gin [4] as it results from the interplay between the Coulomb 
repulsion between different electrons and Pauli’s exclusion 
principle. It can be derived from the Heisenberg exchange 
Hamiltonian

Ĥexch = −2J σ̂i · σ̂j.� (9)

In this equation, σ̂i and σ̂j are two neighboring electron spins, 
and J  is the strength of the exchange interaction. A positive 
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J  results in a ferromagnetically ordered material and when 
J  is negative it is possible to find a ferrimagnetic or antifer­
romagnetic ordering.

In the continuum limit of micromagnetism, equation  (9) 
leads to an exchange energy density of

Eexch = Aex(∇m)2� (10)

where Aex denotes the exchange stiffness constant and (∇m)2 
is shorthand for

(∇m)2 = (∇mx)
2 + (∇my)

2 + (∇mz)
2.� (11)

Equation (10) physically means that there is an energy pen­
alty whenever the magnetization is not uniform. Its competi­
tion with magnetostatic energy also sets a lower limit to the 
length scale of the variations in the magnetization, called the 
exchange length

lex =

√
2Aex

µ0M2
s

,� (12)

with µ0 = 4π × 10−7 Tm A−1 the vacuum permeability. A 
typical exchange length in e.g. permalloy is 5.2 nm. To vary 
the magnetization on a smaller length scale requires magnetic 
fields larger than Ms, which can only be obtained in magnetic 
materials when other effective field terms are playing. For 
example, magnetocrystalline anisotropy, discussed below, has 
a characteristic length scale given by

κ =
√
(Aex/K),� (13)

with K being the anisotropy constant.
Finally, the contribution to the effective field due to Eexch 

is given by

Bexch = 2
Aex

Ms
∆m.� (14)

1.2.4.  Dzyaloshinskii–Moriya interaction.  The Dzyaloshin­
skii–Moriya interaction [15] (DMI), induced by the spin–
orbit coupling in ferromagnetic films with a lack or breaking 
of inversion symmetry, has a chiral character. This asymmet­
ric interaction favors the canting of two neighboring magnetic 
moments in one direction over the other. This asymmetry is 
clearly reflected in the Heisenberg Hamiltonian which models 
the DMI interaction between atomic spin σ̂i and σ̂j:

ĤDMI = Dij · (σ̂i × σ̂j).� (15)

The lack of inversion symmetry can be found in ferromagn­
etic films with a non-centrosymmetric lattice or in layered 
heterostructures with ultra-thin (<2 nm) ferromagnetic layers 
and heavy metal layers with a strong spin–orbit coupling. In 
the latter case, one often uses the term interfacially-induced 
DMI. The orientation of the DMI vector Dij is determined by 
the type of DMI as shown in figure  1. This interaction sta­
bilizes chiral spin structures such as domain walls, cycloids 
and spirals (contiguous domain walls), and skyrmions [17] 
(closed domain walls). In what follows, we limit ourselves to 
an overview of micromagnetic simulations of systems with 
an interfacially induced DMI. The continuization of the DMI 
Hamiltonian yields, for its interfacially-induced type, the 
micromagnetic energy density

EDMI = D [mz(∇ · m)− (m · ∇)mz]� (16)

with DMI strength D ∝ |D|. Note that the energy depends 
only on the gradient of the magnetization along the directions 
parallel to the interface.

This energy density

EDMI = −1
2

M · BDMI� (17)

can be calculated easily starting from the corresponding effec­
tive field term

BDMI =
2D
Ms

(
∂mz

∂x
,
∂mz

∂y
, −∂mx

∂x
−

∂my

∂y

)
.� (18)

1.2.5.  Magnetostatic energy.  The magnetostatic energy is the 
energy of magnetic moments in the magnetic field resulting 
from all considered moments (including itself). This energy is 
minimized when all the flux loops are closed and there are no 
stray fields outside of the magnet.

Emagnetostatic = −1
2

M · Bdemag.� (19)

In equation (19), Bdemag is the demagnetizing field

Bdemag =
µ0

4π

∫

V
Ms

[
3
(m · r) r
‖r‖5 − m

‖r‖3

]
dr.� (20)

This expression can be derived from Maxwell’s equa­
tions [18] and shows that the demagnetizing field is the int­
egral of all fields produced by all dipoles. The demagnetizing 

Figure 1.  (a) Sketch of the DMI induced in the bulk of crystal with a non-centrosymmetric lattice. (b) Sketch of the DMI induced at 
an interface with a heavy metal layer and large spin–orbit coupling. Reprinted by permission from Macmillan Publishers Ltd: Nature 
Nanotechnology [16], Copyright 2013.
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field Bdemag within a uniformly magnetized ellipsoid is uni­
form [18] and can be written as

Bdemag = −µ0NM,� (21)

where N  denotes the so-called demagnetizing tensor.
The individual interaction between two dipoles is relatively 

weak, and is always smaller than the exchange interaction on 
short distances. However, unlike the exchange interaction 
which only acts between nearest neighbors, the magnetostatic 
interaction is a long-range interaction and is responsible for 
the formation of domains in magnetic materials. Another con­
sequence of this long-range interaction is that micromagnetic 
calculations are computationally very challenging, which is 
discussed in further detail below.

1.2.6.  Magnetocrystalline anisotropy energy.  The struc­
ture of the crystal lattice can impose preferred directions 
on the magnetization via the spin–orbit coupling. The sim­
plest example is called uniaxial anisotropy and gives rise 
to one preferred direction. The energy density for uniaxial 
anisotropy can be obtained starting from its effective field 
contribution,

Banis =
2Ku1

Ms
(u · m)u +

4Ku2

Ms
(u · m)3u

� (22)
and is thus given by

Eanis = −1
2

Banis(Ku1) · M − 1
4

Banis(Ku2) · M
�

(23)

= −Ku1(u · m)2 − Ku2(u · m)4.� (24)
Banis(Kui) denotes the effective field term where only Kui is 
taken into account.

The anisotropy constants (expressed in J m−3) can be either 
positive or negative. When they are positive, the energy is 
minimized when the magnetization is aligned with the aniso­
tropy direction u, which is then called an easy-axis. When 
they are negative, the magnetization tries to align with the 
plane perpendicular to the anisotropy axis to minimize the 
energy, which is then called a hard-axis.

Next to the uniaxial one, a second frequently used magneto­
crystalline anisotropy is cubic anisotropy, whose effective 
field term is given by

Banis

= −2Kc1/Ms(((c2 · m)2 + (c3 · m)2)((c1 · m)c1)

+ ((c1 · m)2 + (c3 · m)2)((c2 · m)c2)

+ ((c1 · m)2 + (c2 · m)2)((c3 · m)c3))

− 2Kc2/Ms(((c2 · m)2(c3 · m)2)((c1 · m)c1)

+ ((c1 · m)2(c3 · m)2)((c2 · m)c2)

+ ((c1 · m)2(c2 · m)2)((c3 · m)c3))

− 4Kc3/Ms(((c2 · m)4 + (c3 · m)4)((c1 · m)3c1)

+ ((c1 · m)4 + (c3 · m)4)((c2 · m)3c2)

+ ((c1 · m)4 + (c2 · m)4)((c3 · m)3c3))

�

(25)

which again is used to obtain the energy density

Eanis

= Kc1((c1 · m)2(c2 · m)2

+ (c1 · m)2(c3 · m)2

+ (c2 · m)2(c3 · m)2)

+ Kc2 (c1 · m)2(c2 · m)2(c3 · m)2

+ Kc3 ((c1 · m)4(c2 · m)4

+ (c1 · m)4(c3 · m)4

+ (c2 · m)4(c3 · m)4)

�

(26)

using

Eanis = −1
4

Banis(Kc1) · M − 1
6

Banis(Kc2) · M − 1
8

Banis(Kc3) · M.
� (27)
In these equations, c1,c2 and c3 denote three mutually perpend­
icular anisotropy directions and Kcn is the nth-order cubic 
anisotropy constant.

1.2.7. Thermal fluctuations.  The LLG equation (equation (5)) 
describes the magnetization dynamics at zero temperature. To 
investigate nonzero temperatures, the effects of thermal fluc­
tuations should be taken into account.

To this end, Brown [19, 20] developed a theory when he 
investigated the thermal switching of single-domain particles 
using the fluctuation-dissipation theorem. In 1993 [21], it was 
realized that this theory was also applicable to micromagn­
etic simulations, by extending the effective field in the LLG 
equation with a stochastic thermal field, because each finite 
difference cell can be seen as a single-domain ‘particle’. The 
thermal field Hth  had the following properties:

〈Hth〉 = 0� (28)

〈Hth,i(t)Hth,j(t′)〉 = qδD(t − t′)δD,ij� (29)

q =
2kBTα

Msγ0µ0V
.� (30)

The operator 〈·〉 denotes an average over time, 〈··〉 a correla­
tion, δD the Dirac delta function and the indices i and j go 
over the x, y and z axes in a Cartesian system. kB denotes the 
Boltzmann constant, T the temperature and V the volume in 
which the thermal fluctuations are considered. Physically, 
these equations tell us that the thermal field has zero average, 
is uncorrelated in time and space, and its size is determined 
by q.

These equations  are determined in such a way that the 
effect of the thermal fluctuations is independent to the spatial 
discretization. For example, when splitting up a volume into 
two smaller volumes and comparing the thermal fluctuations 
with those on the whole volume, one will, on average, recover 
the same behavior. Similarly, as with larger volumes, when 
averaged out over a larger time, thermal fluctuations should 
become smaller. Again, this proportionality is determined so 
that the thermal fluctuations over long periods of time do not 
depend on the time discretization in the simulations.

J. Phys. D: Appl. Phys. 51 (2018) 123002



Topical Review

5

The thermal fluctuations described above act on the same 
timescales as the other micromagnetic torques, i.e. picosec­
onds. However, when looking at, e.g. ensembles of nanoparti­
cles, macroscopic measurements are unable to capture any of 
these dynamics as they are averaged out over many particles 
and longer timescales. The quantities of interest are not always 
the fast dynamics but the slower ones resulting from thermally 
driven jumps over energy barriers. Therefore, an alternative 
approach is to describe the effect of thermal fluctuations as a 
jump noise process [22–25], where, based on the energy land­
scape for each finite difference cell, the switching time and 
final magnetization direction are determined stochastically 
and only the resulting changes in the magnetization, instead 
of all random thermal fluctuations, are considered.

Finally, by construction, the Landau–Lifshitz or LLG 
equations conserve the norm of the magnetization. However, 
close to the Curie temperature, this is no longer physical. To 
account for these effects, a term perpendicular to the preces­
sion and damping terms can be added to the equations. This 
term describes the variations in the norm of the magnetization 
and allows the extension of micromagnetism to temperatures 
close to or even above the Curie temperature. The resulting 
equations, depending on the formalism used, are called the 
Landau–Lifshitz–Bloch [26] or Landau–Lifshitz–Baryakhtar 
equations [27].

These considerations are not only theoretically relevant, as 
recent technological advances such as heat-assisted magnetic 
recording [28] can only be simulated correctly with the inclu­
sion of these terms. Although it is possible to investigate domain 
wall motion in these high-temperature regimes [29], mumax3 
is restricted to temperatures well below the Curie temperature 
where the LLG equation is still valid.

1.2.8.  Spin torques.  Next to the energy terms contributing 
to the effective field, there exist several additional torque 
terms to take into account the interaction between the conduc­
tion electrons and the localized electrons responsible for the 
magnetization.

As predicted by Berger [30], a spin polarized current will 
exert a torque on the magnetization when the polarization is 
not aligned with the magnetization. Following Slonczewski 
and Berger [31–33], the torque resulting from current polar­
ized in a layer with fixed magnetization can be expressed as

τSL = β
ε+αε′

1 + α2 (m × (mP × m))

− β
ε′ − αε

1 + α2 m × mP

� (31)

β =
Jz�

Msed
� (32)

ε =
P(r, t)Λ2

(Λ2 + 1) + (Λ2 − 1)(m · mP)
.� (33)

Here, Jz denotes the current density along the z axis, d is the 
free layer thickness, mP the electron polarization direction, P 
the spin polarization, the Slonczewski Λ parameter charac­
terizes the spacer layer, and ε′ is the secondary spin-torque 

parameter. The Slonczewski torque is typically employed in 
spin torque oscillators to nucleate and sustain magnetization 
auto-oscillations.

When an unpolarized current enters a ferromagnet, it will 
quickly become polarized and will exert a torque when the 
local magnetization changes. Zhang and Li [34] proposed a 
theoretical framework applicable when such a spin-polarized 
current runs through a continuously varying magnetization 
profile. They added two spin-transfer torque terms to the LLG 
equation to arrive at

ṁ =γ0Heff × m + αm × ṁ − m × (m × [bJ · ∇]m)

− βm × [bJ · ∇]m.
�

(34)

In this equation, J denotes the current density, β the degree of 
non-adiabaticity and

b =
PµB

eMs(1 + β2)
� (35)

is a prefactor determined by Ms, P, the polarization of the 
spin-polarized current, e, the electron charge and µB, the 
Bohr magneton. The first spin-transfer torque term in equa­
tion  (34) is called the adiabatic spin-transfer torque as it is 
assumed that the spin polarization adiabatically follows the 
magnetization, except for the small degree of non-adiabaticity 
taken into account separately in the second term. This is the 
non-adiabatic spin-transfer torque and is proportional to β. It 
is related to the spatial mistracking of moments between the 
conduction electrons and the local magnetization [34], and is 
also called the field-like torque [35] because its effect on the 
magnetization is similar to that of an externally applied field. 
The prominent consequence of the Zhang-Li torque is the 
current-driven domain wall motion.

Recently, alternative ways were also discovered to induce 
a spin-torque using currents. When a current passes through a 
metal layer with high spin–orbit coupling, the spin Hall effect 
can result in the injection of a spin current in the neighboring 
magnetic layer [36, 37]. Alternatively, an effective field can 
arise from the Rashba effect in layers with structural asymme­
try [38]. Because these effects are the result of the spin–orbit 
interaction, they are called spin–orbit torques (SOT) and will 
add either a field or damping-like term to the LLG-equation 
(respectively, the first or second term in equation (5)).

1.2.9.  Other energy and torque terms.  Besides the terms 
listed above, other torques or energies might also contribute 
to the torque and energy equation. This can be the case when 
other order parameters are involved, e.g. ferroelectrics, or 
when there is an interaction with another material at an inter­
face. When a ferromagnet is interfaced to an antiferromagnet, 
a local unidirectional effective field, called the exchange bias 
[39, 40] can occur. Later on, we will discuss how this can be 
included in a micromagnetic model.

2.  Computational micromagnetics

As we mentioned above, the LLG equation  (equation (5)) 
is a nonlinear integrodifferential equation  that only permits 
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analytical solutions in a few corner cases. So, the majority 
of micromagnetic problems are solved numerically. The main 
challenge here is to calculate the right-hand side of the equa­
tion that contains effective magnetic field terms. This is typi­
cally achieved by discretizing the given problem in a certain 
way. Although local effective fields (those that only depend on 
the local value of the magnetic moment) are straightforward to 
calculate, the non-local ones, such as exchange and demagne­
tizing fields, require special numerical treatments.

2.1.  Finite-difference versus finite-elements

In the finite difference method, one subdivides a given micro­
magnetic problem in a regular mesh of rectangular cuboids 
(see figure  2). Consequently, the spatial derivatives of the 
magnetization could be approximated using n-point stencils, 
which allows for the calculation of the exchange field [42] 
and Zhang-Li torques. Furthermore, as the magnetization is 
assumed to be uniform in every single cell of the simulation 
domain, its demagnetizing tensors could be relatively easily 
estimated using brute force dipolar summations, or the so-
called Newell expressions [43]. The demagnetization field is 
then calculated using equation (21) and a convolution theorem 
that involves six fast Fourier transforms (FFTs) to bring the 
magnetization to the reciprocal space, perform local multipli­
cation of the Fourier images of the demagnetizing tensors and 
magnetization, and transform the calculated field back to the 
forward space. An alternative approach based on the evalua­
tion of the scalar potential was recently suggested [44, 45]. 
Although this scheme requires fewer FFT steps, it offers the 
same order of accuracy and performance as the tensor method 
explained above.

The finite-difference method is considered to be relatively 
fast, yet with low memory consumption, since only (a) the 
magnetization, (b) the right-hand side of the Landau–Lifshitz 
equation and (c) the Fourier image of the convolution kernel 
need to be stored. The main downsides of the finite differ­
ence method are (a) the inability to adequately approximate 
curved geometries (e.g. a sphere) and (b) reduced efficiency 
for sparse problems, as time-consuming calculations (e.g. 
FFT) have to be performed on empty cells.

These issues could be addressed with a finite-element 
method where the simulation domain is subdivided into so-
called ‘elements’ as shown in figure 2 (typically triangles and 
tetrahedrons). Then, at the nodes of the obtained mesh, the 
solution of the given differential equation  is approximated 
using an orthogonal basis (also known as interpolation func­
tions), φi(rrr):

Mk(rrr) =
∑

uk
i φi(r),� (36)

where i is the node number, k denotes a component of the 
magnetization and uk

j  are the values of the magnetization in 
the given basis. The local magnetic fields could be easily 
calculated in the given basis with O(N) efficiency, while the 
exchange field could be calculated using the box method, i.e. 
as sparse matrix-vector products [46, 47]. As in the finite-
difference method, the most computationally intensive part 
is the calculation of the magnetostatic field. Typically, it is 
estimated as the solution to the open boundary value problem

∆u =
∇MMM(rrr)
µ0

HHHd = −∇u,� (37)

that essentially reduces to the matrix-vector product

HHHd = ZZZMMM.� (38)

Since the kernel ZZZ is dense, the direct summation in equa­
tion (38) is computationally expensive. Instead, one can split the 
scalar potential into two parts: the one inside the magnet (which 
satisfies the Poisson equation) and the one outside the boundary 
of the magnetic region (which satisfies the Laplace equation) i.e. 
the so-called Fredkin and Koehler method [48]. The former is a 
solution of the sparse linear system, while the latter additionally 
requires an estimation of the dense matrix-vector product. This 
approach reduces the computational complexity of the magne­
tostatic field estimation, but its efficiency significantly drops, 
and its memory footprint increases if the problem is dominated 
by the boundary elements [47]. Although finite-elements meth­
ods are typically used to solve the LLG equation  in the con­
tinuum approximation, a multiscale approach has been recently 
developed to obtain atomistic-scale resolution by coupling the 
Heisenberg lattice to the micromagnetic domain [49].

The time integration of the LLG can be performed using 
either implicit or explicit schemes. Traditionally, finite-difference 
micromagnetic solvers rely on the explicit Runge–Kutta meth­
ods, which provide satisfactory levels of precision and stability 
for the majority of dynamic micromagnetic problems. Also, they 
have relatively low computational complexity and memory con­
sumption, since the solution is calculated as a linear combination 
of the subsequent magnetic torques. However, the finite-elements 
solvers typically rely on implicit methods. They offer outstanding 
stability and, compared to the same order explicit schemes, allow 
for large integration steps. At the same time, as implicit integra­
tion employs past values of the solution, sparse nonlinear systems 
have to be solved at every integration step. This comes at the cost 
of memory consumption and runtime, which might not be justi­
fied even by the larger integration steps.

Figure 2.  Comparison of the finite difference and finite elements 
discretization approaches. Reproduced from [41]. CC BY 4.0.
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It is worth mentioning that the integration of the stochastic 
LLG equation remains an open problem since some argue that 
only midpoint integration should be used to comply with the 
so-called Stratonovich calculus [50, 51], while Berkov [52] 
demonstrated that all the integration schemes are equivalent 
as long as the magnetization length is normalized after each 
integration step.

There is also a family of spectral methods that provide 
a solution to the Landau–Lifshitz equation  in a reciprocal 
space and frequency domain. The best known are the dynami­
cal matrix [53] and plane wave methods [54]. The idea is to 
assume a certain form of the solution to the LLG equation, 
e.g. by taking into account symmetry properties of the given 
problem. Upon the corresponding substitution, the LLG equa­
tion reduces to the eigenvalue problem, i.e. with no need for 
time integration. The main benefit of these methods is the 
direct access to the magnonic dispersion relation, spatial pro­
files of the eigenmodes and their relaxation rates [55], which 
typically require data analysis steps if time domain methods 
are used. Spectral methods are usually limited to the calcul­
ation of steady state linear magnetization dynamics, which, 
nevertheless, work well for the problems of magnonics.

2.2.  GPU versus CPU

The emergence of general-purpose computing on graphi­
cal processing units (GPUs) enables faster and larger scale 
simulation in practically every research field. However, it is 
important to understand that doing calculations on GPUs is 
considerably more challenging than on central processing 
units (CPUs) for the following principal reasons:

	 •	 GPU performance excels in single precision calculus;
	 •	 GPUs have a limited amount of fast onboard memory;
	 •	 GPUs have significantly less sophisticated memory sub­

systems, e.g. cache amount per core, smaller register file, 
memory throughput per core, etc.

Although most of the CPU-based micromagnetic solv­
ers rely heavily on double precision calculations, it becomes 
apparent that single precision is sufficient to solve even stiff 
standard micromagnetic problems [13, 56]. This could be 
attributed to the facts that (a) convolution kernels are typically 
calculated on the CPU side with extended precision, (b) GPUs 
make use of fused multiply-add instructions that effectively 
increase the accuracy of calculus and (c) special care is taken 
in the numerical algorithms to keep the quantities of the same 
order of magnitude. Nonetheless, if needed, one can either 
calculate some precision-sensitive components of the internal 
magnetic field (e.g. the exchange field) or even do the whole 
integration in double precision [45, 57, 58].

To overcome the limited amount of GPU onboard memory 
it is typically suggested to streamline the calculations, i.e. 
keep the data in the CPU memory and then transfer it to the 
GPU for processing and then back. As the connection between 
the CPU and GPU is rather slow and imposes high latencies, 
one needs to split the data into reasonable blocks and per­
form processing of the given block simultaneously with the 

transfer of the others. This is a rather complex approach, so 
instead, the vast majority of the GPU-accelerated micromagn­
etic codes use an approach where all the data required for the 
integration of the LLG equation is stored entirely in the GPU 
memory. To allow for large-scale simulations, particular atten­
tion has to be given to keep the memory footprint of the simu­
lations as low as possible.

By far, the most memory consuming part is the kernel 
required for the calculation of the demagnetizing field. In 
general, the convolution approach used in the finite difference 
method requires a 3  ×  3 complex-valued tensor for every cell 
in the simulation domain. However, if symmetry properties of 
the demagnetization tensor are taken into account, its memory 
consumption could be reduced by a factor of 9 and 12 for 2D 
and 3D simulations, respectively [56]. In the finite-elements 
approach, the main idea is to keep all the kernels required 
for the calculations in sparse form. Nevertheless, even when 
the Fredkin and Koehler method is used, a dense matrix is 
needed for the calculation of the scalar potential in boundary 
elements. Instead, one might use non-uniform grid interpo­
lation [46], hierarchical matrix-vector multiplication [57] or 
fast multipole [59] methods to effectively reduce this problem 
to the sparse matrix-vector product, which not only reduces 
memory requirements but also the computational complexity 
of the convolution to O(N). Further optimizations could be 
made to decrease the amount of temporary data such as its 
on-the-fly recalculation (which might additionally offer per­
formance benefits) or accumulation of the torque in a single 
data array unless the user requests its specific components. 
For example, a series of such optimizations allow mumax3 to 
simulate 3D structures with cells as large as 12 × 106 using 
less than 2 GB of GPU onboard memory. Similar scale prob­
lems could be accessed with finite-elements codes, although 
with significantly slower throughput.

Finally, although the raw computational power of both 
CPUs and GPUs substantially increases from one generation 
to another, the memory throughput available per each compu­
tational core shows much slower development. In fact, GPUs, 
having thousands of cores, are much more sensitive to this 
issue. This could be mitigated by either reducing the number of 
memory data transfers or by making sure enough calculations 
are done inbetween memory operations to hide their latency. 
However, micromagnetic codes typically perform matrix- 
vector products, stencils, FFTs, etc, that are intrinsically mem­
ory-intensive. In fact, figure 3 shows a virtually linear scaling 
of the mumax3 simulation performance with the GPU memory 
throughput, but not its raw computational power. Notably, the 
Nvidia GTX 580 GPU with raw computational throughput 
of 1.58 TFLOPS is only about  ×3 times slower than the 10 
TFLOPS Nvidia Tesla P100, consistent with the corresponding 
difference in the GPU memory bandwidths. The situation 
becomes even more challenging given the complex memory 
hierarchy of modern GPUs and CPUs, e.g. caches of various 
levels, non-uniform memory access (NUMA), etc. So careful 
optimizations of the memory access patterns are ultimately 
required to achieve sufficient performance scaling of micro­
magnetic codes on both CPUs and GPUs [60–63].

J. Phys. D: Appl. Phys. 51 (2018) 123002



Topical Review

8

2.3.  Prominent GPU-accelerated micromagnetic solvers

Historically, the first finite-difference GPU-accelerated micro­
magnetic solver was developed by Lopez-Diaz et al in 2010, 
i.e. the so-called GPMagnet [13]. It is, however, still distrib­
uted in closed source form with a commercial license, which 
limits its adoption by the community. MicroMagnum [64] 
and Mumax [14] were the first public domain, free and open 
source solvers. All three are built using the Nvidia CUDA 
toolkit, which keeps them locked to the corresponding GPU 
vendor. This was addressed by Grace [58] and the code pre­
sented by Khan et al [65] that employs vendor-neutral C++ 
accelerated massive parallelism (C++ AMP) and open com­
pute language (OpenCL) frameworks, respectively. GPU-
accelerated versions of widespread CPU-based codes, LLG 
micromagnetics simulator and OOMMF, were also recently 
reported [45]. Finally, hotspin, a mumax2 fork, remains the 
only GPU-accelerated solver that allows one to simulate lon­
gitudinal magnetization dynamics at finite temperatures [66].

The situation is dramatically different with finite-element 
solvers. While there are a few CPU-based codes actively 
used by the micromagnetic community, only two, not pub­
licly available, GPU-accelerated solvers were reported so far: 
a GPU-enabled version of the TetraMag solver developed 
by Kakai et al [57] and FastMag reported by Li, Chang et al  
[46, 67]. Most likely, this could be attributed to the higher 
memory requirements and computational complexity of finite-
element approaches as outlined above, so that only relatively 
small problems could be simulated on reasonable timescales. 
The situation will most likely change with the further devel­
opment of the GPU distributed memory technology, which 
enables multiple GPUs to work efficiently on a single micro­
magnetic problem.

2.3.1.  mumax3.  The authors of this review contributed to 
the development of GPU-accelerated micromagnetic simula­
tions by developing the software package mumax3 [56]. It is 
based on the CUDA platform and optimized for performance 
and memory usage. It is capable of calculating systems of 

over 16 million cells (on a GPU containing 6 GB memory). 
Special attention was dedicated to the flexibility of Mumax, 
which was achieved by the incorporation of powerful ways to 
define the system, supported by a website containing an API 
and examples. Novice Mumax users benefit from its intuitive 
and user-friendly graphical user interface, while those that are 
advanced have the freedom to define custom effective field 
terms and make use of the versatility of the Go programming 
language.

It was decided that Mumax will be distributed as freeware, 
which facilitated very high interest (in comparison with other 
similar programs) from the scientific community, resulting 
in more than 400 publications in which Mumax calculations 
are reported. Inspired by such a considerable interest, and in 
conjunction with the high number of research papers report­
ing results that have high relevance to further technological 
developments, the authors considered it timely and important 
to prepare a general review summarizing the use of Mumax 
and the contribution to magnetization studies achieved with 
this software.

We believe that performance is one of the key factors to 
the success of Mumax. Figure 4 demonstrates how its integra­
tion time of 10 ns long magnetization dynamics scales with 
the number of computational cells using 2D and 3D meshes. 
The benchmarks are done using the highest performance 
consumer-grade Nvidia GPU, i.e. Titan Xp. Practically, linear 
scaling is achieved in both cases, indicating an outstanding 
solver architecture which eliminates higher order (brute force) 
computational approaches. The scatter of the data is due to 
the size-dependent efficiency of the FFT and is common for 
both GPU and CPU implementations. As a rule of thumb, it 
is typically suggested to keep the mesh of 2N × 2M × 2P size, 
where N, M, P are integers. Nevertheless, it can be seen that 
compared to 3D meshes, 2D meshes offer lower minimum 
integration times for the same total number of cells. This is 
due to the additional symmetries of the demagnetizing tensor 
being employed in the convolution as outlined above and 1/3 
reduction in memory operation needed for the stencil calcul­
ations. The reduced memory pressure makes 2D simulations, 
on average, twice as fast compared to 3D when FFT-optimized 
meshes are used.

In contrast to CPU codes, Mumax does not need expen­
sive hardware to demonstrate decent levels of performance. 
Figure  3 shows its computation throughput versus various 
kinds of consumer- and high-performance-computing- grade 
GPUs (measured by the number of cells evaluated per sec­
ond for the 3D mesh containing 4M cells). The data demon­
strates that the lowest performance mobile GPU we tested 
(i.e. Nvidia GTX650M, released in 2012) is about 17 times 
slower than the current highest performance GPU (i.e. Nvidia 
TESLA P100, released in 2016), while the present mass mar­
ket device (i.e. Nvidia GTX 1070, released in 2016) is about 
two times slower.

To emphasize the benefits of the GPU-accelerated finite dif­
ference time domain micromagnetic simulations, we compare 
the performance of mumax3 against the industry-standard, 
CPU-only OOMMF micromagnetic solver, which was exten­
sively hand-tuned to scale almost linearly with the number 

Figure 3.  Scaling of mumax3 throughput with GPUs raw single 
precision processing power and memory bandwidth measured by 
how many cells can have their torque evaluated per second (higher 
is better), for a simulation containing approximately 4 million cells.
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of CPU cores [60]. Furthermore, we built OOMMF binaries 
with heavy compiler’s optimization, NUMA-awareness and 
with multi-threading enabled. We then consider two com­
mon computer configurations: (a) desktop-class, consisting 
of a Nvidia GTX 1070 GPU and Intel Core i5-2550K CPU 
(4 physical cores), and (b) workstation-class, consisting of 
a Nvidia Titan Xp GPU and 2x Xeon E5-2620 CPUs (16 
physical cores in total). On the software side, we rely on the 
Fedora 27, Linux-based OS, GNU Compiler Collection 7.2.1 
and Nvidia CUDA 9 toolkit. Then we integrate the very same 
2D and 3D micromagnetic problem with both mumax3 and 
OOMMF using identical solver configurations and measure 
the corresponding total runtimes using the gnu time com­
mand. The measured computational speedup of mumax3 
over OOMMF is shown in figure  6. It is visible that GPU-
accelerated simulations could be about 200 times faster than 
the state-of-the-art CPU simulations, especially on large scale 
problems where GPU performance is used to its full capac­
ity. Comparable speedups are obtained for 2D and 3D meshes 

indicating that the very same computational approaches and 
optimizations are employed in both packages. It should be 
noted that OOMMF performs calculations in double preci­
sion, which consumer-grade GPUs are rather slow at. This 
could be mitigated by using TESLA-class GPUs, but a factor 
of four reduction of GPU performance is expected as effec­
tively a halved memory bandwidth, and half of the compu­
tational performance are available for the double precision 
calculations. Nevertheless, mumax3 would still provide dou­
ble-digit speedup over OOMMF. To conclude, it is evident 
that (a) GPU-accelerated computing is beneficial irrespective 
of the hardware type and (b) even the slowest performance 
mobile GPU (i.e, Nvidia GTX650M) provides a considerable 
speedup over CPU-only simulations using workstation-grade 
hardware.

3.  Examples

This chapter gives a broad overview of how micromagnetic 
simulations, and more specifically the mumax3 package [56], 
have been used in the last few years and we illustrate how this 
work has benefited from the performance increase of GPU 
acceleration.

3.1.  Vortex core dynamics/switching

One of the simplest non-trivial configurations of soft magn­
etic thin film nanostructures is the vortex state with a whirling 
magnetization around an out-of-plane magnetized core. Since 
the discovery of the basic dynamic properties of vortices, i.e. 
the gyrotropic resonance [68, 69] and the vortex core switch­
ing dynamics [70, 71], these systems have been extensively 
studied. Most of the experimental studies relied on numerical 
micromagnetic modeling for the interpretation and validation 
of the results. However, the GPU accelerated codes allow for 
much more extended exploration within a wide parameter 
space, e.g. the parameter space for vortex core switching [72] 
or the modulation of the gyrotropic frequency through local 
geometric modulations [73, 74] and field modulations [75] .

Figure 4.  mumax3 integration time versus number of simulated 
cells obtained for 2D and 3D grids, respectively.

Figure 5.  mumax3 throughput for different consumer- and HPC-
grade GPUs measured by how many cells can have their torque 
evaluated per second (higher is better), for a  ≈4 million cell 
simulation.

Figure 6.  Runtime speedup of mumax3 versus OOMMF2 for 
2D and 3D meshes measured on desktop- and workstation-class 
computers.
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A vortex state can also be created by the injection of a local 
spin polarized current in a thin magnetic film [76], and here 
GPU acceleration was also deployed to study an extensive 
phase space [77] and the influence of defects [78].

Most simulations on such thin film structures (with thick­
ness typically below 50 nm) use a 2D discretization (only one 
cell in the out-of-plane direction). Although this approach cap­
tures most of the physics of these systems, care has to be taken 
as some processes have an intrinsic 3D character. When the 
gyrotropic mode of a vortex is excited, the vortex core polarity 
can be reversed by the dynamic creation of a vortex-antivortex 
pair and the consequent annihilation of a vortex [70], a pro­
cess that involves a micromagnetic singularity (Bloch point). 
Particular care has to be taken when the dynamics of such a 
Bloch point need to be captured [79]. 3D discretization with 
small cell size, and consequently a large number of cells, will 
be required and GPU accelerated simulations are optimal. 
Noske et al [80] have investigated in detail the vortex rever­
sal process for symmetric and asymmetric excitations. They 
showed that in all cases a Bloch point is involved and that in 
general, the magnetization is non-uniform in the out-of-plane 
direction (see figure 7).

3.2.  Domain wall motion and creep

3.2.1.  Introduction to domain wall motion.  Domain walls and 
their dynamics are one of the main topics in micromagnetism 
[9]. Domain walls are regions where the magnetization rapidly 
changes direction, separating uniformly magnetized domains. 
These structures occur naturally in sufficiently large samples 
due to the interplay between the demagnetizing field and other 
effective-field terms.

Externally applied magnetic fields promote the growth of 
domains aligned parallel to the field at the cost of domains 
that point in the opposite direction. In particular, the motion 
of domain walls through thin nanostrips has received much 
interest because of its relative simplicity. This made it pos­
sible to study it analytically [10] in the early days of micro­
magnetism by reducing the Landau–Lifshitz equation  to an 
equation  describing the motion of domain walls. Similar to 
the Thiele equation, mainly used in vortex dynamics [68], this 
approach requires assumptions to be made on the domain wall 
shape and size, reducing it to a point object moving through 
a one-dimensional line. Hence, these models were called 1D 

models. The first micromagnetic simulations aimed to valid­
ate and refine such a model [12]. As simulations increased in 
complexity over the years [81, 82], these 1D-models were also 
extended [83–85] and remain an important tool today to gain 
further insights into domain wall motion [86–88]. Magnetic 
field driven domain wall motion has the disadvantage that it 
requires relatively large magnetic fields, which are hard to 
apply only locally and thus it is difficult to use this mechanism 
in technological applications. Furthermore, because this driv­
ing mechanism does not directly act on the domain walls, but 
on the domains inbetween, it is possible for domain walls in 
the same nanostrip to move in opposite directions, collide, and 
annihilate, thus destroying the domain (wall) structure.

Besides magnetic fields, electric fields can also act as a 
driving force for domain walls [89–91] in suitable multifer­
roic heterostructures, such as a soft magnetic layer grown 
on a ferroelectric substrate consisting of several domains 
with alternating polarization. The magnetic domain walls are 
firmly pinned to the ferroelectric boundaries due to the strong 
anisotropy changes. When applying an electric field, the fer­
roelectric domain boundaries move, and the magnetic domain 
walls are pulled with them. As mumax3 is not a multiphys­
ics package, it is not possible to include the substrate in the 
simulations. However, it can be accounted for by shifting the 
anisotropy properties within a simulation of the ferromagnet 
to observe how the domain wall moves along with this aniso­
tropy boundary [90].

A second important domain wall driving mechanism is the 
spin-transfer torque exerted by a spin-polarized current run­
ning through a nanostrip [34, 92]. In contrast to the contrib­
utions to the effective field, the spin-transfer torque is not 
derived from an energy density but is included in the LLG 
equation directly as an additional torque term [35]. For these 
torques to be large enough to move the domain walls at an 
appreciable speed, typically large current densities are nec­
essary (>1 A μm−2). Due to excessive Joule heating, such 
current densities can only be applied in very short pulses. 
Nevertheless, this driving mechanism has the advantage that it 
can drive all domain walls encountered in the nanostrip in the 
same direction, making this an excellent candidate for practi­
cal applications.

Finally, spin waves (described in detail in section 3.4) have 
been shown to act as a driving force for domain walls, either via 
direct excitation [93] or indirectly, via thermal gradients [94].

Figure 7.  Illustration of the 3D nature of the vortex core switching process. (a) The simulated sample. (b) Top view of the top 
magnetization layer identifying the vortex-antivortex pair (blue) and the original vortex core (red). (c) Side view showing the Bloch point. 
(d) Top view of the bottom magnetization layer. Reproduced from [80]. CC BY 3.0. 
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The remainder of this section  will focus on the differ­
ent domain walls found in materials with different material 
parameters and geometries and will be restricted to the main 
domain wall driving mechanisms: externally applied magn­
etic fields, spin-polarized currents or a combination of both  
[85, 95].

3.2.2.  Domain wall types.  The equilibrium configuration 
of a domain wall is determined by the detailed balance of 
the different magnetic interactions. Due to the 3D nature of 
magnetic systems, multiple types of domain walls exist and 
predicting which is the equilibrium configuration is not easy. 
One usually has to resort to micromagnetic simulations, and 
here fast GPU-accelerated simulators enable the exploration 
of extended phase spaces.

Thin films of materials with a weak or absent magneto­
crystalline anisotropy will favor the magnetization to lie in the 
plane of the film. The most commonly used material is per­
malloy, an alloy consisting of roughly 80% nickel and 20 % 
iron specifically designed to minimize magnetoelastic effects 
and which has no magnetocrystalline anisotropy. Figure  8 
shows the phase diagram of the different domain wall types in 
nanostrips made out of this material. Depending on the width 
and thickness, the equilibrium domain wall is a transverse 
wall, a vortex domain wall [96], or in very wide nanostrips, 
even double or triple vortex domain walls [97–99]. Indeed, in 
wide strips, the shape anisotropy has less pronounced effects, 
favoring flux-closure states containing multiple vortices. 
Furthermore, a significant number of metastable domain wall 
structures can be found in these large strips [97, 100].

In nanostrips consisting of materials with large perpend­
icular magnetocrystalline anisotropy (PMA), either Bloch or 
Néel walls can be found (as shown in figure 9), with a prefer­
ence for Bloch walls in thinner nanostrips. In the presence of 
an interfacially induced DMI (see section  3.3), the equilib­
rium structure becomes increasingly Néel-like [101, 102]. In 
contrast, the DMI induced in the bulk prefers domain walls 
with a Bloch character.

3.2.3.  Field-driven domain wall motion.  To understand the 
physical mechanism behind the motion of all these domain 
walls, simulations are an indispensable tool, because only 
very few direct dynamical experimental observations exist 
[103]. When looking at the domain wall velocity of a field-
driven transverse wall [104] (see figure 10(a)), the following 
behavior is found. At low fields, the velocity increases almost 
linearly with the external field. For wider nanostrips, in which 
the equilibrium structure is a vortex domain wall, the vortex 
core is pushed out of the nanostrip, resulting in a transverse 
domain wall structure and an almost identical mobility curve.

At larger fields, a sudden drop in the domain wall velocity, 
called the Walker breakdown [12], is observed. This break­
down corresponds to the field at which it is no longer possible 
to reach a dynamical equilibrium, in which the out-of-plane 
torques are compensated by the demagnetizing field origi­
nating in the out-of-plane tilting of the domain wall. What 
happens physically in this dynamical regime depends on the 
equilibrium domain wall structure and thus the nanostrip size. 
In narrow nanostrips, an antivortex core is nucleated, which 
then traverses the nanostrip to annihilate at the other side. 
At this point, the domain wall again is a transverse configu­
ration but with an oppositely pointing magnetization direc­
tion. Subsequently, a new antivortex core is nucleated, now 
with opposite polarity, which again traverses the nanostrip to 
annihilate at the other side. Above the Walker breakdown, the 
domain wall thus displays periodic transformations between 
an antivortex and a transverse domain wall configuration 
while it is driven forward.

In wider nanostrips, corresponding to the green dots in 
the phase diagram shown in figure  8, something similar is 
observed. However, the equilibrium domain wall is a vor­
tex domain wall. Here, the vortex core is pushed out of the 
nanostrip, and the domain wall transforms into a transverse 
domain wall. Afterwards, a new vortex core (again with 
opposite polarity) nucleates and is pushed to the other side 
of the domain wall where it annihilates again. To summarize, 
the domain wall displays periodic transformations between a 

Figure 8.  (I) Phase diagram of the equilibrium DW structure in permalloy strips of various thicknesses and widths. The symbols 
correspond to observations of the various equilibrium DW structures, with phase boundaries shown as solid lines. (II) Examples of the 
different equilibrium micromagnetic DW structures corresponding to the five different phases: (a) transverse domain wall, (b) asymmetric 
transverse domain wall, (c) vortex domain wall, (d) double vortex domain wall, and (e) triple vortex domain wall. The color wheel (top left) 
shows the mapping between the magnetization directions and colors. Reprinted figure with permission from [97], Copyright 2015 by the 
American Physical Society.

J. Phys. D: Appl. Phys. 51 (2018) 123002



Topical Review

12

vortex domain wall and a transverse domain wall configura­
tion during its forward motion [105, 106].

In nanostrips that are over 1μm wide, corresponding to the 
rightmost region of the phase diagram shown in figure 8, dou­
ble or triple vortex domain walls are the equilibrium structure. 
There, the dynamics strongly depend on the system geometry, 
and in some cases, compact domain walls cannot be supported 
at all during the motion [98]. This is the case when differ­
ent domain wall components acquire different propagation 
velocities, and the domain wall increases size indefinitely. In 
other cases, starting from a certain threshold field, the vortex 
core dynamically switches polarity close to the nanostrip edge 
via a double switching mechanism, leading to a high-velocity 
plateau at large external fields [99], contrasting the velocity 
drop typically observed above the Walker breakdown for nar­
rower nanostrips. In these complex structures especially, the 
dynamics can no longer be reduced to simple models, and 
micromagnetic simulations are the only available tool to study 
the dynamics.

The field-driven motion of domain walls in materials with 
PMA is similar to the motion in in-plane materials. Below 
the Walker breakdown, the domain wall keeps its equilib­
rium Bloch structure, and its velocity depends linearly on 
the applied magnetic field. Above the Walker breakdown, the 
velocity drops suddenly as the domain wall structure periodi­
cally switches between a Bloch and Néel configuration, corre­
sponding to a continuous rotation of the magnetization angle 
[87]. When the material also has a strong DMI, the mobility 
curves are qualitatively similar, i.e. a linear regime is found 
up to the Walker breakdown, but the DMI can further stabi­
lize the domain wall and suppress the Walker breakdown up 
to higher applied fields and thus higher velocities [101]. The 
field driven motion of Dzyaloshinskii domain walls can be 
accurately described by a 1D-model, but an extra parameter 
is required to take the DMI-induced magnetization tilt into 
account [88].

3.2.4.  Spin-transfer-torque (STT) driven domain wall 
motion.  Spin-transfer-torque driven domain wall motion 
is similar to field-driven domain wall motion for transverse 
domain walls [92], see figure  10(b). The characteristics of 
the domain wall motion are largely determined by the degree 
of non-adiabaticity β. The adiabatic case (β = 0) shows an 
intrinsic depinning current threshold below which the domain 
wall is not moving. Similarly, as in the field-driven case, 

below the depinning current threshold the vortex domain wall 
transforms into a transverse domain wall in which the effec­
tive field torques balance the adiabatic spin-transfer torques 
resulting in zero net torque, and consequently no movement. 
Above the depinning current, the adiabatic spin transfer 
torques are too large for the transverse domain wall to adapt 
its internal structure to balance the spin transfer torques. Con­
sequently, the transverse domain wall becomes unstable, and 
a vortex core is nucleated and travels towards the opposite 
transverse direction, while moving along the strip as shown in 
figure 11(a), resulting in a periodic domain wall movement.

When a non-adiabatic contribution to the spin transfer 
torque is added with β > α, two velocity regimes are sepa­
rated by the Walker breakdown. However, as shown in fig­
ure 11(c), above the Walker breakdown the vortex core with a 
certain polarity moves in the opposite transverse direction, as 
compared to the β = 0 case.

When β = α (figure 11(b)), the adiabatic and non-adiaba­
tic transverse torques balance each other, resulting only in a 
longitudinal vortex movement along the strip axis. In wider 
nanostrips, the mobility curves are similar, but in this case, the 
high-velocity regime physically originates in a double-vortex 
switching mechanism [99].

Similar to the field-driven case, current-driven domain 
wall dynamics in PMA materials closely follows the trends 
observed in in-plane materials: the domain wall veloc­
ity depends linearly on the current density (while remain­
ing pinned in the case β = 0), up to an intrinsic depinning 
threshold or a Walker breakdown, depending on the degree 
of non-adiabaticity. For larger current densities, the domain 
wall structure again switches periodically between a Néel and 
Bloch like structure. In the presence of DMI, the domain wall 
motion becomes more complicated due to the appearance of a 
second steady-state motion with different properties, and the 
internal details of the domain wall determine which state will 
be reached [107]. Nevertheless, mainly at large current densi­
ties, there seems to be good agreement between the exper­
imental results and micromagnetic simulations [108].

For wide PMA strips, the Walker breakdown corresponds 
to the nucleation of in plane-domains within the Bloch 
domain walls [109]. These ‘walls within walls’, in their turn, 
also display a rich mobility behavior, with a notable feature 
that these walls do not appear to show a Walker breakdown at 
high velocities, both for field and current driving mechanisms.

3.2.5.  Spin–orbit-torque (SOT) driven domain wall 
motion.  More recently, the possibility to drive domain walls 
with spin orbit torques (introduced in section  1.2.8) started 
to gain attention [110]. In contrast to the currents necessary 
for spin transfer torques, which always have to flow in the 
magnetic nanostrip itself in order to induce motion, spin 
orbit torques allow for much more degrees of freedom in the 
geometry and current direction. A detailed overview is given 
in [111]. The authors investigated two types of spin orbit 
torques: one due to the spin Hall effect, and one due to the 
Rashba effect. The former can be described by a Slonczewski 
torque (the first term in equation (31)), while the latter gives 
rise to a field-like torque (the second term in equation (31)). 

Figure 9.  Examples of a Bloch and Néel type domain wall in a 
PMA nanostrip. The white/black color depicts the out-of-plane 
magnetization direction.
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The effect of these torques on three types of domain walls 
were investigated: Bloch and Néel walls in a PMA material 
and head-to-head domain walls in an in-plane magnetized 
material. Furthermore, this study was repeated for a parallel 
and a perpendicular geometry. The domain wall types and 
geometries are shown in figure 12.

This numerical study confirmed the simple explanation 
from geometric arguments that in the perpendicular geom­
etry, either the spin Hall effect working on a Bloch wall, or 
the Rashba effect working on a head-to-head domain wall, 
resulted in a sustained motion, while in the parallel geometry 
only the spin Hall effect working on a Néel wall gives rise 
to a steady motion. For several reasons the latter case is very 
promising. Firstly, the DMI has a tendency to stabilize Néel 
domain walls, so that this type of driving mechanism is par­
ticularly suited for the high DMI materials currently studied, 
and second, much smaller current densities are required to 
obtain high domain wall velocities. Interestingly, depending 
on the material parameters, the motion of the domain wall 
can be either with or against the direction of the current flow 
[112]. These observations are confirmed by a study based on a 
1D model taking SOTs into account [113].

3.2.6.  Material disorder.  Up to now, only nanostrips in the 
absence of structural disorder or thermal fluctuations were 
described. To correctly interpret experimental observations by 
comparing them to micromagnetic simulations, it is apt to try 
to take these effects into account as well.

The first studies taking disorder into account focused on 
edge roughness [82, 114, 115]. Such a disorder was shown to 
positively influence the domain wall motion by suppressing the 

Walker breakdown in favor of a high-velocity plateau [82] not 
found in non-disordered nanostrips. Next to edge roughness, 
disorder distributed within the strip is also found in real wires 
due to defects in their microstructure like material grains. Such 
a disorder was first implemented into micromagnetic simula­
tions by including empty finite-difference cells in the bulk of 
the material, leading to similar conclusions about the domain 
wall velocity [116] as the ones found in the presence of edge 
roughness. To improve upon the method to include material 
defects in the simulations, it was investigated how exper­
imental characterizations of material defects [117–119] could 
be reproduced in simulations. Typically, defects give rise to 
a potential well, characterized in terms of a depth between 

Figure 10.  The velocity as a function of the driving force for a domain wall driven by (a) an externally applied magnetic field, (b) spin 
transfer torque with various degrees of nonadiabaticity, β. All simulations were performed on a transverse domain wall with a cross-
sectional diameter of 10 nm by 100 nm, with Ms  =  860 kA m−1, Aex = 13 pJ m−1 and α = 0.02.

a)

b)

c)

Figure 11.  The path of a vortex core in a permalloy nanostrip where the vortex domain wall is driven above the Walker breakdown/ 
depinning current threshold by a spin-polarized current with (a) β = 0, (b) β = α and (c) β = 2α.

Figure 12.  (a) The three types of domain walls under consideration 
in the numerical study. (b), (c) The two geometries under study, in 
which the ferromagnetic layer (F) lies parallel or perpendicular, 
respectively, to the SO layer through which the current flows. 
Reprinted figure with permission from [111], Copyright 2013 by the 
American Physical Society.
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1–5 eV [117–119], and an interaction range of approximately 
20 nm [117, 119, 120], corresponding to the size of the vortex 
core used to determine this range. In [121], a defect was intro­
duced in the central region of a permalloy disk, as shown in 
figure 13(a). A magnetic vortex core was then inserted away 
from the center, and its trajectory was followed during its 
spiraling relaxation motion, during which the energy of the 
system is recorded. This energy is then used to determine the 
potential well properties. The resulting characterization was 
then utilized in a parameter study to identify the most realistic 
way to include defects.

In contrast to these isolated defects, the disorder can also 
exist on the level of material grains in polycrystalline mat­
erials. These are crystalline materials without long-range lat­
tice order, originating in the way most thin films are grown: 
material grains grow outward from a few initial seeds until 
they encounter neighboring grains. [122, 123] present meth­
ods to simulate the complete grain structure of polycrystalline 
materials in a computationally efficient way using a Voronoi 
tessellation, in which each Voronoi cell represents a grain. 
An example of the resulting grain structure is depicted in fig­
ure 14. The implementation in mumax3 is described in detail 
in [123] and allows grains that previously left the simulation 
window to re-enter.

Having subdivided the geometry, one can vary the local 
material parameters in and between the grains. This way, 
grain-dependent anisotropy directions can represent the dif­
ferent lattice orientations in grains. The other possibilities 
are a grain-dependent saturation magnetization represent­
ing thickness variations between grains [124], and a reduced 
exchange stiffness constant at the grain boundaries repre­
senting a reduced magnetic coupling between neighboring 
grains [122]. In PMA materials, the angle and strength of the 
magnetocrystalline anisotropy may also be varied [122, 125].

The influence of disorder on current-driven domain wall 
motion has been investigated in detail because this motion 
heavily depends on the size of the degree of non-adiabaticity 
β. There was a lot of debate on the magnitude of β in equa­
tion  (34), with theoretically predicted values ranging from 
β ≈ α to β = 4α [34, 84, 126–128]. Electrical and magn­
etic imaging techniques show domain wall transformations 
when a spin polarized current is applied, indicating β must 
be different from α [92, 129, 130]. However, experiments 
did not converge to one value, and found values of β/α rang­
ing between 1 and 10 [131–141]. In [106], these discrepan­
cies are explained by the influence of disorder. Commonly 
used experimental techniques to quantify β/α are based on 
distance measurements of a domain wall moved by a current 
pulse of known amplitude and duration. The resulting velocity 
is then compared to the theoretical and/or simulated values for 
different βs to determine β [138–141].

Comparing the domain wall velocity in the disordered 
nanostrips (colored lines in figure 15) to the non-disordered 
nanostrip case (black lines) it was observed that the intrinsic 
depinning current threshold (adiabatic case), as well as the 
Walker breakdown (non-adiabatic case), are suppressed, and 
the domain wall velocity is similar to the one for β = α in the 
case of non-disordered nanostrips. The origin of this different 
behavior was attributed to the interplay between the defects 
and the vortex domain wall. In a disordered nanostrip, the vor­
tex core can switch polarity at a defect, implying a change in 
the lateral propagation direction and thus hindering the for­
mation of the transverse domain wall. Such polarity switches 

Figure 13.  The magnetic energy of a vortex in a disk with (full 
line) and without (dotted line) a defect, implemented as a region 
in the center with a reduced exchange stiffness constant at the 
boundaries. Without the defect, the energy profile has a parabolic 
shape. The defect causes an additional potential well, for which the 
depth and interaction range are shown. Inset (a) depicts the initial 
magnetization in the disk and the trajectory the vortex core follows 
while it relaxes into the defect. Inset (b) depicts the energy of the 
system. Reprinted with permission from [121]. Copyright 2014, 
AIP Publishing LLC.

Figure 14.  An example of a nanostrip with a surface of 1600 × 200 
nm2 subdivided into Voronoi cells (gray scale) with an average 
diameter of 20 nm. Reprinted with permission from [123]. 
Copyright 2014, AIP Publishing LLC.

Figure 15.  Velocity versus applied current density for a vortex 
domain wall. Solid lines: velocity versus applied current density in 
a nanostrip without disorder (β = 0, α and 2α). Colored symbols: 
velocity versus applied current density in nanostrips with disorder 
for β = 0 (red) and β = 2α (blue). Irrespective of the value of β 
used, the velocity curves tend to converge to a case corresponding 
to β = α in perfect strips. For small applied current densities, 
extrinsic pinning of the vortex core on a defect takes place. 
Reprinted figure with permission from [106], Copyright 2014 by  
the American Physical Society.
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happen via a Bloch point, a detailed discussion of which can 
be found in section 3.1. In the experimentally accessible cur­
rent range, the vortex core thus moves in the central region of 
the strip without the formation of transverse domain walls. 
This motion is similar to the motion of a vortex domain wall in 
a perfect strip for the case β = α, which explains the deviat­
ing value of β/α derived from the domain wall motion. This 
was also corroborated by simulation studies of domain wall 
motion in polycrystalline permalloy [123]. A second conclu­
sion that can be made from the data presented in figure  15 
is that below an extrinsic depinning current threshold, the 
domain wall velocity becomes zero in disordered nanostrips. 
This is explained by the fact that the driving force is not suf­
ficiently large to overcome the energy barriers due to the dis­
order, and the domain walls get pinned to the disorder.

Voto et al [125] presents the results of domain wall motion 
through a polycrystalline PMA strip, and finds that the dis­
order gives rise to higher velocities in the high-field regime, 
which could be attributed mainly to the local variations in the 
anisotropy axes orientation. These findings stress the fact that 
different methods to include disorder in the simulations can 
give rise to various effects on the mobility [121, 125] and one 
should be careful in choosing the correct method to reproduce 
or interpret experimental results.

3.2.7.  Nonzero temperature.  The influence of temperature on 
transverse domain wall dynamics in magnetic nanostripes is 
also a topic of interest [142, 143]. Temperature is included 
in the micromagnetic simulations and the 1D-model as a ran­
domly fluctuating field acting on the finite difference cells 
and domain wall volume, respectively. As shown in figure 16, 
the combined action of thermal fluctuations and current do 
not give rise to an average domain wall motion. Instead, the 
data is described by a Gaussian curve with zero average. Con­
sequently, the motion can be interpreted as a random walk 
resulting in diffusion and characterized by a mean square dis­
placement. In general, the domain wall motion contains a drift 
and a diffusion component which can be quantitatively pre­
dicted by the 1D-model extended with a thermal field.

Finally, the most realistic simulations investigate the inter­
play between disorder and thermal fluctuations on domain 
wall motion. There is an inherent stochasticity [114, 144] in 
this motion, which makes it impossible to accurately predict 
when and for how long a domain wall will get pinned in a 
nanostrip, even with perfect knowledge about the magnetiza­
tion history. However, when looking at the average motion of 
domain walls in this regime, it is possible to make quantita­
tive predictions [145]. Typically, elastic systems in disordered 
media, such as domain walls in ferromagnets [146, 147], are 
pinned at zero temperature. At temperatures smaller than the 
depinning temperature and forces smaller than the depinning 
force, they exhibit a creep [148] regime originating in the slow 
thermally activated motion over large energy barriers, leading 
to a highly non-linear creep scaling law. In particular, for 1D 
elastic lines such as domain walls in ferromagnetic thin (PMA) 
films, compelling evidence for the validity of this scaling law 
exists [146, 147]. Kim et al [149] experimentally showed that 
in PMA materials the creep scaling law breaks down when the 
nanostrip dimensions are reduced. In [150], this behavior was 
further investigated for narrow polycrystalline nanostrips with 
the help of micromagnetic simulations.

The results of this study are shown in figure 17, where each 
data point shows the average domain wall velocity over five 
simulations with different temperature realizations. The panels 
on the right show the domain wall paths for some representa­
tive current densities. In the flow regime (e.g. Jx  =  4 A μm−2), 
neither the disorder nor the thermal fluctuations have a notice­
able effect on the domain wall motion. At intermediate current 
densities, in the depinning regime (e.g. Jx  =  1 A μm−2), only a 
small number of pinning potential wells are strong enough to 
temporarily pin the domain wall. This introduces some vari­
ance in the domain wall velocities. In the creep regime (e.g. 
Jx  =  0.1 A μm−2), the domain walls repetitively pin for sev­
eral microseconds, resulting in average domain wall velocities 
down to 1 m s−1.

To further address this low current density regime, the 
1D model was extended with thermal fluctuations and a 
term taking into account the energy landscape due to the 

Figure 16.  The left side of the figure shows the positions as a function of time for 1000 domain walls in a magnetic nanostrip at 300 K. 
One randomly chosen path is highlighted in red. The right side shows the distribution of their final positions, with a fitted Gaussian curve 
centered at 0, proving that the diffusive motion has no average displacement. Reprinted with permission from [143]. Copyright 2015, AIP 
Publishing LLC.
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material disorder to arrive at an equation of motion describing 
a magnetic domain wall moving along a disordered magnetic 
nanostrip [150]. This equation was validated by direct com­
parison of its solution with the full micromagnetic simulation 
data shown in figure 17. The full black lines are obtained from 
the numerical integration of the equation of motion and show 
excellent agreement with the micromagnetic model.

It was shown that, instead of the highly nonlinear creep 
regime found for nonrigid objects, the velocity of narrow 
domain walls displays a simple linear dependence on the driv­
ing force. Interestingly, these results imply that the domain 
wall can be described by a point particle, while it is argued in 
[151] that this is not the case for vortex domain walls in wider 
nanostrips. However, in the absence of thermal fluctuations, 
the vortex domain wall motion is captured by the 1D-model, 
which relies on the same assumption. Thus, it remains to be 
investigated whether vortex domain walls display a linear 
or nonlinear creep scaling law in the regime of low driving 
forces.

As the GPU performance improves over time, ever larger 
simulations become feasible. In recent years, this allowed one 
to study domain wall motion for longer timescales [150], or 
in larger thin film geometries [97–99, 152] than was previ­
ously attainable. Furthermore, also large three-dimensional 
structures [153–155] are starting to become computationally 
tractable. In the first reports on domain wall motion in such 
extended structures, it was noted that the long-range demag­
netizing field plays an increasingly dominant role resulting in 
flux closure states containing several topological defects, such 
as vortex cores, which are key to understanding the rich and 
complex dynamics found in these systems [153, 155].

3.2.8.  Domain wall based technological applica-
tions.  Domain wall motion has been employed in a few tech­
nological concepts. In conventional electronics, where only 
electrical charges are transported, the use of domain walls 
is rather limited due to the large external fields necessary to 
move them. However, practical applications exist, e.g. Novo­
technik [156] made a spiral-shaped sensor, in which domain 
walls are generated/annihilated depending on the number of 
180 degree turns between the sensor and an external magnet. 
Because the electrical resistance of the nanostrips discretely 
changes with the number of domain walls, one can electrically 
measure the number of rotations of the sensor. This sensor 
is, for instance, used in combination with a rotation sensor to 
determine the position of the steering wheel in the automotive 
industry.

The most promising use of domain wall technology lies in 
spintronics’ applications (see section 3.5), such as the race­
track memory [158, 159]. In this device, the bits are repre­
sented by the magnetization of the domains, see figure 18(a). 
The position of these bits (domains) can be manipulated by a 
spin-polarized current to move them over a read or write head. 
Although high storage densities can be reached by incorporat­
ing these nanostrips into 3D structures, there are still physi­
cal limits to the data density in these structures, due to the 
considerable size of the domain walls in these nanostrips, e.g. 
made of permalloy, the walls are approximately the size of the 
nanostrip width, which typically is on the order of 100 nm. 
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Figure 17.  Micromagnetic simulations of current-driven transverse 
domain wall motion reveal a low-current density creep regime, 
and allow one to validate the equation of motion of the domain 
wall. Results of the micromagnetic simulations (data points) 
and the numerical solution of the equation of motion (full black 
lines) at 250 K and 300 K. The error bars correspond to the 
uncertainty (standard deviation/

√
N  with N denoting the number 

of realizations) on the simulated velocities. The uncertainty on 
the solution to the equation of motion is negligible. The right side 
shows the five paths corresponding to the different temperature 
realizations at Jx  =  0.1 A μm−2, 1 A μm−2 and 4 A μm−2 at 300 K. 
Reproduced from [150]. CC BY 4.0.

Figure 18.  Advancements in the realization of the racetrack 
memory: (a) Data stored in the magnetization direction of in-plane 
domains. (b) Data stored in (smaller) domains in PMA nanostrips, 
in which the domain walls are driven by spin transfer torque. (c) 
Data driven by chiral spin torques. Realizations (a)–(c) still suffer 
from large stray fields limiting the data density (shown by shading). 
(d) Antiferromagnetically coupled nanostrips eliminating these stray 
fields, and allowing higher domain wall velocities. Reprinted by 
permission from Macmillan Publishers Ltd: Nature Nanotechnology 
[157], Copyright 2015.
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Next, stray fields impose a limit on how tight the domain walls 
can be packed as they are coupled magnetostatically to each 
other [160]. Some of these limitations are made less strin­
gent in later generations of the racetrack memory concept, as 
detailed below. Another challenge in the operation of these 
devices is to control the domain wall positions accurately. To 
this end, typically, the driving current is applied in pulses, 
between which the domain walls get pinned to notches [158, 
161]. Just as disorder can improve the domain wall mobil­
ity above the Walker breakdown, strategically chosen notch 
locations can also increase the domain wall velocities [162]. 
Alternatively, zig–zag wires, in which the domain walls can 
pin to the edges, have been proposed [163]. In later ver­
sions, the racetrack memory concept was extended to PMA 
materials [164] (figure 18, which can accommodate much 
smaller domain (walls) (b)) and versions which exploited the 
Dzyaloshinskii–Moriya interaction [157, 165] (figure 18(c)), 
or even antiferromagnetically coupled nanostrips [166], elimi­
nating stray fields, and thus coupling between domain walls or 
adjacent nanostrips, (figure 18(d)) to further improve its per­
formance. In PMA materials, notches are not as reliable to pin 
the domain walls and ratchets with a modulated anisotropy 
landscape with a sawtooth profile are proposed as a more reli­
able alternative [167]. Finally, in order to decrease the power 
consumption of spintronics devices, SOTs can be used instead 
of STTs to drive the data through the device. Similar to STTs, 
SOT-based devices only use energy in the active area of the 
device through which the current flows, but have the addi­
tional advantage that significantly lower currents are required 
to obtain a comparably fast motion [110].

Today, most computations are performed electronically, 
while most data storage is magnetic. It is possible to make 
this more homogeneous by performing the calculations, as 
well as the data storage, magnetically, although it remains 
to be seen whether such configurations can outperform the 
current combined approach. Aiming at magnetic comput­
ing, another popular use of domain walls in spintronics is 
domain-wall logic [168–170]. The concept of domain wall 
logic gates has been proven to work in simulations and in 
some cases experimentally [168, 171, 172]. In a first imple­
mentation, these gates were quite bulky and relied on large 
external fields to operate [168]. Recently, however, also 
current-driven domain wall motion based logic gates were 
presented where the magnetic bits were represented by the 
direction of the domains [171]. As the functionality of the 
logic gates might depend on the chirality of the domain wall, 
methods have been proposed to write this quantity reliably 
[173, 174]. To further increase the information density of 
these devices, logical gates have been proposed where the 
information was stored in the different domain walls [175], 
and in the future, even smaller ‘walls within walls’ could 
serve as information carriers [109]. These structures, found 
in wide PMA nanostrips, do not display a Walker breakdown 
and thus have the additional advantage of very fast internal 
wall propagation through larger walls, serving as guides. To 
add to the versatility of the logic concepts, just like in mag­
nonic applications (see section 3.4), attention has been paid 
to reconfigurable logic gates [176].

3.3.  Skyrmion dynamics and DMI

In chiral magnets, the rotational degeneracy of the exchange 
energy is lifted due to the Dzyaloshinskii–Moriya interac­
tion, which stabilizes rotations with a certain handedness in 
the magnetization. The origin of this antisymmetric exchange 
interaction is already mentioned in section 1.2.4. The impor­
tance of the rotation direction is manifested in the terms linear 
in gradient ∇ · m in the expression for the DMI energy den­
sity given in equation (16). If the DMI is sufficiently strong, 
chiral magnets can host chiral spin structures such as cycloids 
(contiguous Néel walls), helices (contiguous Bloch walls), 
chiral bubble domains, skyrmions, skyrmioniums (skyrmion 
in a skyrmion), and even more complex combinations. In 
addition to the stabilization of chiral spin structures, the DMI 
also has a significant effect on the propagation and dispersion 
of spin waves.

A bubble domain in a ferromagnetic film with PMA is a 
circular domain outlined by a single closed domain wall with 
an in-plane magnetization which is stabilized by dipolar inter­
actions. A skyrmion is also outlined by a single domain wall, 
but unlike the bubble domain, it is mainly stabilized by the 
DMI and is much smaller in size. Skyrmions can have diame­
ters in the nanometer range and are protected by a topological 
barrier. [177] The combination of these two properties makes 
skyrmions very attractive to the design of a new generation of 
magnetic memory and logic gates. Recently, a review paper 
about skyrmions and their potential applications was pub­
lished [178].

In the remaining part of this section, we focus on micro­
magnetic simulations of thin ferromagnetic PMA films and 
an interfacially-induced DMI. These systems are the most 
promising to serve as a host for isolated skyrmions at room 
temperature and low applied field, which are necessary pre­
requisites for the realization of skyrmion-based devices [178]. 
In general, the magnetization in these system consists out of 
up and down domains separated by homochiral Néel domain 
walls.

When performing micromagnetic simulations with DMI, 
there are at least three computational aspects which should be 
taken into account: the cell size, issues with topological trans­
itions, and non-trivial boundary conditions. We will touch 
upon these three aspects before providing a short summary 
of the more influential micromagnetic simulations of chiral 
magnets with an interfacially-induced DMI.

In contrast to the exchange interaction, which tends to 
align the magnetic moments, the DMI favors a rotation over 
neighboring magnetic moments. A strong DMI (relative to the 
exchange stiffness) induces spatial variations of magnetiza­
tion on a small length scale. Hence, besides the two charac­
teristic length scales mentioned in the introduction (equations 
(12) and (13)), the DMI introduces a third characteristic 
length scale 2Aex/D [179]. The value for this characteristic 
length scale lies in the nanometer regime for materials with 
a strong DMI. This is important to remember when choosing 
a cell size in micromagnetic simulations. As a rule of thumb, 
the cell size is small enough if the angle between the magnetic 
moments of neighboring cells is smaller than 0.4 rad [56].  
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For the simulations presented further down in this section, cell 
sizes between 1 nm and 2 nm are used to meet this require­
ment. If the cell size has to be in the sub nanometer range 
due to strong local variations of magnetization, one should 
consider performing atomistic simulations instead.

The creation and the collapse mechanism of skyrmions are 
essential for the design of skyrmion-based applications. For 
example, the skyrmion lifetime should be as large as possible, 
and one should be able to write and delete skyrmions to design 
functional skyrmion-based devices. During the creation and 
the collapse of a skyrmion, a Bloch point (two points with 
opposite magnetization infinitely close together) is unavoid­
able. This is why a skyrmion is said to be topologically pro­
tected [177]. Within the micromagnetic theory, such a Bloch 
point is a singularity and has an infinite exchange energy den­
sity, which makes this transitions unphysical. In micromagn­
etic simulations, however, these transitions can occur, but 
the related energies are extremely dependent on the cell size. 
Therefore, micromagnetic simulations of creation and annihi­
lation of skyrmions, as well as other processes which involve 
Bloch points, should be avoided. One has to resort to atomistic 
or multi-scale simulations, in which the nudged elastic band 
method can be used to accurately describe these transitions 
and related energy barriers [49, 177, 180–183].

The last computational aspect, regarding simulations of 
chiral magnets, which we will discuss is the boundary condi­
tion. This condition can be derived by minimizing the free 
energy at the interface. For an ordinary ferromagnet this 
yields the Neumann boundary condition ∂m/∂n̂ = 0 with n̂ 
the normal of the interface, but it becomes non-trivial when 
adding DMI [179]4:

∂m
∂n̂

=
D

2Aex
m × (êz × n̂) .� (39)

In finite chiral ferromagnetic films, a relaxed magnetic state 
exhibits a canting of the magnetic moment at the edges. This 
edge state meets the above boundary condition. Whether this 
boundary condition should be explicitly implemented is still 
a topic of ongoing debate. mumax3 (version 3.9.2) uses the 
Neumann Boundary condition given above, whereas OOMMF 
does not. Relaxed magnetizations of both simulation packages 
are identical, including the profile of the edge state.

If one studies a single relaxed Néel domain wall in chiral 
magnetic films analytically, one finds that the domain wall 
width δw = π

√
Aex/Keff  is unaffected by the DMI strength. 

Here, the effective anisotropy Keff includes the uniaxial 
magnetocrystalline anisotropy K, as well as the shape aniso­
tropy. In contrast to the domain wall width, the energy (per unit 
wall area) does depend on the DMI strength and reads [179]

σwall = 4
√

AexKeff − πD.� (40)

From this, we can conclude that the ground state is uni­
form for DMI strengths lower than the critical DMI strength 
Dc = 4

√
AexKeff/π. For a strong DMI D > Dc, a (free) 

domain wall yields a negative energy contribution. In this case, 
the ground state is a cycloid with a decreasing wavelength for 
an increasing DMI strength. The full phase diagram of stable 
magnetic states (ground state and excited states) in chiral fer­
romagnetic films can become very complex [184, 185]. To 
investigate the numerous stable states with micromagnetic 
simulations, one could repeatedly relax a random magnetiza­
tion for a given system and conditions. However, due to the 
existence of topological barriers, it is more likely to find high 
energy states with tiny domains than the more smooth low-
energy states. This issue can be resolved by using initial mag­
netizations with a randomness on different length scales. The 
brute force character of such an investigation makes it only 
possible on fast GPU codes and demands a fast relaxation of 
the magnetization. The most efficient way to relax the magne­
tization is to cancel the precession term in the LLG equation. 
In addition to this relaxation method, mumax3 also offers a 
conjugate gradient method developed by Exl et al [186].

To demonstrate the complexity of the phase diagram of chi­
ral ferromagnetic films, figure 19 depicts all stable magnetic 
states of small square platelets with a DMI strength D > Dc 
[185]. The ground state is uniform for thin platelets and oth­
erwise displays a cycloidal state. The number of domain walls 
in the cycloidal ground state depends on the size of the platelet 
in such a way that the cycloidal wavelength is approximately 
equal to the cycloidal wavelength of the ground state in an 
extended chiral magnetic film. The excited states can become 
very complex, especially for larger platelets.

From an applications point of view, the most interesting 
chiral ferromagnetic films have considerable DMI strength, 
just below the critical DMI strength Dc, since they can host 
small skyrmions without needing a strong applied field [178]. 
The ground state of these films is uniform, but it is possible 
to have an excited state with a single small isolated skyrmion 
stabilized by the DMI. These isolated skyrmions can be con­
sidered as particles which can be moved by means of in-plane 
spin-polarized currents or vertically injected pure spin cur­
rents [187] (see section 1.2.8 for the micromagnetic descrip­
tion of these currents). Analogously to the current-induced 
domain wall motion discussed in section 3.2, these currents 
exert a spin transfer torque (SST). This results in a forward 
motion of the skyrmion along the direction of the current, and 
a motion perpendicular to the current. The existence of the 
transverse motion is called the skyrmion Hall effect, which is 
due to gyrotropic effects related to the topological character of 
the skyrmion. The equation of motion for the skyrmion’s posi­
tion R  can be derived analytically using the collective coordi­
nate approach of Thiele in which the skyrmion is considered 
to be a rigid spin structure [68]:

Fext + G × Ṙ + αDṘ = 0�
(41)

with D a constant related to the profile of the skyrmion and 
G ‖ êz  the gyrovector causing the skyrmion Hall effect. Fext 
is the external force working on the skyrmion coming from, 
e.g. spin-polarized currents. Thiele’s equation yields a good 
approximation of the motion of a single isolated skyrmion 
in an extended uniform film and corresponds well with full 
micromagnetic simulations.

4 There is a sign difference in the DMI energy density definition in mumax3 
and in [179], consequently, there is also a sign difference in the boundary 
conditions.
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The collective coordinate approach of Thiele is not very 
useful to describe the motion of a skyrmion in more complex 
and realistic situations. For example, to study a skyrmion on 
a skyrmion racetrack, one has to resort to full micromagnetic 
simulations. A skyrmionic racetrack is a small chiral ferro­
magnetic strip in which a skyrmion can be moved by apply­
ing a spin-polarized current along the strip [16, 188, 190]. 
The repulsive force between a skyrmion and the boundaries 
counteracts the skyrmion Hall effect. The skyrmion Hall effect 
can become too strong for large currents, which will cause the 
skyrmion to annihilate at the racetrack’s border. For low cur­
rents, the repulsive force is strong enough to overcome the 
skyrmion Hall effect and hold the skyrmion on the racetrack. 
The results of a simulation of such a functional skyrmion 

racetrack are shown in figure 20. Impurities and disorder in 
the racetrack have a considerable effect on the trajectory of 
a skyrmion. For example, skyrmions can get pinned at impu­
rities, which lowers the skyrmion velocity and introduces a 
threshold current [191]. Furthermore, Kim et al showed that a 
disorder potential strongly influences the direction of the skyr­
mion propagation [192].

To design advanced skyrmionic-based devices, one could 
not only alter the geometry of the chiral ferromagnetic film, 
but one could also locally modify the material parameters. 
Zhang et  al demonstrated with micromagnetic simulations 
how one could add a voltage-controlled skyrmion gate on the 
racetrack [193]. A local electric field can increase the PMA 
due to charge accumulations, which creates a potential barrier 
for a skyrmion. Another option is to modify the DMI strength 
locally by altering or removing the top or bottom heavy metal 
layer which induces the DMI. In such heterochiral magnetic 
films, it is possible to have confined chiral spin structures 
in regions with a strong DMI [194]. A spatially-engineered 
DMI can be used to create a skyrmion racetrack by confining 
a skyrmion in a high-DMI strip. Another application of the 
spatially-engineered DMI is the design of magnetic domains 
of arbitrary shape and size by confining the domain walls in 
high-DMI regions (see figure 21).

The DMI stabilizes not only chiral spin structures but also 
has a profound effect on the propagation of spin waves. This 
is due to the asymmetric spin-wave dispersion relation [195]. 
The interaction between spin-waves and chiral structures in 
the ferromagnetic film with DMI will be briefly discussed in 
section 3.4.

3.4.  Spin-waves and magnonics

Magnonics [196] is an emerging field of magnetism that stud­
ies the generation and manipulation of spin waves on the 
nanoscale, as they hold great potential for next-generation 
information processing and transmission technologies. In par­
ticular, magnetization dynamics naturally occur at frequen­
cies up to tens of terahertz, yet can easily be confined at the 
nanoscale and converted to electrical signals. Thus, all-metal­
lic magnonic devices are believed to be compatible with, yet 
superior to, semiconductor technology. Analytical description 
of such systems is typically limited as magnetostatic effects 
play a significant role in their behavior. Therefore, micromagn­
etic simulations play an essential role in the development of 
magnonic technology.

In fact, GPU-accelerated micromagnetic simulations allow 
for the understanding of the optical excitation of spin waves 
in permalloy films with ultrashort laser pulses [197]. They 
revealed that a rapid demagnetization of the sample, which 
happens in the area exposed to the focused laser light, creates 
a broadband pulse of a dipolar field that is highly localized 
in space. Consequently, spin wave caustic beams get excited 
with their direction and mean wave-vector set by the magneti­
zation direction and laser spot size, respectively. It is worth 
mentioning that those were the very first simulations that stud­
ied ultrafast and picosecond magnetization dynamics simulta­
neously in large-scale magnetic structures.

Figure 19.  Phase diagram of square platelets with exchange 
stiffness Aex = 15 pJ m−1, an effective uniaxial anisotropy 
perpendicular to the film Keff = 0.8 MJ m3, DMI strength D  =  5 mJ 
m−2 > Dc and no applied field. The energies of all stable states are 
given in the function of the side length l. For the platelets with side 
length 30 nm, 40 nm, and 50 nm, we show all stable states in order 
of increasing energy. Reprinted figure with permission from [185], 
Copyright 2016 by the American Physical Society.

J. Phys. D: Appl. Phys. 51 (2018) 123002



Topical Review

20

Recently, micromagnetic modeling was also employed to 
reveal the origin of the asymmetric lineshape in so-called all-
metallic pseudo spin valves driven by RF currents injected 
through the nano-contact [198]. It was demonstrated that, 
in contrast to the direct current driven case, the microwave 
Oersted field generated by the nanocontact provides a broad­
band excitation of the propagating exchange-dominated spin 
waves. So the spectrum of the generated spin waves is deter­
mined by their dispersion relation and the spatial properties of 
the Oersted field.

For the successful implementation of wave-like comput­
ing, which employs phase as the information carrier, it is 
important to create monochromatic spin wave sources. It has 
been demonstrated that pinned domain walls, driven by the 
spin transfer torque provided by the microwave spin polar­
ized current, can excite highly coherent spin waves [199]. 

Their wavelengths and frequencies can reach 10 nm and 100 
GHz, respectively, depending on the domain wall size and fre­
quency of the excitation signal. The authors also demonstrated 
that control of magneto-crystalline anisotropy would allow 
one to create highly tunable spin wave sources. Alternatively, 
one might employ direct pure spin currents to drive the highly 
localized magnetization auto-oscillations in thin magnetic 
films and then couple them to the propagating spin waves 
in adjacent magnetic nanowires [200]. The efficiency of this 
coupling is subject to the wavelength and frequency matching 
between the source and the waveguide following the simulated 
magnonic dispersion relation. These results are beneficial for 
the development of the spin wave logic devices simulated by 
Klingler et  al [201]. Although these authors employed for­
ward volume magnetostatic spin waves, exchange-dominated 
magnons would enable even higher operational frequencies 
and would allow downscaling the suggested devices to sub-
100 nm length scales.

The development of nanopatterned magnetic media relies 
on the understanding of transmission and reflection of spin 
waves at interfaces. Although analytical approaches are more 
flexible in defining boundary conditions for these problems, 
they cannot easily deal with highly anisotropic magnonic 
dispersion relations and the non-uniform internal magnetic 
field in nanostructures. Thus, micromagnetic simulations 
were employed to study the angular resolved scattering of the 
spin waves from the edge of the magnetic material [202]. The 
Goos–Hänchen effect, a lateral displacement of the reflected 
beam, was observed depending on the pinning strength at 
the interface. Also, bending of the spin waves was revealed 
when the structure was magnetized orthogonally to the edge, 
consistent with the strongly non-uniform internal field. The 
effect was later confirmed experimentally and in micromagn­
etic simulations by testing Snell’s law at the interface of two 
magnetic films of different thicknesses [203]. These findings 
are a step towards the development of graded refractive index 
magnonic materials.

Although magnetization dynamics are naturally confined 
at the nanoscale, the nano-patterning itself might (a) impose 

Figure 20.  (a) Skyrmion velocity v as a function of current density j for in-plane currents with different values of the non-adiabaticity 
parameter β (0.15, 0.30 and 0.60 in yellow, orange and brown lines and circles, respectively) and for vertical currents (blue line, squares for 
isolated skyrmions, crosses for the chain in (c)). (b) Trajectory of a single skyrmion driven by a vertical current (j  =  5 MA cm−2, v  =  57 m 
s−1). (c) Chain of five skyrmions with two different spacings driven by a vertical current (  j  =  5 MA cm−2). The values of D  =  3  
mJ m−2 and current polarization P  =  0.4 were used in these calculations. Reprinted by permission from Macmillan Publishers Ltd: Nature 
Nanotechnology [188], Copyright 2013.

Figure 21.  Spatial magnetization profiles of the lowest energy 
states for high-DMI strips of different shapes and width w 
(expressed in ξ = Aex/Keff. The DMI strength is 1.18Dc inside the 
strips (outlined by black lines) and zero elsewhere (shaded area). 
Reprinted figure with permission from [194], Copyright 2017 by the 
American Physical Society.
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additional losses to the propagating spin waves and (b) would 
not easily allow for reconfigurable architectures. So Garcia-
Sanchez et  al [204] employed large scale micromagnetic 
simulations to demonstrate semi-confinement of spin waves 
by nano-scale domain walls. This was later observed exper­
imentally by Wagner et al [205] in 40 nm wide walls. In addi­
tion to much reduced extrinsic magnetic losses, such channeled 
spin waves were found to have a vanishing magnetostatic dis­
persion leading to higher group velocities and propagation 
lengths compared to the bulk magnons in the same media. It 
has also been demonstrated that a pair of such domain-wall-
based waveguides could be closely packed on the sub-200 nm 
scale, yet support interdependent (noninteracting) propaga­
tion of channeled spin waves. The experiment also revealed 
that they could be moved over a distance of several microm­
eters with a field of only 1 mT. In addition, micromagnetic 
simulations suggested that there is strong interaction between 
Néel-type domain walls and incident spin waves in the pres­
ence of a Dzyaloshinskii–Moriya interaction [206]. This not 
only enables manipulation of the spin wave propagation, but 
might allow one to employ magnons to move domain-wall-
based waveguides in all-magnonic re-configurable devices.

Magnonics typically studies quasi-linear magnetization 
dynamics, but nucleation of nonlinear spin waves might be 
beneficial to the applications. So, detailed knowledge of mag­
nonic spectra and their nonlinear properties is essential. For 
instance, it has been predicted micromagnetically that a vortex 
core polarity could be switched with a nonlinear self-focusing  
radial spin wave confined in a magnetic nanodisk [207]. 
Simulations were also extensively used to validate the analyti­
cal prediction of the new class of spin wave instabilities that 
emerge in low magnetic fields, which could be employed for 
nucleation and synchronization of magnetization dynamics in 
magnonic devices [208].

GPU-accelerated micromagnetic modeling also enables 
interdisciplinary studies. For example, it has been exper­
imentally demonstrated, and afterward reproduced in simu­
lations, that anti-dot arrays can be used for biosensing 
applications [209, 210] as their magnonic resonances experi­
ence significant frequency shifts depending on the concentra­
tion of magnetic nanoparticles.

3.5.  Spintronics and spinorbitronics

Recent advances in spintronics and spinorbitronics allow the 
nucleation and sustenance of high amplitude magnetization 
auto-oscillations and even promote switching with direct 
applied electrical currents. Although this is already employed 
in commercially available magnetic random access memory 
(MRAM), gigahertz-band signal generation and, recently, 
neuromorphic computing with spintronic devices are hot 
research topics.

Both approaches rely on the ability of spin torque oscilla­
tors to synchronize with each other reliably and controllably. 
This problem has seen rather slow development since the first 
observation of spin-wave mediated phase locking of a pair of 
devices in 2005. A breakthrough was made with the help of a 
GPU-accelerated micromagnetic simulation that allowed one 

to optimize the spin wave propagation between oscillators and 
achieve synchronization of up to five oscillators separated by 
as far as 1 μm [211]. As emitted magnons are highly direc­
tional due to the Oersted field produced by the nanocontact, 
one needs to make sure that oscillators are placed along the 
spin wave propagation direction. Finally, in contrast to earlier 
assumptions, simulations revealed that the synchronization 
has a driven character.

Shortly after, a mutual synchronization of up to nine 
spin–orbitronic oscillators in strong oblique magnetic fields 
has been experimentally demonstrated [212]. The modeling 
suggested that, in contrast to the nanocontact spin torque 
oscillators, the magnetization auto-oscillations are strongly 
localized. So the phase locking is mediated by the mutual 
direct exchange and dipolar interactions that increase with the 
applied current due to the mode expansion. If the magnetic 
bridge connecting such devices is engineered to enhance the 
expansion, then long range synchronization is achieved in the 
devices separated by 4 μm. Subsequent simulations suggested 
that auto-oscillations emerge from the magnonic edge modes 
and their expansion properties strongly depend on the strength 
and out-of-plane angle of the applied magnetic field [213].

Large-scale mumax3 micromagnetic simulations paired 
with the Kuramoto model enabled the study of complex syn­
chronization patterns in arrays of vortex spin torque nano-
oscillators [214]. It was found that the critical coupling 
strength needed to synchronize the entire array scales as 
log(N), where N is the number of oscillators. So for realistic 
values of the coupling, only local synchronization is possi­
ble in such systems. The existence of such synchronization 
domains gives rise to the nucleation of topological defects in 
the phase field.

Overall, it is quite common to study current-driven mag­
netization auto-oscillations with micromagnetic simulations. 
This is typically done by reproducing the corresponding 
experimental data. In particular, micromagnetic simulation 
revealed the fine structure of weakly localized magnetization 
dynamics in spin-current nano-oscillators based on nonlocal 
spin injection [215]. Modeling also validated a multi-mode 
spin torque oscillator model that explained mode coexistence 
and hopping in nanocontact oscillators [216]. It has also been 
revealed that such devices can support solitons with p-like 
symmetry [217]. Furthermore, excitation of large spin wave 
bullets by the pure spin current injection in insulating Yttrium 
Iron Garnet has been confirmed [218], which opens new pos­
sibilities for the development of spintronic devices with lower 
power consumption. More recently, micromagnetic simula­
tions were used to explain the non-monotonic frequency ver­
sus current tunability of the 20 nm width constriction-based 
spin Hall nano-oscillator [219].

Micromagnetic simulations are also a driver in the research 
of magnetic droplets, which naturally appear in spintronic 
devices with a PMA free layer. In particular, modeling sug­
gested that droplets can exist in low-dimensional magnetic 
structures, e.g. wires [220]. Later, drift resonances of the 
droplets were understood, suggesting their stability at room 
temperatures [221, 222]. Also, fusion and fission of drop­
lets [223] and their phase locking [224] were demonstrated 
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micromagnetically. Finally, transport properties of the drop­
lets were recently studied by Loreto et  al [225], who sug­
gested that they can be used in racetrack memory since they 
do not experience a skyrmion Hall effect.

Modeling also has predictive power. For instance, nuclea­
tion of the dynamical magnetic skyrmion in the absence of 
a Dzyaloshinskii–Moriya interaction has recently been pre­
dicted, and the interaction with magnetic droplets and the trans­
ition to static skyrmions were studied [226]. Furthermore, a 
design of the skyrmion-based spin torque oscillator that could 
potentially operate at much smaller current densities than the 
typical spin torque nano-oscillators has been suggested [227]. 
Modeling also suggested that magnetic skyrmions can be reli­
ably nucleated in contact-based spin Hall nano-oscillators 
[228].

3.6.  Exchange bias

Exchange bias occurs when a ferromagnetic (FM)/antiferro­
magnetic (AFM) bilayer is cooled in an external field below 
the Néel temperature. It was first discovered by Meiklejohn 
and Bean [39] in 1956. Considering the spin orientation in 
AFM monoxides such as NiO and CoO, one can see (figure 
22) that compensated as well as uncompensated crystallo­
graphic planes can be present at the FM/AFM interface. At 
a compensated interface (e.g. the (1 0 0) plane in NiO), both 
AFM sublattices couple equally to the ferromagnet, whereas 
for an uncompensated interface (e.g. the (1 1 1) plane in NiO), 
only one AFM sublattice interacts with the FM layer.

The presence of frozen uncompensated AFM spins at the 
interface induces a unidirectional shift of the hysteresis loop. 
This shift generally is antiparallel to the field cooling direc­
tion (negative exchange bias) both in the case of a parallel as 
well as an antiparallel interfacial coupling. Antiferromagnetic 
spins, which are strongly coupled to the FM layer or have a 
low anisotropy, rotate together with the FM and lead to an 
enhanced coercivity [230].

In the case of a compensated AFM interface, the magnetic 
system will try to minimize its total energy by canting both 
AFM sublattices towards the magnetization direction in the 

FM. This second order magnetic interaction, called spin flop 
coupling [231, 232], induces an enhanced coercivity perpend­
icular to the anisotropy axis of the AFM, but does not lead to 
a shifted hysteresis loop [233, 234].

The pinning of a ferromagnetic layer through exchange 
bias, and the FM/AFM interfacial coupling in general, have 
some important technological applications such as GMR 
or TMR spin valves, which are used in reading heads and 
MRAM devices. Exchange bias can also provide a way to 
beat the superparamagnetic limit [235] and spin flop coupling 
can lead to a lower switching field in nanomagnets [236]. 
Interestingly, in 2015 Fukami et al [237] have shown that an 
exchange biased Co/Ni multilayer with an out-of-plane mag­
netization can be switched by applying a current in the AFM 
layer and by making use of a spin orbit torque. The presence 
of an in-plane exchange bias field in the direction of the cur­
rent eliminates the necessity to apply an external field on the 
multilayer to achieve deterministic switching of the ferromag­
net [238, 239].

3.6.1.  Modeling of exchange bias.  To model exchange bias, 
one usually resorts to simple analytical models [230, 240, 241]  
as these can give some indications about the dependency of 
these phenomena on the physical parameters. Although these 
models can capture the essential physics of a magnetic system 
in most cases, it is not a very realistic approach when dealing 
with real interfaces in, typically, polycrystalline antiferromag­
nets. Also, systems in which the magnetostatic field of the FM 
plays an important role cannot or can hardly be described in 
these models due to the complex nature of the demagnetiza­
tion energy.

Alternatively, one can consider every individual spin on 
the atomic level (e.g. the Vampire [242] software package). 
Due to the smallness of the lattice constant however, these 
calculations require a lot of computational resources as many 
lattice points are needed to be taken into account and so only 
small magnetic structures can be studied without making use 
of supercomputers.

In order to study static effects due to the interfacial cou­
pling between a ferromagnet and an antiferromagnet, it is 
not necessary to model the AFM on an atomic scale and a 
micromagnetic approach can be very valuable as an interme­
diate approach between limited theoretical models and the full 
atomistic description of an antiferromagnet.

Recently, it was shown how the mumax3 framework [56] 
can be used to model compensated [234], uncompensated 
[243] and mixed [234] antiferromagnetic interfaces. It was 
demonstrated that phenomena such as exchange bias, spin 
flop coupling and athermal training can be taken into account 
by using an effective micromagnetic approach, thus providing 
a realistic description of static effects due to the interfacial 
coupling between a FM and an AFM.

3.6.2.  Modeling of uncompensated antiferromagnetic inter-
faces.  When considering a FM coupled to an uncompensated 
AFM interface, the AFM can be modeled as a single pseudo-
ferromagnetic layer [234, 243] to which one can attribute some 
effective parameters, e.g. an anisotropy constant and a positive 

Figure 22.  Antiferromagnetic ordering in NiO and CoO. The 
spins belonging to the same AFM sublattice are drawn in the same 
color. The (1 1 1) planes are uncompensated and (1 0 0) planes 
are compensated. Reprinted figure with permission from [229], 
Copyright 2012 by the American Physical Society.
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intralayer exchange stiffness. By dividing the AFM layer into 
several grains [123], one can locally vary the coupling con­
stant between the FM and the AFM, the anisotropy constant 
and the anisotropy axis of an AFM grain. Also, the presence 
of a planar domain wall in the antiferromagnet, as described 
in the model of Mauri [240], can easily be taken into account. 
Further details on the exact implementation of an uncompen­
sated AFM interface in mumax3 can be found in [234].

Using this approach, one can reproduce experimental 
data, e.g. athermal training in an exchange biased Co(30nm)/
CoO(3nm) bilayer [244], as shown in figure 23. A good quanti­
tative agreement is found between the simulations [243] and 
the experimental data [244]. Approximately 30% of the AFM 
grains were pinned in the field cooling direction, inducing 
exchange bias, and 70% of the AFM grains were considered 
to be rotatable, leading to an enhanced coercivity. Also, the 
asymmetry between the descending branch and the ascending 
branch of the first hysteresis loop, which is a typical feature of 
athermal training, can be reproduced as well as the reduction 
in coercivity and bias field.

Using the same Co/CoO system, it was also confirmed 
[243] that a trained hysteresis loop can be reinitialized to 
an apparent field cooled state by applying an external field, 
perpendicular to the field cooling direction [245, 246] and that 
there can be a difference in the reversal mechanism between 
the descending and the ascending branch of the first hyster­
esis loop [247]. The latter is illustrated in figure 24. Starting 
from a field cooled state (figure 24(a)), the first reversal of 
the Co layer towards negative saturation happens through the 
formation of magnetic domains in the FM and corresponding 
domains in the AFM, as is shown in figure 24(b). When return­
ing to positive saturation, however, the reversal of the FM now 
happens through coherent rotation of these domains. This is 
also the case in all subsequent hysteresis loops (descending 
as well as ascending branches), as can be seen in figure 24(c). 
The asymmetry in the reversal mechanism has been exper­
imentally observed in Co/CoO bilayers by using polarized 
neutron reflectometry [247].

This micromagnetic model of an uncompensated AFM 
interface can also be used to study positive exchange bias. In 
the case of high cooling fields, the hysteresis loop is sometimes 
shifted in the same direction as the cooling field [248–251].  
This is often explained by considering an antiparallel interfa­
cial coupling between the FM and the AFM layer and by tak­
ing into account the Zeeman energy of the AFM during field 
cooling. A similar model like the one proposed by Kiwi [248] 
for compensated surfaces can also be applied to uncompen­
sated AFM interfaces. When assuming that the cooling field 
Hcf is oriented along the uniaxial anisotropy axis uAFM of the 
AFM and that the ferromagnet is saturated in the same direc­
tion as the cooling field, the total surface energy density of this 
system can be written as

σ = JImFM · mAFM − KAFMtAFM (uAFM · mAFM)
2

− µ0MAFMtAFMmAFM · Hcf
�

(42)

where tAFM and MAFM are the thickness and the sublattice 
saturation magnetization of the uncompensated AFM, respec­
tively. The first term is the exchange coupling between the 
FM and the uncompensated AFM layer, the second term is the 
uniaxial anisotropy energy of the AFM, and the last term rep­
resents the Zeeman energy of the uncompensated AFM in the 
cooling field Hcf. Constant energy contributions were omitted, 
and we have assumed an antiparallel coupling between the 
FM and the AFM for a coupling constant JI > 0. Examining 
the stability conditions, one can show that pinned AFM spins 
will lead to a positive exchange bias in this model if

µ0Hcf �
JI + 2KAFMtAFM

MAFMtAFM
.� (43)

At this threshold value, the Zeeman energy of the uncompen­
sated AFM during field cooling is strong enough to overcome 
the anisotropy energy and the interfacial coupling between the 
AFM and the FM, assuming the AFM was initially located 
in its global energy minimum, i.e. in an antiparallel state 
with respect to the saturated ferromagnetic layer. Cooling 
fields which satisfy equation (43) will switch the AFM grain 
towards an orientation parallel with the FM, corresponding to 
a local energy minimum due to the presence of the uniaxial 
anisotropy of the AFM. As the AFM spins hardly couple to the 
external field anymore after field cooling, these spins will stay 
pinned in this parallel orientation, even during a field sweep. 
In the case of a uniform uniaxial antiferromagnet, the thresh­
old value for the cooling field leads to a stepwise function for 
the bias field Beb, jumping from − |Beb| to + |Beb|.

To illustrate the case of positive exchange bias, one 
can consider a 10 nm thick antiferromagnet (grain size of 
12 nm and sublattice saturation magnetization MAFM = 400  
kA m−1), coupled to an isotropic permalloy layer (MFM = 800 
kA m−1 and AFM = 1.3 × 10−11 J m−1) of equal thickness. 
The AFM layer has a uniaxial magnetocrystalline anisotropy, 
and to make the system more realistic, the anisotropy con­
stants of the grains as well as the interfacial coupling param­
eters JI of the grains with the FM layer were varied. The value 
of the anisotropy constant KAFM was randomly distributed 
between 0 and 2 × 105 J m−3 and likewise the value of JI was 

Figure 23.  Comparison of the simulated hysteresis loop (red) with 
the experimental data of a Co(30nm)/CoO(3nm) bilayer [244] 
(black). The external field was applied along the field cooling 
direction. Reproduced from [243]. © IOP Publishing Ltd. All rights 
reserved.
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randomly distributed between 0 and 2 mJ m−2, assuming an 
antiparallel coupling towards the ferromagnet.

The cooling field Hcf was applied parallel to the anisotropy 
axis of the AFM, the ferromagnet was always kept saturated 
in the field cooling direction, and all AFM grains were initial­
ized antiparallel to the FM, corresponding to the global energy 
minimum when no cooling field is present. Starting from this 
state, the antiferromagnet was relaxed in the cooling field. 
Afterwards, the cooling field was removed, and the system 
was relaxed again. Depending on the magnitude of Hcf, some 
pinned AFM grains will have made an irreversible transition 
from the antiparallel state with respect to the FM towards a 
parallel orientation, inducing positive exchange bias.

The evolution of the bias field Beb as a function of the mag­
nitude of the cooling field µ0Hcf is shown in figure 25 (red). 
One can see that, in accordance to experimental data [251], 
the bias field is negative for low cooling fields but becomes 
positive at high cooling fields, even obtaining Beb ≈ 0 mT 
when as many AFM grains are oriented parallel as antipar­
allel to the FM. When the cooling field is large enough to 
switch all pinned uncompensated AFM grains towards a par­
allel orientation with the FM, the curve will saturate. One can 
show (equation (43)) that, for this system, saturation occurs 
at µ0Hcf =

3KAFM,max
MAFM

= 1.5 T with KAFM,max = 2 × 105 J m−3 
the maximal value of the uniaxial AFM anisotropy constant. 
Also, the case of a polycrystalline AFM, consisting of grains 
with a uniaxial anisotropy, is shown in figure 25 (green). At 
saturation, the bias field is reduced by approximately a factor 
2
π  due to the random distribution of the magnetization of the 
pinned AFM grains in the direction of the cooling field. The 
exact shape of these curves depends on the distribution of the 
coupling parameter JI and the anisotropy constant KAFM in the 
AFM.

3.6.3.  Modeling of compensated and mixed antiferromagnetic 
interfaces.  At the micromagnetic scale, the two AFM sub­
lattices can be considered as two coinciding, antiferromagn­
etically coupled, pseudo-ferromagnetic layers [234]. mumax3 
allows only one magnetization vector per cell. Therefore, the 
two sublattices are separated into two different layers, indi­
cated by AFM1 and AFM2 in figure  26. Considering static 
effects, this separation in space has no physical implications as 
both layers behave as if they would coincide. The AFM1 layer, 
which is not directly adjacent to the FM layer, can be coupled 
to the FM by adding a custom field and energy term [234]. 
The negative interlayer exchange stiffness AAFM between the 
two AFM layers takes into account the nearest neighbor inter­
action between two antiparallel spins and the positive intra­
layer exchange stiffness AA ensures a correct AFM domain 

Figure 24.  Magnetization of the AFM (top row) and corresponding FM (bottom row) layer at different places in the simulated hysteresis 
loop. (a) Initial field cooled state. (b) At negative saturation in the first hysteresis loop. (c) In the descending branch of the second hysteresis 
loop. The reversal in the descending branch of the first hysteresis loop (see figure (b)) happens through domain formation. Further reversals 
happen through coherent rotation of these domains, as can be seen in figure (c). Reproduced from [243]. © IOP Publishing Ltd. All rights 
reserved.

Figure 25.  Bias field Beb as a function of the cooling field 
µ0Hcf in the case of a uniaxial (red) or polycrystalline (green) 
uncompensated AFM. For large cooling fields, the bias field 
becomes positive.
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wall energy and can also include the next nearest neighbor 
interaction. Also mixed (compensated as well as uncompen­
sated) AFM interfaces can be implemented in mumax3.

This micromagnetic model of a compensated AFM inter­
face can reproduce experimental data, e.g. spin flop coupling 
in La0.7Sr0.3MnO3/LaFeO3 nanosquares [252]. Besides the 
usual Landau state, also z-type domain configurations were 
be found in the experiment. Starting from a random state in 
the FM and semi-random in the AFM, the authors [234] could 
reproduce both states using this two layer approach.

Hoffmann [253] has shown that antiferromagnets, with a 
symmetry higher than uniaxial anisotropy, can be in a non-
collinear state after field cooling. During the first reversal of 
the FM, the AFM sublattices relax towards an antiparallel 
state, inducing athermal training and thus exchange bias in the 
first hysteresis loop. Using the micromagnetic model [234] 
of a compensated AFM interface, one can easily investigate 
these systems.

Figure 27 shows the difference in coercivity between the 
first and the second hysteresis loop as a function of the biaxial 
AFM anisotropy constant kb,AFM and the interfacial coupling 
parameter jI. Two regions can be discriminated in the phase 
diagram. The athermal training in the middle region results 
from Hoffmann training: the two non collinear AFM sub­
lattices relax from the 90° canted state towards an antipar­
allel orientation after the first reversal of the ferromagnet. 
The reduction in coercivity in the lower right region of the 
phase diagram is due to a spin flip transition of the sublattices. 
However, both regions lead to the typical asymmetry between 
the descending branch and the ascending branch in the first 
hysteresis loop.

As biaxial anisotropy is not natively implemented in 
mumax3, a custom effective field and energy density term 
were added to the input script. This feature gives the user com­
plete freedom to define his/her custom energy contributions. 
An example of how such a term can be added to a mumax3 
input file can be found in [234].

3.6.4.  Limitations of the micromagnetic exchange bias 
model.  Due to the micromagnetic description of an antiferro­
magnet and its implementation in mumax3, only static effects 
such as exchange bias, spin flop coupling, and athermal train­
ing can be modeled, as these do not rely on the correct dynam­
ical description of the magnetization in the AFM sublattices.

3.7.  Artificial spin ices

The complex behavior of magnetic systems is driven by the 
interplay of multiple interactions. While these interactions 
often give rise to a single ground state, in some systems, they 
are at odds with each other, leading to the inability of the 
system to minimize all its competing interactions: a property 
called frustration. Frustrated systems contain a large num­
ber of degenerate ground states [254] and a considerable 
amount of ground state entropy [255]. In magnetic systems, 
it was originally was thought necessary to have an antifer­
romagnetic coupling to induce frustration. Surprisingly, also 
ferromagnetic couplings can lead to frustration in certain 
geometries, called spin ices. This is an interesting class of 
materials where novel physics appear [256], but, unfortu­
nately, it is hard to study as the frustrated interactions are 
on the atomic length scale. The field only took flight when it 
was shown that a lithographically fabricated 2D grid of single 
domain nanomagnets displays the same properties as in natu­
rally occurring pyrochlore spin ices [257]. Such artificial spin 
ices provide a far more accessible model system in which the 
interaction details can be tuned at will, e.g. by varying the 
inter-island distances.

The experimental accessibility of artificial spin ices has 
sparked much research interest and has lead to new approaches 
to studying frustrated systems. On the one hand, a network 
theory approach is used to investigate the properties of the 
complete lattice, e.g. which states can transform into which 
others [258]. On the other hand, the local excitations within 
the system are the subject of study [259]. These local excita­
tions are small clusters of nano-islands in which the magnetic 
moments are reversed, so the configuration contains more 
energy than a ground state.

A topic of great interest is the dynamics of these local 
structures. Commonly, these dynamics have to be induced 
with the help of external excitations [256]. A typical experi­
ment consists of applying an external field to (a previously 
fully magnetized) spin ice and observing when and how the 
magnetization reversal takes place [258]. In theory, this is 

Figure 26.  In the micromagnetic approach, an atomic compensated 
AFM interface (left) is replaced by two continuous AFM layers 
(right), which are coupled by a negative exchange stiffness AAFM. 
The FM layer (red) is directly coupled to both AFM1 and AFM2 
by an interlayer exchange stiffness AI. A positive intralayer 
exchange stiffness AA ensures the correct AFM domain wall energy. 
Reproduced from [234]. © IOP Publishing Ltd. All rights reserved.

Figure 27.  Phase diagram of Hoffmann training for a uniform 
biaxial antiferromagnet, as a function of the reduced anisotropy 
constant kb,AFM and the reduced exchange coupling jI. The color 
scale represents the difference in coercivity bc (in reduced units) 
between the first and second hysteresis loop. Reproduced from 
[234]. © IOP Publishing Ltd. All rights reserved.
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a well-defined process in which the system only accesses a 
few intermediate states. In reality, however, the importance 
of disorder in spin ice dynamics is not to be underestimated. 
Even a small amount of disorder, inherently present due to 
the nature of the sample fabrication, increases the number of 
available reversal paths by order of magnitude and leads to 
critical phenomena and avalanches [258, 260]. Recently, the 
impact of the disorder on the vertex level was also studied 
[261]. Surprisingly, the defect site in a square lattice enhances 
flipping of the neighboring sites, while in a Kagome lattice, a 
defect site breaks the local frustration of the neighboring sites 
and inhibits them from flipping [261]. The final barrier that 
had to be overcome to investigate local excitations accurately 
was to make thermally active samples [262, 263], so external 
fields are no longer necessary to induce dynamics. This means 
that the size of the islands, their separation and the magnetic 
properties of the materials are tuned in such a way that the 
energy barrier for a single flip of an island is sufficiently low 
and can be caused by the thermal fluctuations [262]. Only in 
thermal equilibrium will the system reach the ground state and 
that we are able to observe the dynamics of the local excita­
tions [254].

It is mainly in these (thermally) excited samples that it 
becomes worthwhile to use micromagnetic simulations as 
compared to higher-level models, which reduce the individual 
nano-islands to macrospins. These macrospin models do not 
take into account the fact that the intra-island magnetization is 
not necessarily uniform [264], or even display dynamics in the 
form of normal modes [265], which can influence the global 
dynamics of the spin-ice. More detailed studies about the local 
modes can be found in section 3.4. Whereas micromagnetic 
simulations used to be quite limited to relatively small geom­
etries, an initial study shown in figure 28 illustrates that it has 
become feasible to simulate structures with a size of the same 
order of magnitude as in experimental samples.

Roughly simultaneous with the first realizations of artifi­
cial spin ices, it was shown that the ice rules also apply to 
connected magnetic networks [266]. Here, the system consists 
of a network of connected uniformly magnetized nanostrips, 
interacting at the vertices [267]. Reversing the magnetization 
of a single element is achieved by moving a domain wall, car­
rying the magnetic charge, through the strip. Compared to the 

island lattices where the switching is between binary states 
and the charge flips from between the vertices, the mobility of 
the magnetic charges is considerably higher [268]. The sec­
ond advantage of connected lattices compared to unconnected 
islands is that the effect of inherent sample disorder is lower 
in the connected systems [269]. This increases the control­
lability of the dynamics, while still maintaining the positive 
effects of the disorder. Similarly, as for unconnected islands, 
next to honeycomb lattices [270, 271], also other topologies, 
like brickwork lattices [272], show interesting behavior.

As shown in section  3.2, domain wall motion depends 
on the internal structure of the domain walls. For instance, 
the path a domain wall will take at a vertex depends on the 
walls’ polarity and chirality [270]. To correctly simulate this, 
it is necessary to perform micromagnetic simulations which 
consider the detailed magnetization of the elements. To date, 
however, the large computational cost has prevented large 
scale simulations, and only single vertices [273], or relatively 
small networks containing only a few vertices have been 
simulated [270]. However, similar to the unconnected spin 
ices shown in figure 28, a trend is seen that the newest GPUs 
allow one to simulate increasingly large structures, which 
will lead to larger-scale studies that can help to complement 
experiments.

3.8.  Novel micromagnetic approaches

As we mentioned before, micromagnetic simulations based 
on the LLG model extended with spin transfer torque 
and thermal stochastic field terms are predominantly 
used to investigate problems of modern nanomagnetism. 
Nevertheless, as the technology moves forward we can now 
access magnetization dynamics on even shorter (femtosec­
ond) timescales, where not only is the magnetization length 
not conserved anymore, but magnon–electron and magnon–
phonon interactions show their distinct characters. It has 
been demonstrated that these phenomena could be addressed 
with the Baryakhtar phenomenological model, and the corre­
sponding GPU-accelerated micromagnetic solver, the so-
called hotspin, was developed [66]. In fact, it has already 
been used to reproduce the experimentally observed optical 
excitation of spin waves [197].

Figure 28.  (a) Artificially colored simulated MFM image of an array of 64 by 64 vertices in thermal equilibrium. The red and blue regions 
are the different ground state configurations. The indicated region is enlarged in panels (b) and (c), and shows the magnetization state (b) of 
the background with a local excitation on top of it, while (c) depicts a close-up of the simulated MFM image.
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The model also predicts that the magnetic damping con­
stant is not scalar, but a tensor that follows the crystallo­
graphic symmetry. Micromagnetic simulations revealed that 
this should manifest itself in an anisotropic linewidth of mag­
nonic resonances, but the ellipticity of the magnetization pre­
cession should be carefully taken into account [274].

Finally, the Baryakhtar model postulates the existence 
of the so-called non-local magnetic damping, which has 
been later revealed experimentally as (a) a mode- and size-
dependent contribution to the magnonic linewidth in magnetic 
nano-elements [275] and (b) a reduction of the domain wall 
mobility [276]. A comprehensive micromagnetic study of this 
phenomena was then reported by Wang et al [277].

4.  Conclusions

In this review, we have shown how micromagnetic modeling 
has evolved in the last decade and took advantage of the capa­
bilities offered by the availability of GPU acceleration. The 
huge increase in computational power has enabled extensive 
studies in all fields of magnetism and enabled the simulation 
of more complex and realistic magnetic systems, and conse­
quently achieved better agreement with experimental studies. 
As the hardware capabilities of GPUs are still growing and 
the development of micromagnetic software is continuing, 
the importance of simulations in magnetism research will 
increase in the near future.
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