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Abstract: Yokeless and Segmented Armature (YASA) Axial Flux Permanent Magnet Synchronous Machines may have asymmet-
rical demagnetization defects in their two rotors. Condition monitoring therefore becomes more complicated than in conventional
single rotor machines. In order to develop a real-time condition monitoring algorithm for demagnetization faults in YASA machines
– which requires solving an inverse problem – a fast forward model is necessary. A frequency-based analytical model is used to
calculate the three phase terminal voltages based on the three phase current waveforms and the demagnetization defects, includ-
ing asymmetrical defects in the two rotors. In order to reduce the computational time of the forward model, the paper focuses on the
sensitivity of different voltage harmonics on several demagnetization faults. To this end, the Cramér-Rao lower bound technique is
used to analyse the harmonics sensitivity to the demagnetization faults. The goal of the sensitivity analysis is to select an appro-
priate set of harmonics that gives maximal information about the defects. It becomes much faster and useful for real-time condition
monitoring. The results of the analysis show that the subharmonics around and including the fundamental are the most sensitive
harmonics to the demagnetization defects. The analytical model is validated with experimental data and finite element simulations.

1 Introduction

Axial flux permanent magnet synchronous machines (AFPMSMs)
of the yokeless and segmented armature type (YASA) have been
extensively used in different applications thanks to their excellent
performances [1][2][3]. Particularly, AFPMSMs are well dedicated
for applications that acquire high power density, such as sustainable
energy applications. In practice, these types of machines may suffer
from different faults, such as rotor eccentricity and permanent mag-
net (PM) demagnetization, which decrease their reliability [4][5]. In
order to prevent the defect from progressing and creating more dam-
age in the machine, online condition monitoring systems are highly
needed to detect the faults in early stages.

The demagnetization defects may occur due to an excessive tem-
perature rise in the rotor of the machine, or due to high load currents
or short circuit currents in the stator. When magnets are exposed
to high temperatures, their magnetization may be lost partially or
completely [6][7]. This problem can be mitigated by using magnets
of a higher temperature class, but these magnets are more expen-
sive and have a lower remanence. A better solution is to detect the
demagnetization via a real-time monitoring system.

Demagnetization faults can be detected on-line by several sen-
sor and/or sensorless techniques. In [8] and [9], an overview of these
techniques is given. Four types of detection techniques are identified.
The first type consists of current-based indexes. Here the current
waveforms are analysed in either the time or the frequency domain
[10][11][12][13]. Some techniques require machine standstill while
others require steady-state operation. If the machine has parallel
branches in the stator phase windings, the current components for
the separate branches can be examined as well. The second type of
indexes are the voltage-based indexes, where either the instantaneous
back-EMF [14] or the fundamental component of the zero-sequence
voltage component is examined [15]. Although the proposed current

and voltage indexes are fast to calculate, they have some disadvan-
tages too. They rely on a priori knowledge of the current or voltage
waveforms. This knowledge is usually based on time-consuming
numerical models. This limits the flexibility toward a variation of
the technique in parameters or topology. Furthermore, standstill and
steady-state operations are requirements which cannot be met in
every situation. In case of the zero-sequence voltage components
techniques, a fourth leg in the converter and an additional current
sensor are required, which increases the cost. The third type are the
torque-based indexes. Demagnetization increases the torque ripple,
especially the amplitude of the sideband components (ASBCs) of the
torque. These side bands can be measured with a torque meter and
used for detection [16]. An alternative is to perform a Time Delay
Embedding (TDE) analysis of the torque time signals and to analyse
the resulting 2-D representation [17]. Another possibility is to either
estimate [18] or measure [19] the torque constant of the machine.
Finally, the fourth type are the magnetic flux-based indexes. Either
the magnetic flux is measured with a Gauss meter or a flux probe
[20][21] or it is analysed using an analytical model [22]. Both torque
measurements and magnetic flux measurements introduce an extra
cost of the sensors.

A YASA AFPMSM has two rotors, which complicates the mod-
elling and the detection of demagnetization problems in comparison
to machines with one rotor. Indeed, in this dual-rotor machine, asym-
metric defects can occur, which means that demagnetization can be
different for every rotor. This makes condition monitoring different
from other work in literature for machines with one rotor.

For this machine, an inverse problem (IP) based methodology was
presented to detect demagnetization faults [22]. This IP interprets
the measured voltage waveforms into a frequency-based analytical
model that takes the PM demagnetization into consideration. This
analytical model solves Maxwell’s equations for a predefined num-
ber of time and space harmonics. Modelling few harmonic orders
leads to inaccurate representations of the machine electromagnetic
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Fig. 1: (a) The exploded view of the studied AFPMSM. (b) Ana-
lytical model for solving of no-load magnetic field of AFPMSM
showing the different regions. In the model, the stator is represented
as a solid isotropic cylinder with an axial length ε, which is chosen
in such a way that the tangential reluctance of the model equals the
reluctance of the real stator with slots. (c) Shows an example of a
magnetization pattern with corresponding magnetization factors for
each magnet of the right rotor with p = 8.

behaviour, and consequently, inaccurate identification results. On the
contrary, modelling many harmonic orders dramatically increases
the computational time. Hence, there is a need to identify which time
and space harmonic orders are the most useful to solve the inverse
problem fast and accurately.

In this paper, we aim at analysing and determining the optimal set
of time harmonics that needs to be simulated for a better detection
of PM demagnetization faults in the AFPMSM. First, the frequency-
based analytical model is outlined in section 2. Second, section 3
identifies the set of time harmonics that is most sensitive to demag-
netization faults. The inverse problem is formulated in section 3.1.
Section 3.2 presents a theoretical framework about the expected time
harmonics that can appear in healthy and faulty machines and section
3.3 applies this in a practical case study. The Cramér-Rao lower
bound (CRLB) technique, which is utilized recently in electromag-
netic applications [23], is implemented to analyse the sensitivity of
the time harmonics to a defect in section 4.1 of which the results are
given in sections 4.2, 4.3 and 4.4. Finally, the conclusion is drawn in
section 5.

2 A frequency-based analytical model

2.1 Analytical five-region model of the AFPMSM

This model is developed to investigate the demagnetization defects
in YASA type AFPMSMs. The topology of these machines is
shown in Fig. 1(a). Using the same analytical subdomain modelling
approach as the three-region model of [22], a five-region model
of the machine is developed. Compared to the three-region model

of [22], the five-region model describes in a more accurate way
asymmetrical demagnetization faults in both rotors. Asymmetrical
demagnetization occurs when the magnets of both rotors are not
demagnetized equally. In the healthy state and with symmetrical
defects, the flux density vector in the stator is purely in axial direc-
tion. In contrast to this, asymmetrical defects will require closing
paths tangential through the stator. In the three-region model, the
stator is not modelled, and the tangential closing path in the sta-
tor cannot be modelled. The five-region model however includes a
simplified stator as region III. This allows for flux paths to close
through the stator, resulting in more accurate flux density fields in
the air gaps, especially in case of asymmetrical defects. Note that
the analytical subdomain model can also be combined with a Mag-
netic Equivalent Circuit such as in [24], making it more accurate but
also slower.

Fig. 1(b) shows the five-region model for simulating the no-load
magnetic field of the AFPMSM. A calculation plane is created from
a cylindrical cross section with a constant radius. For this plane, a
Cartesian coordinate system is chosen where x and y denote the
circumferential and the axial direction respectively. The mechani-
cal circumference angle is ϕ = π

Th
x, with Th being the half of the

total spatial period, which is the circumference of the machine. In
this plane, the scalar magnetic potential φ is solved:

∂2φ

∂x2
+
∂2φ

∂y2
= 0 (1)

The model consists of five regions. Region I and V represent the
area where the PMs are located. Region II and IV are the right and
the left air gap, respectively, and Region III represents the stator
domain. The stator representation is a solid isotropic cylinder. The
thickness 2ε of the slotless Region III is chosen in such a way that
the tangential reluctance of the model equals the reluctance of the
real stator with slots. The value of ε is chosen based on a reluc-
tance model. This homogenized Region III hence accounts for the
anisotropy and the presence of slots in the real stator.

The flux density field in the air gaps is solved for a slotless
machine with infinite magnetic permeability for the rotor yoke
material and adjusted for the slot effect by a permeance function
[25].

The magnetization pattern of the PMs is a square wave function
with the remanence as peak value for every magnet. By multiply-
ing the healthy remanence with an individual magnetization factor
Ki for each magnet i, i = 1...4p ranging from 0 (demagnetized)
to 1 (healthy state), the demagnetization defect is implemented, as
shown in Fig. 1(c). p is the number of pole pairs. The reduced
remanence of the permanent magnets is considered to be uniformly
distributed in the magnet volume. Although partial demagnetization
usually occurs non-uniformly, in the scope of condition monitor-
ing, it is more important to evaluate the total flux reduction than
to predict exactly which parts of the magnets are demagnetised. The
magnetization waves can be described as a Fourier series:{

M1(x, t) =
∑+∞
n=−∞M1,ne

j(nπxTh
−ωnt)

M2(x, t) =
∑+∞
n=−∞M2,ne

j(nπxTh
−ωnt) (2)

with ω the pulsation, M1,−n =M∗1,n and M2,−n =M∗2,n. Here,
M1 and M2 represent the magnetization of the rotor in region I and
V respectively. For the magnetic field of the PMs, the time harmonics
are the same as the space harmonics, thus the harmonic number for
both space and time is n. The scalar potentials in the five regions are:

I : φ1 =
∑+∞
n=−∞

(
C1e

nπy
Th + C2e

−nπyTh
)
e
jnπx
Th

II : φ2 =
∑+∞
n=−∞

(
C3e

nπy
Th + C4e

−nπyTh
)
e
jnπx
Th

III : φ3 =
∑+∞
n=−∞

(
C5e

nπy
Th + C6e

−nπyTh
)
e
jnπx
Th

IV : φ4 =
∑+∞
n=−∞

(
C7e

nπy
Th + C8e

−nπyTh
)
e
jnπx
Th

V : φ5 =
∑+∞
n=−∞

(
C9e

nπy
Th + C10e

−nπyTh
)
e
jnπx
Th .

(3)
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The magnetic field can be written as:

Hx = −∂φ/∂x, Hy = −∂φ/∂y. (4)

The boundary conditions for the problem are:{
HxI(x, y, t)|[y=L] = 0

HxV(x, y, t)|[y=−L] = 0{
ByI(x, y, t)|[y=δ] = ByII(x, y, t)|[y=δ]
HxI(x, y, t)|[y=δ] = HxII(x, y, t)|[y=δ]{
ByII(x, y, t)|[y=ε] = ByIII(x, y, t)|[y=ε]
HxII(x, y, t)|[y=ε] = HxIII(x, y, t)|[y=ε]{
ByIII(x, y, t)|[y=−ε] = ByIV (x, y, t)|[y=−ε]
HxIII(x, y, t)|[y=−ε] = HxIV (x, y, t)|[y=−ε]{
ByIV(x, y, t)|[y=−δ] = ByV (x, y, t)|[y=−δ]
HxIV(x, y, t)|[y=−δ] = HxV (x, y, t)|[y=−δ]

(5)

By solving this system, i.e. (1) - (5), the constants C1 to C10 can
be found. From this, the flux densities in the air gap regions, i.e.
regions II and V, are derived:

ByII(x, y, t) =

+∞∑
n=−∞

−
µ0nπ

Th

(
C3e

nπy
Th − C4e

−nπy
Th

)
e
j(nπx
Th
−nωt)

BxII(x, y, t) =

+∞∑
n=−∞

−
µ0jnπ

Th

(
C3e

nπy
Th + C4e

−nπy
Th

)
e
j(nπx
Th
−nωt)

ByIV(x, y, t) =

+∞∑
n=−∞

−
µ0nπ

Th

(
C7e

nπy
Th − C8e

−nπy
Th

)
e
j(nπx
Th
−nωt)

BxIV(x, y, t) =

+∞∑
n=−∞

−
µ0jnπ

Th

(
C7e

nπy
Th + C8e

−nπy
Th

)
e
j(nπx
Th
−nωt)

(6)

The solutions from these equations together with the permeance
function result in the air gap fields at no-load. The armature reac-
tion is calculated based on [26]. The injected three phase currents
result in the current sheet KA(ϕ, t) (7). This current sheet is used to
solve the flux densityBAR for the armature reaction (8). The slotting
effect is again accounted for by the permeance function in [25].

KA(ϕ, t) =

+∞∑
n=−∞

+∞∑
k=−∞

KA,k,ne
j(kϕ+nωt) (7)

{
BAR,y(ϕ, y, t) =

∑+∞
n=−∞

∑+∞
k=−∞BAR,y,k,ne

j(kϕ+nωt)

BAR,ϕ(ϕ, y, t) =
∑+∞
n=−∞

∑+∞
k=−∞BAR,ϕ,k,ne

j(kϕ+nωt)
BAR,y,k,n = jµ0

cosh ( kr y1)
sinh ( kr y2)

cosh
(
k
r (y2 − y)

)
KA,k,n

BAR,ϕ,k,n = µ0
cosh ( kr y1)
sinh ( kr y2)

sinh
(
k
r (y2 − y)

)
KA,k,n

(8)

Here, k is the space harmonics number and n is the time harmonic
number of the current sheet and the armature reaction current flux
density field. The PM and armature reaction flux densities are super-
imposed to find the flux linkage in the stator coils, which leads to the
phase back-EMFs. Together with the slot leakage inductances Lslot,
the end winding inductances Lend and the armature resistances Rs,
the three phase terminal voltages are obtained:

Va,n = Ea,n +RsIa,n + jnωm(Lend + Lslot)Ia,n (9)

where the inductances are computed based on [27]. As the scalar
potential solution can be computed for each harmonic separately, it
is possible to calculate only the frequencies of interest. This will
reduce CPU times as shown in section 4.2.

Table 1 Characteristics and parameters of the 3 phase, 8 pole pair,
15 stator slot AFPMSM.

Parameter Value
Electrical output power (W) 4000
Rated speed (rpm) 2500
Rated torque (Nm) 15
Pole number 16
Slot/tooth number 15
Outer diameter (mm) 148
Inner diameter (mm) 100
Axial length (mm) 88
Magnet type NdFeB SH40
Magnets remanence (T) 1.26
Magnet thickness (mm) 7.0
Magnet relative permeability 1.05
Rotor back-iron thickness (mm) 8.0
Air gap width (mm) 1.0
Slot width (mm) 12.0
Number of windings 72
Rated current (A) 7.0
Stator laminations 0.30 mm Grain oriented Si-steel
Rotor back-iron mat. Construction steel

2.2 Model validation

The five-region analytical model is validated for a YASA AFPMSM
with 3 phases, 8 pole pairs, and 15 stator slots. The geometric
and electromagnetic properties of the considered machine are fully
described in Table 1 and [28].

Fig. 2 shows the axial component of the air gap flux density in the
right air gap for a healthy machine (a), and for the same machine
with a randomly chosen demagnetization pattern in the magnets
(b). Also in case of demagnetization defects, the figure shows that
the analytical and FEM data agree with each other. The five region
model can therefore be considered as sufficiently accurate.

For the same machine, an experimental validation is done as well.
Fig. 2 also shows that the terminal voltage waveforms at no-load
obtained by the analytical model are confirmed by experiments. The
figure shows a comparison for the healthy machine (c) and for the
machine with one fully demagnetized PM (d).

Finally, Fig. 3 shows the harmonic content of the terminal voltage,
comparing the analytical model, the FEM model and experimen-
tal results. Also here, a good correspondence is observed for the
machine with one fully demagnetized PM.

3 Harmonic analysis

In order to build a fast and accurate model of an AFPMSM in both
healthy and faulty conditions, it is essential to determine the set
of harmonics that is most sensitive to demagnetization faults. By
only evaluating this limited set in the analytical model, the model
becomes much faster and is more useful for the inverse problem of
condition monitoring. Therefore, in the following paragraphs, first
the inverse problem is formulated briefly. Secondly the theoretical
framework is presented about expected harmonics in a healthy and
faulty machine. Then, via a case study, a practical investigation is
done. Finally, a sensitivity analysis of the harmonics in the machine
is presented, which is the main goal of this paper.

3.1 Inverse problem formulation

As was illustrated in [22], the magnetization coefficients K of
PMs can be identified by solving an IP by interpreting the three
phase voltages of the analytical model. Generally speaking, the IP
minimizes iteratively the following objective function:

OF = ‖Vabc,m(H)− Vabc,s(K,H)‖2 (10)

where Vabc,m and Vabc,s are respectively the measured and the
corresponding simulated three phase terminal voltages. The simu-
lated three phase terminal voltages are calculated with the analytical
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Fig. 2: Axial component of the air gap flux density in the right
air gap for healthy state (a) and for an example demagnetized state
(b), calculated by both the analytical and FEM model at full-load.
No-load terminal voltage for a speed of 746 rpm in healthy (c) and
demagnetized (d) conditions, calculated by the analytical model and
compared to experimental data.

0 5 10 15 20 25 30
0

20

40

60

80

Harmonic Number

V
(V

)

 

 

Anal.
FEM
Exp.

Fig. 3: Harmonic content of the terminal voltage obtained by the
analytical model, the FEM and experiments.

model. However, the aim here is not to solve the IP, but to select the
optimal set of harmonics H that speeds up the identification process
with keeping the required accuracy.

3.2 Theoretical framework

The following analysis is general for any kind of AFPMSMs. We
first consider the no-load field of a healthy machine. The space and
time harmonics that can occur in such a machine are well known:
see e.g. [29]. As mentioned in section 2, because the PM field does
not change in time, but only rotates, the occurring space harmonics
are the same as the occurring time harmonics and are both denoted
by n.

In [30], it is stated that in a defected state, the possible harmonics
are n ∈ Z 6=0.

The underlying principle of which harmonics are sensitive to
defects is best shown by considering on the one hand the spec-
trum of the healthy magnetization pattern Mhealthy(x), and on the
other hand the spectrum of the “defects waveform” Asq(x), con-
structed based on the demagnetization of the magnets. The waveform

Table 2 Winding factors kwn of 3 phase machines with double layer concen-
trated windings, and (a) 5 pole pairs, 12 stator slots, (b) 8 pole pairs, 15 stator
slots.

n 1 2 3 4 5 6 7 8 9
(a) kwn 0.07 0 0.5 0 0.93 0 0.93 0 0.5
(b) kwn 0.02 0.04 0.15 0.11 0.17 0.62 0.95 0.95 0.62

Asq(x) is equal to one for healthy magnets and smaller than one
for partly demagnetized magnets. The product of both waveforms
Mhealthy(x) and Asq(x) is the magnetization pattern in case of
defects. The above approach becomes more clear via the exam-
ple in Fig. 4, showing the waveforms in case of a single magnet
defect. Fig. 4(a) and (d) show the waveform and the spectrum of the
healthy magnetization pattern of the considered YASA machine with
8 pole pairs. The non-zero frequency components have orders given
by n/p = 2a+ 1, a ∈ Z, but the figure shows only one of these
components. Fig. 4(b) and (e) give the waveform and spectrum of
the “defects waveform” Asq(x), which has in this example always
value 1 except for the single demagnetized magnet. The resulting
demagnetized waveform is the amplitude modulation of the healthy
magnetization pattern and the “defects waveform”. The waveform
and spectrum are given in Fig. 4(c) and (f).

The harmonic spectrum for a sinusoidal magnetization is giving
in [30]. This results in a frequency translation over n = p and ampli-
tude scaling with Mhealthy,p of the spectrum of Asq(x) as shown
in Fig. 4(f).

In general, if Mhealthy,n andAsq,m are the nth and mth har-
monic of the spectrum of the healthy magnetization pattern and
the defect waveform respectively, the defected magnetization pattern
can be written as:

Mdemag(x) =Mhealthy(x)Asq(x)

=

+∞∑
n=−∞

Mhealthy,ne
jnπx
Th

+∞∑
m=−∞

Asq,me
jmπx
Th

=

+∞∑
n=−∞

+∞∑
m=−∞

Mhealthy,nAsq,me
j(n+m)πx

Th

=

+∞∑
n′=−∞

(
+∞∑

n=−∞
Mhealthy,nAsq,n′−n

)
e
jn′πx
Th

=

+∞∑
n′=−∞

Mdemag,n′e
jn′πx
Th

(11)

with n′ = n+m, and Mdemag,n′ as the harmonic components of
the demagnetized magnetization pattern. This means that for the con-
sidered defect, the multiples of p and it sidebands will be the most
sensitive harmonics to this demagnetization defect.

For other demagnetization defects (possibly with more than one
demagnetization defect), the amplitude modulation leads to a similar
frequency spectrum as the spectrum of the “defect waveform”.

Concerning the back-EMF, the orders that occur in the back-EMF
spectrum may differ from the harmonic orders in the flux density.
Combining the teeth back-EMFs to phase back-EMFs will modify
the harmonic spectrum: some harmonics are amplified and others are
(partially) cancelled out. An example of this is seen in Fig. 5 where
(a) shows one tooth back-EMF and (b) shows one phase back-EMF
of a 3 phase, 5 pole pair, 12 stator slot machine.

It is straightforward to determine which harmonics are present
in the spectrum of the back-EMF of a given machine, by using the
winding factor [27]. In the example machine with 5 pole pairs and
12 stator slots, Table 2 shows the winding factors.

Apart from the no-load field, also the armature reaction field
has to be considered. This field can only invoke time harmonics in
the stator coils that are in the injected current, therefore only the
frequencies in the current need to be calculated for the armature
reaction.
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Fig. 4: (a) The waveform of the healthy magnetization pattern Mhealthy(x), (b) the ”defects waveform” Asq(x) and (c) the magnetization
pattern demagnetized by the ”defects waveform” Asq(x). (d),(e) and (f) show the harmonic spectrum of (a),(b) and (c) respectively. For (d)
only the p’th harmonic is considered.
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Fig. 5: The back-EMF of (a) one tooth and (b) one phase. The har-
monic spectrum of the terminal voltage at load of the (c) healthy, and
(d) faulty state. Both for a 3 phase, 5 pole pair, 12 stator slot machine
simulated with the analytical model.

The total set of time harmonics in the terminal voltages is the
union of the time harmonics invoked by the permanent magnets and
those of the armature reaction.

3.3 Case study

By means of example, the harmonic content of the terminal voltages
of a specific machine is evaluated. Here, the same 3 phase, 8 pole

pair, 15 stator slot machine is used. A sinusoidal current is injected
at the fundamental frequency of the machine and a defect of one
completely demagnetized magnet in the right rotor is applied. The
fundamental frequency of the machine has the harmonic number 8.

From [30] the harmonics 8, 24, 40,... are expected in a healthy
machine because of the PM field. The defect will add the side
bands of these harmonics. The stator current only has the 8’th time
harmonic and consequently does not introduce additional harmonics.

Fig. 5 shows the harmonic content of the terminal voltages in
healthy (c) and defected (d) state as described. It can be seen that
the appearing harmonics satisfy the conditions presented in section
3.2.

Next section 4 investigates which harmonics are the most sen-
sitive to a demagnetization defect by implementing the CRLB
technique.

4 Sensitivity Analysis

4.1 Cramér-Rao lower bound

The CRLB is a well-known technique to estimate the sensitivity of
an output to a certain input parameter. In this paper, the outputs
are the terminal voltages Vabc and the input parameter is the mag-
netization array K. The likelihood that the given terminal voltages
are the result of a certain K is presented by the likelihood function
L(K|Vabc), which is assumed to have a normal distribution.

The Fisher Information Matrix (FIM) is a indicator of how much
information the output Vabc contains about the defect K, in other
words: how sensitive Vabc is to K:

FIM = E

{[
∂

∂K
ln(L(K|Vabc))

] [
∂

∂K
ln(L(K|Vabc))

]T}
(12)

Where E{x} is ”the expected value or mean of x”. Following
[23][31], this becomes:
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Table 3 The sensitivity and The Cramér-Rao lower bound per time
harmonic for a defect consisting of one 30% demagnetized magnet
in the right rotor of a 3 phase, 8 pole pair and 15 stator slot machine.
Ranked from most to least sensitive.

n 7 8 6 9 5 3 23
FIM (103) 86.8 64.2 43.5 21.6 3.1 2.7 2.1
σK(10

−3) 3.4 3.9 4.8 6.8 18.0 19.1 21.6

FIM =

(
∂Vabc(K,H)

∂K

)
S−1

(
∂Vabc(K,H)

∂K

)T

(13)

with K and S being the assumed value of the magnetization coeffi-
cients and the variance of the likelihood function, respectively. S is
thus an indication of the uncertainty of the model.

Based on the inequality of the Cramér-Rao lower bound theory,
the lower bound for the uncertainty of the unknown parameters σK
is given by:

σ2K ≥| FIM |−1 (14)

σK is basically a measure for the accuracy of the model. For more
information about the CRLB technique, see [32]. Because the analyt-
ical model in section 2 can be solved for each frequency separately,
both (13) and (14) can be found for every harmonic component.
Based on this, the harmonics can be sorted from the most to the least
sensitive harmonic.

It is worthy mentioning that the CRLB is a qualitative, not a
quantitative, technique. This means that only the ratios of the CRLB-
values are indicative. The results obtained from the CRLB give an
indication about the accuracy of the IP. Moreover, the calculation of
(13) and (14) are not time demanding since they are based on solving
a non-iterative forward problem.

4.2 A low number of well selected harmonics give good
accuracy for the IP

In order to solve the inverse problem, the number of equations from
the forward model needs to be greater than or equal to the number of
unknowns. The outputs of the forward model are the terminal volt-
ages, which consist of m phases and n harmonics. Every harmonic
per phase is a complex number consisting of two parts, i.e. the real
and the imaginary part. Each part leads to an equation for the IP. This
results in 2mn equations. The IP solver attempts in finding the mag-
netization factors K of the magnets, which are thus the unknowns.
When all magnets are considered, this leads to 4p magnets. The
condition becomes:

2mn ≥ 4p

n ≥ 4p

2m

n ≥ nmin = d 4p
2m
e

(15)

where nmin is the minimum number of time harmonics required to
start solving the inverse problem.

When the previous condition is met, the error in finding the
defect, which is |K− K̂| with K̂ as the actual defect, reduces when
using enough sensitive harmonics. The forward model therefore
should compute a minimal number nacc of harmonics for accurate
results, for which nacc ≥ nmin. The selection of these harmonics is
crucial in order to have the highest possible information about the
defect. When selecting nacc time harmonics for the forward model,
the selection can be made (a) by taking the first nacc harmonics:
0→ nacc − 1 or (b) by selecting the nacc most sensitive harmonics.

The sensitivity of a harmonic to a demagnetization defect can
be found by comparing the FIM values. Sensitive harmonics have
higher FIM values. It is interesting to investigate if the inverse prob-
lem converges faster if the nacc most sensitive harmonics are chosen,
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Fig. 6: The accuracy of the IP (using the analytical model) for the
first n time harmonics and for n well selected time harmonics for a
machine with 8 pole pairs, 15 stator slots and 3 phases.

than if the first nacc harmonics are chosen. This is first studied for
the considered example machine and a given defect. Afterwards, in
the following sections, the study is generalized for other defects and
other machine topologies.

Table 3 shows the most sensitive harmonics for a defect consisting
of one 30% demagnetized magnet in the right rotor of the consid-
ered 3 phase, 8 pole pair and 15 stator slot machine. Because this
is a qualitative technique, other defects will result in different FIM
values, but a similar sequence of sensitive harmonics.

Fig. 6 compares the accuracy of the IP for both possibilities in this
machine. Only the magnets of one rotor are considered in this exam-
ple (2p magnets), so the condition in (15) becomes n ≥ nmin =
d 2p
2me. This means the IP solver can start the calculations only when
n ≥ nmin = 3.

The IP was able to solve the problem accurately for nacc = 9 if
the first nacc harmonics are chosen and for nacc = 3 if the nacc
most sensitive harmonics are chosen. This means the IP needs less
harmonics (smaller nacc) when using the most sensitive harmonics,
which decreases the calculation time, especially when compared to a
non-optimized harmonic set (using i.e. high number of harmonics).

4.3 A set of harmonics can be found to be sensitive for
almost all demagnetization defects

Fig. 7 shows the normalized FIM for 5000 uniformly distributed ran-
dom defects with resp. 1, 3, 7 and 16 demagnetized magnets for the
8 pole pair, 15 stator slot, 3 phase machine. From these plots, it can
be seen that a sequence from high to low sensitivity can be found for
every defect specifically.

A general conclusion can be formulated: The multiples of the har-
monic p and their sidebands are the most sensitive. The sensitivity
tends to decrease with higher multiples of p and with increasing
distance from the multiples of p.

The magnetization waveform with more demagnetized magnets
results in lower sidebands in their spectrum and thus in the FIM spec-
trum as well. This explains that the sensitivity of the p’th harmonic
is more distinct for higher numbers of demagnetized magnets.

4.4 Different topologies: number of poles, slots and phases

To generalize this conclusion, 16 topologies are compared. 3, 5 and 7
phase machines are considered, with the number of pole pairs rang-
ing from 2 to 9 and the number of stator slots ranging from 10 to 56.
Both fractional-slot as integral-slot topologies are investigated. Fig.
8 shows the normalized FIM for 5000 uniformly distributed random
defects of 3 demagnetized magnets for four different topologies.

This figure confirms that certain harmonics are filtered out by
combining the tooth back-EMFs to phase back-EMFs by means of
the star of slot technique, explained in section 3.2. For example, in
Fig. 8(b) all the odd harmonics have a value of zero.
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Fig. 7: The normalized FIM of 5000 uniformly distributed random
defects of resp. 1, 3, 7 and 16 demagnetized magnets for a machine
with 8 pole pairs, 15 stator slots and 3 phases simulated with the ana-
lytical model. The harmonic numbers are shown on the x-axis. The
box shows the 25 and 75 percentiles while the dashed lines shows
the lower and upper adjacent value. The red line is the median. The
outliers are not plotted to improve the figures clarity.

Taking this into account, the same conclusion can be drawn for
different topologies: the multiples of the harmonic p and their side-
bands are the most sensitive, with the sensitivity decreasing with
higher multiples of p and with increasing distance from the multiples
of p.

4.5 Non-uniform demagnetization defects

The forward model assumes uniform demagnetization in magnets,
but in reality, the demagnetization in magnets may be partial and
non-uniform. If a non-uniform demagnetized case is solved with
the IP model using the sensitive harmonic array for uniform situ-
ations, the decreased flux is detected and the correct region where
the demagnetization occurs is found. This was proven by testing the
IP for many cases with non-uniform demagnetization. The proposed
algorithm is useful for condition monitoring also for real situations
with non-uniform demagnetization. However, in the non-uniform
cases, part of the demagnetization can be assigned to the neighbor-
ing magnets. It should be noted that in more extreme cases where the
magnetization waveform is substantially different from the uniform
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Fig. 8: The normalized FIM of 5000 uniformly distributed random
defects of 3 demagnetized magnets for four different topologies of
double rotor axial flux machines simulated with the analytical model.
The harmonic numbers are shown on the x-axis. The box shows the
25 and 75 percentiles while the dashed lines shows the lower and
upper adjacent value. The red line is the median. The outliers are not
plotted to improve the figures clarity.

situation (especially with many demagnetized magnets that all have
totally different magnetization patterns), the harmonic subset will be
too different. In these cases, the proposed technique cannot be used.

5 Conclusion

The aim of this paper is to determine the optimal set of time har-
monics that needs to be simulated for a fast and accurate detection
of PM demagnetization faults in the AFPMSM. An analytical model
of an AFPMSM is built that allows the calculation of every fre-
quency component independently. The model is validated with FEM
and experimental data. The theoretical framework and practical case
study conclude that the multiples of the harmonic p and their side-
bands are the most sensitive, with the sensitivity decreasing with
higher multiples of p and with increasing distance from the multi-
ples of p. The sensitivity analysis of the Cramér-Rao lower bound
technique confirms this conclusion, even for different topologies. If
the first n harmonics are used, given the high sensitivity of harmonic
p, it seems logic to select the harmonics up to at least order p. If the
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most sensitive harmonics are used, the minimum amount of harmon-
ics for the solver to start the calculations is in most cases also enough
to find an accurate solution: nacc = nmin.
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