
Limited memory switched Broyden method for faster image
deblurring

Rob Haelterman
Royal Military Academy, Math. Dept.

Renaissancelaan 30, 1000 Brussels, Belgium
robby.haelterman@rma.ac.be

Ichraf Lahouli
VRIT Research Group, Miltary Academy of Tunisia,

Nabeul 8000, Tunisia

Michal Shimoni
Royal Military Academy, CISS Dept.

Renaissancelaan 30, 1000 Brussels, Belgium

Joris Degroote
Ghent University, Dept. Flow, Heat & Combustion Mechanics

Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

Abstract

Iterative methods have gained a solid reputation for
efficient image restoration, for both spatially invariant
and spatially variant blurs. This paper shows how a
“strap-on” quasi-Newton Broyden method can further
accelerate the convergence of these iterative methods
with little extra overhead.

1 Introduction

Often, in imaging applications, we are confronted
with blurred and noisy images. A simplified linear,
spatially invariant model of the discrete (i.e. digital)
blurring process of an m× n pixel image is given by

g = Kf + n (1)

where f ∈ Rmn is the original image, g ∈ Rmn is
the blurred image, n ∈ Rmn is additive noise and
K ∈ Rmn×mn represents the point spread function
(PSF) responsible for the actual blurring.
Image restoration, or deblurring, is the process of find-
ing f based on (approximate) knowledge of K, n and g.

The following characteristics make deblurring chal-
lenging:

• The problem has a very high dimensionality.

• K is, in general, a very ill-conditioned matrix with
a cluster of very small singular values.

Due to these constraints, iterative image restoration
algorithms have become a method of choice. The per-
formance of an algorithm can be measured by CPU-
time needed per iteration and the number of iterations
required for a given accuracy. Convergence can be ac-
celerated using preconditioning. The choice of precon-
ditioner is very sensitive, however, and can easily lead
to erratic convergence or even divergence. More details
about established deblurring techniques can be found
in [1].

In this paper we present a robust acceleration tech-
nique that can be “strapped on” existing iterative algo-
rithms, without the need for delicate tuning of precon-
ditioning parameters. Besides robustness, the methods
offer a typical gain of 90% in CPU time compared to a
wide range of methods that are known from literature.

2 Picard iteration

The basic Picard iteration, which is also called
Richardson or Landweber iteration [6, 9, 10, 13] in the
context of image restoration is given by

Picard iteration

1. Startup:
1.1. Take initial value f1.
1.2. Set s = 1.

2. Loop until ‖g −Kfs‖2 ≤ ε:
2.1. fs+1 = fs + τKT (g −Kfs).
2.2. Set s = s+ 1.

A typical choice for τ is 1
σ2
max

, where σmax is the

largest singular value of K, estimated by σmax =√
‖K‖1‖K‖∞ [8]. Note that this algorithm does not

take n into account. If (an estimate) of n is known it
can be catered for by replacing g with g − n.

3 Acceleration by quasi-Newton methods

The Picard iteration in §2 can be seen as a fixed-
point process, where the creation of fs+1 based on fs
is written as fs+1 = H(fs). Then the problem of find-
ing f can be transformed into a root finding problem
H(f)−f = P (f) = 0, to which a quasi-Newton method
can be applied.

Quasi-Newton accelerated Picard iteration

1. Startup:
1.1. Take initial value f1.
1.2. Set s = 1.

2. Loop until ‖g −Kfs‖2 ≤ ε:
2.1. P (fs) = τKT (g −Kfs).
2.2. Compute an approximate Jacobian P̂ ′s of P

(see below.)

2.3. fs+1 = fs − (P̂ ′s)
−1P (fs)

2.4. Set s = s+ 1.

The difference between the various quasi-Newton
methods that we consider here lies in the choice of P̂ ′s.

We define δfs = fs+1 − fs and δPs = P (fs+1) −
P (fs).

1. Broyden’s first (or “good”) method (BG) [2, 3, 4,
5, 7], using the Sherman-Morrison theorem [12]:

(P̂ ′s+1)−1 =

(P̂ ′s)
−1 +

(δfs − (P̂ ′s)
−1δPs)δf

T
s (P̂ ′s)

−1

δfTs (P̂ ′s)
−1δPs

. (2)

2. Broyden’s second (or “bad”) method (BB) [2, 5,
7]:

(P̂ ′s+1)−1 =

(P̂ ′s)
−1 +

(δfs − (P̂ ′s)
−1δPs)δP

T
s

δPTs δPs
. (3)

3. Following an idea suggested in [11] we create a
switched version of BG/BB (called “BS”) in the
following manner. If

|δfTs δfs−1|
|δfTs (P̂ ′s)

−1δPs|
<
|δPTs δPs−1|
δPTs δPs

(4)

then the update of BG is used, otherwise the up-
date of BB is used.

P̂ ′1 is typically set to be equal to −I, which means
that the first iteration equals a Picard iteration.

4 Matrix-free and limited memory imple-
mentation of Broyden’s algorithms

As the size of the vectors in the test-cases are typ-
ically very large, a matrix-free implementation of the
algorithms is necessary. For Broyden’s good method
this can be written as

(P̂ ′s+1)−1 = (P̂ ′1)−1 +

s∑
i=1

δfi − (P̂ ′i)
−1δPi

δfTi (P̂ ′i)
−1δPi︸ ︷︷ ︸

wi

δfTi (P̂ ′i)
−1︸ ︷︷ ︸

vTi

,

while for Broyden’s bad method we get

(P̂ ′s+1)−1 = (P̂ ′1)−1 +

s∑
i=1

(δfi − (P̂ ′i)
−1δPi)

δPTi δPi︸ ︷︷ ︸
wi

δPTi︸︷︷︸
vTi

In summary, both methods can be written as

(P̂ ′s+1)−1 = (P̂ ′1)−1 +

s∑
i=1

wiv
T
i

where wi = δfi − (P̂ ′i)
−1δPi and

BG BB

vi
δfTi (P̂ ′i)

−1

δfTi (P̂ ′i)
−1δPi

δPTi
δPTi δPi

Obviously, when a lot of iterations are required, the
Broyden methods become both memory heavy and
computationally expensive. We thus propose a lim-
ited memory version of the algorithms, which we will
call BG(σ), BB(σ) and BS(σ) and where the inverse
Jacobian is given by.

(P̂ ′s+1)−1 = (P̂ ′1)−1 +

s∑
i=max(1,s−σ)

wiv
T
i

5 Experiments

The following unconstrained test-cases from [1] are
used:

• three examples of spatially invariant
Gaussian blurs (GaussianBlur440.mat,
GaussianBlur420.mat, GaussianBlur422.mat),
which we will call G1, G2 and G3.

• three examples of blurring caused by atmo-
spheric turbulence (AtmosphericBlur10.mat
AtmosphericBlur30.mat,
AtmosphericBlur50.mat), which we will call
A1, A2 and A3.

These .mat-files contain information about the
blurring operator, as well as the images, although we
would like to point out that only the former has any
impact on the convergence speed of the algorithms.
As a convergence criterion ε = mn · 10−3 is used. As
the experiments will show, this is a rather stringent
convergence criterion, corresponding to a high quality
of the restored image.

We first compare the Picard iteration with BG, BB
and BS. For all six test-cases the same behavior was
noted:

• All methods had monotonous convergence, except
for Broyden’s good method.

• Convergence for Picard’s method was significantly
slower than for BB and BS. The performance of
the latter two methods was very similar over the
range of test-cases.

Figure 1. Convergence history for test-cases G1
(top) and A2 (bottom) using Picard, BG, BB and
BS.

Figure 2. Convergence history for test-cases G1
(top) and A2 (bottom) using BS and BS(10).

Looking at these results, we chose BS as the best
overall method. The convergence history for test-cases
G1 and A2 are given in figure 1. Results for G2 and
G3 are very similar to G1, while those for A1 and A3
are very similar to A2.

As these figures only show the results with respect
to the number of iterations, we also compared the CPU
time required for convergence. The gain in CPU time
(measured on a 3.3GHz Intel Core i3-2120 with 4GB
RAM) for BS, compared to Picard iteration, was in the
order of 90% for all testcases.
When we compare BS with BS(σ), we note that using
σ = 10 does not significantly change the number of
iterations that are required (figure 2), while the CPU
time is further reduced (with respect to BS) by 25%
for the test-cases with Gaussian blurring and 10% for
the test-cases with atmospheric blurring. As the latter
required fewer iterations for convergence, the difference
in gain is easily explained.

Figure 3. Convergence history for test-cases G1
(top) and G3 (bottom) using BS(10), SD, LSQR,
CGLS and HM.

Having selected the best-performing Broyden vari-
ant, we turn our attention to the more sophisticated
iterative methods described in [1], using the implemen-
tations therein. These are “Steepest Descent” (SD),
“LSQR”, “CGLS” and the “Hybrid Method” (HM).
See [1] for details.

The convergence history for test-cases G1 and G3
are given in figure 3; those for A1 and A2 are given in
figure 4. Results for G2 are very similar to G1, while
those for A3 are very similar to A1.

The best performing of these methods is SD. For the
test-cases with Gaussian blur it still required around
50% more CPU time than BS(10), while for the at-
mospheric blurring it required around 30% less. Con-
vergence of SD is erratic, however, while BS(10) has
monotone convergence.
The next best performing method, LSQR, does not
converge for all test-cases. For the G1 test-case, where
it actually converged, it required about ten times the
CPU time of BS(10). The performance of CGLS is
comparable to LSQR, while HM never converged to
the required tolerance.

6 Conclusions

We have shown how a switched variant of Broyden’s
quasi-Newton method, and in particular a matrix-free,
limited memory version of this algorithm, offers faster
convergence than the most common iterative methods
used for image deblurring, except for Steepest Descent
on some of the test-cases. We also show that it is
much more robust than the more sophisticated meth-
ods known from literature.
We would like to point out, that at this point, the
quasi-Newton method has not yet been computation-
ally optimized and that further gains are possible when
tweaked accordingly.

References

[1] S. Berisha, J. G. Nagy, Iterative Methods for Image
Restoration.

Figure 4. Convergence history for test-cases A1
(top) and A2 (bottom) using BS(10), SD, LSQR,
CGLS and HM.

http://www.mathcs.emory.edu/~nagy/RestoreTools/

IR.pdf

[2] C.G. Broyden, A class of methods for solving nonlinear
simultaneous equations. Math. Comp. 19, pp. 577–593
(1965)

[3] C.G. Broyden, Quasi-Newton methods and their ap-

plications to function minimization. Math. Comp. 21,
pp. 368–381 (1967)

[4] J.E. Dennis, J.J. Moré, Quasi-Newton methods: mo-
tivation and theory. SIAM Rev. 19, pp. 46–89 (1977)

[5] J.E. Dennis, R.B. Schnabel, Least Change Secant Up-
dates for quasi-Newton methods. SIAM Rev. 21, pp.
443–459 (1979)

[6] H. W. Engl, M. Hanke, and A. Neubauer. Regulariza-
tion of Inverse Problems. Kluwer Academic Publish-
ers, Dordrecht (2000).

[7] A. Friedlander, M.A. Gomes-Ruggiero, D.N. Kozake-
vich, J.M. Martinez, S.A. dos Santos, Solving nonlin-
ear systems of equations by means of quasi-Newton
methods with a nonmonotone strategy. Optim. Meth-
ods Softw. 8, pp. 25–51 (1997)

[8] G. H. Golub and C. Van Loan. Matrix Computations,
third edition. Johns Hopkins Press (1996).

[9] P. C. Hansen. Rank-deficient and discrete ill-posed
problems. SIAM, Philadelphia, PA (1997).

[10] P. C. Hansen. Discrete Inverse Problems: Insight and
Algorithms. SIAM, Philadelphia, PA (2010).

[11] J.M. Martnez, L.S. Ochi, Sobre Dois Metodos de Broy-
den. Mat. Apl. Comput. 1/2, pp. 135–143 (1982)

[12] A.H. Sherman, W.J. Morrison, Adjustment of an in-
verse matrix corersponding to changes in the elements
of a given column or a given row of the original matrix.
Ann. Math. Statist. 21, pp. 124–127 (1950)

[13] C. R. Vogel. Computational Methods for Inverse Prob-
lems. SIAM, Philadelphia, PA (2002).

