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The paper describes the effect of different manipulations
(addition of fiber, nanoclay, nucleating agents and chain
extender, blending, annealing, use of a higher mold tem-
perature and stereocomplexation) on the heat resistance
of poly(lactic acid) (PLA) and poly(hydroxybutyrate) (PHB).
Therefore, the differential scanning calorimetry profiles,
the vicat softening temperatures and the degradation
temperatures were measured and compared to standard
PLA, PHB, and polypropylene (PP) as reference materials.
Furthermore, a comparison between VST and HDT as
parameters for heat resistance was made by examining
the deformation during contact with hot water. Stereo-
complexation and the use of a higher mold temperature
seemed the best techniques to obtain PLA-based materi-
als with good heat resistance, while other manipulations
had little to no effect on the processed biopolymer. The
addition of chain extender to PLA and PHB had no effect
on processed polymers, but it did improve the thermal
degradation of PLA during processing. Furthermore, hot
fill tests showed that higher VST values were more reli-
able as a heat resistant parameter than HDT values for
these kinds of application. The VST values of PHB were
similar to PP, suggesting that PHB also provides opportu-
nities as a packaging material for food products that
undergo a heat treatment. POLYM. ENG. SCI., 00:000–000,
2017. VC 2017 Society of Plastics Engineers

INTRODUCTION

Currently most packaging materials used in the food industry,

such as polyethylene terephthalate (PET), polyethylene (PE),

polypropylene (PP), and polystyrene (PS), are fossil fuel based.

These materials are intensively used because of their good func-

tionalities, low cost and high availability. But, their petrochemi-

cal nature means they depend on the rising and fluctuating oil

prices, and raises concerns regarding their environmental

impact. Materials made from renewable resources could be a

sustainable alternative. Biobased food packaging uses biomass

which regenerates (annually), saving fossil resources, and they

have the potential of being carbon neutral [1–3]. However, the

heat resistance of most of these biobased plastics is insufficient

for use as a packaging material for foods undergoing a heat

treatment before or after packaging. This means that these mate-

rials cannot be used for in-package sterilization or pasteuriza-

tion, hot fill packaging or microwave and oven applications,

which are important features in nowadays packaging concepts.

Furthermore, a poor heat resistance can also lead to degradation

of the polymer during processing.

Increasing the heat resistance of biopolymers (both during

and after processing) can be achieved in several ways. A first

technique is the use of additives such as plasticizers, chain

extenders, nanoparticles, or nucleating agents. The addition of

plasticizers can increase the polymer chain mobility which can

enhance the crystallization rate by reducing the energy required

during crystallization [4]. Wang et al. [5] found that the addition

of N-octyl lactate (NOL) lowered the glass transition tempera-

ture (Tg) with maximum 17.88C, depending on the NOL content.

Furthermore, the crystallization temperature (Tc) and melt tem-

perature (Tm) also decreased with increasing plasticizer content.

The percentage crystallinity increased with increasing NOL con-

tent. Boonfaung et al. [6] found that the addition of polypropyl-

ene glycol, polyethylene glycol-ran-propylene glycol, dioctyl

phthalate, tributyl citrate, and adipic acid lowered the Tg by

maximum 15.48C. Furthermore, these plasticizers also decreased

the Tm of PLA, allowing processing of the polymer well below

the degradation temperature. Martin and Av�erous [7] reported

similar results after the addition of polyethylene glycol to PLA.

They also found an increase in the degree of crystallinity, which

is a parameter closely related to heat resistance. The addition of

a chain extender can prevent the thermal degradation of poly-

mers during processing by extending the polymer chain and

increasing the molecular weight (by re-coupling of degraded

chains) and by decreasing the number of reactive polymer ends,

resulting in a lower chance of back-biting [8, 9]. Al-Itry et al.

[10] found that the viscosity of PLA and PLA/polybutyrate adi-

pate terephthalate (PBAT) remained constant in time after addi-

tion of Joncryl
VR

. This indicates a reduced thermal degradation

during processing. Also TGA analysis showed that the degrada-

tion temperature increased by 20% (1% Joncryl
VR

m/m). But for

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a lower

crystallization temperature and crystallinity was found after

addition of Joncryl
VR

[11]. The positive effect of the addition of

nanoparticles was demonstrated by Ray [12, 13], who found that

the addition of montmorillonite (MMT) clay and organically

modified synthetic fluorine mica to PLA increased the heat
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deflection temperature (HDT) with 178C and 398C, respectively.

Furthermore, addition of nanoclay or nanocellulose to PLA or

PLA/PHB improved the degradation temperature according to

Martino et al. [14] and Arrieta et al. [15]. However, other stud-

ies show that the addition of nanoparticles to PLA resulted in a

lower degradation temperature [9, 16–18].

A second technique to increase the heat resistance is the use

of blends and copolymers. Blending of PLA with PHB

decreased Tg and the post-crystallization temperature (Tc) com-

pared to pure PLA and increased the degree of crystallinity by

5% [15]. A more constant viscosity, better elongation and

strength can be achieved by blending PLA with PBAT [19,

20]. Copolymers of PHB and polyhydroxyvalerate (PHV),

resulting in poly(3-hydroxybutyrate-3-hydroxyvalerate)

(PHBV), have a decreased Tm and Tg compared to pure PHB

[21]. The Tm, Tg and crystallization of stereoblock and stereo-

complex PLA (PLLA and PDLA) are much better than the

ones of pure PLA. The HDT of amorphous PLA and stereo-

complex PLA is 558C–608C and 1608C–2008C [22, 23],

respectively.

The incorporation of a filler, making a biocomposite, is a
third technique to increase the heat resistance. The HDT of a

PHBV/woodfiber composite and PHBV/bamboofiber composite

increased with 248C and 98C (40 wt% of fiber), respectively

[24, 25]. Finally, a fourth technique is the adjustment of the

processing parameters to increase the heat resistance. Harris and

Lee [26] found that the degree of crystallization and the HDT

increased with increasing annealing time.

Although the interest in biobased plastics is growing, a lot of

stakeholders in the food industry are doubtful regarding the

introduction of biobased plastics. This can be attributed to dif-

ferent factors including amongst others higher prices and the

lack of knowledge regarding these new materials and their pos-

sibilities. Therefore, in this study, several commercially avail-

able materials with one of the previous described techniques

were tested and the effect on the heat resistance was measured.

Although these techniques were described in literature before,

comparability of the results is very difficult, since different

standards or testing conditions were used. The evaluation of this

quantity of techniques on the heat resistance of biobased poly-

mers by these quantities of different measurements, allowing for

a uniform comparison has not yet been described in literature.

The results of this research are immediately applicable in indus-

try. Furthermore, a comparison between HDT and VST as an

indicator for the thermal properties was made, since mostly only

one of these parameters is measured/given.

EXPERIMENTAL

Materials

The tested polymer materials (commercially available) and

additives were supplied by different producers (Table 1) and

processed at the Centre for Polymer and Material Technologies

(CPMT, Ghent University, Ghent, Belgium) based on the techni-

cal specifications provided by the producers. As reference mate-

rials, two standard biobased polymers (PLA and PHB) and a

TABLE 1. Overview tested materials, their use and their suppliers.

Material Use Producer/supplier

Standard materials

NatureWorks Ingeo
VR

3052D (PLA) Injection NatureWorks LLCa

NatureWorks Ingeo
VR

6400D (PLA) Extrusion NatureWorks LLC

Sabic PP 575P (PP) Injection Sabic Europeb

Total PPC 5752 (PP) Injection Totalc

Biomer
VR

P304 (PHB) Injection Biomerd

Modified materials

SogreenTM 2001-A (PLA/PHB) Extrusion GreenGrane

GreenGran PO21J (PLA 1 25% fiber) Extrusion/Injection GreenGran

Synterra
VR

IM (stereocomplex PLA (sc-PLA)) Injection Synbra/Puracf

1A-115/13A0 (PLA compound) Injection Company Ag

1A-131/14CC (PLA compound) Injection Company A

Additives

Joncryl
VR

FA1009 masterbatchh Chain extender for PLA BASFj

Joncryl
VR

FA11005 masterbatchi Chain extender for PLA BASF

Cloisite 15A (montmorillonite) Polymers Rockwood additives/BYK-Gardnerk

Hyperform HPN-20E
VR

Nucleating agent Millikenl

Hyperform HPN-68L
VR

Nucleating agent Milliken

aBlair, NE.
bSittard, The Netherlands.
cCourbevoie, Île-de-France, France.
dKrailling, Germany.
eEde, The Netherlands.
fEtten-Leur, The Netherlands.
gConfidential.
h25% (w/w) Joncryl

VR

ADR 4368 in PLA carrier.
i25% (w/w) Joncryl

VR

ADR 4300 in PLA carrier.
jArnhem, The Netherlands.
kGeretsried, Germany.
lGhent, Belgium.
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heat resistant conventional polymer (PP) were chosen. By means

of both injection molding and extrusion, beakers (Engel 80T

injection molding machine, Schwertberg, Austria) and/or tensile

bars (Boy 22S injection molding machine, Neustadt-Fernthal,

Germany) or extrusion plates (Brabender
VR

single screw extruder,

Duisburg, Germany) were made. The processing parameters are

shown in Table 2 (injection-molding) and Table 3 (extrusion).

Differential Scanning Calorimetry

The percentage crystallinity ac, the glass transition tempera-

ture (Tg), the melt temperature (Tm), and the crystallization tem-

perature during heating (cold crystallization temperature, Tcc) or

during cooling (crystallization temperature, Tc) of the processed

materials were determined by differential scanning calorimetry

(DSC) (DSC 204 F1 Phoenix
VR

, Netzsch, Selb, Germany, yearly

calibrated by metal standards). 15–30 mg of sample was heated

in an aluminum pan from room temperature (208C) up to max.

2508C and cooled down at a constant rate of 108C/min under a

N2 atmosphere (20 cm3/min). Since the material characteristics

are important, two runs were performed for each material. The

second run is performed to erase the previous thermal history

and to understand the ability of the polymer to recrystallize after

melting. Results were processed via Proteus
VR

thermal analysis

program (v.4.8.5, Netsch-Geraetebau GmbH). The theoretical

melting enthalpies used for a 100% crystalline material DHc
m

were 135 J/g for PLA [27], 209 J/g for PP [28], and 146 J/g for

PHB [29]. All DSC results reported are single measurements.

Vicat Softening Temperature (VST)

To determine the VST, bars with a thickness between 3 and

6.5 mm were heated in an oil bath at a constant rate of 508C/h

or 1208C/h. A needle with a surface area of 1 mm2 and with a

downward force of 6.1 N or 12.2 N was set to penetrate the bar

until the needle effectively penetrated the bar by 1 mm (CEAST

6510-517, Turin, Italy). Samples were tested in duplicate.

Heat Deflection Temperature (HDT)

To determine the HDT, samples were heated in an oil bath at a

constant rate of 1208C/h after conditioning for 5 min (CEAST 6510-

517). A force of 0.49N was used to bend the samples. According to

ISO-75B edgewise, the HDT was reached for a 0.34 mm deflection

of the sample. Samples were tested in duplicate.

Thermogravimetrical Analysis (TGA)

TGA tests were performed with a Netschz STA 449 F3 Jupiter

(Netschz-Geraetebau GmbH, Selb, Germany). 15–25 mg of sam-

ple was heated at a constant rate of 108C/min from room tempera-

ture (208C) till maximum 7508C (dependent on the material) under

nitrogen atmosphere. Results were processed with the Proteus
VR

Thermal analysis program (v.5.0.1, Netschz-Geraetebau). The

TABLE 2. Processing parameters for injection molding of different biobased and reference materials.

Material

Temperature profile (8C)

Screw

speed

(rpm)

Injection 1 Injection 2 Pressure

Cooling

time (s)Mold Nozzle

Screw

(zones U.A.B.C)

Speed

(mm/s)

Pressure

(bar)

Speed

(mm/s)

Pressure

(bar)

Pressure

(bar)

Time

(s)

Sabic PP 575P 15–40 230 230 220 210 190 288 57 580 40 507.5 507.5 3 25

IngeoTM 3052D 25 210 210 200 190 180 288 57 580 17.1 290 217.5 3 20

GreenGran PO21J 30–70 160 140 150 160 170 200a 57 580 17.1 290 217.5 3 20

IngeoTM3052D 1 2%

Joncryl
VR

FA 1009

25 210 210 200 190 180 288 57 580 40 507.5 507.5 4 20

IngeoTM3052D 1 2%

Joncryl
VR

FA 11005

25 210 210 200 190 180 288 57 580 34.2 435 362.5 4 20

Biomer
VR

P304 40 170 170 175 175 185 288 91.2 1160 11.4 145 362 4 20

Biomer
VR

P304 1 2%

Joncryl
VR

FA 1009

40 170 170 175 175 185 288 91.2 1160 11.4 145 362 4 20

Biomer
VR

P304 1 0.1%

Hyperform
VR

HPN 20E or HPN 68L

35 170 170 175 175 185 288 91.2 1160 11.4 145 362 4 20

PLA blend 35 205 205 195 185 175 288 57 725 29 368 362 5 25

Synterra
VR

IM 90–100 195 160 190 200 195 175 57 580 17.1 290 217.5 3 35

PLA compounds 30–100 155 165 175 190 160 30–60–90

TABLE 3. Processing parameters for extrusion of different biobased materials.

Material Temperature profile screw (8C)

Screw

speed (mm/s)

Top

roll (8C)

Middle

roll (8C)

Bottom

roll (8C)

GreenGran PO21J 35 160 170 170 170 200 25 38 50

SogreenTM 2001-A 35 160 170 170 165 200 25 38 50

IngeoTM 6400D 35 160 170 180 190 300 25 38 50

IngeoTM 6400D 1 5% (w/w)

Cloisite 15A

35 160 170 180 190 300 25 38 50

DOI 10.1002/pen POLYMER ENGINEERING AND SCIENCE—2017 3



degradation temperature (Td) was assumed at 5% weight loss. All

TGA results reported are single measurements.

Hot Fill Test

PLA (1A) and PP (Total PPC 5752) beakers were filled with

boiling water. After 0, 1, 2, 3, 4, and 5 min a beaker was emp-

tied and the dimensions of the beaker (height and diameter of

the bottom of the beaker) were measured with a Profile Projec-

tor (Nikon, Amsterdam, the Netherlands). The percentage

change in height or diameter was calculated, with reference

being the dimensions before filling with hot water. Samples

were tested in duplicate and an average was calculated using

Microsoft Excel.

Processing Parameters

The effect of higher mold temperatures was investigated by

increasing the mold temperature from 308C to 908C. In addition,

post-injection molding annealing of PLA (NatureWorks Ingeo
VR

3052D) was performed by placing the samples in an oven at

1008C during 10 min. Samples were cooled slowly (in the

switched off oven).

RESULTS AND DISCUSSION

DSC

The DSC profile (second run) of NatureWorks Ingeo
VR

3052D (reference PLA) is shown in Fig. 1. A clear Tg and Tm

(see also Table 4), both corresponding to the values mentioned

on the technical datasheet, were observed, as well as a crystal-

lization peak during heating (Tcc). This peak is very small,

however, as is the enthalpic value of the melt peak. Together

with the observed lack of a crystallization peak during cooling

(Tc), this indicates a very limited crystallization, resulting in a

mostly amorphous material. This was confirmed by the calcu-

lated percentage crystallinity, which was around 3% (second

run) and can be explained by the intrinsic slow crystallization

rate of PLA [26]. Indeed, the crystallization which did occur,

FIG. 1. DSC profile of NatureWorks Ingeo
VR

3052D (standard PLA) (sec-

ond run). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4. Overview parameters DSC measurements.

Material Tg (8C) Tcc (8C) Tc (8C) Tm (8C) Xc (%)

NatureWorks Ingeo
VR

3052D

1st run 61.1 119.6 — 157.3 —

2nd run 60.9 122.8 — 155.3 0.5

Sabic PP 575P

1st run — — 113.1 171.1 34.8

2nd run — — 108.8 167.1 40.9

NatureWorks Ingeo
VR

6400D

1st run 62.4 104.1 — 173.0 5.7

2nd run 60.9 111.4 — 170.2 2.2

Stereocomplex PLA

1st run — — 173.3/121.5 177.9/222.5 —

2nd run — — 165.3/126.1 175.5/219.9 —

PLA 1 fiber

1st run 60.2 98.4 93.6 171.3 5.9

2nd run 61.5 — 93.8 168.4 22.9

PLA/PHB

1st run 58.8 82.5 90.1 175.3 —

2nd run 63.2 — 85.2 164.2 —

PLA Ingeo
VR

3052D 1 Joncryl
VR

FA 1009

1st run 63.6 124.1 — 155.7 1.1

2nd run 61 127.3 — 152.4 0.2

PLA Ingeo
VR

3052D 1 Joncryl
VR

FA 11005

1st run 63.1 120.5 — 157.2 0.1

2nd run 61 122.2 — 153.4 0.6

PLA Ingeo
VR

6400D 1 Cloisite 15A

1st run 60.9 94.6 — 171.9 8.8

2nd run 59.8 106.9 — 169.3 0.9

PHB

1st run — — — 177.9 28.2

2nd run — — 112.6 175 46.4

PHB 1 Joncryl
VR

FA 1009

1st run — — — 179.5 21

2nd run — — 112.3 173.4 44.7
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happened during the reheating of the material and not during

cooling, indicating that injection molded products might be

fully amorphous after processing. A Tg within the temperature

range of heat resistant packaging use, as is also described in

literature [30], and a very low crystallization indicate that PLA

is not suitable for applications where heat treatments are

applied.

The DSC profile (Fig. 2) of Sabic PP 575P showed some big

differences with the one of PLA. No Tg (Tg below zero, so out-

side the tested temperature range) or cold crystallization peak

(Tcc) was observed. The Tm was around 1658C–1708C (Table 4),

corresponding to literature [31], and during cooling a crystalliza-

tion peak was detected (Tc), indicating good crystallization of

the material. This was confirmed by the percentage crystallinity

which was 40.9% (second run). These results indicate that PP

has a good heat resistance and can be used for high heat pack-

aging applications.

For stereocomplex PLA (sc-PLA), a similar DSC profile

(Fig. 3) as the one of PP, with no glass transition within the

tested temperature range, no crystallization peak during heating

and a crystallization peak during cooling, was obtained, indicat-

ing better crystallization compared to pure PLA. Furthermore,

two separate melt peaks were observed. The first melt peak

originates from PLLA, while the second one originates from sc-

PLA. The Tm of sc-PLA is higher than the Tm of the reference

PLA. Because of the two melt peaks and the lack of information

regarding the exact composition of the material, the percentage

crystallinity could not be calculated. But the absence of a Tg

within the tested temperature range, the higher Tm and the pres-

ence of a crystallization peak during cooling, pointing out good

crystallinity, indicate that sc-PLA can probably be used for

packaging applications undergoing a heat treatment step.

The DSC profiles (data not shown) of both the PLA 1 fibers

and the PLA/PHB blend showed a lower Tcc (around respec-

tively 98 and 838C) and a higher Tm (respectively 171 and

1758C; Table 4) compared to the reference PLA. Both DSC

showed a crystallization peak during cooling (Table 4), indicat-

ing a better crystallization potential of the material. The calcu-

lated percentage crystallinity of PLA 1 fibers were indeed

improved (22.9%) compared to standard PLA (second run).

Because of the double melt peak no percentage crystallinity of

the PLA/PHB blend could be calculated. These results indicate

a higher heat resistance of PLA 1 fibers and PLA/PHB com-

pared to standard PLA. The higher crystallinity (PLA 1 fibers)

or crystallization potential (PLA/PHB) can be explained because

both the fiber surface and the PHB can act as a nucleating agent

in PLA [32, 33]. For the PLA/PHB blend, it was noted that the

properties of both PLA and PHB were found in the profile,

which suggests incompatibility between the two polymers. The

compatibility of PLA and PHB is dependent on the molecular

weight. According to Koyama and Doi [34] and Blumm and

Owen [35] PHB is miscible with low molecular weight PLA

(Mw< 18,000) in the melt, whereas PHB blends with high

molecular weight PLA (Mw> 18,000) showed biphasic separa-

tion. Similarly, PLA is miscible with low molecular weight

PHB (Mw 5 9,400, up to 50 wt% PHB), but is immiscible with

high molecular weight PHB according to Park et al. [36] and

Ohkoshi et al. [37]. Since this was a commercial grade of which

the composition was unknown it is possible that the molecular

weights of PLA and PHB were incompatible. Furthermore, the

Tm of the blend decreased with more than 108C during the sec-

ond heating cycle. This could indicate thermal degradation dur-

ing processing, but it could also be caused by a different

crystallization (due to cooling during the DSC measurement

compared to cooling after processing) or a different contact sur-

face compared to the first run.

The results of the DSC measurements show that the addition

of the chain extenders Joncryl
VR

FA 1009 and FA 11005 (2%) did

not have a clear effect on the thermal parameters. The Tg, Tm,

and Tcc (Table 4) remained more or less stable for respectively

PLA, PLA 1 2% Joncryl
VR

FA 1009 and PLA 1 2% Joncryl
VR

FA

11005. Furthermore, the crystallinity (after the second run) of

PLA 1 Joncryl
VR

FA 1009 and of PLA 1 Joncryl
VR

FA 11005 was

also very low and comparable to neat PLA. This is probably

because Joncryl
VR

causes increased branching of the chains, lead-

ing to a more difficult alignment of the polymer chains. The

decreased chain mobility normally results in a higher crystalliza-

tion temperature during heating (Tcc), which was seen for

Joncryl
VR

FA1009, but not for Joncryl
VR

FA11005 [38]. The addi-

tion of Cloisite 15A (5%) to PLA had no effect on the Tg and

Tm of respectively PLA and PLA 1 Cloisite, but it did decrease

the Tcc of PLA, indicating a better crystallization potential

(broader window). This could be attributed to a nucleating effect

of the nanoclay. In Table 4, this better crystallization potential

can be seen after the first DSC run (8.8% vs. 5.7%) but not after

the second run (0.9% vs. 2.2%), despite the decreased Tcc.

Potentially, the shear-free heating of the polymer into melt

phase during the DSC measurement could cause the Cloisite to

coagulate. In extrusion, shear will forcefully cause the Cloisite

to disperse and distribute throughout the melt. In the static con-

ditions of the DSC apparatus, no such forces occur to overcome

the thermodynamic tendency of the filler to coalesce into larger

FIG. 2. DSC profile of Sabic PP 575P (standard conventional material)

(second run). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 3. DSC profile of Synterra
VR

IM stereocomplex PLA (second run).

[Color figure can be viewed at wileyonlinelibrary.com]
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domains. As 5% Cloisite is a rather large amount, this is a likely

cause for the loss in nucleating effect between the first and sec-

ond DSC run. As this seems to be a measurement artifact rather

than an implication for the actual production of heat resistance-

modified polymers, this hypothesis was not experimentally

verified. Furthermore, no DSC measurements of the PLA 1 Hyper-

form HPN-20E
VR

and Hyperform HPN-68L
VR

were performed.

Based on the previous results of PLA 1 Joncryl
VR

, only 1 type

of Joncryl
VR

was added to PHB. The results of the DSC measure-

ments of PHB and PHB 1 Joncryl
VR

FA 1005 showed no Tg

(around 58C [39, 40], outside of the tested temperature range),

no crystallization peak during heating, a melt peak and a clear

crystallization peak during cooling. Both profiles were very sim-

ilar but a slightly lower Tm and percentage crystallinity were

observed after the addition of Joncryl
VR

. This is because chain

extenders increase the molecular weight by crosslinking or

branching leading to a reduction in chain mobility [11]. The cal-

culated crystallinity of PHB is lower than the percentage crystal-

linity described in literature [41].

Comparison of the DSC results of pure PLA and PHB leads

to the conclusion that PHB is more heat resistant than PLA.

DSC results of PHB are similar to the one of PP with only a

melt peak and a crystallization peak during cooling (Table 4).

VST

The Vicat Softening Temperatures of sc-PLA and of PP were

very similar (Table 5). The VST of PLA 1 fibers was similar to

the VST of the reference PLA, while the PLA/PHB blend has

an improved VST compared to neat PLA. These results also

indicate that stereocomplex PLA has a good heat resistance,

while the heat resistance of PLA 1 fiber and of the PLA/PHB

blend has not (PLA 1 fiber) or only slightly (PLA/PHB blend)

been improved compared to neat PLA. The increased crystallin-

ity of the PLA 1 fiber did not result in a higher VST. This

might be explained by the fact a higher crystallinity was only

observed after the second run and the percentage crystallinity

after the first run was similar to standard PLA. Furthermore,

fibers have a reinforcing effect, which will probably have a

clear effect on the HDT and less on the VST. The increased

heat resistance of the PLA/PHB blend compared to standard

PLA can probably be attributed to the higher heat resistance of

PHB. These results indicate that sc-PLA has a good heat resis-

tance and that PHB intrinsically has also a good heat resistance,

comparable to PP.

The addition of 2% Joncryl
VR

masterbatch to PLA or PHB,

the addition of 5% Cloisite 15A to PLA and the addition of the

chain extender Hyperform
VR

to PHB did not have a big influence

on the vicat softening temperatures (VST) of the materials. This

was expected, since the results of the DSC measurements

already pointed out that these additives did not increase the heat

resistance of PLA or PHB.

TGA

The results of the TGA measurements of PLA with and with-

out Joncryl
VR

showed that the addition of Joncryl
VR

masterbatch

resulted in a slightly higher degradation temperature (341.18C

for FA 1009 and 340.48C for FA 11005) compared to the refer-

ence PLA (336.78C). Also for PHB, a slightly higher (12.88C)

degradation temperature was observed compared to the refer-

ence PHB. The improvements in degradation temperature by

addition of the chain extender Joncryl
VR

are limited and will only

have a small effect during processing. This is in accordance

with Najafi et al. [9], who found that out of several chain

extenders, Joncryl
VR

enhanced the degradation temperature the

least. This can be explained by the fact that Joncryl
VR

induces

more branching in the polymer chain, increasing the molecular

weight (positive effect on the degradation temperature), and also

causing a high number of polymer ends (negative effect on the

degradation temperature). The thermal degradation temperature

of PLA decreased from 345.78C to 334.98C after addition of

Cloisite 15A. This is in accordance to Meng et al. [16], Najafi

et al. [9] and Wu et al. [17], who also found a decrease in deg-

radation temperature after the addition of OMMT to PLA. No

TGA measurements of PHB 1 nucleating agents were

performed.

From all heat resistance tests, it can be concluded that,

despite the higher Tm, the lower Tcc, and higher percentage crys-

tallinity, the addition of fibers did not result in a better VST

compared to standard PLA. The blending with PHB resulted in

only a slight enhancement of the heat resistance with an

increased Tm, increased percentage crystallinity and a higher

VST. A reason for the poor improvement in heat resistance,

which is in contrast with what was found in literature [25, 31,

42–44], could be a poor compatibility of the additives (fibers

and PHB) with PLA. Stereocomplexation of PLA had the great-

est effect on the heat resistance of PLA, with a clear increase in

Tm and a much higher VST compared to standard PLA. The

positive effect of stereocomplexation of PLA was also found in

literature [22, 23]. The addition of the chain extender Joncryl
VR

and the addition of Cloisite 15A did not improve Tg, Tm, Tc,

Tcc, crystallinity and VST of PLA and/or PHB. But Joncryl
VR

did

have an effect during processing. PLA with Joncryl
VR

had a

higher and more stable viscosity compared to standard PLA,

which was noticed because a higher pressure had to be applied

at the second phase of injection (cooling and shrinkage in the

mold). This higher viscosity can be explained by an increase in

molecular weight by crosslinking and extension of the chains

caused by the chain extender. The more stable viscosity is an

indicator of less degradation. The more degradation products,

the lower the viscosity. So, the higher and stable viscosity

TABLE 5. Overview vicat softening temperatures of tested materials.

Material VST (8C)

Reference Ingeo 3052D PLA (12,2 N) 66.2 6 1.4

Reference PP (12,2 N) 148.8 6 0.6

PLA 1 fiber (12,2 N) 67.5 6 0.4

PLA/PHB blend (12,2 N) 87.6

Sc-PLA (12,2 N) 152.7 6 0.1

Reference Ingeo 3052D PLA (6.1 N) 57.9 6 0.2

PLA 1 2% Joncryl FA 1009 (6.1 N) 58.1 6 0.7

PLA 1 2% Joncryl FA 11005 (6.1 N) 57.7 6 0.1

Reference Ingeo 6400D PLA (6.1 N) 56.1 6 0.4

PLA 1 5% Cloisite 15A (6.1 N) 52.9 6 3.7

PHB (6.1 N) 154.8 6 0.2

PHB 1 2% Joncryl FA 1009 (6.1 N) 154.1 6 0.1

PHB 1 0.1% Hyperform
VR

HPN 20E (6.1 N) 155.4 6 0.3

PHB 1 0.1% Hyperform
VR

HPN 68L (6.1 N) 156.7 6 0.3
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indicates that degradation during processing is reduced because

of the chain extender [9, 10]. The addition of nucleating agent

(Hyperform HPN
VR

) slightly increased VST, but the VST of neat

PHB was already very high. Furthermore, the DSC parameters

and VST of PHB indicate that this material provides opportuni-

ties for heat resistant applications.

Processing Parameters

Annealing of NatureWorks Ingeo 3052D (standard PLA) had

a clear effect on the HDT, which increased from 46.28C to

59.18C. The mold temperature during processing (and the

inferred cooling rate from the melt) had a clear effect on the

heat resistance of the material as well (Table 6). The Vicat soft-

ening temperatures of the 13OA PLA compound increased with

over 1008C when a mold temperature of 408C and more was

used instead of a mold temperature of 308C. A clear increase in

HDT was seen as well. The Vicat softening temperatures of the

14CC PLA compound increased with over 908C when a mold

temperature of 608C and more was used instead of a mold tem-

perature of 408C. For this PLA compound, a clear increase in

HDT is seen as well. This can be explained by the fact that a

higher mold temperature allows a slower cooling leading to a

higher crystallinity of the PLA.

VST versus HDT

Table 6 also clearly shows that the VST measurements gave

a higher value compared to the HDT measurements. Since both

parameters are used to give an indication of the heat resistance,

hot fill tests were performed with PLA (1A-131/14CC, mold

T< 408C and cooling time< 60s) and PP (Total) beakers to

check the reliability of both parameters. Immediately after fill-

ing (water temperature 6 938C), a clear deformation of the PLA

beakers was visually observed. The beakers became weak and

difficult to hold. Furthermore, a reduction in optical clarity of

the beakers was observed as well, indicating post-crystallization

of the material. None of this was observed for the PP beakers.

The deformation of the PLA beakers was confirmed by the

measurements, as shown in Table 7. The beaker clearly shrank

after filling with hot water (loss of height). Despite the observed

softening of the PLA beaker no big decrease in the diameter

was measured. This could be explained by the recrystallization

of the beaker. The changes in height and diameter of the PP

beakers before and after filling can be attributed to measurement

errors. So despite the low HDT values (cfr. Table 6), the PP

beakers do not deform when filled with hot water. It can be

concluded that the HDT value does not always give a good indi-

cation of the functional heat resistance of a material. The VST

values seem more reliable, but more research is necessary to

draw a definite conclusion. The eventual use of the material is

of course important as well.

CONCLUSIONS

From this research it can be concluded that the use of stereo-

complex PLA, the use of higher mold temperatures for PLA or

the use of PHB seems to provide the best opportunity as a rigid

packaging material for food products that need to undergo a

heat treatment. For all tested additives, the lack of (good) com-

patibility might be the reason for these poor results compared to

literature. The addition of the chain extender Joncryl
VR

did not

affect the heat resistance of PLA or PHB, but it can be a solu-

tion to reduce the thermal degradation during processing. When

comparing VST values with HDT values on the same material

after hot fill testing, it seems that VST values were more reli-

able as heat resistant parameter for these kinds of applications.
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